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COMPLETE ASYMPTOTIC EXPANSIONS FOR EIGENVALUES
OF DIRICHLET LAPLACIAN IN THIN THREE-DIMENSIONAL RODS*

DENIS BORrIisov! AND GIUSEPPE CARDONE?

Abstract. We consider the Dirichlet Laplacian in a thin curved three-dimensional rod. The rod is
finite. Its cross-section is constant and small, and rotates along the reference curve in an arbitrary
way. We find a two-parametric set of the eigenvalues of such operator and construct their complete
asymptotic expansions. We show that this two-parametric set contains any prescribed number of the
first eigenvalues of the considered operator. We obtain the complete asymptotic expansions for the
eigenfunctions associated with these first eigenvalues.
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INTRODUCTION

The asymptotics of the spectra of elliptic operators in thin domains were studied by many authors, see,
for instance [2-10,12,14], and the references therein. There are two types of thin domains usually considered,
namely, thin rods and thin plates. Both types were considered in the book [12]. The eigenvalues for elliptic
operators with the Neumann boundary condition on the lateral surface of the rods and on the bases of the
plates were studied. The asymptotic expansions for the eigenvalues and the eigenfunctions were constructed
and justified. We also mention the survey [9] on thin rods.

A thin two-dimensional domain formed by two different thin rectangles was studied in [14], i.e., the boundary
of the domain was non-smooth. The operator considered was the Laplacian subject to the Neumann condition
on the bases and to Dirichlet one on the lateral boundary. The paper provided the asymptotic expansions for the
eigenvalues remaining bounded as the width of the domain tends to zero, and the asymptotics for the associated
eigenfunctions. These asymptotic expansions were rigorously justified. The Laplacian in a thin two-dimensional
domain was also considered in [8]. The domain had a variable width with the unique point of maximum. The
uniform resolvent convergence was established and two-terms asymptotics for the eigenvalues were obtained, as
well as convergence theorems for the associated eigenfunctions. In [7] these results were extended for an infinite
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thin strip under similar conditions for the width. We also mention the paper [10], where a thin strip (finite or
infinite) was considered with the Neumann condition on the upper boundary and with the Dirichlet condition on
the lower boundary. Here two-terms asymptotics for the first eigenvalues were constructed. The case of a curved
infinite strip was also studied in [5], where the number of the discrete eigenvalues below the essential spectrum
was estimated. The results of [8] were also extended in [2]. Here a two-parametric set of the eigenvalues was
found and their complete asymptotic expansions were constructed.

A finite three-dimensional rod was considered in [3]. The cross section was supposed to be constant and
to rotate along the reference curve in an arbitrary way. Two-terms asymptotics for the first eigenvalues were
constructed and convergence theorems for the associated eigenfunctions were established. Similar results were
obtained in [6] for a tube in a space of arbitrary dimension. An infinite three-dimensional thin tube with a
round cross section was studied in [5]. The number of the discrete eigenvalues below the essential spectrum
was estimated and their complete asymptotic expansions were constructed. We also mention the paper [4],
where a multi-dimensional thin cylinder with distorted ends was considered. The operator studied was the
Laplacian in such domain subject to the Dirichlet condition on the lateral surface and to the Neumann one on
the distorted ends. The attention was paid to the localization effect of some eigenfunctions at the distorted
ends. The asymptotics for these eigenfunctions and the corresponding eigenvalues were constructed.

In this paper we extend the results of [3]. We again consider the Dirichlet Laplacian in a curved thin rod.
The cross section of the rod is a fixed domain, which rotates along the reference curve in an arbitrary way.
In what follows this operator, its eigenvalues and eigenfunctions are referred to as the perturbed ones. We
find a two-parametric set of the perturbed eigenvalues and construct their complete asymptotic expansions.
The eigenvalues are indexed by the first two terms of their asymptotic expansions. Namely, the leading terms
are determined by the eigenvalues of the Dirichlet Laplacian on the cross-section of the rod. Each of the
leading terms determines a certain operator on the reference curve, and its eigenvalues are the next-to-leading
terms of the aforementioned asymptotic expansions for the perturbed eigenvalues. It is convenient to group
the perturbed eigenvalues into a countable set of series, where each series consists of the perturbed eigenvalues
with the same leading term in the asymptotic expansions. We show that the series associated with the smallest
leading term contains any prescribed number of the first eigenvalues of the perturbed operator provided the rod
is thin enough. We prove that these eigenvalues are simple and construct complete asymptotic expansions for
the associated eigenfunctions.

In conclusion to this section, we describe briefly the contents of the paper. The next section contains the
description of the problem and the main results. In the third section we introduce a change of variables
required for the constructing the asymptotic expansions. In the fourth section we select the aforementioned
two-parametric series of the eigenvalues and construct their asymptotic expansions. In the last fifth section we
describe the first eigenvalues of the perturbed operator and give the asymptotic expansions for the associated
eigenfunctions.

1. FORMULATION OF THE PROBLEM AND THE MAIN RESULTS

Let x = (1,72, 73) be Cartesian coordinates in R3, v be a finite infinitely differentiable curve in R? without
self-intersections. By s and sy we denote the arc length and the length of v, s € [0, sg]. We parameterize ~
by its arc length, and r = r(s) is the infinitely differentiable vector describing . The tangential vector of v is
indicated by 7 = 7(s). By n = n(s) we denote an infinitely differentiable in s € [0, sg] unit vector defined on ~
being orthogonal to 7(s) for all s € [0, sg]. We let B(s) := 7(s) x n(s), where X is the cross product. It is clear
that B(s) is infinitely differentiable in s € [0, so], and (7,n,3) is an orthonormalized frame on 7. One of the
possible choices of n is

n(s) := cosa(s)n(s) + sina(s)b(s), (1.1)
where n = n(s) and b = b(s) are the normal and binormal vectors of 7, and a(s) € C°°[0, sg] is an arbitrary
function describing how our frame rotates with respect to the Frenet one. It follows from (1.1) that

B(s) := —sina(s)n(s) + cos a(s)b(s). (1.2)
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Although this formula and (1.1) could be an appropriate definition of n and 3, we do not use this way. The
reason is that the Frenet frame does not exists for all smooth curves, since the normal vector can be undefined
at the points, where r'/(s) = 0.

By w we indicate a bounded domain in R? with an infinitely smooth boundary, and the symbol & stands for
a small positive parameter. We introduce a thin curved rod as

Q.= {zx e R3: 2 =1r(s) + elan(s) + e&38(s), s € (0,50), (€a,&3) € w}.

