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TWO-SCALE HOMOGENIZATION FOR A MODEL
IN STRAIN GRADIENT PLASTICITY
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Abstract. Using the tool of two-scale convergence, we provide a rigorous mathematical setting for
the homogenization result obtained by Fleck and Willis [J. Mech. Phys. Solids 52 (2004) 1855–
1888] concerning the effective plastic behaviour of a strain gradient composite material. Moreover,
moving from deformation theory to flow theory, we prove a convergence result for the homogenization
of quasistatic evolutions in the presence of isotropic linear hardening.
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1. Introduction

Strain gradient plasticity models have been deeply studied in recent years in order to understand size effects
taking place in ductile metals (see [7,8,12,13] and references therein). The gradient of the plastic strain is
connected with the density of geometrically necessary dislocations inside the body (see [2]) and its inclusion in
the model aims at capturing their interactions. However, the way in which such a term affects the equations
of the model is still suggested by phenomenological considerations, although in agreement with the general
principles of thermodynamics (see [12,13]). Strain gradient terms may play both a dissipative and an energetic
role; if the configuration of an elastoplastic body Ω ⊆ R

N subject to small displacements u : Ω → R
N entails

a plastic strain p : Ω → MN
D (here MN

D stands for the space of symmetric deviatoric matrices, see Sect. 2), an
overall plastic strain measure usually employed to compute the dissipation during an evolution is given by the
quantity √

|ṗ|2 + �2|∇ṗ|2.
Here � is a dissipative length-scale, which has the dimension of a length and the order of magnitude of the
distance at which interactions between dislocations take place. In particular, for polycrystals, � is comparable
with the size of the grains of the material.

In 2004 Fleck and Willis [9] studied the behaviour of composite materials with highly oscillating elastic and
plastic moduli, whose response in the homogenization limit does not involve gradient terms. More precisely,
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they considered a strain gradient deformation theory whose associated energy is given by

E(u, p) =
1
2

∫
Ω

C(x)(Eu − p) : (Eu − p) dx+
∫

Ω

b(x)[|p|2 + �2|∇p|2] dx, (1.1)

where the elastic tensor C and the yielding function b highly oscillate in space, and Eu denotes the symmetrized
gradient of u. Since the interactions modeled by strain gradients tend to vanish in the homogenization limit,
Fleck and Willis focused on the problem of finding suitable bounds for the effective energy (independent of ∇p)

Eeff(u, p) =
∫

Ω

F eff(Eu(x), p(x)) dx (1.2)

governing the behaviour of the homogenized body. Here the effective energy density F eff(Ā, p̄) is provided by
minimizing the energy (1.1) on a representative volume element, among displacement fields u satisfying the
linear boundary condition u = Ā · x and plastic strains p with mean given by p̄. In the particular case when C

is constant and only the yielding function b oscillates, the effective energy density becomes

F eff(Ā, p̄) =
1
2

C(Ā− p̄) : (Ā− p̄) + V eff(p̄), (1.3)

where the elastic part is clearly identified, but the effective plastic potential V eff depends also on the elastic
properties of Ω. Indeed, its expression involves an operator Γ (introduced by Willis in [25]) associated to an
elasticity problem which depends on C (see Thm. 4.7).

The first aim of our paper is to provide a rigorous mathematical framework in order to establish (1.2) in the
case when C and b oscillate in a periodic way. We consider energies of the form

Eε(u, p) =
1
2

∫
Ω

C

(x
ε

)
(Eu− p) : (Eu − p) dx+

∫
Ω

b
(x
ε

)
[|p|2 + ε2�2|∇p|2] dx, (1.4)

defined on H1(Ω; RN ) × H1(Ω; MN
D), where C and b are periodic and satisfy suitable coercivity assumptions.

The plastic and elastic moduli oscillate on a scale ε; accordingly, the dissipative length-scale is given by ε�, with
� > 0.

We study the asymptotic behaviour of Eε as ε→ 0 in the framework of two-scale convergence. This remarkable
notion (see Sect. 3 for the precise definition and the main properties) has been introduced by Nguetseng [19]
and Allaire [1] in order to study periodic homogenization in linearized elasticity. Let us consider the unit cube

Y :=
[
−1

2
,
1
2

[N

·

For a family of functions (vε)ε>0 uniformly bounded in Lp(Ω), the two-scale weak limit of vε is given by
V ∈ Lp(Ω × Y ) such that

lim
ε→0

∫
Ω

vε(x)ψ
(
x,
x

ε

)
dx =

∫
Ω×Y

V (x, y)ψ(x, y) dxdy

for every smooth function ψ(x, y) defined on Ω×Y and periodic in y (see Def. 3.1). Noticeably, a microstructural
variable y appears in order to keep track of the oscillations of the functions of the family. In Section 4 we will
prove that the asymptotic behaviour of (1.4) along a family (uε, pε)ε>0 can be inferred from the two-scale energy

E(u, U, P ) =
1
2

∫
Ω×Y

C(y)(Eu + EyU − P ) : (Eu+ EyU − P ) dxdy +
∫

Ω×Y

b(y)[|P |2 + �2|∇yP |2] dxdy, (1.5)
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where U ∈ L2(Ω;H1
per,0(Y ; RN )), periodic and with null average in y, is connected with the two-scale weak limit

of Euε (see Prop. 3.3), while P ∈ L2(Ω;H1
per(Y ; MN

D)), periodic in y, is associated with the two-scale weak limit
of pε and ε∇pε (see Thm. 3.5). By employing (1.5), we will show (Thms. 4.3 and 4.5) that the configurations
(uε, pε) which minimize (under suitable boundary conditions for the displacement)

(u, p) �→ Eε(u, p) −
∫

Ω

f · u dx,

where f ∈ L2(Ω; RN ) stands for the density per unit volume of external body forces, converge as ε → 0 in the
weak topology of H1(Ω; RN ) × L2(Ω; MN

D ) to the minimizer of

(u, p) �→ Eeff(u, p) −
∫

Ω

f · u dx,

where Eeff is of the form (1.2). Moreover, concerning the effective energy density we obtain the formula

F eff(Ā, p̄) := min
{

1
2

∫
Y

C(y)[Ā+ EyU − P ] : [Ā+ EyU − P ] dy

+
∫

Y

b(y)[|P |2 + �2|∇yP |2] dy : (U,P ) ∈ H1
per,0(Y ; RN ) ×H1

per(Y ; MN
D),

∫
Y

P (y) dy = p̄

}
(1.6)

in which the representative volume element is precisely the unit cell Y . In the case when the elasticity tensor is
constant and oscillations do occur only in the yielding function, we obtain a characterization of Willis’ operator Γ
in terms of the function U appearing in (1.5) (see Def. 4.6 and Thm. 4.7).

The key tool in investigating the asymptotic behaviour as ε→ 0 of the energies (1.4) is Theorem 3.5, where
an asymptotic and approximation result in a two-scale sense concerning functions vε bounded in L2(Ω) with
ε∇vε bounded in L2(Ω; RN ) is given.

In Section 5 we move from deformation theory to flow theory, considering quasistatic evolutions for the model
associated to (1.1) in the presence of isotropic linear hardening. Setting again the problem in the case of periodic
oscillations for the elastic and plastic moduli, we study the asymptotic behaviour of quasistatic evolutions with
vanishing strain gradient effects, employing the energetic approach to evolutions for rate independent systems
introduced by Mielke and his school (see [16] and references therein). In this framework, the analysis of the
deformation theory can be considered as a preliminary step for the study of the corresponding flow theory.
We show in Theorem 5.8 that the homogenization of quasistatic evolutions can be understood moving to a
two-scale setting and considering a suitable notion of quasistatic evolution within this context (see Def. 5.4):
even if strain gradient effects tend to vanish, the model turns out to be of strain gradient type with respect to
the microstructural variable y. The passage to a single scale setting seems to lead to an evolution which cannot
be described in terms of standard plasticity models associated to the effective energy (1.2) (see Rem. 5.9).

The paper is organized as follows. In Section 2 we state the notation employed throughout the paper, while
in Section 3 we recall the definition and the basic properties of two-scale convergence which will be essential
in Section 4 when dealing with the two-scale approach to the homogenization procedure of Fleck and Willis.
Finally, Section 5 is devoted to the homogenization of strain gradient quasistatic evolutions with isotropic linear
hardening.

2. Notation and preliminaries

In this section we introduce the notation and recall some basic definitions concerning the functional spaces
employed in the rest of the paper. In the following, Br(x) will denote the open ball of center x ∈ RN and
radius r > 0. If E ⊂ RN , we will denote its volume by |E|, and 1E will stand for its characteristic function,
i.e., 1E(x) = 1 if x ∈ E and 1E(x) = 0 if x �∈ E.
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Matrices. On the space of N ×N matrices A = (aij) with aij ∈ R we will consider the scalar product

A : B :=
∑
i,j

aijbij .

The associated norm of A is denoted by |A|.
We will denote by MN

sym the subspace of symmetric matrices, and by MN
D the subspace of MN

sym of deviatoric
matrices A, that is such that trA :=

∑
i aii = 0.

The symmetrized gradient of a RN -valued function u(x) is defined as

Eu :=
∇u + ∇uT

2
,

where (∇u)ij = ∂ui

∂xj
is the gradient of u and ∇uT denotes its transpose.

The gradient of a matrix-valued function A(x) = (aij(x)) is defined as the third-order tensor

(∇A)ijk :=
∂aij

∂xk
·

We will consider on the space of third order tensors A = (aijk) the norm

|A| :=
√∑

i,j,k

a2
ijk.

We say that A = (aijk) is symmetric-deviatoric in its first two subscripts if

aijk = ajik and
∑

p

appk = 0,

and we write A ∈ M
N
D .

Functional spaces. Throughout the paper, given E ⊆ RN measurable and X a finite dimensional normed
space, Lp(E;X) with p ∈ [1; +∞[ will stand for the space of p-summable functions with values in X . L∞(E;X)
will denote the space of essentially bounded maps from E to X , and ‖·‖∞ will be the associated sup-norm. Given
A ⊆ RN open, W 1,p(A;X) will denote the usual Sobolev space of functions in Lp(A;X) whose distributional
derivatives are p-summable, and W 1,p

0 (A;X) will denote the subspace of functions vanishing at the boundary.
For p = 2 we write H1(A;X) and H1

0 (A;X) in place of W 1,2(A;X) and W 1,2
0 (A;X) respectively. If X = R, as

usual we will write Lp(E), W 1,p(A) and W 1,p
0 (A).

