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SOLVING THE CAHN-HILLIARD VARIATIONAL INEQUALITY
WITH A SEMI-SMOOTH NEWTON METHOD
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Abstract. The Cahn-Hilliard variational inequality is a non-standard parabolic variational inequality
of fourth order for which straightforward numerical approaches cannot be applied. We propose a
primal-dual active set method which can be interpreted as a semi-smooth Newton method as solution
technique for the discretized Cahn-Hilliard variational inequality. A (semi-)implicit Euler discretization
is used in time and a piecewise linear finite element discretization of splitting type is used in space
leading to a discrete variational inequality of saddle point type in each time step. In each iteration of
the primal-dual active set method a linearized system resulting from the discretization of two coupled
elliptic equations which are defined on different sets has to be solved. We show local convergence of
the primal-dual active set method and demonstrate its efficiency with several numerical simulations.
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1. Introduction

The Cahn-Hilliard equation was initially introduced to model phase separation in binary alloys [10]. By
now the Cahn-Hilliard equation has found many applications ranging from classical aspects in materials sci-
ence [25,38] over image processing [11], fluid dynamics [37], topology optimization [44] up to the modelling of
mineral growth [34] and galaxy structure formation [42]. The Cahn-Hilliard equation can model interface mo-
tion in so called conserved systems, i.e. in systems where the concentration of a species or the volume occupied
by a phase is conserved. In these applications Cahn-Hilliard variational inequalities are frequently used.

Commonly the Cahn-Hilliard variational inequality is solved numerically by (semi-)implicit in time discretiza-
tions leading to a variational inequality of saddle point type. Iterative solution techniques for the resulting sys-
tem are simple recursive methods using a semi-smooth reformulation of the complementary formulation of the
variational inequality, see [7], splitting methods using an approach of Lions and Mercier [3,14,35] and nonlinear
Gauss-Seidel and SOR methods [4,20]. Only recently multigrid methods for the discrete variational inequality
have been investigated, see [2,27–29] and the discussion below.

In this paper we propose a numerical method for solving Cahn-Hilliard variational inequalities and we heavily
use the gradient flow structure of the Cahn-Hilliard model. We interpret the time discretized version of the
gradient flow as a PDE-constraint optimization problem where in addition pointwise inequality constraints have
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to hold. The PDE-constraint minimization problem which we obtain is non-standard as the objective functional
contains the L2-norms of gradients rather than the L2-norms of the involved functions itself. We propose to solve
the fully discretized system with a primal-dual active set method which can be reinterpreted as a semi-smooth
Newton method. It turns out that this approach is superior to earlier numerical methods for Cahn-Hilliard
variational inequalities. Its efficiency in each iteration step is comparable to a method proposed by Gräser
and Kornhuber [26–28]. They introduce and analyse an Uzawa-multigrid algorithm for set-valued saddle point
problems for which also global convergence results are shown [28]. There in each iteration step an intermediate
primal-active set is determined with the help of obstacle problems which are solved with a monotone multigrid
method. In a second step a linear subproblem similar to ours where only the right hand side differs has to be
solved and then the chemical potential is updated by a damped gradient-type method. After convergence the
phase field is determined. In contrast we determine the active sets in a simple way using approximations of
the primal and dual variables. Then we solve the same linear subproblem as in [26–28] where we compute for
the chemical potential and the phase field simultaneously. Banas and Nürnberg [2] applied a fully nonlinear
multigrid method to the whole system of Cahn-Hilliard inequalities and exhibit mesh-independent convergence
properties. Computational comparisons are not available up to now.

The outline of the paper is as follows. In the remainder of this section we introduce the Cahn-Hilliard vari-
ational inequality. We will interpret the implicit time discretization of the Cahn-Hilliard variational inequality
as a PDE-constraint optimization problem in Section 2. In Section 3 we introduce a primal-dual active set
approach for the time discretized Cahn-Hilliard variational inequality and we formulate a finite element method
for a splitting formulation of the Cahn-Hilliard variational inequality in Section 4. We also show local conver-
gence. Finally, we numerically analyse the behaviour of the method with the help of four examples of different
type and show some simulations in Section 5.

Since the gradient flow perspective is important for what follows we choose to derive the Cahn-Hilliard
equations as a gradient flow. We remark that our derivation will be formal. We consider a vector space Z and
an affine subspace U ⊂ Z, i.e. there exists a u ∈ Z and a linear space Y ⊂ Z such that U = u + Y. The
gradient of a sufficiently smooth function E : U → R depends on the inner product chosen for Z. We define
the first variation of E at a point u ∈ U in a direction v ∈ Y by

δE

δu
(u)(v) := lim

δ→0

E(u+ δv) − E(u)
δ

·

We say that there exists a gradient of E with respect to the inner product (., .)Z on Z which we denote by
gradZE(u) if

(gradZE(u), v)Z =
δE

δu
(u)(v) for all v ∈ Y.

Now the gradient flow of E with respect to the inner product (., .)Z is given as

∂tu(t) = −gradZE(u(t)). (1.1)

The energy decreases in time due to the inequality

d
dt
E(u(t)) = (gradZE(u(t)), ∂tu(t))Z = −‖∂tu‖2

Z ≤ 0.

In the following, in order to derive the Cahn-Hilliard equation, we introduce the Ginzburg-Landau energy
E : H1(Ω) → R as

E(u) =
∫
Ω

{ γε
2 |∇u|2 + 1

εψ(u)}dx (1.2)
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Figure 1. The system (4.8)–(4.9) leads to an equation for uk on the inactive set Ik and for
wk on the whole of Ω.

where Ω ⊂ R
d is a bounded domain with Lipschitz boundary, γ > 0 is a constant related to the interfacial

energy density and ψ is a double well potential, e.g. ψ(u) = (1 − u2)2 or an obstacle potential, e.g.

ψ(u) =
{
ψ0(u) u ∈ [−1, 1]
∞ elsewhere

}
= ψ0(u) + I[−1,1](u) (1.3)

where ψ0 is smooth and I[−1,1] is the indicator function, i.e. I[−1,1] is set to infinity outside the interval [−1, 1]
and to 0 on [−1, 1]. For the Cahn-Hilliard model this double obstacle formulation was introduced by Blowey
and Elliott [6] and we will hence refer to it as the Cahn-Hilliard model with Blowey-Elliott potential. In the
following we will choose

ψ0(u) = 1
2 (1 − u2) (1.4)

which is the typical choice in the literature, see e.g. [6,9,21], but other non-convex functions are possible. In the
Cahn-Hilliard model the different phases correspond to the values u = ±1. On an interface a solution rapidly
changes from values close to 1 to values close to −1 and the thickness of this interfacial region is proportional
to the parameter ε in (1.2), see e.g. Figure 1.

If ψ is smooth the first variation of E in a direction v is given as

δE

δu
(u)(v) =

∫
Ω

(γε∇u · ∇v + 1
εψ

′(u)v). (1.5)

Choosing Z = L2(Ω), U = Y = H1(Ω) and u = 0 we obtain

gradL2E(u) = −γεΔu+ 1
εψ

′(u) (1.6)

and the resulting gradient flow equation gives the so called Allen-Cahn equation. We remark here that for (1.6)
to hold we also need to require ∂u

∂n = 0 on ∂Ω where n is the outer unit normal to ∂Ω.
As mentioned above in the Cahn-Hilliard model the total concentration, i.e.

∫
Ω

u(x)dx is assumed to be

conserved. Denoting by
∫
Ω

− u the mean value of a function u, we now define for a given m ∈ (−1, 1) the sets

U := {u ∈ H1(Ω) |
∫
Ω

− u = m}, Y := {u ∈ H1(Ω) |
∫
Ω

− u = 0}.

In addition we introduce Z = H−1(Ω) = {u′ ∈ (H1(Ω))′ | 〈u′, 1〉 = 0}, i.e. all bounded linear functionals
on H1(Ω) that vanish on constant functions. Here and in what follows 〈., .〉 denotes the dual pairing. On
Z = H−1(Ω) we define the H−1-inner product for v1, v2 ∈ Z as

(v1, v2)H−1 :=
∫
Ω

∇(−Δ)−1v1 · ∇(−Δ)−1v2 (1.7)
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where y = (−Δ)−1v is the weak solution of −Δy = v in Ω and ∂y
∂n = 0 on ∂Ω, i.e.