Since the curve « is smooth and not self-intersecting, the rod 2. has no self-intersections for ¢ small enough.
Hereinafter the parameter ¢ is assumed to be chosen exactly in such way.

The main object of our study is the spectrum of the Dirichlet Laplacian in Ly(€2.), and this operator is
denoted by H.. We introduce this operator rigorously as the Friedrichs extension of —A, on C§°(Q.). For
each € > 0 the operator H. has a compact resolvent and its spectrum is thus purely discrete. The aim of this
paper is to construct the complete asymptotic expansions for the eigenvalues of H.. We also observe that the
eigenvalues of H. can be equivalently regarded as those of the boundary value problem

—AY(-,e) = Me)(-,e) in Q, Y(-,€) =0 on I, (-, €) € WHQL).

In order to formulate the main results we need to introduce additional notations. Let VV22 o(w) be the subspace
of W3 (w) consisting of the functions vanishing on dw. In the same way we introduce the space W2270 (0,50). By S
we indicate the Dirichlet Laplacian in Lo (w) with W22 o(w) as the domain. This operator is self-adjoint. Let A,
be the eigenvalues of § arranged in the ascending order with the multiplicities taken into account,

A <A< A3<...< N, <.
By ¢, we denote the associated eigenfunctions orthonormalized in La(w). By the smoothness improving theo-

rems [11], Chapter IV, Section 2.3, the functions ¢,, are infinitely differentiable in @.
It is straightforward to check that

T =k — kB, N =—riT+r38, B =koT — K3m, (1.3)

where k; = K;(s) € C™|0, 5] are certain functions characterizing the geometric properties of v and rotation
of n.
Let an eigenvalue \,, be simple. Denote

0 0
Ri=&=— —ba=—, Cp(w):= [ |Ren|?dE. 1.4
figg ~Gge Cnlw) = [ RouP (1.4
By L, we indicate the operator
d? 2 Ki(s) + 3 (s)
TqeZ Cn(w)r3(s) — 1

in Ly(0, so) with the domain W3 (0, so). The operator £y, is self-adjoint. Since it is one-dimensional, by Cauchy
theorem we conclude that all its eigenvalues are simple. We indicate these eigenvalues by )\én’m), m=1,2,...

and arrange them in the ascending order. Let \I/(()n’m) be the associated eigenfunctions orthonormalized in
L2 (O, 50).
If one chooses 1 and B in accordance with (1.1), (1.2), it yields

K1 = Kcosa, kg =ksina, kz=a + x,



890 D. BORISOV AND G. CARDONE

where k£ = k(s) and » = (s) are the curvature and torsion of 7, and k,> € C*[0,s0]. In this case the
operator £, becomes
d2 2
5+ Cal@)((5) + () = & f).

Our first result gives the complete asymptotic expansions for the eigenvalues of H..

Theorem 1.1. Let € be small enough. Assume X\, is a simple eigenvalue of S. Then there exists a two-
parametric set of the eigenvalues \™ (g) of H. with the asymptotics

K
AT () = 720, 4 AT 3 e g oK (1.5)

i=1

for any K > 1, where

(nym) _ (. (n,m) , (n,m) (n,m) 2 (n,m)
)\171 "= (%n " 7Q(n m)l/fon " )LQ(Q) + Q(Rwon " ;/13(17—\{1/)()7I " )LQ(Q)’

- 1 10% | 1
QU = <2Ag ™ _ <2Cn(w) - 5) n§> Q4+ 555 + 3R, (1.6)

a=d(s,€) == k1(s)€2 — ra(s)Es, U™ = 5™ (5,€) = T (8)n ().

The remaining coefficients in the asymptotic series (1.5) are given by the formulas (3.44) in Lemma 3.1.

We observe that the set of the eigenvalues described in Theorem 1.1 is two-parametric and is indexed by n
and m. Given n, the eigenvalues A" (¢) form a series with the same leading term. We stress that Theorem 1.1
does not imply that the eigenvalues )\("’m)(s) form the whole set of the eigenvalues of H.. The first reason is
the assumption on the simplicity of A,,. And even without this assumption it is an additional problem to find
out whether the eigenvalues A(™™) (€) are the only possible ones or not.

We make the assumption that A, is simple in order to simplify the calculations in the formal constructing
of the asymptotic expansion, see Section 3. If )\, is multiple, it is also possible to construct the asymptotic
expansions, but the formal constructing becomes more complicated and requires some additional careful calcu-
lations. Another interesting issue is the multiplicities of the perturbed eigenvalues corresponding to a multiple
eigenvalue \,. In view of these issues we regard the case of multiple eigenvalue \,, as an additional problem,
which we postpone for another article.

One more interesting question is on the asymptotic expansions for the eigenfunctions associated with (™) (e).
As usually, to justify such asymptotic expansions, one has to know lower bounds for the distances between the
perturbed eigenvalues. The structure of the eigenvalues A7) (¢) is such that it is rather difficult to obtain
such bounds once the eigenvalues are bigger than e ?\y. If we consider only the first eigenvalues of H. lying
between e 2)\; and € 2\, it is possible to prove the mentioned lower bounds and to obtain the asymptotic
expansions for the associated eigenfunctions. This is our second main result. Before formulating it, we introduce
two additional notations,

Q:={(5,6):0<s<s0, Ecw}l, QY :={(s,8):t<s<so—t Ecw}, te(0,s0/2).
Theorem 1.2. Given any M > 1, there exists g = eo(M) > 0 such that for all € < g¢ the first M eigen-

values of He are (1™ (e), m = 1,..., M, satisfying (1.5). These eigenvalues are simple and the associated
eigenfunctions have the asymptotics

K
P (a(s, 26).€) = UG ()91 () + D™ (5,.6) + O (L.7)
i=1
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for any K > 1, where the coefficients of the series are given by (3.41) in Lemma 3.1. The asymptotics hold true

in W(Q)-norm and C*(Q®))-norms for all k >0, t € (0,50/2).

The results of [3] consist of the two-term asymptotics for A(1™) () and the leading term in the asymptotics for
the eigenfunctions (1), The asymptotics for the eigenfunctions were obtained in L5(2). Theorem 1.2 extends
these results in two directions. First, it gives the complete asymptotic expansions. Second, the asymptotics of
the eigenfunctions are given in a stronger norm. One more extension is provided by Theorem 1.1. Namely, in
addition to the first series of the eigenvalues A(™)(g) described in [3], we provide a countable set of similar
series (™) (), n > 2.