Let us set

Y :=
[
−1

2
,
1
2

[N

. (2.1)

We will refer to Y as the unit cell, and write W 1,p(Y ;X) in place of W 1,p(int(Y );X). Moreover we set

W 1,p
per(Y ;X) := {u ∈W 1,p(Y ;X) : u admits a Y -periodic extension to R

N},

H1
per(Y ;X) := W 1,2

per(Y ;X),
and

W 1,p
per,0(Y ;X) :=

{
u ∈ W 1,p

per(Y ;X) :
∫

Y

u dy = 0
}
,

H1
per,0(Y ;X) := W 1,2

per,0(Y ;X).
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Notice that u ∈W 1,p
per(Y ;X) can be characterized in terms of traces on the faces of Y . For i = 1, . . . , N set

∂±i Y :=
{
y ∈ Y : yi = ±1

2

}
, (2.2)

and let γ±i denote the trace operator from W 1,p(Y ;X) to Lp(∂±i Y ;X). The spaces Lp(∂±i Y ;X) can be identified
naturally with Lp(] − 1/2, 1/2[N−1;X): it turns out easily that u ∈ W 1,p

per(Y ;X) if and only if u ∈ W 1,p(Y ;X)
and γ+

i (u) = γ−i (u) for every i = 1, . . . , N .

Korn’s inequality. Dealing with linearized elasticity, we will employ several times the following inequality
due to Korn.

Theorem 2.1. Let Ω ⊆ RN be open. Then there exists C > 0 such that for every u ∈ H1
0 (Ω; RN )

‖∇u‖L2(Ω;RN×N ) ≤ C‖Eu‖L2(Ω;MN
sym),

where Eu denotes the symmetrized gradient of u.

The proof easily follows performing integration by parts (see e.g. [6], Sect. 7.3, Rem. 15) or by extending u
to RN and applying Plancherel’s formula for Fourier transforms. The same inequality holds also for functions
in H1

per,0(Y ; RN), Y being the unit cell (2.1), the proof following by expansion in Fourier series.

3. Two-scale convergence

Introduced in the seminal papers of Nguetseng [19] and Allaire [1] about twenty years ago, two-scale conver-
gence is nowadays a pretty well-known notion. Dealing with periodic functions with a precise scale parameter,
it revealed as a powerful tool in performing periodic homogenization.

In this section we recall some basic facts concerning two-scale convergence, and we prove an approximation
result (Thm. 3.5) which will be essential for our analysis of the homogenization procedure in strain gradient
plasticity proposed by Fleck and Willis [9].

Let Ω be an open bounded subset of RN with |∂Ω| = 0, and let p ∈ ]1,+∞[. The definition of two-scale
convergence for functions in Lp is based on a duality argument employing finely oscillating test functions. In
view of our applications, we restrict to the case of bounded sequences.

Definition 3.1 (two-scale convergence). Let (uε)ε>0 be a bounded family in Lp(Ω). We say that uε

converges two-scale weakly to U ∈ Lp(Ω × Y ) for ε→ 0, and write

uε
w-2
⇀ U two-scale weakly in Lp(Ω × Y )

provided that

lim
ε→0

∫
Ω

uε(x)ψ
(
x,
x

ε

)
dx =

∫
Ω×Y

U(x, y)ψ(x, y) dxdy (3.1)

for every ψ ∈ Lp′
(Ω;C0

per(Y )) (p′ := p/p− 1).
We say that uε converges two-scale strongly to U for ε→ 0, and write

uε
s-2→ U two-scale strongly in Lp(Ω × Y )

if uε
w-2
⇀ U two-scale weakly in Lp(Ω × Y ) and limε→0 ‖uε‖Lp(Ω) = ‖U‖Lp(Ω×Y ).
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In view of the boundedness of (uε)ε>0, this definition turns out to be equivalent to the original one which
employs smooth test functions (see [14], Prop. 1). Notice that taking ψ independent of y in (3.1), it follows that

uε(x) ⇀ u(x) :=
∫

Y

U(x, y) dy weakly in Lp(Ω), (3.2)

i.e., the average with respect to y of the two-scale weak limit U yields the usual weak limit of uε in Lp(Ω).
Two-scale weak/strong convergence can be reinterpreted as usual weak/strong convergence in the double-

variable space Lp(Ω × Y ) provided that we employ the notion of periodic unfolding operator firstly introduced
in [3]. We refer the reader to [4] for a survey of this approach and for applications to several periodic homoge-
nization problems. We will follow the interpretation of the method proposed by Mielke and Timofte in [18] and
we will employ their notation.

Performing for ε > 0 and x ∈ RN the unique decomposition

x = Nε(x) + εRε(x),
1
ε
Nε(x) ∈ Z

N , Rε(x) ∈ Y,

where Y is the unit cell defined in (2.1), let Dε : RN → RN × Y and Sε : RN × Y → RN be defined as

Dε(x) := (Nε(x),Rε(x)) and Sε(x, y) := Nε(x) + εy.

Let us denote by v1Ω the extension of v ∈ Lp(Ω) to all RN with value 0 outside Ω. The periodic unfolding
operator Tε : Lp(Ω) → Lp(RN × Y ) is the isometry defined as

Tε(v) := (v1Ω) ◦ Sε. (3.3)

Let (uε)ε>0 be a family bounded in Lp(Ω), and U ∈ Lp(Ω × Y ). Let us extend U to R
N × Y by setting

U = 0 outside Ω × Y . Then (see [4], Prop. 2.14 and [18], Prop. 2.5)

uε
w-2
⇀ U two-scale weakly in Lp(Ω × Y )

if and only if
Tεuε ⇀ U weakly in Lp(RN × Y ).

Similarly

uε
s-2→ U two-scale strongly in Lp(Ω × Y )

if and only if
Tεuε → U strongly in Lp(RN × Y ).

In order to approximate functions in Lp(Ω × Y ) by means of functions in Lp(Ω) in the two-scale sense, it is
useful to have an operation dual with respect to the periodic unfolding. This was introduced under the name
of averaging operator in [3]. Following the reinterpretation of [18], for any U ∈ Lp(RN × Y ) let

Pε(U)(x, y) :=
1
εN

∫
Nε(x)+εY

U(ξ, y) dξ

be the projection of U on the space of piecewise constant functions with respect to x ∈ RN . Then the averaging
operator Fε : Lp(Ω × Y ) → Lp(Ω) is given by

Fε(U) := (Pε(1[Ω×Y ]εU) ◦ Dε)
∣∣∣
Ω
, (3.4)
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where [Ω × Y ]ε := {(x, y) ∈ RN × Y : Sε(x, y) ∈ Ω}, and U is extended to RN × Y by setting U = 0 outside
Ω × Y .

The following properties are quite easy to prove (see [18], Props. 2.4 and 2.6).

Proposition 3.2 (basic properties of two-scale convergence). Let (uε)ε>0 be a family bounded in Lp(Ω),
U ∈ Lp(Ω × Y ) and p ∈ ]1,+∞[.

(1) (uε)ε>0 is two-scale weakly convergent in Lp(Ω × Y ) along a suitable sequence εn → 0.
(2) Fε(U) s-2→ U two-scale strongly in Lp(Ω × Y ) as ε→ 0.
(3) If uε

w-2
⇀ U two-scale weakly in Lp(Ω × Y ) and vε

s-2→ V two-scale strongly in Lp′
(Ω × Y ),

lim
ε→0

∫
Ω

uεvε dx =
∫

Ω×Y

UV dxdy.

(4) If uε
s-2→ U two-scale strongly in Lp(Ω × Y ), and if (mε)ε>0 is a bounded family in L∞(Ω) such that

Tε(mε) → M a.e. in R
N × Y , then

mεuε
s-2→ MU two-scale strongly in Lp(Ω × Y ).

Let us now recall the main results on the two-scale convergence of derivatives of a Sobolev function. For
u ∈ Lp(Ω), we denote with the same symbol u the function in Lp(Ω × Y ) such that (x, y) �→ u(x). Then the
following proposition holds (see e.g. [18], Prop. 2.9).

Proposition 3.3 (two-scale convergence of gradients). Let (uε)ε>0 be a family in W 1,p(Ω), p ∈ ]1,+∞[,
such that uε ⇀ u weakly in W 1,p(Ω) for ε→ 0. Then

uε
s-2→ u two-scale strongly in Lp(Ω × Y )

and there exists U ∈ Lp(Ω;W 1,p
per,0(Y )) such that along a suitable sequence εn → 0

∇uεn

w-2
⇀ ∇u + ∇yU two-scale weakly in Lp(Ω × Y ; RN ) .

Conversely, for every u ∈ W 1,p(Ω) and U ∈ Lp(Ω;W 1,p
per,0(Y )), there exists a family (uε)ε>0 in W 1,p(Ω) such

that for ε→ 0
uε ⇀ u weakly in W 1,p(Ω) (3.5)

and
∇uε

s-2→ ∇u+ ∇yU two-scale strongly in Lp(Ω × Y ; RN ) . (3.6)

The previous result clearly holds also for the case of sequences.

Remark 3.4. The previous proposition entails the following variant which takes into account boundary con-
ditions. Let Ω have a Lipschitz boundary. For every u ∈ W 1,p(Ω) and U ∈ Lp(Ω;W 1,p

per,0(Y )), there exists
a family (uε)ε>0 in W 1,p(Ω) with uε = u on ∂Ω (in the sense of traces) for every ε > 0 and such that (3.5)
and (3.6) hold for ε→ 0. Indeed, if (ũε)ε>0 is the family given by Proposition 3.3, it is sufficient to consider

uε := ϕεũε + (1 − ϕε)u,

where ϕε ∈ C∞
c (Ω), 0 ≤ ϕε ≤ 1, is such that for ε→ 0

ϕε ↗ 1 pointwise in Ω,

and (recall that by compact embedding ũε → u strongly in Lp(Ω))

‖∇ϕε‖∞‖ũε − u‖Lp(Ω) → 0.
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In view of the analysis of the homogenization theory of Fleck and Willis, the following result is essential.

Theorem 3.5. Let Ω ⊆ RN be open and bounded with |∂Ω| = 0, and let p ∈ ]1,+∞[. The following facts hold.
(a) If (uε)ε>0 is such that uε ∈ W 1,p(Ω) with

‖uε‖Lp(Ω) + ε‖∇uε‖Lp(Ω;RN ) ≤ C

for some C > 0, then there exist εn → 0 and U ∈ Lp(Ω;W 1,p
per(Y )) such that

uεn

w-2
⇀ U two-scale weakly in Lp(Ω × Y )

εn∇uεn

w-2
⇀ ∇yU two-scale weakly in Lp(Ω × Y ; RN ) .

(b) For every U ∈ Lp(Ω;W 1,p
per(Y )) there exists a family (uε)ε>0 in W 1,p(Ω) such that for ε→ 0

uε
s-2→ U two-scale strongly in Lp(Ω × Y )

ε∇uε
s-2→ ∇yU two-scale strongly in Lp(Ω × Y ; RN ).