∫
Ω

∇y.∇η = v(η) for all

η ∈ H1(Ω). We remark that the solution to this elliptic problem is only defined up to a constant and we always
choose y such that

∫
Ω

− y = 0. The function space Y is canonically embedded into Z since u ∈ Y can be related

to the linear functional y �→
∫
Ω

uy. For v1, v2 ∈ Y we obtain using the L2-inner product (., .)

(v1, v2)H−1 = (v1, (−Δ)−1v2) = ((−Δ)−1v1, v2).

These identities also hold more generally for functions v1, v2 ∈ L2(Ω) with mean value zero. To compute the
H−1-gradient of E we now need to find gradH−1E(u) ∈ Z such that

(v, gradH−1E(u))H−1 =
δE

δu
(u)(v) holds for all v ∈ Y.

From the above we obtain (v, (−Δ)−1gradH−1E(u)) = (v, gradL2E(u)) and hence

gradH−1E(u) = (−Δ)gradL2E(u). (1.8)

Then, the Cahn-Hilliard equation is given as the H−1-gradient flow of the Ginzburg–Landau energy E. If ψ
is smooth we obtain the fourth order parabolic equation

∂tu = −gradH−1E(u) = Δ
(
−γεΔu+ 1

εψ
′(u)

)
(1.9)

or equivalently introducing the so called chemical potential w the equation can be rewritten as a system as
follows

∂tu = Δw, (1.10)
w = −γεΔu+ 1

εψ
′(u). (1.11)

In addition the boundary conditions ∂u
∂n = ∂w

∂n = 0 on ∂Ω have to hold. Let us remark, that in this formulation
we do not necessarily have

∫
Ω

− w = 0, i.e. in general w �= −(−Δ)−1∂tu but both functions only differ by an

additive constant.
It is also possible to derive the Cahn-Hilliard equation from the mass balance law and in this case −∇w is the

mass flux where for simplicity a mobility coefficient was taken to be one, see e.g. Elliott [19] or Novick-Cohen [38].
The presentation so far is appropriate for smooth functions ψ. If the energy has the double obstacle form (1.3)

we differentiate I[−1,1] in the sense of subdifferentials, i.e. for a u ∈ L2(Ω) with |u| ≤ 1 we obtain that μ ∈ L2(Ω)
is in the subdifferential of I[−1,1] at u if and only if

μ ∈ ∂I[−1,1](u) =

⎧⎪⎨
⎪⎩

(−∞, 0] if u = −1,
0 for u ∈ (−1, 1),
[0,∞) if u = 1,

(1.12)

is fulfilled pointwise almost everywhere. This can be rewritten in the following complementarity form

μ = μ+ − μ−, μ+ ≥ 0, μ− ≥ 0, μ+(u− 1) = 0, μ−(u+ 1) = 0 (1.13)

which also has to hold almost everywhere. In this case the H−1-gradient flow has the form

∂tu = Δw, (1.14)
w = −γεΔu+ 1

ε (ψ′
0(u) + μ) (1.15)
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with μ ∈ ∂I[−1,1](u), |u| ≤ 1 and zero Neumann boundary conditions for u and w. This formulation can be re-
stated in a variational inequality formulation, see e.g. Blowey and Elliott [6], Kinderlehrer and Stampacchia [33]
and Friedman [24] for other obstacle problems, as follows:

∂tu = Δw, (1.16)
(w, ξ − u) ≤ γε(∇u,∇(ξ − u)) + 1

ε (ψ′
0(u), ξ − u) ∀ ξ ∈ H1(Ω), |ξ| ≤ 1, (1.17)

together with |u| ≤ 1 a.e. This system is the variational inequality formulation of the Cahn-Hilliard model with
a Blowey-Elliott potential. It can be shown that a unique solution (u,w) exists to (1.16), (1.17). More precisely
the following theorem, see [6], is true.

Theorem 1.1. Assume Ω is convex or ∂Ω ∈ C1,1, u0 ∈ H1(Ω) with |u0| ≤ 1 and
∫
Ω

−u0 = m ∈ (−1, 1). Then

there exists a unique pair (u,w) such that

u ∈ H1(0, T ; (H1(Ω))′) ∩ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)),

|u| ≤ 1 a.e. and w ∈ L2(0, T ;H1(Ω)) which solves (using the duality pairing 〈., .〉 between H−1(Ω) and H1(Ω))

〈∂tu, η〉 + (∇w,∇η) = 0 for all η ∈ H1(Ω) and t ∈ (0, T ) a.e.

together with the variational inequality (1.17) and u(0, ·) = u0.
In particular μ = εw + γε2Δu− ψ′

0(u) ∈ L2(ΩT ).

2. Cahn-Hilliard variational inequalities and PDE-constraint optimization

Given discrete times tn = nτ, n ∈ N0, where τ > 0 is a given time step the backward Euler discretization of
the gradient flow equation (1.1) is given as

1
τ (un − un−1) = −gradH−1E(un). (2.1)

This time discretization has a natural variational structure. In fact one can compute a solution un as the
solution of the minimization problem

min
u∈U

{E(u) + 1
2τ ‖u− un−1‖2

H−1}. (2.2)

One hence tries to decrease the energy E but has to take into account that deviations from the solution at the
old time step costs where the cost depends on the norm on Z = H−1(Ω). As Euler-Lagrange equation for (2.2)
we obtain the backward Euler discretization (2.1). We remark here that (2.1) might have solutions which are
not necessarily global minimizers of the minimization problem (2.2). In the case of the Cahn-Hilliard model we
need to minimize ∫

Ω

{
γε
2 |∇u|2 + 1

εψ(u)
}

dx+ 1
2τ ‖u− un−1‖2

H−1 (2.3)

under all u ∈ H1(Ω) with
∫
Ω

− u =
∫
Ω

− un−1 = m. In order to compute the H−1-norm of u− un−1 we need to solve

a Poisson problem and hence we obtain, in the case of the obstacle potential, the following PDE-constraint
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optimization problem

min
{

γε
2

∫
Ω

|∇u|2 + 1
ε

∫
Ω

ψ0(u) + τ
2

∫
Ω

|∇v|2
}

(2.4)

such that τΔv = u− un−1, (2.5)
|u| ≤ 1,

∫
Ω

− u = m, (2.6)

with ∂v
∂n = 0 on ∂Ω and

∫
Ω

− v = 0. (2.7)

This formulation has the form of an optimal control problem where u is the control and v is the state.
We now introduce Lagrange multipliers w ∈ H1(Ω) for the weak formulation of (2.5), and κ ∈ R for

∫
Ω

− v = 0

and define the Lagrangian

L(u, v, w, λ) := γε
2

∫
Ω

|∇u|2 + 1
ε

∫
Ω

ψ0(u) + τ
2

∫
Ω

|∇v|2 −
∫
Ω

τ∇w · ∇v −
∫
Ω

(u− un−1)w − κ
∫
Ω

v.

With the help of this Lagrangian the equality constraints are incorporated. In fact the equality constraints are
obtained as the first variation of L with respect to w and κ. In particular, we obtain

∫
Ω

− u =
∫
Ω

− un−1 = m if

we vary w by a constant. This implies that w acts as a Lagrange multiplier simultaneously for the equality
constraints (2.5) and

∫
Ω

− u = m :=
∫
Ω

− un−1.

Introducing appropriately scaled Lagrange multipliers μ, namely with 1
ε , for the pointwise box-constraints

we obtain the following version of the KKT-system where (2.8), (2.10) and (2.11) have to be understood in its
weak form:

τΔ(w − v) = κ in Ω,
∂w

∂n
=
∂v

∂n
on ∂Ω, (2.8)∫

Ω

− v = 0, κ = 0, (2.9)

1
τ (u− un−1) = Δv in Ω,

∂v

∂n
= 0 on ∂Ω, (2.10)

w + γεΔu− 1
εψ

′
0(u) − 1

εμ = 0 in Ω,
∂u

∂n
= 0 on ∂Ω, (2.11)

μ = μ+ − μ−, μ+ ≥ 0, μ− ≥ 0, a.e. in Ω, (2.12)
μ+(u− 1) = 0, μ−(u+ 1) = 0, a.e. in Ω, (2.13)

and |u| ≤ 1 a.e. in Ω. (2.14)

Given (2.8)–(2.9) we obtain w −
∫
Ω

− w = v, i.e. v and w only differ by a constant. We can replace v by w

in (2.10) and we hence obtain in particular a time discretization of (1.14), (1.15) using the complementary
formulation (1.13). The Lagrange multiplier w coincides with the chemical potential, and the scaled Lagrange
multiplier μ lies in the subdifferential of I[−1,1]. Since the equations (2.8) and (2.9) are not needed we omit
them in the following.