One more difference from [3] is the technique employed. The study in [3] was based on I'-convergence of
certain functionals. Our approach consists of two main steps. The first step is the formal constructing of the
asymptotic expansions for the eigenvalues and the eigenfunctions by the multiscale method [1]. The second step
is the estimating of error terms by a result from spectral perturbation theory, see [15], Lemmas 12 and 13. We
mention that the same approach based on the formal constructing and the results from the spectral perturbation
theory has already been used successfully in studying thin domains, see for instance [14].

2. CHANGE OF VARIABLES

In this section we transform the operator H. to another one which will be more convenient in proving
Theorems 1.1 and 1.2.

Let y = (y2, y3) be Cartesian coordinates in the plane spanned over i and 3 with the axes along these vectors
so that the variable y2 corresponds to n and the variable y3 does to 3. We first pass to the variables (s, y) and
the domain ). is mapped onto

Qe :={(s,9):0< s <sp, e 'yew}

At the second step we rescale the variables y passing to variables (s, &), where & = (£2,&3) = e~ !y. Then the
domain 2. is mapped onto ).
We define the operator describing the passing to the variables (s, y) as

(uu)(svy) = U(I(S,y)), (u_lu)(x) = u(s(x),y(x))

We let
He = PUHsuila p= p(S, y) =1- q(say)a q(s,y) = RI(S)yQ - HQ(S)yB-

If A(¢) and ¢ (-, €) are an eigenvalue and an associated eigenfunction of H,, it is clear that the function U (-, ¢)
solves the equations

UHU T UD(-e) = M) U, HoUp(-,e) = Me)pUD(- ). (2.1)
Let us obtain the differential expression for H.,. Taking into account (1.3) and differentiating the identity
z =1(s) +y2m(s) + y3B(s)
with respect to s, y2, and y3, we obtain

P 0 0
T = pr) = Kapn(s) + RaB(s). 5 = mls) 5 = Bs)

Thus, the derivatives with respect to x and (s, y) are related by the identity

Vis,y) = PVy,
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where P is the matrix with the rows

PT — K3Y3n + K3y23

P := n
B
It is easy to check that
detP=p, V,= P*IV(‘W), P l= (p_lT K3ysp T4+ 1M — K3yep T+ ,8) , (2.2)

where the vectors in the definition of P~! are treated as columns. Since ¢!y € w, we have y = O(g) and hence
q(s,y) = O(e). It yields that the function p(s,y) is strictly positive for the considered values of y.
By (2.2) for each uy,us € C§° () we have

(Hetr,us) 16, = (DUHU ur u0) ) 6y = (HU ™, U ) Ly = (Vold ™ u, Vald ™ ), 0.
= (Pilv(s,y)ulapp v(s,y)’U/Q)LQ(ﬁE) = _(dlv(s,y)p( ) P~ v(s,y)u1)u2)L2(ﬁ£)7

and therefore

He = —div(sy) AV(sy) (2.3)
p! K3ysp* —Kgyap !
A= (Am) 13 = ksysp ' p+ kYD —K3yaysp

1

—K3yep ' —K3y2ysp b p+k3YIp T

Now we pass to the variables £. It leads us to a final transformed operator

' 0 € ’ — —
He = (a A§1 8_ Z 11 a IZ Os 11 ag ° Z ag ’L] ag ) (24)

( ) ek3&spot *€H3§2Pg

€ € _

NG (Ai . €H3§3p5 pe +e2R3&3ps " —¢ H2§2§3P5 ) (2.5)
—ekaops b —e?k3&&ps T pe + 2R3

where
pE(S,f) =1 *EQ(S,&), (26)

and the operator H. is considered in Ly(Q) as the Friedrichs extension from C5°(92). The eigenvalue equa-
tion (2.1) casts into the form

ﬁew('a E) = )‘(E)pew(a E)a (27)
where we redenoted (Uv)(s,e&,e) by ¥(s,&, ).

3. PROOF OF THEOREM 1.1

In this section we prove Theorem 1.1. The proof is divided into two parts, the first being devoted to the
formal constructing of the asymptotic expansions. The second part consists in proving the existence of the
mentioned two-parametric set of the eigenvalues and in the justification of the formal asymptotic expansions
for these eigenvalues, i.e., establishing estimates for the error terms.
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We construct the asymptotic expansions for the eigenvalues and the associated eigenfunctions as the series

o
A () = 37 i, (3.1)
i=—2
Y (a Zs%(” ™ (s,€). (3:2)
i=0

The aim of the formal constructing is to determine the coefficients of these series.
We expand the functions AZ(;) in the powers of ¢,

A9 - i Al A6 _ 40, (3.3)
A;n) _ qk, k>0,

ASP =0, AN = kagyqh Y, k21,

A(()IB) =0, A,(:B) = —rgéaq" k=1, (3.4)
AP =1, APV = —q, AT =kiEq"2 k22 |
AP — AP —o, APV — 206" k22,

A(()33) _, A§33) — Agjs) K2E2E2, k> 2.

Hereinafter q = q(s, £), if else is not specified.
We substitute (2.4), (3.1), (3.2), (3.3), (3.4) into (2.7) and equate the coefficients at the same powers of ¢.
Calculating the coefficient at =2, i > 0, we obtain

(—Ag — A1) (mm) Z Al g i ™™ =0 on 0Q, (3.5)
Jj=1
FM o= (F = A, (36)
j=1

0 9 9 9
06, 19g, asgqasg’

3 3 3
9 an 0 DR o AR oAU
Fi=gsti-2ps T Z 98 135 ; 95 -1 0g, ”22:2 TR (3.7)

8_
0
ds |

.7:1 =

0 . o 0 . .
T2 Ruaq? P 4 ks PR+ RARG IR, > 2.

Os Os Os

Consider problem (3.5) for i = 0. It is clear that its solution can be chosen as
wO (57 5) - =0 (S)¢n(§)a —2 — ns ( . )
where the function \Ifgn’m) is unknown and should satisfy the boundary conditions

T (0) = B (s0) = 0. (3.9)
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The eigenvalue equation for ¢,
(Ae+ M) =0 inw
and the definition of F; and q imply

0 0
(}-1 - )\nQ)¢n = - <Ii1a—€2 - Hza—&) n-

Taking into account this formula and (3.8), we write problem (3.5) for i = 1,

0 0
“As — >\n (n,m) I \I/(n’m) _ . " )\("am)\p(nvm) "
( 13 )wl 0 K1 862 K2 653 (725 + —1 0 (725

™™ =0 on OQ.

