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CONVERGENCE AND REGULARIZATION RESULTS
FOR OPTIMAL CONTROL PROBLEMS WITH SPARSITY FUNCTIONAL
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Abstract. Optimization problems with convex but non-smooth cost functional subject to an elliptic
partial differential equation are considered. The non-smoothness arises from a L1-norm in the objective
functional. The problem is regularized to permit the use of the semi-smooth Newton method. Error
estimates with respect to the regularization parameter are provided. Moreover, finite element approx-
imations are studied. A-priori as well as a-posteriori error estimates are developed and confirmed by
numerical experiments.
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1. Introduction

We investigate optimal control problems with a non-smooth objective functional of the following type:
Minimize J(y, u), which is given by

J(y, u) =
1
2
‖y − yd‖2

L2(Ω) + β‖u‖L1(Ω) +
α

2
‖u‖2

L2(Ω) (1.1)

subject to the elliptic equation

Ay = u (1.2)

y|Γ = 0 (1.3)

and to the control constraints
ua(x) ≤ u(x) ≤ ub(x) a.e. on Ω. (1.4)

Here, Ω ⊂ R
n, n = 2, 3, is a bounded domain with boundary Γ. The operator A is assumed to be a lin-

ear, elliptic second-order differential operator. The parameters α, β are non-negative parameters. Let us de-
note the optimal control problem (1.1)–(1.4) by (P). Such optimal control problems with L1-functionals arise
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if one tries to find the best location of the control actuator, see e.g. Stadler [27]. This is due to the following
special property of the solutions: on sets, where the adjoint state is small, the optimal control must be zero.
Consequently, the optimal control has small support, which gives an indication to choose the actuator location.
Analogous observations can be made for optimization problems in sequence spaces involving l1-norms, see the
comments below.

The optimal control problem under consideration admits a unique optimal control that will be denoted by uα.
For α = 0, the resulting optimization problem is convex but non-smooth, whereas for α > 0 the optimization
problem admits a semi-smooth necessary optimality system, in this case, the parameter α acts as regularization
and smoothing parameter. We are especially interested in the behavior of solutions for fixed β ≥ 0 and α → 0.
For related estimates in the case β = 0 and with additional state constraints y ≤ yc, we refer to the recent work
by Lorenz and Rösch [22].

In this work, we investigate two types of approximations for Problem (P). First, we will study convergence
of solutions if the regularization parameter α tends to zero. We prove that the L2-norm of the regularization
error of the control obeys

‖u0 − uα‖L2 = O(α1/2),

see below Theorem 3.7. This is a novel result in the context of optimal control problems with inequality
constraints. Secondly, we study finite-element approximations for the regularized problem, which yields approx-
imations uα,h of uα in a finite-dimensional space. We prove the a-priori estimate

‖uα,h − uα‖L2 = O(h),

which coincide with available results for smooth functionals, i.e. for β = 0, see below Propositions 4.5 and 4.6.
Both a-priori results are combined in Section 5 to choose the regularization parameter α in dependence of the
mesh size h to obtain optimal convergence of u0 − uα,h. Moreover, localized a-posteriori error estimators of the
type

‖uα,h − uα‖2
L2 ≤ c

∑
T∈Th

η2
T

are considered, where the error indicators ηT can be used in an adaptive process to compute approximations of
solutions uα efficiently.

Let us comment on known results on a-priori and a-posteriori analysis of control constrained optimal control
problems with α > 0, β = 0. Basic a-priori estimates were derived by Falk [9], which yield that the L2-error of
the control is controlled by the mesh size h like O(h). Convergence results for the approximation of controls by
linear elements can be found in e.g. in the work of Casas and Mateos [4]. The recently introduced variational
discretization concept by Hinze [14] gives the error estimate ‖u− uh‖L2 = O(h2). The same convergence order
can be achieved by means of a post-processing step, see Meyer and Rösch [23].

A-posteriori error estimators of residual type were studied for instance by Liu et al. [18–20], and Hintermüller
et al. [13]. In addition, many papers are devoted to the so-called goal-oriented error estimators, for an outline
of the underlying ideas see the survey of Becker and Rannacher [2].

Finally, let us report about existing literature in the context of inverse problems involving minimization
problems in l1. There, e.g., a possibly noisy signal should be reconstructed with as less non-zero coefficients
of the solution as possible. That is, the support of the solution should be as small as possible, leading to
a minimization with l0-functionals. In certain situations, the minimizer of l1-functionals coincide with the
minimizer of the l0-problem, see Donoho [7], which justifies the use of l1-functionals to compute the sparsest
solution. Solution methods for the arising non-smooth problems are studied for instance by Daubechies et al. [6],
Griesse and Lorenz [11], Jin et al. [16], Ramlau and Teschke [25]. Regularization error estimates under suitable
source conditions for (α, β) → (0, 0) can be found for instance in Grasmair et al. [10] and Lorenz [21].