From now on we consider the choice ψ0(u) = 1
2 (1−u2) and show that the system (2.10)–(2.14) has a solution.

Defining the admissible set
Uad := {u ∈ H1(Ω) | |u| ≤ 1,

∫
Ω

− u = m}

the minimization problem (2.3) or respectively (2.4)–(2.7) can be reformulated as

min
u∈Uad

E(u) := { γε
2

∫
Ω

|∇u|2 + 1
ε

∫
Ω

ψ0(u) + 1
2τ

∫
Ω

|∇(−Δ)−1(u − un−1)|2}. (2.15)
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Since 1
2 (1− u2) is nonconvex the above minimization problem will in general omit more than one solution. But

one can show that for small τ > 0 the problem is uniquely solvable. This is the content of the following lemma.
Similar restrictions on the time step in order to obtain uniqueness had to be imposed in a fully discrete situation
in [3,7].

Lemma 2.1. The minimization problem (2.15) has a solution. A unique solution exists if τ ∈ (0, 4γε3).

Proof. Since |u| ≤ 1 we obtain that
∫
Ω

ψ0(u) =
∫
Ω

1
2 (1−u2) is non-negative and there exists a minimizing sequence

(uk)k∈N ⊂ Uad for E, i.e.
E(uk) → inf

u∈Uad

E(u) ≥ 0 for k → ∞.

Given that (E(uk))k∈N is uniformly bounded we can conclude that
∫
Ω

|∇uk|2dx is uniformly bounded. Due to∫
Ω

− (uk −m)dx = 0 we can use Poincaré’s inequality for functions with mean value zero, see e.g. [1], to obtain

that (uk)k∈N is a bounded sequence in H1(Ω). Using the fact that bounded sequences in H1(Ω) have weakly
converging subsequences and applying Rellichs theorem we obtain the existence of a subsequence such that

ukj ⇀ u∗ in H1(Ω), ukj → u∗ in L2(Ω) for j → ∞.

Since the terms
∫
Ω

|∇u|2dx and
∫
Ω

|∇(−Δ)−1u|2dx are convex, we obtain that they are weakly lower semi-

continuous in H1(Ω), see e.g. [23]. Since
∫
Ω

ψ0(ukj ) converges strongly we conclude that u∗ is in fact a minimum

of E in Uad, compare [23].
The functional E is strictly convex on U if and only if F (η) := E(η + un−1) is strictly convex on Y. Since

F is the sum of terms which are constant or linear and of

γε
2

∫
Ω

|∇η|2 − 1
2ε

∫
Ω

η2 + 1
2τ

∫
Ω

|∇(−Δ)−1η|2 (2.16)

we only need to show that (2.16) is strictly positive on Y \ {0}. Using the definition of (−Δ)−1 and Young’s
inequality we obtain for all η ∈ Y

1
2ε

∫
Ω

η2 = 1
2ε

∫
Ω

(∇(−Δ)−1η) · ∇η ≤ δ
4ε

∫
Ω

|∇(−Δ)−1η|2 + 1
4δε

∫
Ω

|∇η|2.

Choosing δ = 2ε
τ we obtain

γε
2

∫
Ω

|∇η|2 − 1
2ε

∫
Ω

η2 + 1
2τ

∫
Ω

|∇(−Δ)−1η|2 ≥
(

γε
2 − τ

8ε2

) ∫
Ω

|∇η|2.

If τ < 4γε3 we obtain uniqueness from the strict convexity of E. �
Lemma 2.2. A solution u ∈ Uad of (2.15) solves the variational inequality

∫
Ω

γε∇u · ∇(η − u) − 1
ε

∫
Ω

u(η − u) + 1
τ

∫
Ω

(−Δ)−1(u− un−1)(η − u) ≥ 0 (2.17)

for all η ∈ Uad.

Proof. Computing the first variation of the first two terms in (2.15) in a direction (η − u) is standard. In
addition we have

d
dδ

∫
Ω

|∇(−Δ)−1(u+δ(η−u)−un−1)|2|δ=0 =
∫
Ω

∇(−Δ)−1(u−un−1)·∇(−Δ)−1(η−u) =
∫
Ω

(−Δ)−1(u−un−1)(η−u).
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Since for a minimizer u the derivative of the functional in (2.15) has to be nonnegative in directions η− u with
η ∈ Uad we obtain (2.17). �

The following lemma gives the existence of a Lagrange multiplier for the equality constraint
∫
Ω

− u = m.

Lemma 2.3. Let u ∈ Uad be a solution of the variational inequality (2.17). Then there exists a λ ∈ R such
that for all η ∈ H1(Ω) with |η| ≤ 1 the inequality

∫
Ω

γε∇u · ∇(η − u) − 1
ε

∫
Ω

u(η − u) + 1
τ

∫
Ω

(−Δ)−1(u− un−1)(η − u) − λ
∫
Ω

(η − u) ≥ 0 (2.18)

holds.

Proof. We argue similar as in the proof of Proposition 3.3 in [6]. Let f = 2
εu − 1

τ (−Δ)−1(u − un−1). Since u
and un−1 are bounded by one in modulus we obtain from the theory of elliptic equations that f is bounded.
We now define for each α ∈ R a function uα ∈ K := {u ∈ H1(Ω) | |u| ≤ 1} such that for all η ∈ K

∫
Ω

γε∇uα · ∇(η − uα) + 1
ε

∫
Ω

uα(η − uα) −
∫
Ω

f(η − uα) − α
∫
Ω

(η − uα) ≥ 0. (2.19)

Using standard theory of variational inequalities we deduce that (2.19) has a unique solution, see e.g. [33]. We
now introduce a function M : R → R by

M(α) :=
∫
Ω

− uα.

For all η ∈ K and all α ∈ R we have the pointwise inequalities

(1
ε − f − α)(η − 1) ≥ (1

ε + ‖f‖∞ − α)(η − 1)

and (1
ε − f − α)(η + 1) ≥ (− 1

ε − ‖f‖∞ − α)(η + 1).

Hence, inserting η ≡ ±1 into (2.19) we observe that u ≡ 1 is a solution of (2.19) if α ≥ 1
ε +‖f‖∞ and u ≡ −1 is a

solution of (2.19) if α ≤ −(1
ε +‖f‖∞). We now obtain M(±(1

ε +‖f‖∞)) = ±1. As in the proof of Proposition 3.3
in [6] we obtain that M is monotone and continuous. Hence a λ ∈ R exists such that M(λ) = m. We now
choose η = uλ in (2.17) and η = u in (2.19) where we set α = λ. Adding both resulting terms leads to

∫
Ω

γε|∇(u− uλ)|2 + 1
ε

∫
Ω

|uλ − u|2 ≤ 0,

where we use the fact that
∫
Ω

− u =
∫
Ω

− uλ. Hence u = uλ. Using this result and the definition of f we conclude

from (2.19) that u fulfills (2.18). �

Using regularity theory for obstacle problems we obtain similar as in the proof of Lemma 3.2 in [6]

u ∈W 2,p
loc (Ω) for all p ∈ (1,∞), u ∈ C1,α

loc (Ω) for all α ∈ (0, 1).