Employing equation (3.10), by direct calculations we check that

0 0

Hence, the problem (3.12) is solvable for
Al —
with a solution given by the identity

(05,6 = SUE (5)6m (s, ) + UL ()60 0),

(n,m)
1

where the function ¥ is unknown and should satisfy the boundary conditions

™ (0) = B (s9) = 0.

The formula (3.14) for )\(_nl’m) and that for )\én’m) in (3.8) prove the formulas for the first terms in (1.5).
We substitute the formulas (3.6), (3.7), (3.8), (3.11), (3.14) into problem (3.5) for i = 2 to obtain

in §2,

(—=A¢ = A)wd™ = AT L F i, ™ =0 on 89,

n,m 1 ,Mm el o 0 J
Py ):i(fr/\nq)ql/fé’ D F - )<m@—§2n2@—§3>¢n'

Using equation (3.10), by direct calculations we check

0

(fl - Anq)qd)n = —3q (”16_62 - ”26_&3

> On — (’% + ’ig)d)n
Hence, we can rewrite the formula for Fg(n’m) as follows,

n,m —~ (n,m n,m 6 8
FQ(’ ):]:1#87 )_\1157 )(“18—&—/@28—53>¢m

T . (n,m 1 n,m n,m
f?ﬁé’ )25(‘7:1—)\nQ)qwé’ )+.7:2¢é’ );

" 2 2 2
Iy (W R SR (AT P

2 \"98 ~ "og 2 952 T \"s T a5

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
(3.20)

(3.21)
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In (3.16) the Laplace operator is taken only with respect to &, and this problem involves s as a parameter. So,
we can consider (3.16) as a problem for the Dirichlet Laplacian S in w with a dependence on s. Since A, is
a simple eigenvalue of S, the solvability condition of (3.16) is the orthogonality of the right hand side in the
equation to ¢, in Ls(w),

)\gn,m)\:[lgn,m) + (F2(n,m)’ ¢n) 0, se(0,s0), (3.22)

Lay(w) —

where we have taken into account the normalization of ¢, and the formula (3.8). Let us evaluate the second
term in the left hand side of (3.22).
Integrating by parts, we obtain

9 9 _ 9 O\
/%q (/@1 96 K2 853) Ond§ = /q (/@1 % @853) @, d§
1, 9 0 KT+
= —5/% (fﬁ—a52 — @_853) qd§ = g

[omonas =5 [ Rz ac o,

N | =

[ o206 =~ [ [Ron? aé = oo,

9 9 _1 O O\ e
/¢n <n16—§21128—€3> b dE = 2/<n16§2 /12863)(1)”(150. (3.23)

w

We substitute the identities obtained, (3.8), (3.19), (3.21) into (3.22) and arrive at the equation

Q\Il(n’m) 2 P
0 8(;2 T <I€1 1’ Ry B chn(w)> \I/(()n’m) + )\én,m)\p((Jn,m) -0, sec (0’ S()).

Together with the boundary condition (3.9) it can be rewritten as
L, w5 = A g, (3.24)

This equation is in fact the solvability condition of (3.16), and we satisfy this condition by choosing appropriate
)\én’m) and \I/én’m). Namely, we choose them to be a (simple) eigenvalue and the associated eigenfunction of £,,.
In what follows the eigenfunctions \Ilén’m) are assumed to be orthonormalized in L3(0, s9). We also note that

by the smoothness improving theorems \I/(()"’m) € C|0, so.

Let V;, be the orthogonal complement to {¢y, } in Ly(w). By S, we denote the restriction of S on V,, N\W3 o (w).
It is clear that the operator (S;- — A,) ™! is well-defined in and bounded as that from V;, in W3 j(w).

It follows from (3.23) that

(Klaifg — IQQ%) ¢n e V,. (325)

The identity (3.22) is satisfied due to (3.24) and it yields Agn’m)wén’m) +F2(n’m) € V,,. Hence, by (3.19), (3.25) we
have (.7~'+)\(()"’m))7,/1(()"’m) € V,,. Taking into account this fact, (3.19), and (3.13), we return back to problem (3.16),
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and write its solution as

U (5,8 = B (5, €)  JU(5)60 (E)als,€) + U ()6 E),
Gt = (S = M) THE AT, (3.26)

where the function \Ifén’m) is unknown and should satisfy the boundary conditions
v (0) = w5 (s0) = 0.

Bearing in mind the belongings ¢,, € C*(w), k; € C*[0, s¢], and the identities (3.21), (1.4), it is easy to see
that the function (.7-' + )\(()n’m))wén’m) admits separation of variables and can be represented as a finite sum of the
terms W(s)F (&), where ¥ € C‘X’[O s0], and F € C*°(w) NV,. Thus, the function w( ™) i also a finite sum of
the terms W(s)y(€), ¥ = (S;- — \,) "1 F, where by the smoothness improving theorems ¢ € C°°(@). Therefore,
(n m) o C>(Q).
We substitute formulas (3.6), (3.7), (3.8), (3.11), (3.14), (3.15), (3.18), (3.21), (3.26) into problem (3.5) for
i=3,

(—Ag — Ap)p{m™ = A(Em) g (mm) o \(mm)y lm) o plem) g0 ™™ =0 on 09, (3.27)
FM™ = B 4 Fu™ g, —Wé " (mf —MQ) bn,
2 3 (3.28)

We again treat this problem as that for & depending on s, and the corresponding solvability condition is
)\én,m)( §n,m),¢n)L2(w) + )\gn,m)‘l,(()n,m) + (Fén,m),¢n)L2(w) =0. (3.29)

In the same way how equation (3.24) was derived we obtain

f(n m)(s) (F(n m)( s, ,)’ ¢n)L2(w) + %)\én,m)\pén,m)(s)qn(é;%
dn(8) : = (a8, )Pn, D) Lo(w) = K1(5)(§20ns Pn) Lo(w) — K2(8)(§30ns Pn) Ly(w)- (3.31)

Since )\én’m) is an eigenvalue of L,,, the solvability condition of the last equation is the orthogonality in L2(0, sg)
of its right hand side to the eigenfunctions associated with )\én’m), i.e., it should be orthogonal to \I/én’m). It

gives the formula for )\gn,m)7

)\(n m) (fén ,m) ‘Il(n m))L2(0’SO) _ _(ﬁén,m), én,m)) Lo(@) )\(n m)( én,m), qw(n m)) Lo(@)- (332)
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Let us calculate the right hand side of this identity. Integrating by parts and employing (3.11), (3.13), (3.17),
(3.20), we have

((]:1—(])\ )N(n,m), én,m))Lz(Q (anm ( q)‘ W ))LQ(Q)