Optimization problems in L1 and l1 share some major properties: the resulting problems are convex and
non-smooth. Furthermore, the optimality conditions imply that their solutions have potentially small support.
The fundamental differences arise from the different underlying functional analytic structure: The space l1 is
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the dual of the Banach space c0, which yields that the unit ball l1 is weak-star compact and that the l1-norm
is weak-star lower semicontinuous. This can be used to prove existence of solutions for optimization problems
involving l1-norms. The same argument does not apply for L1(Ω): This space is not the dual space of any
normed linear space, hence the notation ‘weak-star’ makes no sense. Moreover, bounded sets in L1(Ω) are
in general not relatively weak compact due to the Dunford-Pettis theorem. In particular, the optimization
problem (1.1)–(1.3) for α = 0 without additional constraints has no solution in L1(Ω) in general. Here one has
to resort to measures, see e.g. Clason and Kunisch [5]. Hence, the control constraints (1.4) are indispensable
to prove existence of solutions of (P).

For inverse problems, the question of convergence of solutions for (α, β) → (0, 0) is studied intensively.
There, one is interested to obtain in the limit the solution of an operator equation. Compared to optimal
control problems this corresponds to the case that the optimal state y0 for α = 0 fulfills y0 = yd, i.e. that the
desired state can be reached. Due to the presence of the inequality constraints and due to β �→ 0 this cannot be
expected in general. One main ingredient in the existing convergence proofs, are the so-called source conditions,
where one assumes that u0 lies in the range of a certain adjoint operator S∗. In our case, this would mean that
u0 is in the range of the solution operator of an elliptic partial differential equation, which implies the regularity
u0 ∈ H1(Ω). This is not practical for problems with control constraints, since for α = 0 the optimal control u0

is discontinuous in general with jumps along curves, which means that u0 �∈ H1(Ω). This makes the fulfillment
of a range condition unlikely. In the proof of our convergence result, we rather used a structural assumption on
the active sets, see below Theorem 3.7. For a more detailed comparison, we refer to the discussion in Section 3.2
below.

Notations and assumptions

Let Ω ⊂ R
d, d = 2, 3, be a bounded domain with Lipschitz boundary Γ. The operator A is a uniformly

elliptic differential operator defined by

(Ay)(x) = −
N∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
y(x)

)
+ c0(x)y(x)

with functions aij ∈ C0,1(Ω̄), c0 ∈ L∞(Ω), satisfying the condition aij(x) = aji(x) and for some δ0, δ1 > 0

δ0‖y‖2
H1(Ω) ≤ 〈Ay, y〉H−1,H1 ∀y ∈ H1

0 (Ω),

〈Ay1, y2〉H−1,H1 ≤ δ1‖y1‖H1(Ω)‖y2‖H1(Ω) ∀y1, y2 ∈ H1
0 (Ω).

Let us denote by a(·, ·) the bilinear form induced by A

a(u, v) = 〈Au, v〉H−1,H1 .

The elliptic equation is solved in the weak sense, i.e. the weak solution y satisfies

a(y, v) = (u, v) ∀v ∈ H1
0 (Ω). (1.5)

The corresponding solution mapping is denoted by S, which is a continuous linear injective operator from
H−1(Ω) to H1

0 (Ω). Thanks to the assumptions on the differential operator A above, the operator S as well as
its adjoint operator S� is continuous from L2(Ω) to L∞(Ω), see e.g. [28].

Furthermore, functions yd ∈ L2(Ω), ua, ub ∈ L∞(Ω)∩H1(Ω), ua(x) ≤ 0 ≤ ub(x) a.e. on Ω, are given. Please
note, that the assumption ua ≤ 0 ≤ ub is not a restriction. If one has, e.g., ua > 0 on a subset Ω1 ⊂ Ω, we can
decompose the L1-norm as ‖u‖L1(Ω) = ‖u‖L1(Ω\Ω1) +

∫
Ω1

u. Hence, on Ω1 the L1-norm in Uad is in fact a linear
functional, and thus the problem can be handled in an analogous way.
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2. Existence of solutions and optimality conditions

In this section we prove existence and uniqueness of solutions. Moreover, we derive optimality conditions.
In [27] this is done already for the case α > 0, but we will also handle the case α = 0.

Lemma 2.1. The problem (P) has a unique solution even in the cases α = 0 or β = 0.

Proof. Since the solution mapping S is injective, it is easy to see that the reduced objective Ĵ(u) := J(Su, u) is
strictly convex and continuous. Furthermore, the set Uad is convex and weakly compact in L2(Ω). Therefore,
the existence and uniqueness of the optimal control follows from standard arguments [29]. �

Let us remark that it is also possible to prove the existence and uniqueness of the solution for α = 0 in
a pure L1 setting. That is, if we assume only ua, ub ∈ L1(Ω) we have to state the problem in L1(Ω) since
Uad �⊂ L2(Ω). Therefore, we need higher regularity assumptions of the domain Ω to solve the elliptic equation
with a right-hand side in L1(Ω). Caused by the fact that L1(Ω) is not reflexive, we can not prove the weak
compactness of Uad by its boundedness. However, weak compactness can be proven directly, which gives the
existence and uniqueness of a solution in L1(Ω), see [30], p. 8.