Setting v = −(−Δ)−1

(
u− un−1

τ

)
, w = v + λ,

μ+ = ε(γεΔu+ 1
εu+ w)+ = εmax(γεΔu+ 1

εu+ w, 0),

μ− = ε(γεΔu+ 1
εu+ w)− = εmax(−γεΔu− 1

εu− w, 0),
μ = μ+ − μ−

we obtain similar as for other optimization problems with bilateral constraints (see e.g. [43]) result (i) in the
following remark.
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Remark 2.1. (i) There exists a solution (u, v, w, μ) of the KKT system (2.8)–(2.14). In particular there is a
Lagrange multiplier μ for |u| ≤ 1 with μ ∈ L2(Ω). We also refer to [26,27] for a discrete saddle point formulation
related to (2.8)–(2.14).

(ii) Replacing ψ′
0(u) in (2.11) by ψ′

0(u
n−1) gives a semi-implicit time discretization, see e.g. [7]. Arguing

similar as above a solution to the semi-discrete version exists which is in H2(Ω). In this case the minimization
problem related to (2.15) is always uniquely solvable, i.e. no restriction on the time step is necessary.

3. Primal-dual active set approach

The goal of this section is to formulate a primal-dual active set method in order to solve for a time step τ > 0
a spatially discretized version of

1
τ (u − un−1) = Δw in Ω,

∂w

∂n
= 0 on ∂Ω (3.1)

together with (2.11)–(2.14). We now introduce for a c > 0 the active sets

A+ =
{
x ∈ Ω | u(x) + μ(x)

c > 1
}
, A− =

{
x ∈ Ω | u(x) + μ(x)

c < −1
}

and the inactive set I := Ω \ (A+ ∪A−). The conditions (2.12)–(2.14) can be reformulated as

u(x) = ±1 if x ∈ A±, μ(x) = 0 if x ∈ I. (3.2)

Formally, this leads to the following primal-dual active set strategy employing the primal variable u and the
dual variable μ.

Primal-Dual Active Set Algorithm (PDAS-I):
(1) Set k = 0, initialize A±

0 and define I0 = Ω \ (A+
0 ∪A−

0 ).
(2) Set uk = ±1 on A±

k and μk = 0 on Ik.
(3) Solve the coupled system of PDE’s (3.1), (2.11) to obtain uk on Ik, μk on A+

k ∪A−
k and wk on Ω.

(4) Set A+
k+1 :=

{
x ∈ Ω | uk(x) + μk(x)

c > 1
}
,

A−
k+1 := {x ∈ Ω | uk(x) + μk(x)

c < −1} and Ik+1 = Ω \ (A+
k+1 ∪A

−
k+1).

(5) If A±
k+1 = A±

k stop, otherwise set k = k + 1 and goto 2.

Another reformulation of (2.12)–(2.14) is given with the help of a semi-smooth equation as follows

H(u, μ) := μ− (max(0, μ+ c(u− 1)) + min(0, μ+ c(u+ 1))) = 0. (3.3)

A semi-smooth Newton method applied in a formal way to (2.11), (3.1), (3.3) is equivalent to the above primal-
dual active set method, see e.g. [30] for a different context. It is known that for obstacle problems the iterations
in (PDAS-I) in general are not applicable in function space since the iterates μk are only measures and not
L2-functions, see [31]. The same is true for the non-standard obstacle problem (2.4), as Δuk as obtained in
the iterations of (PDAS-I) in general is only a measure. In the following section we introduce a finite element
discretization of (2.10)–(2.14) and we show that for the discretized system local convergence holds.

4. Finite element discretization

We now introduce a finite element approximation for the Cahn-Hilliard variational inequality using con-
tinuous, piecewise affine linear finite elements for u and w. In the following we assume for simplicity that
Ω is a polyhedral domain. Generalizations to curved domains are possible using boundary finite elements
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with curved faces. Let {Th}h>0 be a triangulation of Ω into disjoint open simplices. Furthermore, we define Th

to have maximal element size h := maxT∈Th
{diam(T )} and we set Jh to be the set of nodes of Th and pj ∈ Jh to

be the coordinates of these nodes. The finite element space of piecewise affine linear, continuous finite elements
associated to Th is now given as Sh := {ϕ ∈ C0(Ω) | ϕ|T ∈ P1(T ) ∀ T ∈ Th} ⊂ H1(Ω) where we denote by
P1(T ) the set of all affine linear functions on T . To each pj ∈ Jh we associate the nodal basis function χj ∈ Sh

with the property χj(pi) = δij . We replace the L2-inner product (., .) at some places by a quadrature rule given
by the lumped mass inner product (η, χ)h =

∫
Ω

Ih(ηχ), where Ih := C0(Ω) → Sh is the standard interpolation

operator at the nodes. In the following, we consider either an implicit or an explicit discretization of the term
ψ′

0(u), i.e. we choose ψ′
0(u

∗) where ∗ ∈ {n − 1, n}. Then, the spatial discretization of (3.1), (2.11)–(2.14) is
given as:

For n = 1, 2, 3, . . . and given u0
h ∈ Sh find iteratively (un

h, w
n
h , μ

n
h) ∈ Sh × Sh × Sh such that

1
τ (un

h − un−1
h , χ)h + (∇wn

h ,∇χ) = 0 ∀ χ ∈ Sh, (4.1)

(wn
h , χ)h − γε(∇un

h,∇χ) − 1
ε (ψ′

0(u
∗
h), χ)h − 1

ε (μn
h, χ)h = 0 ∀ χ ∈ Sh, (4.2)

μn
h = μn

h,+ − μn
h,−, μn

h,+ ≥ 0, μn
h,− ≥ 0, |un

h| ≤ 1, (4.3)

μn
h,+(pj)(un

h(pj) − 1) = μn
h,−(pj)(un

h(pj) + 1) = 0 ∀ pj ∈ Jh. (4.4)

Notice that (4.4) does in general not imply (2.13) pointwise in all of Ω. Choosing χ ≡ 1 in (4.1) provides the
mass conservation

∫
Ω

− un
h =

∫
Ω

− un−1
h =

∫
Ω

− u0
h.

The discretization of (2.12)–(2.14) can also be introduced as in Section 3 with the help of active nodes

An,+
h =

{
pj ∈ Jh | un

h(pj) + μn
h(pj)

c > 1
}
, An,−

h =
{
pj ∈ Jh | un

h(pj) + μn
h(pj)

c < −1
}

(4.5)

for any positive c. Then we define the set of inactive nodes as In
h = Jh \ (An,+

h ∪ An,−
h ) and require

un
h(pj) = ±1 if pj ∈ An,±

h , μn
h(pj) = 0 if pj ∈ In

h . (4.6)

As discussed in Sections 1 and 2 the equations (4.2), (4.5)–(4.6) can be rewritten as a variational inequality
as follows. Introducing the space

Kh := {η ∈ Sh | |η(x)| ≤ 1 for all x ∈ Ω}

we search un
h ∈ Kh such that

(wn
h , ξ − un

h)h ≥ γε(∇un
h,∇(ξ − un

h)) + 1
ε (ψ′

0(u
n−1
h ), ξ − un

h)h ∀ ξ ∈ Kh. (4.7)

In order to compute (un
h, w

n
h , μ

n
h) we now choose a discretized version of the primal-dual active set method

(PDAS-I), where we iteratively update active sets An,±
h,k for k = 0, 1, 2, . . . We drop for convenience sometimes

the indices n, h. The following discrete version of the primal-dual active set strategy is obtained using that
μn

h(pj) = 0 on In
h,k in (4.2). Then (4.2) reduces roughly spoken to a discretized PDE for un

h only on an interface
given by In

h,k. For known un
h, wn

h (4.2) determines μn
h on the active set. Here one has to use that (·, ·)h is a mass

lumped L2-inner product in order to obtain that in (4.2) unknowns at different nodes only couple through the
gradient term, leading to a system splitted according to active and inactive nodes. For the precise formulation
we introduce the notation

S̃h,k := {χ̃ ∈ Sh | χ̃(pj) = 0 if pj ∈ An,+
h,k ∪ An,−

h,k } = span{χi | pi ∈ In
h,k}.
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Primal-Dual Active Set Algorithm (PDAS-II):
(1) Set k = 0, initialize A±

0 and define I0 = Jh \ (A+
0 ∪ A−

0 ).
(2) Solve for (uk, wk) ∈ Sh × Sh the system

1
τ (uk − un−1

h , χ)h + (∇wk,∇χ) = 0 ∀ χ ∈ Sh, (4.8)

(wk, χ̃)h − γε(∇uk,∇χ̃) − 1
ε (ψ′

0(u
∗
h), χ̃)h = 0 ∀ χ̃ ∈ S̃h,k, (4.9)

uk(pj) = ±1 if pj ∈ A±
k . (4.10)

(3) Define μk ∈ Sh via

μk(pj) (1, χj)h = ε(wk, χj)h − γε2(∇uk,∇χj) − (ψ′
0(u

∗
h), χj)h ∀ pj �∈ Ik, (4.11)

μk(pj) = 0 ∀ pj ∈ Ik. (4.12)

(4) Set A+
k+1 := {pj ∈ Jh | uk(pj) + μk(pj)

c > 1}, (4.13)
A−

k+1 := {pj ∈ Jh | uk(pj) + μk(pj)
c < −1} and Ik+1 = Jh \ (A+

k+1 ∪ A−
k+1). (4.14)

(5) If A±
k+1 = A±

k stop, otherwise set k = k + 1 and goto 2.