Proof. Point (a) is proved in [1], Proposition 1.14 or [4], Corollary 3.2.
Let us come to point (b). By means of a diagonal argument, it suffices to consider U belonging to the dense

subset given by C1
c (Ω;C1

per(Ȳ )). The result follows by setting

uε(x) := U
(
x,
x

ε

)
∈ C1

c (Ω).

Indeed, since
Tε(uε)(x, y) = U(Nε(x), y),

denoting by L the Lipschitz constant of U we have

|Tε(uε)(x, y) − U(x, y)| ≤ L|x−Nε(x)|

so that
lim
ε→0

‖Tε(uε) − U‖Lp(RN×Y ) = 0.

We deduce for ε→ 0
uε

s-2→ U two-scale strongly in Lp(Ω × Y ).
By the same arguments, since

∇uε(x) = ∇xU
(
x,
x

ε

)
+

1
ε
∇yU

(
x,
x

ε

)
,

we infer that for ε→ 0
ε∇uε

s-2→ ∇yU two-scale strongly in Lp(Ω × Y ; RN ),
so that the proof is concluded. �
Remark 3.6 (the vector valued case). The previous results can be adapted to the case of functions taking
values in a finite dimensional normed space X , since it is sufficient to work component by component.

In particular, we will use the compactness and approximation result of Proposition 3.3 concerning the sym-
metrized gradient Eu of a function u ∈W 1,p(Ω; RN ). More precisely, a simple symmetrization argument entails
the following result. If (uε)ε>0 is a family in W 1,p(Ω; RN ), p ∈ ]1,+∞[, such that uε ⇀ u weakly inW 1,p(Ω; RN )
for ε→ 0, there exists U ∈ Lp(Ω;W 1,p

per,0(Y ; RN)) such that along a suitable sequence εn → 0

Euεn

w-2
⇀ Eu+ EyU two-scale weakly in Lp(Ω × Y ; MN

sym) .
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Conversely, for every u ∈ W 1,p(Ω; RN ) and U ∈ Lp(Ω;W 1,p
per,0(Y ; RN )), there exists a family (uε)ε>0 in

W 1,p(Ω; RN ) such that for ε→ 0

uε ⇀ u weakly in W 1,p(Ω; RN )

and

Euε
s-2→ Eu+ EyU two-scale strongly in Lp(Ω × Y ; MN

sym) .

Remark 3.7 (the approximation result under an admissibility constraint). As a consequence of Theo-
rem 3.5 (extended to the vectorial setting according to the previous remark) we get the following approximation
result which will be used when dealing with the homogenization of quasistatic evolutions in Section 5.

Let MN
D and M

N
D denote the set of deviatoric matrices defined in Section 2, and let � > 0. If P ∈

L2(Ω;H1
per(Y ; MN

D)) and Z ∈ L2(Ω × Y ) satisfy

√
|P |2 + �2|∇yP |2 ≤ Z a.e. in Ω × Y, (3.7)

for every ε > 0 we can find pε ∈ H1(Ω; MN
D ) and zε ∈ L2(Ω) such that

√
|pε|2 + ε2�2|∇pε|2 ≤ zε a.e. in Ω,

and as ε→ 0

pε
s-2→ P two-scale strongly in L2(Ω × Y ; MN

D) (3.8)

ε∇pε
s-2→ ∇yP two-scale strongly in L2(Ω × Y ; MN

D ) (3.9)

zε
s-2→ Z two-scale strongly in L2(Ω × Y ).

Indeed, let (pε)ε>0 be a family in H1(Ω) satisfying (3.8) and (3.9) according to Theorem 3.5. Notice that thanks
to Jensen’s inequality, (3.7) entails

√
|Fε(P )|2 + �2|Fε(∇yP )|2 ≤ Fε(Z) a.e. in Ω

where Fε is the averaging operator (3.4). We deduce that

√
|pε|2 + ε2�2|∇pε|2 ≤

√
|Fε(P )|2 + �2|Fε(∇yP )|2 + |pε −Fε(P )| + �|ε∇pε −Fε(∇yP )|

≤ Fε(Z) + |pε −Fε(P )| + �|ε∇pε −Fε(∇yP )|.

Since by Proposition 3.2

Fε(P ) s-2→ P two-scale strongly in L2(Ω × Y ; MN
D)

Fε(∇yP ) s-2→ ∇yP two-scale strongly in L2(Ω × Y ; MN
D)

Fε(zε)
s-2→ Z two-scale strongly in L2(Ω × Y ),

the result follows by choosing

zε := Fε(Z) + |pε −Fε(P )| + �|ε∇pε −Fε(∇yP )|.
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4. A two-scale framework for the homogenization result of Fleck and Willis

The aim of this section is to show that variational arguments based on two-scale convergence provide, in a
periodic setting, a rigorous mathematical framework for the homogenization result of Fleck and Willis [9] in
strain gradient plasticity.

4.1. The homogenization result of Fleck and Willis

Let us briefly describe the result of Fleck and Willis. Let Ω ⊂ RN be the reference configuration of an
elastoplastic body subject to infinitesimal displacements. The configuration of Ω is given by a pair (u, p) where
u : Ω → RN stands for the displacement and p : Ω → MN

D denotes the plastic strain taking values in the space
of symmetric deviatoric matrices MN

D . The elastic strain of Ω associated to the configuration (u, p) is then given
by

e = Eu− p,

where Eu denotes the symmetrized gradient of u.
The elastic properties of Ω are encoded in the elasticity tensor C : Ω → Lin(MN

sym; MN
sym) which is assumed

to satisfy the coercivity condition
α|M |2 ≤ C(x)M : M ≤ β|M |2 (4.1)

for a.e. x ∈ Ω and for every M ∈ MN
sym, where 0 < α < β < +∞.

The plastic behaviour of Ω is determined by a yielding function b : Ω → [0,+∞[ such that for a.e. x ∈ RN

b(x) > c > 0. (4.2)

The strain gradient deformation theory considered by Fleck and Willis [9] amounts in the minimization of the
following energy

E(u, p) :=
1
2

∫
Ω

C(x)(Eu − p) : (Eu − p) dx+
∫

Ω

b(x)[|p|2 + �2|∇p|2] dx (4.3)

under suitable boundary conditions and external loads. Here � > 0 denotes a dissipative length scale which
depends on the material under consideration.

Fleck and Willis consider the case of a composite material Ω whose homogenized response under external
loads and prescribed boundary conditions can be described without employing gradients of the plastic strain p.
The homogenized deformation theory involves the effective energy

Eeff(u, p) =
∫

Ω

F eff(Eu(x), p(x)) dx, (4.4)

where the effective potential F eff(Ā, p̄) is given by minimizing the energy (4.3) on a representative volume
element, among displacement fields u satisfying the linear boundary condition u = Ā · x and plastic strains p
whose mean is given precisely by p̄.

In the following subsection, we provide a two-scale approach to the homogenization procedure in a periodic
setting which justifies in a rigorous mathematical way the effective energy Eeff (see Thm. 4.3) and provides a
cell problem for the energy density F eff (see Thm. 4.5).

4.2. Two-scale analysis for the homogenization result of Fleck and Willis

Let the reference configuration Ω ⊆ RN be open, bounded and with Lipschitz boundary. In particular
|∂Ω| = 0.

Let us consider the periodic setting in which the elasticity tensor and the plastic yielding function are provided
by

C ∈ L∞(RN ; Lin(MN
sym; MN

sym)) and b ∈ L∞(RN )
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such that for every i = 1, . . . , N and for a.e. x ∈ RN

C(x+ ei) = C(x) and b(x+ ei) = b(x),

where {ei : i = 1, . . . , N} denotes the canonical basis of RN . We assume that the coercivity conditions (4.1)
and (4.2) hold.

The form of the energy involved in (4.3) suggests the following functional framework for a configuration of Ω:

u ∈ H1(Ω; RN ) and p ∈ H1(Ω; MN
D ).

The homogenization procedure involves the study of the asymptotic behaviour as ε → 0 of an energy of the
type

(u, p) �→ 1
2

∫
Ω

C

(x
ε

)
(Eu − p) : (Eu− p) dx+

∫
Ω

b
(x
ε

)
[|p|2 + ε2�2|∇p|2] dx.

Here the elasticity tensor and the yielding function oscillate periodically on a scale ε. Accordingly, the dissipative
length scale is given by ε� with � > 0, so that the strain gradient effects tend to vanish in the limit.

Let us consider the functional

Eε : H1(Ω; RN ) × L2(Ω; MN
D ) → [0,+∞]

defined as

Eε(u, p) :=
1
2

∫
Ω

C

(x
ε

)
(Eu− p) : (Eu− p) dx+

∫
Ω

b
(x
ε

)
[|p|2 + ε2�2|∇p|2] dx

if p ∈ H1(Ω; MN
D ), and Eε(u, p) = +∞ if p ∈ L2(Ω; MN

D ) \H1(Ω; MN
D).

In view of the coercivity assumptions on C and b, the inequality

Eε(uε, pε) ≤ C

together with boundary conditions for uε entails naturally a bound for uε in H1(Ω; RN ) and for pε in L2(Ω; MN
D).

As a consequence, from a mathematical point of view, the problem of the computation of the effective en-
ergy (4.4) can be rephrased as the problem of studying the asymptotic behaviour as ε→ 0 with respect to the
weak topology of H1(Ω; RN )×L2(Ω; MN

D ) of the minimizers of Eε, subject to suitable external body forces and
boundary conditions.

This goal will be accomplished in Theorem 4.3 by means of a preliminary analysis involving two-scale con-
vergence arguments.

Let us consider the functional

E : H1(Ω; RN ) × L2(Ω;H1
per,0(Y ; RN )) × L2(Ω;H1

per(Y ; MN
D)) → [0,+∞[

given by

E(u, U, P ) :=
1
2

∫
Ω×Y

C(y)(Eu + EyU − P ) : (Eu + EyU − P ) dxdy +
∫

Ω×Y

b(y)[|P |2 + �2|∇yP |2] dxdy,

where Ey stands for the symmetrized gradient with respect to y.
The following result provides an asymptotic link between Eε and E .
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Proposition 4.1. The following facts hold.
(a) Lower estimate: if εn → 0 and (uεn , pεn)n∈N is a sequence in H1(Ω; RN ) ×H1(Ω; MN

D ) such that

uεn ⇀ u weakly in H1(Ω; RN )

Euεn

w-2
⇀ Eu+ EyU two-scale weakly in L2(Ω × Y ; MN

sym)

pεn

w-2
⇀ P two-scale weakly in L2(Ω × Y ; MN

D)

εn∇pεn

w-2
⇀ ∇yP two-scale weakly in L2(Ω × Y ; MN

D),

then
E(u, U, P ) ≤ lim inf

n→∞ Eεn(uεn , pεn).