(W ™ (D + Aa)ars™™) oy = ((A& + )05 ™, ™) o

1 n,m n,m) (n,m (333)
1/1
=3 (5(f1 —ad)ag™ ™+ (Fa A7) é”’m%qwé”’m)) .
L2(£2)
Due to (3.8), (3.18)
0 0
T )\n (nym) - _3 B v (n,m) (n, m)
(F1 = an)agy a(F5g ~R25g ) Yo — (87 + K3)¥g
We multiply this equation by qwén’m) and integrate by parts,
(Fr = qAn)qwé”’m) qT/)(n m)) =-3 <q2 <i€1 0 _ Ko s 0 > o) (()mm))
() 0 70 La(9)
- ((/i? + H%) (()"am), QZ/f(n m))LQ(Q)
3/, ( 0 0 ) (nym) 2)
== (@ (e =2 ) (08"
2 ( ' 852 2853 ( 0 ) Lo ()
- ((“% + "'@3) én’m)a q én’m))Lz(Q)
=2((k + 53)e6"™, avd™™) -
Substituting the identities obtained into (3.33), we arrive at
~ 1
((Fr = )" ™ ™™ o) = 3 ((fz + 824+ KA ™ g é”’m)) . (3.34)
L2 ()

It follows from (3.7) that

B dq 0 0 dq 5
Fs=qF2+ 95 95 (Ra)ks 5 T Bs k3R + k3(Rq)R.

We substitute this identity and (3.34) into (3.32) and integrate by parts,

nom 1 n,m n,m 1 n,m n,m
Al >:_§((f2+m§+m§)wé ) )) —‘(720“”5 b )>

La() 2 L2(Q)

(n,m) (n.m)
(nm) () 9q 9y (n,m) (9 (n,m)
(qf Yo )LQ(Q) <05 gs 70 )L @ <H3 Os Ra, %o )
2 2

( SIRuE™, ‘"’””) ~ (KRG 4" Ra)
L2(Q2)

L2(Q2)

(3.35)



898 D. BORISOV AND G. CARDONE

(n,m) (n,m) 1 2 2y, 1, (n,m) (n,m)
=—2(Fopy""™, aiy )L2(Q)_§((K/1+K’2) o 4% )L2(Q)

aq aw(n ,m) () . 9 én,m) Rq (rnm)
ds os 0 Os o
L2(Q2) L2(Q)

( o L2(9) (% R q>L2(Q) Y

In view of (3.6), (3.24) we have

Lo oy (mm)  (nm) (nym) . (n,m)
= 5 (5 + R ™, aw"™) 1 ) = 2(F200" ™ ave™™) )

n,m n,m n,m 8 (n’m) n,m
=2((AS™ = Cu(w)D)PS ™ qud™ ))L2(Q) -2 (Rm gs L )>
L2 ()

0 n,m n,m n,m n,m
-2 (a_fii%Rwé ' )7 qwé 7 )) - 2(K§R2 é )a q é ))LQ(Q). (337)
§ La(Q)

We integrate by parts employing (3.8),

0 (nm) n,m 0 n,m n,m
_2<R“3 Ll )> _Q(a—"sm( aug” ))
L2(92) Ly(Q)
(n,m)
_ <H38 gs Rq, (()n,m)) - ( Rw(n m)’ (n, m)>
L2 (%) L&)
(n,m) o
=2 (ma 20 Rau™™ ) 2 (maRe ™, g
s s L(9
L2(Q) 2(Q)
(n,m)
_ <H38 gs Rq, (()n,m)) - ( Rw(n m)’ (n, m))
LQ(Q) L2(Q)
= K/3075 7% ’ Rq + R¢ ) +4 K/3quO 7
0s 8 La(9) 85
Ls(2) 2 L2(2)
=3 K‘BR(L a. w ' + 3 R K,quQﬁ ) ‘II
2 85( 0 ) Lr() 2 a ( ) n ( ) Lo(@)

170 (n,m) 2> < o9 (n,m) 2) < 5 (g (mn2 9 >
= — = [ =kr3Rq, (¥\™ — = [ Rk: ’ +{0n (Yo )", 52k3Ry
2 <38 R (467") La(9) gy (07) L2(9) W g L2()

1
2
SRR >—m37zq) ——( L ks RS )
( 0 0 s 2(Q) 2 0 L2(Q)

Lz(Q)

1
2 Os
=3 ( g 3Rq) L@y’ (3.38)
In the same fashion we obtain
’ = - T ——=ahy . 3.39
<8s 0s 7¢o 2 Yo 0s? ¥ L2(9) ( )
La() 2
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Employing the identity R?q = —q, we get

_ (Hgnwén,m)’ (()n,m)Rq)L (Q) ( QRQw(n m)’qw(n m))LQ(Q)

2

_ 2 (n,m)  (n,m) 2 (n,m) (n,m)
——(Hsto %o RQ>L2(Q)+2(“3R¢O » Rag )L2(ﬂ>

= 2(r3R (n ™.q (n m))L o T (’%Rw(n ™, w(()mm)Rq)LQ(Q)
= 2(k2Ry ™™, Rw‘"’” ) 1 %( SR(g"™™)? Ra) o
= 2(=2RyS™  qRUS™) | o ;( K2 lrm g R%q),, o)
=2(r3R ((>n m)’qu(n m))L ot % “31/)(n m),qw(” m))LQ(Q)-

We substitute the identities obtained and (3.37), (3.38), (3.39) into (3.35) that leads us to formula (1.6)
for )\gn,m).

Let V., be the orthogonal complement to {\Ilén’m)} in Ly(0,s0), and L;,, be the restriction of £, to
Vom0 WQQ,O(O, S0). The operator (E,llm — )\gn’m))_l is well-defined and bounded as that from V, ,, into V,, ,, N
W2270 (0, 80).