Lemma 4.1. For all un−1
h ∈ Sh and A±

k there exists a unique solution (uk, wk) ∈ Sh × Sh of (4.8)–(4.10) with
∗ = (n− 1), i.e. the semi-implicit case, provided that Ik = Jh \ (A+

k ∪ A+
k ) �= ∅.

Proof. The idea of this proof is to consider the discretized version of (2.4) and (2.5) under the constraint
u = ±1 on Ak and to use ideas similar to the existence proof in Lemma 2.1. Hence, we define Sh,m := {χ ∈ Sh |∫
Ω

− χ = m}, where m :=
∫
Ω

− un−1
h ,

SI
h := {u ∈ Sh | u(pj) = 1 if j ∈ A+

k , u(pj) = −1 if j ∈ A−
k },

and SI
h,m := SI

h ∩ Sh,m. Since Ik �= ∅ we conclude SI
h,m �= ∅. The discrete inverse Laplacian (−Δh)−1 : Sh,0 →

Sh,0, ηh �→ (−Δh)−1ηh is defined via

(∇((−Δh)−1ηh),∇χ) = (ηh, χ)h for all χ ∈ Sh,0. (4.15)

Since the homogeneous problem only has the trivial solution and Sh,0 is finite dimensional, the linear equa-
tion (4.15) has a unique solution. We define uk ∈ SI

h,m as the solution of the minimization problem

min
η∈SI

h,m

{ 1
2τ (∇(−Δh)−1(η − un−1

h ),∇(−Δh)−1(η − un−1
h )) + γε

2 (∇η,∇η) + 1
ε (ψ′

0(u
n−1
h ), η)h} (4.16)

which exists uniquely since the Poincaré inequality similar as in the proof of Lemma 2.1 implies coerciveness.
Computing the first variation of the minimisation problem (4.16) gives for the solution uk ∈ SI

h,m

0 = 1
τ (∇(−Δh)−1(uk − un−1

h ),∇(−Δh)−1χ̃) + γε(∇uk,∇χ̃) + 1
ε (ψ′

0(u
n−1
h ), χ̃)h (4.17)

for all χ̃ ∈ S̃h,k with
∫
Ω

− χ̃ = 0. Now we define wk ∈ Sh as

wk = −(−Δh)−1

(
uk − un−1

h

τ

)
+ λk (4.18)

where λk ∈ R is uniquely given with the help of any nodal basis function χj ∈ Sh with pj ∈ Ik by

λk = { 1
τ ((−Δh)−1(uk − un−1

h ), χj)h + γε(∇uk,∇χj) + 1
ε (ψ′

0(u
n−1
h ), χj)}/(1, χj). (4.19)
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Using the definition of the discrete inverse Laplacian, see (4.15), and the fact that
∫
Ω

− uk =
∫
Ω

− un−1 now gives

that (4.8) holds. Furthermore (4.17), (4.15) and (4.18) imply that (4.9) holds for all χ̃ ∈ S̃h,k with
∫
Ω

− χ̃ = 0. For

χ̃ ∈ S̃h,k which do not satisfy the integral constraint
∫
Ω

− χ̃ = 0 we set χ̂ := χ̃− αχj with pj ∈ Ik and α ∈ R such

that
∫
Ω

χ̂ = 0. With this choice of χ̂ as a test function in (4.17) we can conclude with the help of (4.15), (4.18)

and (4.19) that (4.9) holds for all χ̃ ∈ S̃h,k. Hence (4.8)–(4.10) has a solution.
It remains to prove uniqueness. Let us assume that (4.8)–(4.10) has two solutions (uk,1, wk,1), (uk,2, wk,2) ∈

Sh×Sh. Then we obtain for the differences v = uk,1−uk,2, z = wk,1−wk,2 by testing (4.8), (4.9) for (uk,1, wk,2)
and (uk,2, wk,2) with v and z respectively, after taking differences:

(v, z)h + τ‖∇z‖2
L2 − (z, v)h + γε‖∇v‖2

L2 = 0.

Since
∫
Ω

− uk,1 =
∫
Ω

− uk,2 =
∫
Ω

− un−1 we obtain v ≡ 0 in Ω and hence uk,1 = uk,2. The identities (4.8), (4.9) imply

that necessarily the identities (4.18) and (4.19) have to hold. This implies that also wk is unique. We remark
that this uniqueness result also implies that the definition of λk in (4.19) does not depend on j. �

Now μk is uniquely defined by (4.11), (4.12) and hence taking Lemma 4.1 into account we obtain that a
unique solution of (4.8)–(4.12) exists.

In the following we require the condition Ik = Jh \ (A+
k ∪ A−

k ) �= ∅, which guarantees that there is a u ∈ Sh

such that
∫
Ω

− u = m. Otherwise (4.8) is not solvable.

Remark 4.1. In order to solve (4.8)–(4.12) the main computational effort is to solve the system (4.8), (4.9)
which has a specific structure. The discretized elliptic equation (4.8) for w is defined on the whole of Ω whereas
the elliptic equation (4.9) is defined only on the inactive set, see Figure 1. The two equations are coupled in a
way which leads to an overall symmetric system which will be used later when we propose numerical algorithms.

The discretization of (2.12)–(2.14) can also be formulated with the help of the semi-smooth function H ,
see (3.3), as a nonlinear equation

H(un
h(pj), μn

h(pj)) = 0 ∀ pj ∈ Jh. (4.20)

The formulation (4.1), (4.2), (4.20) was the basis of a numerical method introduced by Blowey and Elliott [7].
In [7] a splitting method is used where the equations (4.1) and (4.2) are used to update approximations of
(un

h, w
n
h) and in a second step a recursive iteration of (4.20) is used to update the approximation of μn

h.
Using the approach of [30] we can interpret (PDAS-II) as a semi-smooth Newton method for the sys-

tem (4.1), (4.2), (4.20) and we obtain the following local convergence result for the semi-implicit discretization.

Theorem 4.1. Let (u,w, μ) ∈ Sh × Sh × Sh be a solution of (4.1), (4.2), (4.20) with ∗ = (n − 1) such that
{pj ∈ Jh | |u(pj)| < 1} �= ∅. Then the semi-smooth Newton method for (4.1), (4.2), (4.20) and hence (PDAS-II)
converges in a neighbourhood of (u,w, μ).

Proof. Showing the existence of a solution to (4.1), (4.2), (4.20) is equivalent to the problem of finding a zero
of the mapping

G : Sh × Sh × Sh → Sh × Sh × Sh

where for (u,w, μ) ∈ Sh × Sh × Sh we define G = (G1, G2, G3) via

(G1(u,w, μ), χ)h := (u− un−1
h , χ)h + τ(∇w,∇χ),

(G2(u,w, μ), χ)h := (w,χ)h − γε(∇u,∇χ) − 1
ε (ψ′

0(u
n−1
h ), χ)h − 1

ε (μ, χ)h,

(G3(u,w, μ), χ)h := (H(u, μ), χ)h.
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The min-max-function H(u, μ), see (3.3), is slantly differentiable and a slanting function is given by
DH(u, μ) = (0, 1) if |u + μ

c | ≤ 1 and DH(u, μ) = (−c, 0) otherwise (see [27]). As a consequence G is slantly
differentiable. Moreover similar as in [27] we can derive that the primal-dual active set method (PDAS-II)
is equivalent to a semi-smooth Newton method for G. We now get local convergence of (PDAS-II) if we can
show that the slanting function of G is invertible in a neighbourhood of (u,w, μ) and the inverses are uniformly
bounded [13,30].