(b) Recovering family: for every

(u, U, P ) ∈ H1(Ω; RN ) × L2(Ω;H1
per,0(Y ; RN )) × L2(Ω;H1

per(Y ; MN
D))

there exists a family (uε, pε)ε>0 in H1(Ω; RN ) ×H1(Ω; MN
D ) such that uε = u on ∂Ω and for ε→ 0

uε ⇀ u weakly in H1(Ω; RN )

Euε
s-2→ Eu+ EyU two-scale strongly in L2(Ω × Y ; MN

sym)

pε
s-2→ P two-scale strongly in L2(Ω × Y ; MN

D)

ε∇pε
s-2→ ∇yP two-scale strongly in L2(Ω × Y ; MN

D),

so that in particular
lim
ε→0

Eε(uε, pε) = E(u, U, P ).

Proof. Point (a) follows immediately observing that

Eεn(uεn , pεn) =
1
2

∫
RN×Y

C(y)(Tεn(Euεn) − Tεn(pεn)) : (Tεn(Euεn) − Tεn(pεn)) dxdy

+
∫

RN×Y

b(y)[|Tεn(pεn)|2 + �2|Tεn(εn∇pεn)|2] dxdy, (4.5)

where Tεn is the unfolding operator (3.3), and applying the usual lower semicontinuity for quadratic functionals
under weak convergence in L2(RN × Y ).

Concerning point (b), by Theorem 3.5 there exists pε ∈ H1(Ω; MN
D ) such that for ε→ 0

pε
s-2→ P two-scale strongly in L2(Ω × Y ; MN

D)

and
ε∇pε

s-2→ ∇yP two-scale strongly in L2(Ω × Y ; MN
D).

Moreover, by Proposition 3.3 and Remarks 3.4 and 3.6, there exists uε ∈ H1(Ω; RN ) with uε = u on ∂Ω for
every ε > 0 and such that for ε→ 0

uε ⇀ u weakly in H1(Ω; RN )

and
Euε

s-2→ Eu+ EyU two-scale strongly in L2(Ω × Y ; MN
sym).

The convergence of the energies follows from the representation formula (4.5). �
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In order to move toward a single scale setting, let us introduce the functional

Eeff : H1(Ω; RN ) × L2(Ω; MN
D ) → [0,+∞[

defined by

Eeff(u, p) := min
(U,P )

{
E(u, U, P ) : (U,P ) ∈ L2(Ω;H1

per,0(Y ; RN)) × L2(Ω;H1
per(Y ; MN

D)),∫
Y

P (x, y) dy = p(x) for a.e. x ∈ Ω

}
. (4.6)

Notice that U is left free in the minimization, while P (x, y) satisfies a constraint on the mean with respect to
the microstructural variable y.

The minimum in the previous formula is indeed attained as is shown in the following lemma.

Lemma 4.2. Let (u, p) ∈ H1(Ω; RN ) × L2(Ω; MN
D ). Then there exists a unique pair

(U,P ) ∈ L2(Ω;H1
per,0(Y ; RN )) × L2(Ω;H1

per(Y ; MN
D))

with
∫

Y P (x, y) dy = p(x) for a.e. x ∈ Ω such that Eeff(u, p) = E(u, U, P ).

Proof. Let (Un, Pn) be a minimizing sequence for problem (4.6) relative to (u, p). By comparison with the
admissible pair given by (0, p), we immediately get that for n large

1
2

∫
Ω×Y

C(y)(Eu+EyUn − Pn) : (Eu+EyUn − Pn) dxdy+
∫

Ω×Y

b(y)[|Pn|2 + �2|∇yPn|2] dxdy ≤ E(u, 0, p) + 1.

In view of the coercivity assumptions on C and b, up to a subsequence we have that

Pn ⇀ P weakly in L2(Ω;H1
per(Y ; MN

D)) (4.7)

and in view of Korn’s inequality for periodic functions with zero mean (see Sect. 2)

Un ⇀ U weakly in L2(Ω;H1
per,0(Y ; RN )),

for some P ∈ L2(Ω;H1
per(Y ; MN

D)) and U ∈ L2(Ω;H1
per,0(Y ; RN)). In particular we deduce by lower semicontinuity

E(u, U, P ) ≤ lim inf
n→∞ E(u, Un, Pn).

Notice that P (x, y) satisfies the constraint concerning the mean with respect to y. Indeed, by (4.7) and since
Pn satisfies the constraint, for every ϕ ∈ L2(Ω) we have∫

Ω×Y

P (x, y)ϕ(x) dxdy = lim
n→∞

∫
Ω×Y

Pn(x, y)ϕ(x) dxdy =
∫

Ω

p(x)ϕ(x) dx,

hence ∫
Y

P (x, y) dy = p(x) for a.e. x ∈ Ω.

The pair (U,P ) is thus admissible for (u, p) in (4.6) and

Eeff(u, p) ≤ E(u, U, P ) ≤ lim inf
n→∞ E(u, Un, Pn) = Eeff(u, p).
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Then (U,P ) is a solution of the minimization problem. Its uniqueness follows by the strict convexity of the
functional together with Korn’s inequality. �

The following theorem shows that Eeff is indeed the energy associated to the effective behaviour of the
material when the strain gradient effects vanish. Let us assume that the boundary displacement is given by the
trace on ∂Ω of a given Sobolev function ū ∈ H1(Ω; RN ). Moreover, let us consider body forces acting on Ω
whose density per unit volume is given by a function f ∈ L2(Ω; RN ).

Theorem 4.3 (the homogenization result of Fleck and Willis). For every ε > 0 let (uε, pε) be the
minimizer of

(u, p) �→ Eε(u, p) −
∫

Ω

f · u dx

on H1(Ω; RN ) ×H1(Ω; MN
D) with u = ū on ∂Ω. Then for ε→ 0

uε ⇀ u0 weakly in H1(Ω; RN )

and
pε ⇀ p0 weakly in L2(Ω; MN

D),

where (u0, p0) is the unique minimizer of

(u, p) �→ Eeff(u, p) −
∫

Ω

f · u dx (4.8)

on H1(Ω; RN ) × L2(Ω; MN
D) with u = ū on ∂Ω. Moreover

lim
ε→0

Eε(uε, pε) = Eeff(u0, p0).

Proof. By comparison with the admissible configuration (ū, 0) and in view of the coercivity assumptions on C

and b we get

‖Euε − pε‖2
L2(Ω;MN

sym) + ‖pε‖2
L2(Ω;MN

D) + ‖ε∇pε‖2
L2(Ω;MN

D) ≤ C̃

(
1 +

∫
Ω

|f ||uε| dx
)
,

where C̃ > 0. In view of Korn’s inequality (see Sect. 2) we easily obtain

‖uε‖2
H1(Ω;MN

sym) + ‖pε‖2
L2(Ω;MN

D) + ‖ε∇pε‖2
L2(Ω;MN

D) ≤ C

with C > 0. We deduce that there exists εn → 0 such that

uεn ⇀ u0 weakly in H1(Ω; RN )

and thanks to Proposition 3.3 and Remark 3.6

Euεn

w-2
⇀ Eu0 + EyU0 two-scale weakly in L2(Ω × Y ; MN

sym)

for some (u0, U0) ∈ H1(Ω; RN ) × L2(Ω;H1
per,0(Y ; RN )). Moreover, in view of Theorem 3.5, we infer that there

exists P0 ∈ L2(Ω;H1
per(Y ; MN

D)) such that up to a subsequence

pεn

w-2
⇀ P0 two-scale weakly in L2(Ω × Y ; MN

D)
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and
εn∇pεn

w-2
⇀ ∇yP0 two-scale weakly in L2(Ω × Y ; MN

D ).
The configuration (u0, U0, P0) is a minimizer of the functional

(u, U, P ) �→ E(u, U, P ) −
∫

Ω

f · u dx (4.9)

where u satisfies u = ū on ∂Ω. Indeed for every admissible (v, V,Q), by Proposition 4.1 there exists a family
(vε, qε)ε>0 in H1(Ω; RN ) ×H1(Ω; MN

D) with vε = ū on ∂Ω such that for ε→ 0

vε ⇀ v weakly in H1(Ω; RN )

Evε
s-2→ Ev + EyV two-scale strongly in L2(Ω × Y ; MN

sym)

qε
s-2→ Q two-scale strongly in L2(Ω × Y ; MN

D)

ε∇qε s-2→ ∇yQ two-scale strongly in L2(Ω × Y ; MN
D),

and
Eε(vε, qε) → E(v, V,Q).

Since by minimality of (uεn , pεn)

Eεn(uεn , pεn) −
∫

Ω

f · uεn dx ≤ Eεn(vεn , qεn) −
∫

Ω

f · vεn dx,

passing to the limit we obtain in view of point (a) of Proposition 4.1

E(u0, U0, P0) −
∫

Ω

f · u0 dx ≤ lim inf
n→∞

(
Eεn(uεn , pεn) −

∫
Ω

f · uεn dx
)

≤ lim sup
n→∞

(
Eεn(uεn , pεn) −

∫
Ω

f · uεn dx
)

≤ lim sup
n→∞

(
Eεn(vεn , qεn) −

∫
Ω

f · vεn dx
)

= E(v, V,Q) −
∫

Ω

f · v dx. (4.10)

We infer that (u0, U0, P0) is a minimizer of (4.9). Since the minimizer is unique by strict convexity, we conclude
that for ε→ 0

uε ⇀ u0 weakly in H1(Ω; RN ) (4.11)

Euε
w-2
⇀ Eu0 + EyU0 two-scale weakly in L2(Ω × Y ; MN

sym)

pε
w-2
⇀ P0 two-scale weakly in L2(Ω × Y ; MN

D)

ε∇pε
w-2
⇀ ∇yP0 two-scale weakly in L2(Ω × Y ; MN

D),

and thanks to (4.10) with the choice (v, V,Q) = (u0, U0, P0)

Eε(uε, pε) → E(u0, U0, P0). (4.12)

Let us set for almost every x ∈ Ω

p0(x) :=
∫

Y

P0(x, y) dy.
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Clearly we have p0 ∈ L2(Ω; MN
D ). By (3.2) we get

pε ⇀ p0 weakly in L2(Ω; MN
D ). (4.13)

The result follows provided that we show that the pair (u0, p0) is the unique minimizer of (4.8) under the
boundary condition u = ū on ∂Ω with

Eeff(u0, p0) = E(u0, U0, P0). (4.14)

For every (u, p) ∈ H1(Ω; RN ) × L2(Ω; MN
D ) with u = ū on ∂Ω, letting (U,P ) be the associated pair according

to Lemma 4.2, we have

Eeff(u0, p0) −
∫

Ω

f · u0 dx ≤ E(u0, U0, P0) −
∫

Ω

f · u0 dx ≤ E(u, U, P ) −
∫

Ω

f · u dx = Eeff(u, p) −
∫

Ω

f · u dx,

so that the minimality of (u0, p0) follows. The uniqueness holds in view of the strict convexity of E . Indeed, if
(ũ, p̃) were another minimizer, and (Ũ , P̃ ) the associated pair according to Lemma 4.2, in view of the preceding
inequalities we would get that (ũ, Ũ , P̃ ) is a minimizer of (4.9). Since E is strictly convex, we would infer that
(ũ, Ũ , P̃ ) = (u0, U0, P0) so that in particular ũ = u0 and p̃ = p0. This entails also that (U0, P0) is the pair
associated to (u0, p0) according to Lemma 4.2, so that (4.14) holds, and the proof is concluded. �
Remark 4.4. The previous theorem suggests that Eε Γ -converges in the sense of De Giorgi to Eeff as ε → 0.
This is indeed the case provided that we consider the weak topology on H1(Ω; RN )×L2(Ω; MN

D ) and we restrict
the functionals to the pairs (u, p) such that u = ū on ∂Ω. In this way, the convergence of the minimizers (uε, pε)
along a suitable sequence εn → 0 to a minimizer of the effective energy turns out to be a standard result of
Γ -convergence. The two-scale analysis enables us to deduce that the limit energy has a unique minimizer, so
that the convergence holds indeed along the entire family.