Since the objective function is not smooth but convex with respect to u, we can use the calculus of subdif-
ferentials, see e.g. [15], Chapter 0.3.2. The subdifferential of the L1(Ω)-norm is given by

v ∈ ∂‖u‖L1 ⇔ v(x)

⎧⎪⎨
⎪⎩

= 1 u(x) > 0
∈ [−1, 1] u(x) = 0
= −1 u(x) < 0

for almost all x ∈ Ω, v ∈ L∞(Ω). (2.1)

Now we can characterize the solution of (P) by a variational inequality, which is necessary and sufficient for
the optimality of uα.

Lemma 2.2. The functions uα ∈ Uad and yα = Suα are the optimal solution of (P) if and only if uα, the
adjoint state pα = S�(yd − yα) and a subgradient λα ∈ β∂‖uα‖L1 satisfy the variational inequality

(−pα + αuα + λα, u − uα) ≥ 0 for all u ∈ Uad. (2.2)

Proof. Following [15] we can compute the necessary and sufficient optimality condition for the convex problem
minu∈Uad

Ĵ(u) as follows: uα is a solution if there exists λ�
α ∈ ∂Ĵ(uα) such that for every u ∈ Uad

(λ�
α, u − uα) ≥ 0 (2.3)

holds. We derive the subdifferential as

∂Ĵ(uα) = −pα + αuα + β∂‖uα‖L1 ,

and so the variational inequality directly follows. �

As in [29], p. 57, and [27], p. 4, one can discuss the variational inequality pointwise and get a pointwise
relation of uα and pα as displayed in Figure 1. We see that |pα| < β implies uα = 0, which promotes the
sparsity property of uα. See [27] for a more detailed discussion.

3. Estimates of the regularization error

As already mentioned, one can compute solutions of (P) with a semi-smooth Newton method in the case
α > 0, where the method converge locally super-linearly, see [27], Theorem 4.3. This however does not hold for
α = 0. Hence, it is natural to approximate the solution u0 for α = 0 with the solutions uα for α > 0.
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Figure 1. Relationship between uα and pα.

3.1. Estimation by regularity of the active sets

At first, we derive an inequality that will be the starting point to obtain error estimates for the states and
adjoints.

Lemma 3.1. The inequality

‖yα′ − yα‖2
L2 + α ‖uα′ − uα‖2

L2 ≤ (α′ − α) (uα′ , uα − uα′)

holds for all α > 0, α′ ≥ 0.

Proof. The solutions uα′ , uα fulfill the variational inequalities

(−pα′ + α′uα′ + λα′ , v1 − uα′) ≥ 0

(−pα + α uα + λα , v2 − uα ) ≥ 0

each for all admissible v1, v2 ∈ Uad. Testing with v1 = uα and v2 = uα′ , and adding the inequalities leads to

(pα′ − pα − α′uα′ + αuα − λα′ + λα, uα′ − uα) ≥ 0.

Since λα′ and λα are subgradients of ‖ · ‖L1 , we obtain

(−λα′ + λα, uα′ − uα) ≤ 0

by using the monotonicity of the subdifferential. This gives

(pα′ − pα − α′uα′ + αuα, uα′ − uα) ≥ 0

which directly leads to

0 ≤ (S�(yα − yα′), uα′ − uα) − α (uα′ − uα, uα′ − uα) + (α − α′) (uα′ , uα′ − uα)

= −‖yα′ − yα‖2
L2 − α ‖uα′ − uα‖2

L2 + (α′ − α) (uα′ , uα − uα′).

This entails our claim. �
Using α′ = 0 in the previous lemma we obtain the estimate

‖y0 − yα‖2
L2 + α ‖u0 − uα‖2

L2 ≤ α (u0, u0 − uα). (3.1)
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Table 1. Partition of Ω, used in Proof of Lemma 3.3.

p0 < −β |p0| < β p0 > β
pα ≤ −β + αua u0 = uα = ua I1 I1

pα ∈ (−β + αua,−β] I2 I1 I1

|pα| < β I1 u0 = uα = 0 I1

pα ∈ [β, β + αub) I1 I1 I3

pα ≥ β + αub I1 I1 u0 = uα = ub

Since the admissible set is bounded due to the control constraints, we can conclude a first convergence result
for the states and adjoints.

Corollary 3.2. The estimate

‖y0 − yα‖L2 ≤ C α1/2, ‖p0 − pα‖L∞ ≤ C α1/2

holds for all α > 0.

Proof. The operator S� maps right-hand sides in L2(Ω) to adjoints in L∞(Ω), which yields with (3.1)

‖p0 − pα‖2
L∞ ≤ α ‖S�‖2

2→∞ (u0, u0 − uα). (3.2)

Since the scalar product (u0, u0 − uα) is bounded due to the control constraints, we find directly the stated
convergence rates. �

We will now show convergence rates for the error in the adjoint states imply convergence rates for the error
in the controls. To this end, we have to make an assumption on the boundary of the set {|p0| = β}. Analogous
assumptions on the boundary of active sets can be found in connection with finite element error estimates for
elliptic optimal control problems, see [4,23].