The semi-smooth derivative (slanting function) of G is invertible at (û, ŵ, μ̂) ∈ Sh ×Sh ×Sh if and only if we
can show injectivity, i.e. that a unique solution (u,w, μ) ∈ Sh × Sh × Sh of the following linear system exists

(u, χ)h + τ(∇w,∇χ) = 0, ∀ χ ∈ Sh, (4.21)

(w,χ)h − γε(∇u,∇χ) − 1
ε (μ, χ)h = 0, ∀ χ ∈ Sh, (4.22)

u(pj) = 0 if pj ∈ Â :=
{
pj ∈ Jh |

∣∣∣∣û(pj) +
μ̂(pj)
c

∣∣∣∣ > 1
}
, (4.23)

μ(pj) = 0 if pj ∈ Î := J \ Â. (4.24)
Testing (4.21) with w, (4.22) with u and using (μ, u)h = 0 we obtain

τ(∇w,∇w) + γε(∇u,∇u) = 0. (4.25)

This implies that u and w are constant. Then (4.21) gives u ≡ 0. Using the fact that there exists a pj ∈ Jh

with |u(pj)| < 1 and μ(pj) = 0 we can guarantee that |û(pj) + μ̂(pj)
c | ≤ 1 for (û, ŵ, μ̂) in a ball around (u,w, μ).

Hence, Î �= ∅ for (û, ŵ, μ̂) out of this neighbourhood. Testing in (4.22) with χj where pj ∈ Jh implies w ≡ 0
and finally (4.24) and (4.22) yield μ ≡ 0.

The semi-smooth derivatives only differ if the active and inactive sets change. Since only a finite number of
different choices of these sets are possible we obtain that the inverses are uniformly bounded for all (û, ŵ, μ̂)
with a non-vanishing inactive set Î. Since we can find an open neighbourhood of (u,w, μ), where the condition
Î �= ∅ holds, we proved the theorem. �
Remark 4.2. Let (u,w, μ) be a solution to (4.1), (4.2), (4.20). The proof of Theorem 4.1 requires a neighbour-
hood of (u,w, μ), where the active sets do not vanish. This can limit the size of the neighbourhood in which
local convergence can be guaranteed. However in numerical simulations the mesh size always has to be chosen
such that at least eight points lie across the interface. Hence the above mentioned condition never led to any
problems in practice.

Remark 4.3. Theorem 4.1 holds also for the implicit discretization if τ < 4γε3.

Proof. The proof follows along the lines of the proof of Theorem4.1 if one can show injectivity. Equation (4.22)
changes to

(w,χ)h − γε(∇u,∇χ) − 1
ε (μ, χ)h + 1

ε (u, χ)h = 0.
The same testing as above leads to τ(∇w,∇w) + γε(∇u,∇u) − 1

ε (u, u)h = 0 and testing (4.21) with u yields
(u, u)h = τ(∇w,∇u). Then, if τ < 4γε3 we obtain with Young’s inequality ∇w = ∇u = 0. We can now argue
as in the proof of Theorem 4.1 that u = w = 0 which implies injectivity. �
Remark 4.4. The assertion of local convergence in Theorem 4.1 is limited as it is for any local convergence
result for finite dimensional PDAS-methods, see e.g. [30], where a nonlinear behavior only enters through the
inequality constraints. Local exactness, i.e. convergence in one step, is guaranteed by Lemma 4.1 if A±

k = An,±
h .

However, we presented the interpretation as a semi-smooth Newton method and its local convergence mainly to
demonstrate that the results in [30] are applicable to the fully discretized Cahn-Hilliard variational problem as
far as bilateral bounds are not an obstruction. In addition, the arguments can be used for a convergence proof
for problems with further nonlinearities for example more complex potentials. Then convergence in finite steps
is not guaranteed but a superlinear convergence takes place.
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5. Numerical results

In this section we discuss four test examples and numerically analyse the behaviour of the PDAS-algorithm.
In the first test example we consider two concentric circles, where the exact sharp interface solution is known,
and compare semi-implicit and implicit discretization.

The second example is a four-circle problem where concave as well as convex sections appear in the interface.
With this example we compare the PDAS-method with a standard solver for the Cahn-Hilliard inequality,
namely with a projected block Gauss-Seidel method [4]. It turns out that the PDAS-method is more efficient
and reliable. In particular, the speed up can be gained by a linear algebra solver which is not based on a Gauss–
Seidel method. Moreover, we have not seen a difference in CPU-time between the semi-implicit and implicit
discretization, and in the latter case have not faced such a severe restriction on the time step τ as indicated
by the analysis. The number of PDAS-iterations for each time step were rather depending on τ than on the
mesh size h, never exceeded 11 and after the interface settles 2–4 iterations were sufficient. For the number of
iterations there was nearly no difference between an adaptive and a uniform grid. But of course in CPU-time
adaptivity was much more efficient. In the third test example we considered random initial data, i.e. a starting
situation without pure phases. Here and in our last example, a 3D simulation, we observed that even with large
topological changes the maximum number of PDAS-iterations stayed always below 10.

Before we present the examples we discuss some numerical issues as there are mesh generation, adaptivity in
order to resolve the interface, choice of the parameter c, initialization of the active sets and the linear algebra
solver. Also we describe shortly the mentioned projected Gauss-Seidel type algorithm.

Mesh generation and adaptivity

For all the simulations presented in this paper the finite element toolbox ALBERTA [40] was used for mesh
generation, the assembly of the matrices and administration. To generate the adaptive meshes we used the mesh
adaption strategy of Barrett et al. [4]. Experiments showed that it is essential to ensure that at least eighth
vertices are present on the interfaces to avoid mesh effects, see also [8]. We hence refine on the interface down
to a level where eight vertices are present and coarse in the areas where the concentration u is constant. For
given parameters ε and γ this results in an upper bound hfine ≤ ε

√
γ π

9 , where hfine is the refinement level on the
interface. We remark here that for the potential ψ0 in (1.4) the interfacial thickness is ε

√
γπ, compare [8]. Since

we want to avoid too coarse meshes we additionally define hcoarse := 10 ·hfine and choose a tolerance tol = 10−6.
Afterwards the mesh adaption is done the following way: For each element T ∈ T h calculate the indicator
ηT := |min

x∈T
|u(x)| − 1|. Then, a triangle is marked for refinement if it, or one of its neighboring elements,

satisfies ηT > tol · 10−1 and if hT > hfine. A triangle is marked for coarsening if it satisfies ηT < tol · 10−3 and
hT < hcoarse.

Choice of the parameter c

To determine the active sets we have to choose the parameter c > 0. In the unilateral case the selection of
c > 0 has no influence on the iterates after the first iteration and can be chosen arbitrary, see [30]. However this
is no longer true in the case of bilateral bounds. This is discussed for obstacle problems in [5]. If c is chosen too
small we observed cases in which the iterates oscillated and the algorithm did not converge. Figure 2 shows the
values of u at various PDAS iterations in one time step of a simulation in one space dimension with h = 1

512 ,
τ = 10−5, πε = 0.2 and c = 0.01. In the eighth iteration the algorithm breaks down because all vertices are in
the active set and the system no longer exhibits a valid solution, compare Remark 4.2. Redoing the simulation
with c = 0.2 fixed the problem and after two iterations the time step was completed with only marginal changes
to u since the initial data was close to a stationary solution. The same phenomenon was observed in higher
space dimensions.

A heuristic approach showed that it is sufficient to ensure that no vertex can change from the positive active
set A+ to the negative inactive set A− and vice versa in one iteration. This can be achieved by selecting a
PDAS parameter c large enough, depending on the magnitude of the Lagrange multiplier μ.
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Figure 2. Oscillations in 1D if c is too small.

In all the simulations a value of c = 10 was sufficient when the interfaces were already well developed and
adequate initial guesses for the active sets were known. Therefore, if not mentioned otherwise c = 10 is chosen
in the calculation. In simulations with distortions or jumps in the concentration u larger values depending on
the mesh size were necessary. Choosing the parameter c larger had no discernible influence on the simulation.