In the rest of the section we concentrate on the representation formula (4.4) for Eeff .

Theorem 4.5 (representation formula for the effective energy). For every (u, p) ∈ H1(Ω; RN ) ×
L2(Ω; MN

D) we have

Eeff(u, p) =
∫

Ω

F eff(Eu(x), p(x)) dx, (4.15)

where for (Ā, p̄) ∈ MN
sym × MN

D

F eff(Ā, p̄) := min
{

1
2

∫
Y

C(y)[Ā+ EyU − P ] : [Ā+ EyU − P ] dy

+
∫

Y

b(y)[|P |2 + �2|∇yP |2] dy : (U,P ) ∈ H1
per,0(Y ; RN ) ×H1

per(Y ; MN
D),

∫
Y

P (y) dy = p̄

}
. (4.16)

Proof. Firstly let us prove that the minimum problem in (4.16) admits indeed a unique solution. This follows
by the direct method of the Calculus of Variations. If (Un, Pn)n∈N is a minimizing sequence for the problem,
by comparison with the admissible pair (0, p̄), taking into account the coercivity assumptions on C and b, one
deduces easily that for n large

‖EyUn‖2
L2(Y ;MN

sym) + ‖Pn‖2
H1(Y ;MN

D) ≤ C(|Ā|2 + |p̄|2),

where C > 0 is a suitable constant. By Korn’s inequality (see Sect. 2) we get that Un is bounded in H1(Y ; RN).
Up to a subsequence we have that

Un ⇀ U weakly in H1
per,0(Y ; RN )
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and
Pn ⇀ P weakly in H1

per(Y ; MN
D).

Moreover, since Pn → P strongly in L2(Y ; MN
D) we get that∫

Y

P (y) dy = lim
n→∞

∫
Y

Pn(y) dy = p̄.

We conclude that the pair (U,P ) is admissible. By lower semicontinuity, we infer that (U,P ) is a minimizer for
the functional in (4.16) and satisfies

‖EyU‖2
L2(Y ;MN

sym) + ‖P‖2
H1(Y ;MN

D) ≤ C(|Ā|2 + |p̄|2). (4.17)

The uniqueness is ensured by strict convexity.
Let us come to the representation formula (4.15). By Lemma 4.2, for every (u, p) ∈ H1(Ω; RN )×L2(Ω; MN

D)
we have

Eeff(u, p) = E(u, U, P )
for some U ∈ L2(Ω;H1

per,0(Y ; RN )) and P ∈ L2(Ω;H1
per(Y ; MN

D)) such that

p(x) =
∫

Y

P (x, y) dy for a.e. x ∈ Ω.

Notice that for a.e. x ∈ Ω the pair (U(x, ·), P (x, ·)) is admissible for the computation of
F eff(Eu(x), p(x)). By the very definition of F eff we deduce that

Eeff(u, p) = E(u, U, P )

=
∫

Ω

[
1
2

∫
Y

C(y)[Eu(x) + EyU − P ] : [Eu(x) + EyU − P ] dy +
∫

Y

b(y)[|P |2 + �2|∇yP |2] dy
]

dx

≥
∫

Ω

F eff(Eu(x), p(x)) dx. (4.18)

On the other hand, for a.e. x ∈ Ω let (Ux, Px) be the unique solution of problem (4.16) defining F eff(Eu(x), p(x)).
By (4.17) we deduce that

‖EyUx‖2
L2(Y ;MN

sym) + ‖Px‖2
H1(Y ;MN

D) ≤ C(|Eu(x)|2 + |p(x)|2),

where C does not depend on x. We infer that, the measurability with respect to x coming from the uniqueness
of the minimizer,

U(x, y) := Ux(y) ∈ L2(Ω;H1
per,0(Y ; RN ))

and
P (x, y) := Px(y) ∈ L2(Ω;H1

per(Y ; MN
D)).

It follows that ∫
Ω

F eff(Eu(x), p(x)) dx = E(u, U, P ),

and by the very definition of Eeff

∫
Ω

F eff(Eu(x), p(x)) dx = E(u, U, P ) ≥ Eeff(u, p). (4.19)

In view of (4.18) and (4.19), the representation formula (4.15) follows. �



1052 A. GIACOMINI AND A. MUSESTI

Let us now investigate the representation formula (4.16) in the particular case when the elastic moduli do
not oscillate, i.e.,

C is constant.
The only term responsible for the homogenization is thus the yielding function b. As shown in [9], the rep-
resentation formula for F eff involves an operator Γ introduced by Willis in [25] which in our context can be
characterized as follows.

Definition 4.6. For every q ∈ L2(Y ; MN
sym) let V be the unique minimizer of

V �→
∫

Y

CEyV : [EyV − 2q] dy

on H1
per,0(Y ; RN ). We set

Γ (Cq) := EyV

so that Γ is a well defined operator from L2(Y ; MN
sym) into itself.

The effective energy density assumes the following form.

Theorem 4.7. If C is constant, then for every (Ā, p̄) ∈ MN
sym × MN

D we have

F eff(Ā, p̄) =
1
2

C(Ā− p̄) : (Ā− p̄) + V eff(p̄)

where

V eff(p̄) := min
{

1
2

∫
Y

[C(P (y) − p̄) : (P (y) − p̄) − P (y) : CΓ (CP )(y)] dy

+
∫

Y

b(y)[|P |2 + �2|∇P |2 dy : P ∈ H1
per(Y ; MN

D),
∫

Y

P (y) dy = p̄

}
,

and the operator Γ is given in Definition 4.6.

Proof. If (U,P ) is admissible for the computation of F eff(Ā, p̄) according to Theorem 4.5, since C is constant,
the mean of P on Y is p̄, and in view of an integration by parts we have

1
2

∫
Y

C[Ā+ EyU − P ] : [Ā+ EyU − P ] dy =
1
2

∫
Y

C[Ā− p̄+ EyU − (P − p̄)] : [Ā − p̄+ EyU − (P − p̄)] dy

=
1
2

C(Ā− p̄) :(Ā − p̄)+
∫

Y

C(Ā− p̄) : EyU dy+
1
2

∫
Y

CEyU : EyU dy

−
∫

Y

CEyU : (P − p̄) dy +
1
2

∫
Y

C(P − p̄) : (P − p̄) dy

=
1
2

C(Ā− p̄) : (Ā− p̄) +
1
2

∫
Y

C(P − p̄) : (P − p̄) dy

+
1
2

∫
Y

CEyU : [EyU − 2P ] dy.

Taking into account the representation formula (4.16) for F eff we deduce

F eff(Ā, p̄) =
1
2

C(Ā− p̄) : (Ā− p̄) + min
(U,P )

[
1
2

∫
Y

C(P − p̄) : (P − p̄) dy +
1
2

∫
Y

CEyU : [EyU − 2P ] dy

+
∫

Y

b(y)[|P |2 + �2|∇P |2] dy
]
.
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We take the minimum on U with P fixed: since U appears only in the second term which attains the minimum
for V such that EyV = Γ (CP ), with associated value

−1
2

∫
Y

P : CΓ (CP ) dy,

the representation formula follows. �

Remark 4.8. When C is constant the effective energy assumes the form

Eeff(u, p) =
1
2

∫
Ω

C(Eu(x) − p(x)) : (Eu(x) − p(x)) dx +
∫

Ω

V eff(p(x)) dx,

so that it is the sum of an elastic energy and a plastic potential.
The formula suggests that the plastic potential carries an information about the dissipation involved in the

plastic process. Notice that V eff does not only depend on the yielding function b, but also on the elasticity
tensor C, even if this one is assumed to be constant. This implies that some qualitative properties of the plastic
potential, such as growth behaviour at infinity for example, can be different in the homogenized limit.

This fact shows that some problems can occur when dealing with the homogenization of quasistatic evolutions
taking the point of view of the energetic approach to rate-independent processes developed by Mielke and his
school [16]. Indeed the approach is based on the analysis of deformation-theory type problems where the plastic
potential has a linear growth: since the linear growth can be lost in the homogenized limit, the effective plastic
potential cannot be interpreted as a dissipation.

We finally note that the interplay between elastic and plastic parts in the definition of V eff is due to the
compatibility condition between elastic and plastic strains, whose sum must be the symmetrized gradient of a
displacement (in our treatment such a condition is automatically satisfied since we write Eu− p for the elastic
strain of u). Such a condition entails that a decoupling of the problem in elastic and plastic parts cannot be
carried out.

5. Two-scale homogenization of a strain gradient flow theory

with isotropic linear hardening

In this section we study the homogenization of a quasistatic evolution for the strain gradient plasticity
model studied in Section 4. We consider an evolution with isotropic linear hardening, so that displacements
and plastic strains can be described within the mathematical framework of Sobolev spaces introduced before:
without hardening, strain localizations may take place, and plastic strains should be described within the theory
of functions of bounded variation (see [11]). The model corresponds to a particular case of the one proposed by
Gurtin and Anand [13], since we consider only dissipation effects associated to the gradient of the plastic strain.
We employ the energetic formulation of rate independent processes due to Mielke and his school (see [16] and
references therein).

5.1. Energetic formulation of a quasistatic evolution

Let the reference configuration of the elastoplastic body be given by Ω ⊆ RN bounded open set with Lipschitz
boundary. Let ∂DΩ be a measurable subset of ∂Ω with positive surface measure.