Lemma 3.3. Let us assume that there exists a constant Cp > 0 such that for every ε ≥ 0 the estimate for the
Lebesgue measure μ of

{∣∣|p0| − β
∣∣ ≤ ε

}
is bounded as:

μ
({∣∣|p0| − β

∣∣ ≤ ε
})

≤ Cp ε. (3.3)

Then we have for all d ∈ (0, 1]

‖p0 − pα‖L∞ ≤ C αd ⇒ ‖u0 − uα‖L2 ≤ C′ αd/2

and ‖p0 − pα‖L∞ ≤ C′′ α
d+2
4 .

Proof. Let us divide Ω in disjoint sets depending on the values of p0 and pα, see also Table 1,

I1 := {x ∈ Ω : β or − β lies between p0 and pα}
I2 := {x ∈ Ω : p0, pα ≤ −β and pα ≥ −β + αua}
I3 := {x ∈ Ω : p0, pα ≥ +β and pα ≤ β + αub}.

Note that we can ignore the set {|p0| = β}, since it has measure zero by assumption (3.3). Let us define the
union U = I1 ∪ I2 ∪ I3. On Ω \ U we have u0 = uα, while we can bound the measures of the sets I1, I2 and I3.
On I1 the assumption ensures

∣∣|p0| − β
∣∣ ≤ ∣∣p0 − pα| ≤ C αd. On I2 we have ||p0| − β| = |p0 + β| ≤ αua + C αd

and on I3 we have analogously ||p0|−β| ≤ αub +C αd. So on the union U we have ||p0|−β| ≤ Cb α+C αd with
the constant Cb = max(‖ua‖L∞ , ‖ub‖L∞) depending on the bounds ua, ub. Using d ≤ 1 and α ≤ 1 we have
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||p0| − β| ≤ (C + Cb)αd. Now we can bound the measure M = μ(U) of this set and get M ≤ Cp (C + Cb)αd.
Due to the L∞ control constraints and u0 = uα on Ω \ U , we have by (3.1)

‖u0 − uα‖2
L2 ≤ M ‖u0‖L∞‖u0 − uα‖L∞ ≤ 2 Cp (C + Cb)C2

b αd.

By (3.2) we obtain

‖p0 − pα‖L∞ ≤ CS (C′
b)

1/2 (2 Cp (C + Cb)C2
b )1/4 α

d+2
4 ,

with the constants C′
b = maxu∈Uad

‖u‖L2 = ‖max(ub,−ua)‖L2 and CS = ‖S�‖2→∞. Let us define C′ :=
Cb (2 Cp (C + Cb))1/2. Then we obtain the desired implication

‖p0 − pα‖L∞ ≤ C αd ⇒ ‖u0 − uα‖L2 ≤ C′ αd/2

and ‖p0 − pα‖L∞ ≤ CS (C′
b C′)1/2 α

d+2
4

for all d ∈ (0, 1]. �

With this lemma, we can prove a first convergence result.

Corollary 3.4. Under the assumptions of Lemma 3.3, there is for each d < 1/3 a constant Cd > 0 such that

‖u0 − uα‖L2 ≤ Cd αd

holds.

Proof. By Lemma 3.3, ‖p0 − pα‖L∞ ≤ C αd implies ‖u0 − uα‖L2 ≤ C′ αd/2 and ‖p0 − pα‖L∞ ≤ C′′ α(d+2)/4.
By Corollary 3.2, we know already ‖p0 − pα‖L∞ ≤ C α1/2. Now, let us consider the sequence d0 = 1/2,
dk+1 = (dk + 2)/4, which corresponds to the convergence rates of the adjoint states. It is monotonically
increasing and has the limit 2/3. So we get for all d < 2/3 a constant Cd with ‖p0 − pα‖L∞ ≤ Cd αd and
‖u0 − uα‖L2 ≤ Cd αd/2. This proves the claim. �

This corollary provides us with convergence rates for the controls up to order 1/3− ε. However, we observed
higher convergence rates in our numerical experiments. We will now prove higher rates using sensitivity infor-
mation with respect to the parameter α. Similar techniques are used for path-following algorithms, see e.g. [26]
for an application to an optimal control problem with state constraints.

At first let us state the following differentiability result, which is proven in the appendix.

Lemma 3.5. The mappings α �→ uα, α �→ yα and α �→ pα are Gâteaux-differentiable into L2(Ω), L2(Ω) and
L∞(Ω), respectively, at almost all α > 0. With help of the sets

I1 = {pα ∈ (β, β + αub)} ,

I2 = {pα ∈ (−β + αua,−β)}

the derivatives are given as solutions of the system

u̇α =
1
α2

[(β − pα)χI1 − (β + pα)χI2 ] +
1
α

ṗαχI1∪I2 (3.4a)

ẏα = Su̇α (3.4b)

ṗα = −S�ẏα. (3.4c)
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Please note, that the claim of the lemma is only valid for almost all α > 0. To obtain differentiability for
all α > 0, one has to resort to directional (Bouligand) derivatives. Then the resulting system for (u̇α, ẏα, ṗα) is
not longer linear. However, the quantities (u̇α, ẏα, ṗα) can be interpreted as the solution of a suitably chosen
inequality-constrained optimization problem. See [12] for further discussions and references.