The orthogonality condition (3.32) means that the right hand side of (3.30) is orthogonal to \Il(()n’m). Thus,
)\gn’m)‘llé"’m) + fén’m) € Vom. In view of this fact we can choose a solution to (3.30) as

\I/(n m) (ﬁJ‘ )\é"am))fl ()‘(ln,m) \I/g’%m) 4 fé"am)) + C\I/gn’m),

where C is an arbitrary constant. We could choose it zero, but as we will see in what follows the most convenient
way is to choose C by the orthogonality condition

W™ 5™ ) ) = 0. (3.40)

By (3.15), (3.31) and by the fact that the range of (£;,, — )\(()n’m))_l is orthogonal to {\I/(()n’m)} it yields

1 1
C = 50"t L) = —5 (0" 46 ) 10,00

and

1
B = (£ N R ) L, g )

By the smoothness improving theorems \Ilgn’m) € C™|0, so].
Equations (3.29), (3.30) being satisfied, the right hand side of the equation in (3.27) is orthogonal to ¢,, i.e.,

By (3.25), (3.28) it yields
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In view of this fact we can choose a solution to (3.27) as
0 (5,6) = 3 (5, + TS (0 (Oa(s.€) + T (5)6n ),
B = (55 ) QU 4 X 4 B By, ),

where the function \Ifgn’m) is unknown and should satisfy the boundary conditions
g™ (0) = w5 (s0) = 0,

and @én’m) € C>(Q). This smoothness is proved in the same way as for &é"m)

The remaining problems for v;, ¢ > 4, are solved in the same way as for ¢ = 1,2,3. Namely, the solvability
condition of these problems is the orthogonality of the right hand side to ¢,, in La(w) for each s € (0,s0). In
its turn, these condition imply the equations for ¥,;. The solvability conditions of these equations imply the
formulas for A\;. The result of this recurrent procedure is formulated in:

Lemma 3.1. There exist solutions to problems (3.5) given by the identities
B (5, €) = P (s, €) + %\Ifﬁﬁ’{”)(s)q(s, )on(€) + "™ ()6 (€), >0, (3.41)
The functions %n’m) € 0=(Q), ‘I/Z(-n’m) € C|0, so] read as follows,
G (s,6) =0, i<,

i
g S (Fi("’m) PO 00+ 3N 5"?”) Y
j=2
Em™ =0, i<2,
EM™ = (Fy = M)l + <¢<” S A ¢n) Y F AT, iz (3.42)
j=3

W = (L = A Z VR Fe

(3.43)
1 .
- 5(\:[]527{”)7qn\pén,m))LQ(O,SQ)\Ijén7m)) 1 2 ]-7
. n,m - n,m 1 = n,m .
Z<27 fz( ' ):(Ea é ’ ))LQ(Q)+§Z)‘( )\Ilz 7 )3Qn7 2235
7=0

where )\(fg’m) and )\(fl’m) are determined by (3.8), (3.14), )\én’m) is an eigenvalue of L, with the associated

(n,m)

eigenfunction U , and

n,m —(n,m n,m 1 n,m n,m n,m .
)\5 ) = _(Fi(Jr2 )a é ))Lz(Q) - 5)\8 )(\11,571 )¢"7qwé ))LQ(Q), ¢ 2 L. (344)

The identities
@™ ™ ) ey =0, i1, (3.45)
hold true.
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Remark 3.2. Formula (3.42) involves the term fng(n’m). It is zero for ¢ > 3, and this is why it is absent

n (3.19), (3.28). At the same time, it is easy to see that it comes from the term (Fy — ] " )w(n ) n (3.6),

m)

when wff’g is taken in accordance with (3.41).

Remark 3.3. The identities (3.45) are analogues of condition (3.40) and they imply the second term in
formulas (3.43) for ‘I/Z(-n’m), where we used that

(,‘p(n m) (n m)) La(Q) = 0.

This identity is valid since the range of (S,, — A,,) ™! is orthogonal to ¢, in La(w).

Given any N > 1, we denote

N
A a2, 4 Z el (5,€) 1= Zfil/f§n’m)(5,§)- (3.46)
i=0

The next lemma follows directly from Lemma 3.1.

Lemma 3.4. The function wén]&m) € C>*(Q) and the number )\in]’vm) satisfy the equation

(He = AUyl =m0, (3.47)

61 61

where the right-hand side obeys the inequality

IIhEZ’v’”)I\ck@ < Cz(\;l,}zn)EN_lv (3.48)

with constants C](\}I’km) > 0 independent of €.

We proceed to the justification of formal asymptotics (3.1), (3.2). We use the standard approach based on
Lemmas 12 and 13 from [15]. More precisely, we use these lemmas in the formulation presented in Lemma 1.1
n [13], Chapter III, Section 1.1. For the convenience of the reader below we give the mentioned lemma.

Lemma 3.5. Let A: H — H be a continuous linear compact self-adjoint operator in a Hilbert space H. Suppose
that there exist a real p > 0 and a vector u € H, such that ||u|lg =1 and

[Au — pu|lg < @,  « = const. > 0.

Then there exists an eigenvalue i; of operator A such that

i —pl <a

Moreover, for any d > « there exists a vector w such that
lu—Tllr <2ad7",  |[@]lm =1,

and @ is a linear combination of the eigenvectors of the operator A corresponding to the eigenvalues of A from
the segment [y — d, pu+ dJ.

Let € be small enough. Denote @énN p;/ 21&57]{;”). We remind that the function p. was introduced in (2.6),

while the function q was defined in Theorem 1.1.
We rewrite (3.47) as

pV2H, pfl/Qw(" m) _ )\(n m)w(n m) | p;l/Qh(n m). (3.49)
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Identities (2.3), (2.4), (2.5) imply that the operator H. is self-adjoint and non-negative. The same is obviously

true for pgl/QﬁEpE_ /2 Let § > 0bea positive number. Then the operator A, := (1 + dpe 1/2H€p 1/2) is
well-defined as an operator in Ly(Q), is bounded and self-adjoint, and satisfies the estimate

[ Al < 1. (3.50)

As it follows from (2.4), for any f € L2(£2) the function v = A f is a generalized solution to the boundary value
problem

71/2 (6) —1/2 _ . _
Za& i 8‘5 v+ov=f inQ, v=0 onJf.

gri=s, AF =AF, AP =47 =14, A =240, ij=2.3

17

Hence, operator A is also bounded as that from Ly(Q2) into W3 (Q). In view of the compact embedding of
W3(Q) in L2(Q) operator A is compact as that in Ly ().
We rewrite (3.49) as

(1+ AT T = ADU 4 sh R = (1 Ay T A 2R

In view of definition (3.46) of )\i?],vm) we can choose small § = §(e, N, m,n) such that

3

1
I < 5, S <1+ < 5 (3.51)
By definition (2.6) of p. and smoothness q € C*(Q), for sufficiently small € we can always assume the estimate
1 3
S < = 3.52
~<lpl < (352)
Hence, by the definition of @éflj{,m)
155 Nnago > 31905 ot (3.53)
Employing (3.45) and the normalization of ¢,, and \Ilén m), we obtain
N
10EN 70 = 108" ™ 00y + 2Zsi<w§"’m>, e + | Ze%‘" | .
N 2
(3.54)

”w(n m)”L2 @+ H Zszw(n m)H

La()
Remark 3.6. We note that we introduced the orthogonality conditions (3.45) to guarantee the last estimate
for Hd)(n m)HL2(Q) uniformly in e, N, n, and m.
The estimates (3.53) and (3.54) yield
D™ | ) = 5

Bearing in mind this estimate and choosing if needed § small enough, by (3.48) with & = 0, (3.50), (3.54) we
get

SRR o)

[ e

where a](\?m) are some constants independent of ¢.