When using adaptive meshes for the PDAS algorithm a choice has to be made for every newly created vertex
if it should belong to the active or inactive set. For now we restrict ourselves to the following: If all neighboring
vertices are active then this vertex should be active too. In every other case we set the new vertex to inactive.

Initialization of active sets

As mentioned previously the application of a PDAS-method to the interface evolution has the advantage that
the good initialization due to the information from the previous time step leads to a large speedup. At the first
time step n = 1 the active set An,±

0 is initialized using the given initial data u0
h. Since in the limit the active

sets describe the sets where u is strictly active a good approximation of A1,±
0 is given by the active set of u0

h.
Hence we choose A1,±

0 =
{
pj ∈ Sh | |u0

h(pj) ∓ 1| ≤ 10−8
}
.

For time steps n ≥ 2 we can exploit in addition μn−1
hn−1

. Due to possible grid changes from time step n− 1 to
time step n one may have to apply additionally the standard interpolation Ihn to the new grid Shn , i.e. with
u−1 := Ihnu

n−1
hn−1

and μ−1 := Ihnμ
n−1
hn−1

initialize the active set An,±
0 as in (4.13) and (4.14). However a less

time consuming way is to initialize the active set in the following way, which is applied in this paper: if an edge
between two positive or two negative active vertices is bisected, the new vertex is set active and otherwise the
new vertex is set inactive.

Solver for the system (4.8)–(4.9)

For moderate mesh sizes direct solvers for sparse linear systems perform quite well. We use a Cholesky
decomposition of the system by means of the multifrontal method by Duff and Reid [18] which is realized in
the software package UMFpack [15,16]. This method is a generalization to the frontal method of Irons [32].
One crucial point of this method is that the decomposition steps of the matrix are computed but not directly
applied to the system matrix. Furthermore an elimination tree and pivoting strategy are used which makes use
of the sparsity of the system. For further discussion of the method we refer to [17,36]. We solved the whole
reduced symmetric sparse system (4.8)–(4.9) with (4.10) by UMFpack all at once.

Up to now in our numerical experiments this direct solver performed better than e.g. a block SOR method.
The application of other methods like, for example a cg-method for a preconditioned Schur-Complement or block
multigrid method, are currently under investigation. In the first tests, which were of moderate size, UMFpack
was still faster. The limit of the UMFpack up to now was the available memory. However large 3D problems
have not been investigated thoroughly yet.

Gauss-Seidel type algorithm for the variational inequality (pSOR)

The following Gauss-Seidel type algorithm is often used for solving the Cahn-Hilliard variational inequality,
see [22], and is implemented in the same hardware and software environment as our method. Hence to obtain
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a comparison within the same setting we use this method as a reference method. This method is based upon
the discretization of the variational inequality (1.16)–(1.17) by a semi-implicit backwards Euler method in time
and by using continuous piecewise linear elements in space, compare [7]. This results in the same discretization
as we introduced in this paper, namely (4.1) and (4.7):

For n = 1, 2, 3, ... and given u0
h ∈ Kh find (un

h, w
n
h) ∈ Kh × Sh such that

1
τ (un

h − un−1
h , χ)h + (∇wn

h ,∇χ) = 0 ∀ χ ∈ Sh,

γε(∇un
h,∇(ξ − un

h)) − (wn
h , ξ − un

h)h + 1
ε (ψ′

0(u
n−1
h ), ξ − un

h)h ≥ 0 ∀ ξ ∈ Kh.

As is known for obstacle problems (see e.g. [22]) one can apply for this nonstandard variational inequality a
projected block-Gauss-Seidel or a projected block-SOR method (pSOR). This has been studied in [4], where
also convergence has been shown. The blocks are determined by the 2 × 2 blocks corresponding to the values
(un

h(pj), wn
h(pj)), which are merged for each vertex. In our numerical experiments we use the pSOR-method with

overrelaxation using ω = 1.3 for comparison with the PDAS-method. As stopping criteria ‖uk −uk−1‖2 ≤ 10−7

and a maximum of 50 000 iterations is used.

Splitting approach solver by Blowey and Elliott

The system (4.1)–(4.2) in conjunction with the semi-smooth equation (4.20) has been previously considered
in [7], as mentioned in Section 4. The resulting linear system is stated in (4.14) of [7]. The matrix is independent
of the iteration step in contrast to the PDAS-method considered in this paper. The authors in [7] solve this
system with a discrete cosine transformation and hence rely on an equidistant discretization.

We implemented the method using the direct solver UMF-Pack to solve (4.14) [7] with an adaptive grid.
The number of iterations needed in each time step is considerably larger than the amount of PDAS iterations
needed. See Table 2 in the forthcoming Example 2.

Test cases

Example 1: two concentric circles

The distinction we made in Section 4 between the explicit and implicit discretization of the free energy
term leads to differences in the accuracy of the resulting schemes. We use a radial symmetric situation where
the exact sharp interface solution is known to compare these two schemes. The initial data are such that the
interface is described by two concentric circles with radii 0 < r1(0) = 0.05 < r2(0) = 0.15 < 1. They both will
shrink over time – the smaller faster than the larger circle – until the smaller one vanishes. Then the solution
remains stable due to mass conservation.

In the limit ε → 0 the Cahn-Hilliard model describes the evolution of the sharp interface Mullins-Sekerka
model, see [8,39]. The radial symmetric sharp interface solution is discussed in [12,41]. In the above situation
the exact sharp interface solution can be calculated as solution of an ODE

r′1 = − 1
r1

σ

r1r2

r1 + r2
ln(r1) − ln(r2)

, r′2 = − 1
r2

σ

r1r2

r1 + r2
ln(r1) − ln(r2)

where σ = π
8 . For the comparison between the semi-implicit and implicit discretization we used an equidistant

mesh.
In Figure 3 we plotted the sum of both radii for fixed ε = 0.0039 and varying time step width τ . In the

implicit case we can choose even larger τ and already gain a good approximation of the evolution unlike for
the semi-implicit case where a smaller time step is necessary to achieve the desired result. This has been also
observed when considering the convergence with respect to ε to the sharp interface with a fixed time step. Also
here the time step can be chosen larger in the implicit case. In the implicit case the curves for τ = 10−6 and
τ = 10−7 nearly coincide. Hence the smaller time step size provides no advantage. The remaining error can
only be reduced by scaling down ε.
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Figure 3. (r1 + r2)(t) for different τ with ε = 0.0039.
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Figure 4. Initial data for πε = 0.1 (left) and πε = 0.05 (right).

Example 2: 4-circles problem

In this example we choose initial data with a concave as well as a convex section of the interface. The initial
data on Ω = (0, 1)2 consist of four circular interfaces of width επ. The centers and radii are chosen in such a
way that three of circles intersect and one is detached. The values ±1 are connected by a sine profile which
is given as the lowest order term in an asymptotic expansion of the Cahn-Hilliard variational inequality, see
e.g. [8]. In Figure 4 we show the initial data for two different interface width. The initial active sets show a
value of 0 on each inactive vertex and a positive resp. negative value on each active vertex.

We set Tend = 0.02 for all the following simulations. In Figures 5 and 6 the evolution of u, w and μ in time
is plotted. Here we used a semi-implicit discretization with an adaptive mesh with hfine = 0.01 for πε = 0.1
and hfine = 0.005 for πε = 0.05 respectively, the time step τ = 10−5. Simulations with equidistant mesh give
the same results. The columns from left to right show the values of u, w, μ and the mesh after 5, 50, 100 and
200 time steps.

Table 1 shows that for a small number of vertices the pSOR algorithm is still fast but with an increasing
number of vertices its performance quickly deteriorates. Using the corresponding block SOR-method in combi-
nation with the PDAS-method, the resulting solver is even a bit slower for large time steps. The direct solver on
the other hand lowers the runtime considerably. Moreover we see that there is nearly no difference in CPU-time
between the semi-implicit and the implicit discretization. The severe restriction on the time step for the implicit
case as stated in Lemma 2.1 has not been observed. Only for πε = 0.05 the choice τ = 10−4 failed even for very
large parameter c = 1010.