Using the sensitivity information, we can estimate the distance from yα to by an integral over the solutions
of the sensitivity system.

Lemma 3.6. For all α > 0 we have the following estimate

‖y0 − yα‖L2 ≤
∫ α

0

‖ẏα̃‖L2 dα̃.

Proof. Let us consider the function f : α �→ ‖y0 − yα‖L2 . This function is Lipschitz continuous on each interval
[ε, M ], ε > 0 by Lemma 3.1, and thus also absolutely continuous and almost everywhere differentiable. Moreover,
it holds

f(α1) − f(α2) =
∫ α2

α1

f ′(t) dt

for αi ∈ [ε, M ]. Now, let us estimate the difference quotient∣∣∣∣‖y0 − yα+δ‖L2 − ‖y0 − yα‖L2

δ

∣∣∣∣ ≤
∥∥∥∥1

δ
(yα+δ − yα)

∥∥∥∥
L2

,

and taking the limit δ → 0 yields
|f ′(α)| ≤ ‖ẏα‖L2

for almost all α > 0. Therefore we have

f(α) − f(ε) ≤
∫ α

ε

‖ẏα̃‖L2 dα̃ ≤
∫ α

0

‖ẏα̃‖L2 dα̃

for all ε > 0, and passing to the limit ε → 0 yields

‖y0 − yα‖ ≤
∫ α

0

‖ẏα̃‖L2 dα̃

since f is continuous in 0 with f(0) = 0. �
Now we can proof the main result of this section. The idea is to estimate the norm of the derivatives ẏα, and

then apply the previous lemma to obtain an estimate of the error.

Theorem 3.7. Let the regularity assumption

μ
({∣∣|pα| − β

∣∣ ≤ ε
})

≤ Cp ε (3.5)

be satisfied for α = 0. Then for each d < 1 there is a constant Cd, such that

‖u0 − uα‖L2 ≤ Cd αd/2, (3.6a)

‖y0 − yα‖L2 ≤ Cd αd, (3.6b)

‖p0 − pα‖L∞ ≤ Cd αd, (3.6c)

holds as α → 0.
If, in addition, the regularity condition (3.5) holds uniformly for almost all α ≥ 0, then there is a constant C1

such that (3.6) is true for d = 1.
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The first part of the theorem uses the same regularity condition as Lemma 3.3. Using the sensitivity infor-
mation, we can however show a stronger result. If the regularity condition holds uniformly for α ≥ 0, then we
can prove the full convergence rate. In this case the regularity condition implies that the set {

∣∣|pα| − β
∣∣ = 0}

has zero measure for α ≥ 0.

Proof. In this proof C denotes a generic constant that is independent of α. Testing (3.4b) with ẏα and (3.4c)
with u̇α yields

‖ẏα‖2
L2 = −

∫
Ω

u̇αṗα dx.

Combining this result with equation (3.4a) we obtain with the notations I1 and I2 from Lemma 3.5

‖ẏα‖2
L2 +

1
α
‖ṗαχI‖2

L2 =
1
α2

[∫
I1

(pα − β)ṗα dx +
∫

I2

(pα + β)ṗα dx

]
. (3.7)

Then by definition of these sets, we have pα − β ∈ (0, α ub) on I1 and pα + β ∈ (α ua, 0) on I2. Let us define
I := I1 ∪ I2.

Together with ua, ub ∈ L∞(Ω) we can estimate the right hand side of (3.7) and obtain

‖ẏα‖2
L2 +

1
α
‖ṗαχI‖2

L2 ≤ C

α
‖ṗαχI‖L2 ‖χI‖L2 ,

which implies

‖ẏα‖L2 ≤ C√
α
‖χI‖L2 . (3.8)

Now, it remains to bound ‖χI‖L2 =
√

μ(I).
Case 1. Inequality (3.5) holds for α = 0 and for almost all α > 0:

The regularity assumption (3.5) yields
μ(I) ≤ C α,

and with (3.8) we get
‖ẏα‖L2 ≤ C.

Now integration (Lem. 3.6) yields
‖y0 − yα‖L2 ≤ C α

and we conclude with the smoothing property of S� and Lemma 3.3

‖p0 − pα‖L∞ ≤ C α,

‖u0 − uα‖L2 ≤ C α1/2.

Case 2. Inequality (3.5) holds for α = 0:
In this case we use a bootstrapping argument similar to Corollary 3.4. Let us define Cb := max(‖ua‖∞, ‖ub‖∞).

Then we have
I ⊂

{∣∣|pα| − β
∣∣ ≤ Cb α

}
.