. 1
<OPm™MgeN-1 < — (3.55)

(=]
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We apply Lemma 3.5 with

T(n,m)
H=LyQ), A=A, p=01+\"y)™ u= 7A(f;])v , a=0ymeeN (3.56)
e n a2
and conclude that there exists an eigenvalue uglj’vm) of A, such that
(n,m) (n,m)y—1 Alnm) ¢ N—1
ey —(L+0A N )| S Cy 7 de . (3.57)

It is clear that Xgl]’\,m) = ((,ugljvm))_l —1)6~! is an eigenvalue of pe Y *Hops /2. Tt follows from (3.57), (3.51),

(3.55) that

—_

1 1 N N
) 2 m) Cy™eN=ls > = 1+ <2
L+oA ¥ 14 6AY

2
The last inequality and (3.51), (3.57) imply

(1 4+ 0AU™) = (1 + AU < O™ 0N YL+ ST 1+ o),
AU = AT < 3CG eV (3.58)

By E%L’m) we denote a monotonically decreasing (in V) sequence such that
Cme < O™ as e <™.

Letting
M) () = ng],vm) for e€ [E%L’m),sg\?ﬁ)),

employing (3.58), and taking into account the fact that N is arbitrary, we see that the eigenvalue A(»™) () of

De L Qﬁgpg_ /2 has the asymptotic expansion (1.5). To complete the proof it remains to note that the eigenvalues

of p;l/QﬁepE_l/Q coincide with those of H..

4. PROOF OF THEOREM 1.2

We begin the proof with the result of Theorem 4.4 in [3]. Namely, item (ii) of this theorem says that given
any M > 0, there exists eg(M) > 0 so that for all € < g¢ the first M eigenvalues A, (¢), m =1,..., M, of H.
taken counting multiplicities satisfy the asymptotics

Am(@) =20 + A 40(1), m=1,... M. (4.1)

Since the eigenvalues )\(()l’m) of £; are simple, the same is true for the eigenvalues A, ().
It follows from (4.1) that there exists a fixed number 6 > 0 so that for each m =1,..., M, and all € < go(M)
the interval
(7 2A + A™ = 60,6720 + 2™+ 0) (4.2)

contains exactly one eigenvalue of H. which is \,,(¢). In accordance with Theorem 1.1 the eigenvalues (™) (¢)
of H. satisfy the same asymptotics as A\, (). Hence, for sufficiently small o(M) and all m = 1,..., M each of
the intervals (4.2) contains the eigenvalue A (¢). Therefore, A\ (¢) = \,,,(¢), and it proves the statement
of the theorem on the eigenvalues.
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To prove the statement on the eigenfunctions, we adopt the same notations as in the proof of Theorem 1.1.
We again apply Lemma 3.5 with (3.56) and we take d = eV /2. Then there exists a linear combination wiljvm) of
the eigenfunctions associated with the eigenvalues of A, lying in the segment

[(1+ AT = V2 @+ oAl + N2 (4.3)
such that
1/2,,(1,m)
[ PRSES |$§}ivm) ! 7 (Ipn{fil - < 205 o2,
2 L2 ()
G DY 20 o) = P2 < cﬁ?iéeNVQ*I, (4.4)

where C'](Vm) are positive constants independent of ¢ and §. Here we have also used an obvious fact that

||p51/)£1]’\,m) | L,() can be estimated uniformly in € by a constant depending on m and N.
Since M is finite and fixed, and m,p = 1,..., M, by asymptotics (1.5) we conclude that there exists a
constant C' independent of ¢, m,p=1,..., M, m # p, such that

|)\(1,m)(€)7>\(1,p)(€)| 20; m,p = 17"'7M7 m#p
Employing this estimate and choosing § = €2, we obtain the estimate

1 1 B 2| AEm) (g) — XLP)(g)]

_ = > Ce?
L+6AEm(e) 1+ 8AEP(e)| |14 e2AEm)(g)] |1 + e2A(1P) (g)]
for € small enough, m,p = 1,..., M, m # p, where C is a positive constant independent of £, m, and p.
Hence, for N > 5, m = 1,..., M, and ¢ small enough the intervals (4.3) contain no eigenvalues of A. except

(14 e2ALm)(g))~1, Th1s e1genvalue is simple, since the corresponding eigenvalue A1) (e) is simple. Thus,

the linear combination w ™) is an orthonormalized in Lo (Q) eigenfunction associated with (14 e2X(1m™)(g))~1,
Moreover, it is mdependent of N.
By Lemma 3.1 we have

N
D268 sy = 3™l + O, " = const.,

§=0
foral N >0, m=1,..., M. Hence, there exists a function ¢,, = ¢,,(¢) such that
cm (€) = |Ip/2¢; & m)HLz(Q +0@EN ) forall N >0.

The last equation, the identity 6 = &2, and (4.4) yield
Hw(l sm) 1/21/)(1 m)||L2(Q) _ O(EN/2+1), &é};m) — ( )1/)(1 m)'
We use this equation and (3.52) and denote

P (s, 6 ) = p V(5,000 (5,9), @UN(5,6) = v (5,6, 6) — LN (5,9)

that yields

1,
19V N Loty = Iz V2 @™ — p 250 a0y = OEN/2HY). (4.5)
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It is also clear that the function ¢(:™) (s, ¢, ¢) solves (2.7) with A(g) = A(1:™)(¢). Hence, by (3.47)
] m m T (m T (m ,m 1,m ,m
Hodlh) = A )p.ol) + BT, R = (A (&) — Ayl — nl. (4.6)
Due to this equation we can write the integral identity
(He@{N 20N o) = A () (2N, BN o) + (BN 2N o) (4.7)
From (4.5), (3.46), (3.48), (1.5), and the smoothness of wgn,m) we derive

1 1 1, 1
IR ey < IAE™ () = AL ot S ey + RS lor @) < Ce¥ " Ipatd N Ny +1)
< CN (N ller + D=0V, N5 k>0, (48)

Together with (1.5), (2.4), (2.5), (4.5), (4.7) it gives

IV R ) SCAE V(6 @UN, Vi) @) o)
:c(xﬂam( ) (P, ) o) +(E§f7v>,q>§f73)L2(m) —0EN), m=1,...,M. (4.9)

Combining (4.5) and (4.9), we conclude that asymptotics (1.7) hold true in W3 (€)-norm.
We proceed to the proof of (1 7) in C*(Q®)-norm. First we note that by the standard smoothness improving

theorems we have "™ € C>=(Q®) for all ¢ € (0, s0/2). The rest of the proof follows from (4.5), (4.6), (4.8), (4.9),
the embedding of W2(Q) into C*(£2), and from the next lemma applied to (I>( )

Lemma 4.1. Let u. be a solution to the equation
ﬁgug = \(Lm) (e)peue +h, heC®(Q).