A configuration of Ω is given by a triple (u, p, z) with

u ∈ H1(Ω; RN ), p ∈ H1(Ω; MN
D ), z ∈ L2(Ω),

where u denotes the displacement, p is the associated plastic strain, and z is a hardening internal variable. Here
MN

D denotes the space of symmetric deviatoric matrices (see Sect. 2).
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Within the small displacements and small strains approximation, let us consider the free energy

Q(u, p, z) :=
1
2

∫
Ω

[
C(x)(Eu(x) − p(x)) : (Eu(x) − p(x)) + z2(x)

]
dx,

where C ∈ L∞(Ω; Lin(MN
sym; MN

sym)) denotes an elasticity tensor satisfying the coercivity assumption (4.1).
During the evolution, the higher order stresses associated to (p,∇p) (see [13] for their definition) belong to

an admissible region Syield which becomes larger and larger thanks to the hardening process. We keep track of
this fact by considering the convex conjugate of the support function of Syield which is given by

H(p, z) := IC(p, z) +
∫

Ω

b(x)z(x) dx,

with IC denoting the indicator function of the cone

C :=
{
(p, z) ∈ H1(Ω; MN

D ) × L2(Ω) :
√
|p(x)|2 + �2|∇p(x)|2 ≤ z(x) for a.e. x ∈ Ω

}
,

where � > 0 is a dissipative length scale, and the yielding function b ∈ L∞(Ω) satisfies the coercivity assump-
tion (4.2).

The dissipation during an evolution t �→ (u(t), p(t), z(t)) defined on [0, T ] relative to a subinterval [a, b] is
given in terms of H by

D(p, z; a, b) := sup

⎧⎨
⎩

k∑
j=1

H (p(tj) − p(tj−1), z(tj) − z(tj−1)) : a = t0 < . . . < tk = b

⎫⎬
⎭ . (5.1)

An admissible boundary displacement is given by the trace on ∂DΩ of a function ψ ∈ H1(Ω; RN ). The family
of admissible configurations of Ω relative to the boundary displacement ψ is then given by

A(ψ) := {(u, p, z) ∈ H1(Ω; RN ) ×H1(Ω; MN
D ) × L2(Ω) : u = ψ on ∂DΩ, (p, z) ∈ C},

where the equality on ∂DΩ is intended in the sense of traces.
Let us assume that the prescribed boundary displacements on ∂DΩ are given by the absolutely continuous

function
ψ : [0, T ] → H1(Ω; RN ), (5.2)

while body and traction forces acting on Ω are given by the absolutely continuous function

l : [0, T ] → (H1(Ω; RN ))∗. (5.3)

We will denote by l̇ the derivative with respect to t which exists almost everywhere on [0, T ].
The energetic formulation of a quasistatic evolution for our model of strain gradient plasticity with isotropic

linear hardening is the following.

Definition 5.1 (energetic formulation of a quasistatic evolution). Let t �→ ψ(t) and t �→ l(t) be assigned
boundary displacements and external loads according to (5.2) and (5.3) respectively. A map

[0, T ] → H1(Ω; RN ) ×H1(Ω; MN
D ) × L2(Ω)

t �→ (u(t), p(t), z(t))

is a quasistatic evolution if the following conditions hold for every t ∈ [0, T ].
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(a) Admissibility: (u(t), p(t), z(t)) ∈ A(ψ(t)).
(b) Global stability: for every (v, q, ξ) ∈ A(ψ(t))

Q(u(t), p(t), z(t)) − 〈l(t), u(t)〉 ≤ Q(v, q, ξ) − 〈l(t), v〉 + H(q − p(t), ξ − z(t)). (5.4)

(c) Energy balance: the function t �→ (p(t), z(t)) has bounded variation from [0, T ] to
H1(Ω; MN

D) × L2(Ω) and

E(t) + D(p, z; 0, t) = E(0) −
∫ t

0

〈l̇(τ), u(τ)〉dτ,

where
E(t) := Q(u(t), p(t), z(t)) − 〈l(t), u(t)〉,

and D(p, z; 0, t) is defined in (5.1).

By general results concerning quasistatic evolutions (see [16] or [17]), the following result holds.

Theorem 5.2. Let (u0, p0, z0) ∈ A(ψ(0)) satisfy the global stability condition (5.4). Then there exists a unique
quasistatic evolution t �→ (u(t), p(t), z(t)) such that (u(0), p(0), z(0)) = (u0, p0, z0). Moreover the maps t �→ u(t),
t �→ p(t) and t �→ z(t) are absolutely continuous from [0, T ] to H1(Ω; RN ), H1(Ω; MN

D ) and L2(Ω) respectively.

Remark 5.3 (connection with the flow rule formulation). The energetic formulation of the evolution
is equivalent to the ordinary one involving balance equations for the stresses and the flow rule for the plastic
strains. Concerning this issue, the reader is referred to [5] for the case of ordinary plasticity and to [11] for the
model of Gurtin and Anand.

Let us briefly summarize the results concerning our framework (for technical details we refer to the above
mentioned papers). If the external loads are given by

〈l(t), u〉 =
∫

Ω

f(t) · u dx+
∫

∂N Ω

g(t) · u dS(x)

for suitable body forces f(t) on Ω and traction forces g(t) on ∂NΩ := ∂Ω \ ∂DΩ, the Cauchy stress tensor

σ(t) := C(Eu(t) − p(t))

turns out to satisfy for every t ∈ [0, T ] the standard balance equation{
− divσ(t) = f(t) in Ω
σ(t) · n = g(t) on ∂NΩ.

The higher order stresses (Tp(t),Kp(t)) ∈ L2(Ω; MN
D) × L2(Ω; MN

D ) associated to (p(t),∇p(t)) satisfy for every
t ∈ [0, T ]

(Tp(t, x),Kp(t, x)) ∈ Syield(t, x) for a.e. x ∈ Ω,

where the admissible region Syield(t, x) is given by

Syield(t, x) :=
{

(A,B) ∈ MN
D × M

N
D :

√
|A|2 +

1
�2
|B|2 ≤ SY (t, x)

}

with SY (t, x) := b(x) + z(t, x). Moreover they are related to the Cauchy stress tensor by means of the balance
equation {

Tp(t) = σD(t) + div Kp(t) in Ω
Kp(t) · n = 0 on ∂Ω,
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where σD(t) denotes the deviatoric part of σ(t). Finally, for a.e. t ∈ [0, T ] and for a.e. x ∈ Ω the following flow
rule holds: if √

|Tp(t, x)|2 +
1
�2
|Kp(t, x)|2 < SY (t, x),

then (ṗ(t, x),∇ṗ(t, x)) = (0, 0), while if

√
|Tp(t, x)|2 +

1
�2
|Kp(t, x)|2 = SY (t, x),

then ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗ(t, x) = λ(t, x)
Tp(t, x)√

|Tp(t, x)|2 + 1
�2 |Kp(t, x)|2

∇ṗ(t, x) = λ(t, x)
�−2Kp(t, x)√

|Tp(t, x)|2 + 1
�2 |Kp(t, x)|2

ż(t, x) = λ(t, x)
with λ(t, x) ≥ 0.

Notice that for � = 0, the terms involving ∇p disappear, and the theory formally reduces to the usual
von Mises plasticity theory: indeed we have Kp(t, x) = 0 and σD(t, x) = Tp(t, x), with

|σD(t, x)| ≤ SY (t, x).

Moreover, plasticity develops if σD(t, x) reaches the yield surface, that is if |σD(t, x)| = SY (t, x), and in such a
case {

ṗ(t, x) = λ(t, x) σD(t,x)
|σD(t,x)|

ż(t, x) = λ(t, x)

with λ(t, x) ≥ 0.

5.2. Homogenization of a quasistatic evolution

In this subsection we study the asymptotic behaviour of a quasistatic evolution of our strain gradient plasticity
model with isotropic linear hardening, in which the elastic and plastic moduli highly oscillate in a periodic way.

Let us assume that the elasticity tensor and the plastic yielding function are provided by

x �→ C

(x
ε

)
, x �→ b

(x
ε

)
, (5.5)

where ε > 0 and
C ∈ L∞(RN ; Lin(MN

sym; MN
sym)) and b ∈ L∞(RN )

are such that for every i = 1, . . . , N and for a.e. x ∈ RN

C(x+ ei) = C(x) and b(x+ ei) = b(x).

Here {ei : i = 1, . . . , N} denotes the canonical basis of RN . We assume that the coercivity conditions (4.1)
and (4.2) hold almost everywhere on RN .

We are interested in the asymptotic behaviour of quasistatic evolutions with the choice (5.5), and, as we did
in Section 4, with the dissipative length scale of the form ε� with � > 0. Again, it is convenient to move to a
two-scale setting.
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A configuration of Ω × Y , where Y is the unit cell (2.1), is given by

(u, U, P, Z) ∈ H1(Ω; RN ) × L2(Ω;H1
per,0(Y ; RN)) × L2(Ω;H1

per(Y ; RN)) × L2(Ω × Y ).

The associated free energy becomes

Q̃(u, U, P, Z) =
1
2

∫
Ω×Y

[
C(y)(Eu+ EyU − P ) : (Eu+ EyU − P ) + Z2(x, y)

]
dxdy,

while the dissipation functional assumes the form

H̃(P,Z) := IC̃(P,Z) +
∫

Ω×Y

b(y)Z dxdy

with

C̃ :=
{

(P,Z) ∈ L2(Ω;H1
per(Y ; MN

D)) × L2(Ω × Y ) :

√
|P (x, y)|2 + �2|∇yP (x, y)|2 ≤ Z(x, y) for a.e. (x, y) ∈ Ω × Y

}
.

Let D̃ be the dissipation associated with H̃ following the procedure defined in (5.1).
The family of admissible configurations relative to the boundary displacement ψ is given by

Ã(ψ) :=
{

(u, U, P, Z) ∈ H1(Ω; RN ) × L2(Ω;H1
per,0(Y ; RN )) × L2(Ω;H1

per(Y ; RN )) × L2(Ω × Y ) :

u = ψ on ∂DΩ and (P,Z) ∈ C̃
}
.

Definition 5.4 (two-scale quasistatic evolution). Let t �→ ψ(t) and t �→ l(t) be assigned boundary dis-
placements and external loads according to (5.2) and (5.3) respectively. A map

[0, T ] → H1(Ω; RN ) × L2(Ω;H1
per,0(Y ; RN )) × L2(Ω;H1

per(Y ; MN
D)) × L2(Ω × Y )

t �→ (u(t), U(t), P (t), Z(t))

is a quasistatic evolution if the following conditions hold for every t ∈ [0, T ].
(a) Admissibility: (u(t), U(t), P (t), Z(t)) ∈ Ã(ψ(t)).
(b) Global stability: for every (v, V,Q,Ξ) ∈ Ã(ψ(t))

Q̃(u(t), U(t), P (t), Z(t)) − 〈l(t), u(t)〉 ≤ Q̃(v, V,Q,Ξ) − 〈l(t), v〉 + H̃(Q− P (t),Ξ − Z(t)). (5.6)

(c) Energy balance: the function t �→ (P (t), Z(t)) has bounded variation from [0, T ] to
L2(Ω;H1

per(Y ; MN
D)) × L2(Ω × Y ) and

Ẽ(t) + D̃(P,Z; 0, t) = Ẽ(0) −
∫ t

0

〈l̇(τ), u(τ)〉dτ,

where
Ẽ(t) := Q̃(u(t), U(t), P (t), Z(t)) − 〈l(t), u(t)〉.
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The following existence result holds (see [16] or [17]).