Now, suppose that ‖p0 − pα‖∞ ≤ C αd with d < 1 holds. Using
∣∣|p0| − β

∣∣ ≤ ∣∣|pα| − β
∣∣ + |pα − p0| we have for

α < 1
I ⊂

{∣∣|pα| − β
∣∣ ≤ Cb α

}
⊂
{∣∣|p0| − β

∣∣ ≤ C αd
}

.

Utilizing assumption (3.5), we conclude μ(I) ≤ C αd. Following the same steps as in Case 1, we obtain
‖ẏα‖L2 ≤ C α(d−1)/2, ‖y0 − yα‖L2 ≤ C α(d+1)/2 and ‖p0 − pα‖∞ ≤ C α(d+1)/2. Thus, we proved the implication

‖p0 − pα‖∞ ≤ C αd ⇒ ‖p0 − pα‖∞ ≤ C α(d+1)/2.
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Starting with d = 1/2 (Cor. 3.2) and observing that the sequence a0 = 1/2, an+1 = (an + 1)/2 converges
towards 1 ends the proof. �

3.2. Discussion of the regularity assumption and source conditions

We proved the convergence results under the regularity assumption (3.3), which reads

μ
({∣∣|p0| − β

∣∣ ≤ ε
})

≤ Cp ε.

This assumption implies, that the set
{∣∣|p0| − β

∣∣ = 0
}

has zero measure. Consequently, the optimal control u0

satisfies u0(x) ∈ {ua(x), 0, ub(x)} almost everywhere. This is typically observed for solutions of optimal control
problems for α = 0. There the optimal control has discontinuities on the set

{∣∣|p0| − β
∣∣ = 0

}
, which means that

in general u0 �∈ H1(Ω) holds.
Let us comment on available source conditions for our optimal control problem. The considerations will be

based on the inequality (3.1), i.e.

‖y0 − yα‖2
L2 + α ‖u0 − uα‖2

L2 ≤ α (u0, u0 − uα). (3.9)

Following Lorenz and Rösch [22], let us assume that the following source condition is fulfilled: There exists
w ∈ L2(Ω) such that

u0 = PUad
(S∗w).

Due to the properties of the projection, we have

(u0 − S∗w, uα − u0) ≥ 0.

Then (3.9) becomes

‖y0 − yα‖2
L2 + α‖u0 − uα‖2

L2 ≤ α (u0, u0 − uα) ≤ α(S∗w, u0 − uα) = α(w,S(u0 − uα)) = α(w, y0 − yα),

which gives
‖y0 − yα‖L2 ≤ α‖w‖L2 , ‖u0 − uα‖L2 ≤

√
α‖w‖L2 .

However, the assumption on u0 implies the regularity u0 ∈ H1(Ω) for bounds ua, ub ∈ H1(Ω), and is thus
not compatible with the observation that u0 is typically not in H1(Ω). Other source conditions as developed
in [10,21] are not directly applicable, since they are tailored to the case (α, β) → (0, 0), while we are considering
the convergence for α → 0 and fixed β.

4. A PRIORI finite element error analysis, α > 0

As indicated, the optimal control problem with α > 0 is better suited for numerical computations. After
studying the regularization error, we will now turn to the finite element analysis of the regularized problems.

Let us fix the assumptions on the discretization of Problem (P) by finite elements. First let us specify the
notation of regular meshes. Each mesh T consists of closed cells T (for example triangles, tetrahedra, etc.) such
that Ω̄ =

⋃
T∈T T holds, which implies in particular that cells with edges/faces lying on the boundary are curved

for smooth, non-polygonal Ω. We assume that the mesh is regular in the following sense: For different cells
Ti, Tj ∈ T , i �= j, the intersection Ti ∩Tj is either empty or a node, an edge, or a face of both cells, i.e. hanging
nodes are not allowed. Let us denote the size of each cell by hT = diamT and define h(T ) = maxT∈T hT . For
each T ∈ T , we define RT to be the diameter of the largest ball contained in T .

We will work with a family of regular meshes F = {Th}h>0, where the meshes are indexed by their mesh
size, i.e. h(Th) = h. We assume in addition that there exist two positive constants ρ and R such that

hT

RT
≤ R,

h

hT
≤ ρ
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hold for all cells T ∈ Th and all h > 0. With each mesh Th ∈ F we associate a finite-dimensional subspace
Vh ⊂ V . For a given right-hand side u, we define yh ∈ Vh as the solution of the discrete weak formulation

a(yh, vh) = (u, vh) ∀vh ∈ Vh, (4.1)

and we denote the corresponding solution operator by Sh, i.e. yh = Shu. In the following, we rely on an
assumption on the spaces Vh, which is met by standard finite element choices.

Assumption 4.1. Let u ∈ L2(Ω) be given. Let y and yh be the solutions of (1.5) and (4.1), respectively. There
exists a constant cA > 0 independent of h, u such that

‖y − yh‖L2 + h‖y − yh‖H1 ≤ cA h2 ‖u‖L2.