When we compare the runtimes used on the fixed mesh with 16 641 vertices we notice that the simulations
with πε = 0.2 used up almost double the time of the one with πε = 0.1. The reason lies in the size of the
inactive set, which is roughly spoken the interface with width πε. Hence for πε = 0.2 the system (4.8)–(4.9)
which has to be solved is of larger dimension.
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u
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μ

(q) n=5 (r) n=50 (s) n=100 (t) n=200

Figure 5. Time evolution of Example 2 with πε = 0.1.

In addition in Table 1 the total, the averaged and the maximal number of PDAS-iterations are listed for
the semi-implicit discretization. The numbers for the implicit discretization are nearly the same except for the
failures and hence not listed. The average number of PDAS-iterations depend more on the time step than on
the mesh. This is an expected behavior since when we use larger time steps the active sets change on a bigger
scale than with smaller time steps. In most of the above simulations the maximum number of iterations was
needed in the first time step. The reason is that the mean curvature of the interface is high in the beginning
of the time evolution, resulting in fast movement of the interface region. Even taking a rather large time step,
like for example τ = 10−4 for πε = 0.05, the maximum number of necessary iterations per time step keeps low
and never exceeded 11. The averaged numbers of iterations are much smaller since the time evolution of the
interface becomes slow for larger t, resulting in only one or two PDAS-iterations.

In Figure 7 we plot the time against the number of used PDAS-iterations per time step as well as against the
number of changed vertices per time step for the above simulation with πε = 0.1, τ = 10−5, in the semi-implicit
and implicit case for an adaptive mesh with hfine = 0.00552.

In the first few time steps the evolution smoothens the interfaces and the concave part is moving quickly.
These two facts result in an increased number of necessary PDAS-iterations. After that typically two to four
iterations are sufficient. The steps where we only need two iterations are optimal in a way that if there is any
change in the active set we need at least these two iterations. Only when there are no changes in the sets
just one iteration is sufficient. What we can observe in these plots is the expected rise in iteration numbers
when there is a big change in the active set. The second peak is due to the disappearance of the bubble
in the upper right quadrant. If we use an equidistant mesh for the above example, the results and numbers of
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Figure 6. Time evolution of Example 2 with πε = 0.05.
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(b) implicit PDAS

Figure 7. PDAS-iterations and vertices changing sets per time step.

PDAS-iterations stay nearly the same, although in the adaptive case we have to adapt the starting active set
due to a grid change in time (see Initialization of active sets).

However, instead of circa 10 minutes CPU-time for an equidistant grid only 76 s CPU-time is needed in the
adaptive case to determine a solution up to T = 0.02. Further speed up can be obtained as mentioned before
by a different linear algebra solver.
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Table 1. CPU-runtimes and iteration counts for Example 2.

πε h τ CPU-time in seconds PDAS-iterations
Semi-impl. Impl.

(J ) pSOR PDAS PDAS Total Average Max.

0.2 0.02210 10−4 57.1 10.7 11.2 74 3.5 5
(4225) 10−5 270.9 29.7 63.6 450 2.2 4

10−6 703.3 195.0 202.6 2958 1.5 3
0.01105 10−4 1071.6 69.4 39.5 100 4.7 7
(16 641) 10−5 5522.9 203.3 199.2 577 2.8 4

10−6 13 506.2 1353.6 1325.6 3795 1.9 3
adaptive 10−4 5.2 2.9 2.9 72 3.4 5
(≈ 2000) 10−5 23.1 17.6 17.5 447 2.2 4

10−6 70.2 117.9 117.8 2968 1.5 3

0.1 0.01105 10−4 1374.6 17.9 17.8 70 3.3 6
(16 641) 10−5 4179.5 103.4 105.6 409 2.0 5

10−6 10 111.0 793.1 727.6 2922 1.5 4
0.00552 10−4 — 130.3 134.5 91 4.3 10
(66 049) 10−5 — 750.7 754.5 524 2.6 6

10−6 181 285.1 4905.4 4813.2 3362 1.7 5
adaptive 10−4 45.1 5.1 5.1 69 3.3 7
(≈ 3600) 10−5 74.5 27.7 28.2 403 2.0 4

10−6 390.2 198.7 194.0 2897 1.4 3

0.05 0.00552 10−4 11 145.0 126.6 — 88 4.2 7
(66 049) 10−5 72 715.0 592.0 597.3 497 2.4 6

10−6 192 554.4 3911.3 4013.2 3275 1.7 5
adaptive 10−4 737.1 13.6 — 85 4.0 7
(≈ 7000) 10−5 602.3 76.8 73.4 503 2.5 6

10−6 1478.2 467.6 478.1 3260 1.6 5

Table 2. CPU-runtimes and iteration counts for Example 2.

Splitting algorithm PDAS-method
πε h τ CPU-time Iterations CPU-time Iterations

(J ) In seconds Average Max. In seconds Average Max.

0.2 0.02210 10−4 105.6 428 463 10.7 3.5 5
(4225) 10−5 1702.0 723 1500 29.7 2.2 4

10−6 42 727.7 1839 11 332 195.0 1.5 3
adaptive 10−4 69.3 616 668 2.9 3.4 5
(≈ 2000) 10−5 1224.6 1326 2258 17.6 2.2 4

10−6 no convergence 117.9 1.5 3

0.05 adaptive 10−4 2132.5 2255 2375 13.6 4.0 7
(≈ 7000) 10−5 23 664.2 2792 max. 76.8 2.5 6

Table 2 shows for Example 2 the results of comparative simulations to the splitting method developed in [7]
(as mentioned in the above paragraph on the splitting approach solver). The parameter c is fixed and set to 50
and a maximum iteration number of 50 000 is used.

Example 3: Random initial data

In applications one often has to consider initial data which are a random perturbation of a equally dis-
tributed concentration u. Therefore we give also results on an equally distributed mass on Ω = (0, 1)2 with
a stochastic distortion. We define u0(x) := 0.5 · σ(x) + 0.2, where σ : Ω → [−1, 1] denotes a random number
generator. Consequently there is no pure phase initially, i.e. all vertices are inactive, and the resulting equation
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Figure 8. 2D simulation with random initial data.
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Figure 9. PDAS-iterations and vertices changing sets per time step for random initial data.

system (4.8)–(4.10) is as large as possible. For this simulation we used the implicit discretization and a uniform
mesh with h = 0.00552, τ = 10−5, Tend = 0.005, πε = 0.05 and c = 10. In each time step where a new active
set emerges, we observe larger values in the Lagrangian multiplier μ, namely max |μ| ≈ 20. Figure 8 shows u,
w and μ after 0, 5, 50 and 500 time steps. Already after 5 time steps the phase separation can be clearly seen.

In Figure 9 we see that in the early stage of this simulation one PDAS iteration is sufficient since there
is no active set present and we just have to solve a linear system. After that a larger number of itera-
tions is necessary because there are quite a few topological changes and a huge amount of vertices is changed
from inactive to active. However there have never been more than 10 PDAS-iterations necessary. Afterwards
when the interfaces are well developed an average amount of 2–3 iterations is sufficient.
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(a) n = 0 (b) n = 20 (c) n = 50

(d) n = 100 (e) n = 300 (f) n = 700

Figure 10. 3D simulation with four spheres as initial data.

Example 4: Three dimensional simulation

Finally we give an example in 3D. Therefore we expand Example 2 to initial data consisting of four balls in
Ω = (0, 1)3. Figure 10 shows the 0-level sets of u of such a simulation with τ = 10−5, πε = 0.1 and c = 10 after
0, 20, 50, 100, 300 and 700 time steps on an adaptive mesh with the semi-implicit primal-dual active set solver.

The simulation up to Tend = 0.0007, i.e. 70 time steps, where a coupled system corresponding to roughly
120 000 grid points has to be solved, took 11.8 h with a total of 184 PDAS-iterations. This is less than half the
computation time used by the pSOR method which used 27.6 h. Additional speed up – which is not possible for
the pSOR-method- can be obtained by a different linear algebra solver. Even for this three dimensional problem
with the topological changes a maximal number of only four PDAS-iterations in each time step is sufficient for
the simulation.
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