Theorem 5.5. Let (u0, U0, P0, Z0) ∈ Ã(ψ(0)) satisfy the global stability condition (5.6). Then there exists a
unique quasistatic evolution t �→ (u(t), U(t), P (t), Z(t)) such that

(u(0), U(0), P (0), Z(0)) = (u0, U0, P0, Z0).

Moreover the maps t �→ u(t), t �→ U(t), t �→ P (t) and t �→ Z(t) are absolutely continuous from [0, T ] to
H1(Ω; RN ), L2(Ω;H1

per,0(Y ; MN
D)), L2(Ω;H1

per(Y ; MN
D)) and L2(Ω × Y ) respectively.

Coming back to our model with the choices (5.5) for the elasticity tensor and the yielding function, with
dissipative length scale ε�, let us denote by Qε, Hε, Dε, Eε the associated free energy, dissipation functionals
and total energy respectively. Moreover Cε will denote the cone associated to Hε, and Aε(ψ) the family of
admissible configurations relative to ψ.

For every ε > 0 let
(u0

ε, p
0
ε, z

0
ε) ∈ Aε(ψ(0))

be globally stable initial configurations such that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u0
ε ⇀ u0 weakly in H1(Ω; RN )

Eu0
ε

w-2
⇀ Eu0 + EyU0 two-scale weakly in L2(Ω × Y ; MN

sym)

p0
ε

w-2
⇀ P0 two-scale weakly in L2(Ω × Y ; MN

D)

ε∇p0
ε

w-2
⇀ ∇yP0 two-scale weakly in L2(Ω × Y ; MN

D)

zε
0

w-2
⇀ Z0 two-scale weakly in L2(Ω × Y )

(5.7)

for some

(u0, U0, P0, Z0) ∈ H1(Ω; RN ) × L2(Ω;H1
per,0(Y ; RN )) × L2(Ω;H1

per(Y ; RN )) × L2(Ω × Y ).

Lemma 5.6. The configuration (u0, U0, P0, Z0) is admissible for ψ(0) and globally stable according to (5.6).

Proof. The condition u0 = ψ(0) on ∂DΩ comes from the strong convergence for the traces of u0
ε. The admissi-

bility thus follows if we prove that (P0, Z0) ∈ C̃. This comes from the inclusion

(Tε(p0
ε), Tε(z0

ε)) ∈ C̃,

Tε being the unfolding operator (3.3), together with the fact that the convex cone C̃ is weakly closed.
Let us prove the global stability condition. Given (v, V,Q,Ξ) ∈ Ã(ψ(0)), we want to show that

Q̃(u0, U0, P0, Z0) − 〈l(0), u0〉 ≤ Q̃(v, V,Q,Ξ) − 〈l(0), v〉 + H̃(Q− P0,Ξ − Z0). (5.8)

We may assume that H̃(Q− P0,Ξ − Z0) < +∞, so that√
|Q− P0|2 + �2|∇yQ−∇yP0|2 ≤ Ξ − Z0 a.e. in Ω × Y.

In view of Remark 3.7, we can find qε ∈ H1(Ω; MN
D) and ξε ∈ L2(Ω) such that for ε→ 0

qε
s-2→ Q− P0 two-scale strongly in L2(Ω × Y ; MN

D)

ε∇qε s-2→ ∇yQ−∇yP0 two-scale strongly in L2(Ω × Y ; MN
D )

ξε
s-2→ Ξ − Z0 two-scale strongly in L2(Ω × Y )
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and √
|qε|2 + ε2�2|∇qε|2 ≤ ξε a.e. in Ω.

This implies (using Prop. 3.2, point (4)) that

lim
ε→0

Hε(qε, ξε) = H̃(Q− P0,Ξ − Z0).

By Proposition 3.3 and Remarks 3.4 and 3.6, we can find vε ∈ H1(Ω; RN ) such that for ε→ 0

vε ⇀ v − u0 weakly in H1(Ω; RN ),

vε = v − u0 on ∂Ω and

Evε
s-2→ Ev − Eu0 + EyV − EyU0 two-scale strongly in L2(Ω × Y ; MN

sym).

By comparing (u0
ε, p

0
ε, z

0
ε) with (vε + u0

ε, qε + p0
ε, ξε + z0

ε) ∈ Aε(ψ(0)) we get

Qε(u0
ε, p

0
ε, z

0
ε) − 〈l(0), u0

ε〉 ≤ Qε(vε + u0
ε, qε + p0

ε, ξε + z0
ε) − 〈l(0), vε + u0

ε〉 + Hε(qε, ξε).

Expanding the terms of the free energy and erasing the quadratic terms involving p0
ε and z0

ε we obtain

0 ≤ 1
2

∫
Ω

C

(x
ε

)
[Evε − qε] : [Evε − qε] dx+

∫
Ω

C

(x
ε

)
[Evε − qε] : [Eu0

ε − p0
ε] dx

+
1
2

∫
Ω

ξ2ε dx+
∫

Ω

ξεz
0
ε dx− 〈l(0), vε〉 + Hε(qε, ξε).

Letting ε→ 0 we obtain (using Prop. 3.2, points (3) and (4))

0 ≤ 1
2

∫
Ω×Y

C(y)[Ev − Eu0 + EyV − EyU0 −Q+ P0] : [Ev − Eu0 + EyV − EyU0 −Q+ P0] dxdy

+
∫

Ω×Y

C(y)[Ev − Eu0 + EyV − EyU0 −Q+ P0] : [Eu0 + EyU0 − P0] dxdy

+
1
2

∫
Ω×Y

(Ξ − Z0)2 dxdy +
∫

Ω×Y

(Ξ − Z0)Z0 dxdy

− 〈l(0), v − u0〉 + H̃(Q− P0,Ξ − Z0),

so that, adding to both sides Q̃(u0, U0, P0, Z0) we get precisely the global stability (5.8). �

We assume moreover that

lim
ε→0

(
Qε(u0

ε, p
0
ε, z

0
ε) − 〈l(0), u0

ε〉
)

= Q̃(u0, U0, P0, Z0) − 〈l(0), u0〉. (5.9)

Remark 5.7. Notice that the case of purely elastic initial configurations fulfill the global stability condition
and our assumptions (5.7) and (5.9).

More precisely, let u0
ε ∈ H1(Ω; RN ) be the elastic configuration associated to the boundary displacement

ψ(0) and the external load l(0), such that the associated Cauchy stress σ0
ε satisfies

|(σ0
ε)D| ≤ b

(x
ε

)
for a.e. x ∈ Ω (5.10)
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for every ε > 0. Then the initial configuration
(u0

ε, 0, 0)
satisfies (5.7) and (5.9) with respect to (u0, U0, 0, 0), for suitable

u0 ∈ H1(Ω; RN ) and U0 ∈ L2(Ω;H1
per,0(Y ; RN )).

The global stability condition follows since (u0
ε, 0, 0) is the minimizer of the convex function

(u, p, z) �→ Qε(u, p, z)− 〈l(0), u〉 + Hε(p, z).

The minimality is consequence of (5.10) which entails

−∂Qε(u0
ε, 0, 0) + l(0) ∈ Cε.

Thanks to Lemma 5.6, (u0, U0, P0, Z0) ∈ Ã(ψ(0)) is a globally stable configuration, so that the associated
two-scale quasistatic evolution is well defined. We are now in a position to state the main result of the section.

Theorem 5.8 (asymptotic behaviour of a quasistatic evolution). Let

t �→ (uε(t), pε(t), zε(t))

be the quasistatic evolution with initial configuration (u0
ε, p

0
ε, z

0
ε) satisfying (5.7) and (5.9). Let

t �→ (u(t), U(t), P (t), Z(t))

be the two-scale quasistatic evolution with initial configuration (u0, U0, P0, Z0).
Then for every t ∈ [0, T ]

uε(t) ⇀ u(t) weakly in H1(Ω; RN )

Euε(t)
w-2
⇀ Eu(t) + EyU(t) two-scale weakly in L2(Ω × Y ; MN

sym)

pε(t)
w-2
⇀ P (t) two-scale weakly in L2(Ω × Y ; MN

D)

ε∇pε(t)
w-2
⇀ ∇yP (t) two-scale weakly in L2(Ω × Y ; MN

D)

zε(t)
s-2→ Z(t) two-scale strongly in L2(Ω × Y ).

Finally, concerning the elastic strain we have for every t ∈ [0, T ]

Euε(t) − pε(t)
s-2→ Eu(t) + EyU(t) − P (t) two-scale strongly in L2(Ω × Y ; MN

sym).

Proof. We divide the proof in several steps.

Step 1: Compactness for the plastic strain and the hardening variable. From the energy balance

Eε(t) + Dε(pε, zε; 0, t) = Eε(0) −
∫ t

0

〈l̇(τ), uε(τ)〉dτ (5.11)

and recalling that by (5.9)

Eε(0) = Qε(u0
ε, p

0
ε, z

0
ε) − 〈l(0), u0

ε〉 → Q̃(u0, U0, P0, Z0) − 〈l(0), u0〉 as ε→ 0,
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in view of the coercivity assumptions for the elastic and plastic moduli we obtain for every t ∈ [0, T ] and for
ε > 0 small enough

‖Euε(t) − pε(t)‖2
L2(Ω;MN

sym) + ‖zε(t)‖2
L2(Ω) ≤ C(1 + max

τ∈[0,t]
‖uε(τ)‖H1(Ω;RN ))

where C > 0 is a suitable constant independent of ε and t. Since (uε(t), pε(t), zε(t)) ∈ Aε(ψ(t)) we get up to
changing C

‖Euε(t)‖2
L2(Ω;MN

sym) + ‖zε(t)‖2
L2(Ω) ≤ C(1 + max

τ∈[0,t]
‖uε(τ)‖H1(Ω;RN ))

so that we infer in view of Korn’s inequality (see Sect. 2)

max
t∈[0,T ]

‖Euε(t)‖2
L2(Ω;MN

sym) ≤ C(1 + max
t∈[0,T ]

‖Euε(t)‖L2(Ω;MN
sym)).