This assumption implies in particular ‖Sh − S‖L2→H1 ≤ cA h.
Now, let us introduce the control discretization. We will discretize the control utilizing positive basis func-

tions. Here, we follow an approach introduced by Meyer et al. in [24]. Alternatively, one can follow the so-called
variational approach of [14], in which one sets Uh := U , see the corresponding arguments in Section 4.3.

Assumption 4.2. To each mesh we associate a finite-dimensional space Uh ⊂ U . There is a basis Φh =
{φ1

h, . . . , φNh

h } of Uh, e.g. Uh = spanΦh, where the basis functions φi
h ∈ L∞(Ω) have the following properties:

φi
h ≥ 0, ‖φi

h‖∞ = 1 ∀i = 1 . . .Nh,

Nh∑
i=1

φi
h(x) = 1 for a.a. x ∈ Ω. (4.2)

Furthermore, there are numbers M, N such that following conditions are fulfilled for all h and all i = 1 . . .Nh:
each support ωhi := supp φhi is connected, and it is contained in the union of at most M adjacent cells T ∈ Th

sharing at least one vertex. Each cell T ∈ Th is subset of at most N supports ωi
h.

This assumption covers several commonly-used control discretizations, such as piecewise constant or linear
functions, see [24]. Following the approach of [3,24], let us introduce a quasi-interpolation operator Πh : L1(Ω) →
Uh. The operator Πh is given by

Πh(u) :=
Nh∑
i=1

πi
h(u)φi

h with πi
h(u) :=

∫
Ω uφi

h∫
Ω φi

h

·

Please note, that Πh is not a projection with respect to the L2-scalar product. Nevertheless, the following
orthogonality relation holds for u ∈ L2(Ω) ∫

Ω

(u − πi
h(u))φi

h = 0. (4.3)

Based on the assumptions on the mesh and on the control discretization, we have the following interpolation
estimates. For the proofs, we refer to [3,24].

Lemma 4.3. There is a constant cI independent of h such that

h‖u − Πhu‖L2(Ω) + ‖u − Πhu‖H−1(Ω) ≤ cIh
2‖∇u‖L2(Ω)

is fulfilled for all u ∈ H1(Ω).

It remains to describe the discrete admissible set Uad,h. We use the quasi-interpolation operator Πh to define
new bounds by

ua,h = Πhua =
∑

i

ui
a,hφi

h =
∑

i

πi
h(ua)φi

h, ub,h = Πhub =
∑

i

ui
b,hφi

h.
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Let us set

Uad,h := {u ∈ Uh : ua,h ≤ u ≤ ub,h a.e. on Ω}.

Here it may happen, that ua,h or ub,h are no longer admissible, i.e. ua,h �∈ Uad or ub,h �∈ Uad, which gives in the
end a not admissible discretization Uad,h �⊂ Uad. For the special case of constant upper and lower bounds ua

and ub, it holds Uad,h ⊂ Uad. Nevertheless, the admissible set Uad,h can be written equivalently in the following
way.

Lemma 4.4. Let ua,h, ub,h, Uad,h be defined as above. Then it holds

Uad,h =

{
u =

∑
i

uiφi
h, ui

a,h ≤ ui ≤ ui
b,h

}
. (4.4)

Proof. The first part ‘⊂’ of (4.4) follows directly from Assumption 4.2, which gives ui
a,h ≤ ui

h ≤ ui
b,h. Summation

of ui
a,hφi

h(x) ≤ uiφi
h(x) ≤ ui

b,hφi
h(x) yields also the second inclusion ‘⊃’. �

Thanks to this lemma, the constraint uh ∈ Uad,h can be transformed in simple box constraints of the
coefficients of uh, which enables to use efficient solution techniques for the resulting optimization problem.

Let us now define the discrete optimal control problem as: Minimize J(yh, uh) subject to uh ∈ Uad,h and

a(yh, vh) = (u, vh) ∀vh ∈ Vh.

This represents an optimization problem, which is uniquely solvable. Let us denote its solution by (yα,h, uα,h)
with associated adjoint state pα,h and subgradient λα,h ∈ ∂‖uh‖L1 . Analogously to the continuous problem,
one obtains the variational inequality

(αuα,h − pα,h + λα,h, uh − uα,h) ≥ 0 ∀uh ∈ Uad,h (4.5)

as necessary and sufficient optimality condition, see Lemma 2.2.
We will now derive error estimates in terms of the mesh size h. At first, we will derive upper bounds of

‖uα − uα,h‖L2 and ‖yα − yα,h‖L2 . For different choices of Uh, we have to proceed differently, which amounts in
a number of analogous error estimates. Now, let us start to derive the basic error bound with the help of the
variational inequalities (2.2) and (4.5).

Here, it would be nice if we could use uα as a test function in the variational inequality (4.5), which char-
acterizes uα,h. However, in general the function uα does not belong to Uad,h and cannot be utilized as test
function. To overcome this difficulty, let us introduce an approximation ũh ≈ uα with ũh ∈ Uad,h, which is
suitable as test function in (4.5).