Then u. € C=(Q®) for all t € (0, 50/2), and

||ua||W§(m) < Cpe 271 (||Ua||wg(9) + HhHWzk’Q(Q)) (4.10)

for allk =2, t € (0,s0/2), where the constants C, are independent of £, h and u..

Proof. The smoothness of u. follows from that of Aij),

sake of brevity We denote & = s, £ := (&1,62,&3).
Let Xg ) = X1 (51) be an infinitely differentiable cut-off function equaling one as &; € [t, so — t] and vanishing
for & €[0,t/2] U [so — t/2, s0]. We fix t € (0, s9/2) and denote

h, pe, and the smoothness improving theorems. For the

u®(€) == x{V (€1)ue (6).
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It is straightforward to check that ug) solves the equation

R Ouc
Ao = X0 ()pa®) + iy 4 =20 (ag, y “)

9&;
ou i dX1t)A(6 ou LA dy
el <s,§,u€, E) 2N AL 2T 2, N 49 ~ 4.11
1 730 R D TR e )

We differentiate (4.11) with respect to &1,

~ oul® o oul? 5240
Ho =AM (e)p. = + 7260 [ &, ¢, ul), ==
) ) 2 HUe o0& 7 00
&1 ) &1 ) §i  0&0E; (4.12)
v (®) —2~(t) oue
+ 351 (hX + € Gl (€a€7u67 agl )) 9
() () 3 1) o (t)
G(Qt) E,f, ’ aue 82 _ 0 8Aij ous 62)\517,”)( )8p€ (t) (4'13)
9 7 9€;0¢; — 08 0& 0% 06 ©

Equation (4.12) implies the integral identity

(t) t) (t) (t) (t)
(A(e)vaua ,V%> — AL () (Ps Oue ’ Oue ) 42 <G§t), Ous )
01 0% La() SIS La(Q) 0 La(Q)

92 gt)
— [P+ a0, , (4.14)
ot )
2(9)

where we have by parts in the last term. We use (4.13) and integrate by parts in the second term in the right
hand side of the last identity,

(® t t t
(G(;)’au ) _ Z <6A au? 924 <>> 4 e2atm(e <8p5u(t aup) |
731 @) & 0&; 7 0506 L) L)

7,j=1 861 6§1

We substitute this identity into (4.14) and proceed as in (4.9) employing Cauchy-Schwartz inequality, (1.5), and
the explicit formulas for G(lt) and G(Qt),

2 ou? _oul®
<C PN CA v , v
L2($2) < 06 06

o2, ey
081 Lo (@) 9

(t)
v

ul)
L2(Q) H 0&;0&1 ‘

Lo(Q2
2(Q2) (4.15)
au() (t)
e || h o) | S|
+e lu || Ly o) L2(9)+(|| L) + & 2llullwo) 652 L)
1 8u(t) 2
< Ce(||h , —Hv c ‘ :
e (Il ||L2(Q)+||U||w2<n))+2 96 oo
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Here and till the end of the proof by C' we indicate non-specific constants independent of e, u. and h. The
obtained estimate implies

augt) )
196 ey < €7 (Ilzagen + cliwzn ) (4.16)
()
Let us estimate Hv"’gg_ ’L @’ i = 2,3. We could have tried to differentiate (4.11) with respect to & and
‘ 2

(®)
proceed as above. However, the function 88% does not vanish on (0, s9) X dw and this is the main difficulty.

This is why we have to employ a slightly different trick. We introduce an infinitely differentiable in @ cut-off
function x2 = x2(§) equaling one in a small neighborhood of dw and vanishing outside a bigger neighborhood.

Writing the equation for u!’ )(1 — x2) similar to (4.11) and proceeding as in (4.12), (4.15), one can show that

ull )(1 - X2)

0
96,

< Ce 2 ([hllLa) + lluellwy@)- (4.17)
W3 (Q)
To estimate the same norm for Xguét) we use the same approach as in the proof of Theorem 4 in [11], Chapter IV,
Section 2.3.
In a small neighborhood of dw we introduce new variables ¢ = (1, (2, (3), where (1 = &1, (2 is the arc length
of dw, and (3 is the distance from the point to dw measured in the direction of the inward normal. Then it

follows from (4.11) that the function uét) = Xw@ satisfies the boundary value problem

3

o %) - e °L o 0ud”
= 3 B geae = ext” e Gl + B + 3 BIS (e (050) x (0,67) x (0,67,
'3 J i—1 '3

ij=1

(4.18)

where (:2(0) is the length of Jw, Céo) is a small fixed number. The operator in the left hand side of the last

equation is elliptic uniformly in { and . The functlon v( ) satisfies periodic boundary condition as (s = 0

and (o = (:50), and vanishes as (3 = 0, (3 = (:3 , (1 =0, (1 = s9. The coefficients BZ(;), Bgs) are infinitely
differentiable and satisfy the estimates

< Ce72

) (e)
Ce™ 1IBi llon (0,00]x 1061 [0.0) S

1511 (0,001 0,610,601y

We differentiate (4.18) with respect to (2, and in the same fashion as in (4.12), (4.15), (4.16) we obtain

(t)
%

gC—Q(h . ) 4.19
Laosalx 0@ xS O8Iz Flvellwiey (4.19)

Now we express the term v from (4.18). Together with (4.16), (4.17), (4.19) it gives the estimate

6§3
(t)
|

<ce*(Jin i)
La([0,50] 0,87 % [0,¢52]) € 1Al L) + lluellws
This estimate and (4.16), (4.17), (4.19) imply (4.10) for & = 2. To prove it for Other ks, it is sufficient to

(®)
proceed as above starting with differentiating the aforementioned equations for agg B C (1— Xg)ué ), 6{2 Xw?’,

i=2,3. O

.....

version of the paper. A part of thls work was done during the visit of D.B. to the Department of Engineering of University
of Sannio, and he is grateful for the warm hospitality extended to him.
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