This entails, by (5.11) and using again Korn’s inequality, that for ε small enough the quantity

Eε(t) + Dε(pε, zε; 0, t)

is uniformly bounded for t ∈ [0, T ].
Taking into account the definition of Dε(pε, zε; 0, t), and using the coercivity for the yielding function b, we

infer that the total variation of
t �→ zε(t)

from [0, T ] to L2(Ω) is uniformly bounded for ε small. By admissibility of the configurations, we deduce also
that the total variation of

t �→ (pε(t), ε∇pε(t))
from [0, T ] to L2(Ω; MN

D) × L2(Ω; MN
D ) is uniformly bounded for ε small.

From the bound on Eε(t), using again Korn’s inequality and the admissibility of the configurations, we infer
that there exists C̃ > 0 such that for ε small enough and for every t ∈ [0, T ]

‖uε(t)‖H1(Ω;RN ) + ‖pε(t)‖L2(Ω;MN
D) + ‖ε∇pε(t)‖L2(Ω;MN

D) + ‖zε(t)‖L2(Ω) ≤ C̃. (5.12)

Since the unfolding operator Tε is an isometry, we deduce that the total variation of

t �→ (Tε(pε(t)), Tε(ε∇pε(t)), Tε(zε(t)))

on [0, T ] with values in L2(Ω × Y ; MN
D) × L2(Ω × Y ; MN

D ) × L2(Ω × Y ) is uniformly bounded for ε small. By
the generalized version of Helly’s theorem [5], Lemma 7.2, and in view of Theorem 3.5, we deduce that there
exist a function of bounded variation

t �→ (P (t), Z(t)) ∈ H1
per(Y ; MN

D) × L2(Ω × Y )

and a sequence εn → 0 such that setting

(un(t), pn(t), zn(t)) := (uεn(t), pεn(t), zεn(t)),

for every t ∈ [0, T ]
pn(t) w-2

⇀ P (t) two-scale weakly in L2(Ω × Y ; MN
D), (5.13)

εn∇pn(t) w-2
⇀ ∇yP (t) two-scale weakly in L2(Ω × Y ; MN

D), (5.14)
and

zn(t) w-2
⇀ Z(t) two-scale weakly in L2(Ω × Y ). (5.15)

Notice that from the admissibility of (uε(t), pε(t), zε(t)) we infer that (P (t), Z(t)) ∈ C̃ for every t ∈ [0, T ].
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Step 2: Compactness for the displacement. Let us fix t ∈ [0, T ]. In view of (5.12) and Proposition 3.3,
up to a further subsequence we have that

un(t) ⇀ ũ weakly in H1(Ω; RN )

Eun(t) w-2
⇀ Eũ+ EyŨ two-scale weakly in L2(Ω × Y ; MN

sym)
for some

ũ ∈ H1(Ω; RN ) and Ũ ∈ L2(Ω;H1
per,0(Y ; RN )).

Clearly, ũ = ψ(t) on ∂DΩ, so that (ũ, Ũ , P (t), Z(t)) ∈ Ã(ψ(t)).
We claim that the pair (ũ, Ũ) is uniquely determined. Indeed, let (v, V ) ∈ H1(Ω; RN )×L2(Ω;H1

per,0(Y ; RN )),
and vn ∈ H1(Ω; RN ) such that, according to Remark 3.4, vn = v − ũ on ∂Ω,

vn ⇀ v − ũ weakly in H1(Ω; RN )

and
Evn

s-2→ Ev − Eũ+ EyV − EyŨ two-scale strongly in L2(Ω × Y ; MN
sym).

The global stability of (un(t), pn(t), zn(t)) yields by comparison with (un(t) + vn, pn(t), zn(t)) ∈ Aεn(ψ(t))

Qεn(un(t), pn(t), zn(t)) − 〈l(t), un(t)〉 ≤ Qεn(un(t) + vn, pn(t), zn(t)) − 〈l(t), un(t) + vn〉. (5.16)

Since

Qεn(un(t) + vn, pn(t), zn(t)) = Qεn(un(t), pn(t), zn(t)) +
1
2

∫
Ω

C

(
x

εn

)
Evn : Evn dx

+
∫

Ω

C

(
x

εn

)
Evn : (Eun(t) − pn(t)) dx,

taking the limit in (5.16) (using Prop. 3.2, points (3) and (4)) we get

0 ≤ 1
2

∫
Ω×Y

C(y)(Ev − Eũ+ EyV − EyŨ) : (Ev − Eũ+ EyV − EyŨ) dxdy

+
∫

Ω×Y

C(y)(Ev − Eũ+ EyV − EyŨ) : (Eũ+ EyŨ − P (t)) dxdy − 〈l(t), v − ũ〉.

Adding to both sides the quantity

1
2

∫
Ω×Y

C(y)(Eũ + EyŨ − P (t)) : (Eũ+ EyŨ − P (t)) dxdy − 〈l(t), ũ〉,

we deduce that the pair (ũ, Ũ) is a minimizer (under the boundary condition for the displacement) of the map

(v, V ) �→ 1
2

∫
Ω×Y

C (y) (Ev + EyV ) : (Ev + EyV ) dxdy −
∫

Ω×Y

C (y) (Ev + EyV ) : P (t) dxdy − 〈l(t), v〉.

By strict convexity we conclude that (ũ, Ũ) is uniquely determined, so that we denote it by (u(t), U(t)). We
infer that (without passing to a subsequence since the limit point is uniquely determined)

un(t) ⇀ u(t) weakly in H1(Ω; RN ) (5.17)
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and
Eun(t) w-2

⇀ Eu(t) + EyU(t) two-scale weakly in L2(Ω × Y ; MN
sym). (5.18)

Step 3: The limit trajectory is a quasistatic evolution. Let us prove that the limit trajectory

t �→ (u(t), U(t), P (t), Z(t)) ∈ Ã(ψ(t))

given by the previous steps satisfies the global stability and the energy balance of Definition 5.4.
Global stability follows by the same arguments of Lemma 5.6 by replacing (u0

ε, p
0
ε, z

0
ε) with (un(t), pn(t), zn(t)),

and (u0, U0, P0, Z0) with (u(t), U(t), P (t), Z(t)).
Concerning the energy balance, let us write Qn and Dn for Qεn and Dεn respectively. Since

Qn(un(t), pn(t), zn(t)) =
1
2

∫
Ω×Y

C(y)(Tεn(Eun(t)) − Tεn(Pn(t))) : (Tεn(Eun(t)) − Tεn(Pn(t)))

+ |Tεn(zn(t))|2 dxdy

and
Dn(pn, zn; 0, t) = D̃(Tεn(pn), Tεn(zn); 0, t),

we obtain for every t ∈ [0, T ]

Q̃(u(t), U(t), P (t), Z(t)) ≤ lim inf
n→∞ Qn(un(t), pn(t), zn(t))

and (since D̃ is a sort of total variation in time)

D̃(P,Z; 0, t) ≤ lim inf
n→∞ Dn(pn, zn; 0, t).

Taking the limit for n→ ∞ in

En(t) + Dn(pn, zn; 0, t) = En(0) −
∫ t

0

〈l̇(τ), un(τ)〉dτ,

in view of (5.9) we deduce that

Ẽ(t) + D̃(P,Z; 0, t) ≤ lim
n→∞[En(t) + Dn(pn, zn; 0, t)] = Ẽ(0) −

∫ t

0

〈l̇(τ), u(τ)〉dτ. (5.19)

On the other hand, the global stability implies that for every t ∈ [0, T ] (see for example [15], Thm. 4.4)

Ẽ(t) + D̃(P,Z; 0, t) ≥ Ẽ(0) −
∫ t

0

〈l̇(τ), u(τ)〉dτ

so that the energy balance condition holds. The map t �→ (u(t), U(t), P (t), Z(t)) is thus a quasistatic evolution
with initial configuration (u0, U0, P0, Z0). Since the evolution is uniquely determined, we conclude that the
convergences (5.13)–(5.18) hold indeed along the entire family for ε→ 0.

Finally from (5.19) (which is indeed an equality) we infer that for every t ∈ [0, T ]

lim
ε→0

Eε(t) = Ẽ(t) and lim
ε→0

Dε(pε, zε; 0, t) = D̃(P,Z; 0, t).

This entails that for every t ∈ [0, T ]

Euε(t) − pε(t)
s-2→ Eu(t) + EyU(t) − P (t) two-scale strongly in L2(Ω × Y ; MN

sym)
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and
zε(t)

s-2→ Z(t) two-scale strongly in L2(Ω × Y ).
This completes the proof. �

Remark 5.9. Reformulating the two-scale quasistatic evolution t �→ (u(t), U(t), P (t), Z(t)) in a single scale
setting demands for an integration with respect to the microstructural variable y, so that usual weak limits P̂ (t)
and Ẑ(t) of pε(t) and zε(t) are obtained (the displacement u(t) is already the weak limit of uε(t)). Unfortunately,
in view of the nonlinearities appearing in the global stability and the energy balance conditions, the mean with
respect to y cannot be performed preserving the structure of the two properties. In other words, it is likely that
the evolution t �→ (u(t), P̂ (t), Ẑ(t)) cannot be interpreted as a quasistatic evolution for a homogenized standard
plasticity model, although we do not have a rigorous argument supporting this conclusion. A hint regarding
such a difficulty was given by the analysis of the cell problem of Fleck and Willis considered in Theorem 4.7
(see also Rem. 4.8), where the effective plastic potential in a single scale setting depends also on the elastic
behaviour of the material.

The loss of information entailed by taking the mean with respect to the microstructural variable y could
require a description of the evolution in terms of nonlocal properties, such as memory effects, as pointed out by
Tartar [20,21]. For example, in the case of linear thermoviscoelasticity Francfort and Suquet [10] showed that
homogenization can induce memory effects of fading type.

Recently Visintin [22–24] dealt with the problem of formulating a single scale description for the two-scale
homogenization of nonlinear problems arising in viscoelasticity and elastoplasticity. His arguments are of a
variational nature, and are nonlocal in time. The case of elastoplasticity presents technical difficulties due to
the linear growth of the dissipation, so that the regularity in time which can be used in the minimum problems is
only that of function of bounded variation (and not Sobolev regularity as for other problems in viscoelasticity).
Concerning our problem of strain gradient plasticity, Visintin’s ideas amount, loosely speaking, in manipulating
the energy balance by taking the minimum of the left-hand side along trajectories t �→ (v(t), V (t), Q(t),Ξ(t))
such that v̂(t) = u(t), Q̂(t) = P̂ (t) and Ξ̂(t) = Ẑ(t) (the average with respect to y provide the weak limits of
the evolution), and which satisfy the global stability condition. Unfortunately, such a formulation seems not to
provide any further physical insight into the problem.

Acknowledgements. A.G. is supported by the Italian Ministry of University and Research, project “Problemi variazionali
e di evoluzione con scale multiple” 2008.
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