The same arguments apply to uα,h. Here one cannot expect uα,h ∈ Uad if for instance the control bounds are
not constants. Thus, let us take a function ũ ≈ uα,h that is feasible for the continuous problem, i.e. ũ ∈ Uad,
and can be used as test function in the variational inequality (2.2).

Now let us use the test function ũ in (2.2) and the test function ũh in (4.5). Adding the resulting inequalities
we obtain

α‖uα − uα,h‖2
L2 ≤ (αuα,h − pα,h, ũh − uα) + (αuα − pα, ũ − uα,h) − (pα,h − pα, uα − uα,h)

+ β(‖ũ‖L1 − ‖uα,h‖L1 + ‖ũh‖L1 − ‖uα‖L1). (4.6)
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Using standard argumentations, see e.g. [9], one finds

α‖uα − uα,h‖2
L2 + ‖yα − yα,h‖2

L2 ≤ (αuα − pα, ũ − uα,h + ũh − uα) + α(uα,h − uα, ũh − uα)

− (yα,h − yα, (Sh − S)ũh + S(ũh − uα))

− (yα − yd, (Sh − S)(ũh − uα,h))

+ β(‖ũ‖L1 − ‖uα,h‖L1 + ‖ũh‖L1 − ‖uα‖L1). (4.7)

Here, we can apply Assumption 4.1 to estimate Sh − S, which gives

α

2
‖uα − uα,h‖2

L2 +
1
2
‖yα − yα,h‖2

L2 ≤‖αuα − pα‖H1(‖ũ − uα,h‖H−1 + ‖ũh − uα‖H−1) + α‖ũh − uα‖2
L2

+ c2
Ah4‖ũh‖2

L2 + ‖S‖2
L(H−1,L2)‖ũh − uα‖2

H−1

+ cAh2‖yα − yd‖L2(‖ũh − uα‖L2 + ‖uα − uα,h‖L2)

+ β(‖ũ‖L1 − ‖uα,h‖L1 + ‖ũh‖L1 − ‖uα‖L1). (4.8)

Let us define ũh = Πhuα, which implies ũh ∈ Uad,h. Then we have by Lemma 4.3

h‖ũh − uα‖L2 + ‖ũh − uα‖H−1 ≤ cI h2 ‖uα‖H1 .

Denoting by u+
α and u−

α the positive and negative parts of uα, we find

‖ũh‖L1 = ‖Πhu+
α + Πhu−

α‖L1 ≤ ‖Πhu+
α‖L1 + ‖Πhu−

α‖L1 = ‖u+
α‖L1 + ‖u−

α‖L1 = ‖uα‖L1.

Thus, this choice of ũh yields

α

2
‖uα − uα,h‖2

L2 +
1
2
‖yα − yα,h‖2

L2 ≤ ‖αuα − pα‖H1(‖ũ − uα,h‖H−1 + cI h2 ‖uα‖H1)

+ c2
I h2α‖uα‖2

H1 + c2
Ah4‖ũh‖2

L2 + ‖S‖2
L(H−1,L2)c

2
I h4 ‖uα‖2

H1

+ cAh2‖yα − yd‖L2(cI h ‖uα‖H1 + ‖uα − uα,h‖L2) + β(‖ũ‖L1 − ‖uα,h‖L1). (4.9)

Let us recall that for α > 0 the optimal control uα has the regularity uα ∈ H1(Ω). However, its H1-norm
depends on α:

‖uα‖H1 ≤ 1
α
‖pα‖H1 + ‖ua‖H1 + ‖ub‖H1 .

Due to the control constraints, the H1-norm of pα is bounded independently of α ≥ 0. The quantity ‖αuα −
pα‖H1 is also bounded independently of α: on sets, where it holds αuα −pα �= 0, the control constraint is active
or uα = 0. There, the expression ‖pα‖H1 + α(‖ua‖H1 + ‖ub‖H1) realizes an upper bound of ‖αuα − pα‖H1 .
Altogether, we can choose M > 0 large enough and independent of α, h and α0 > 0, such that it holds for all
α0 ≥ α ≥ 0, h ≥ 0

‖pα‖H1 + α(‖ua‖H1 + ‖ub‖H1) + ‖yα − yd‖L2 + sup
uh∈Uad,h

‖uh‖L2 ≤ M,

which implies immediately ‖uα‖H1 ≤ Mα−1. The inequality (4.9) becomes

α

2
‖uα − uα,h‖2

L2 +
1
2
‖yα − yα,h‖2

L2 ≤M(‖ũ − uα,h‖H−1 + cIM h2 α−1)

+ c2
IM

2 h2 α−1 + cAM2 h4 + ‖S‖2
L(H−1,L2)c

2
IM

2 h4 α−2

+ cAh2M(cIM h α−1 + ‖uα − uα,h‖L2) + β(‖ũ‖L1 − ‖uα,h‖L1). (4.10)
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We will now distinguish different cases of discretizations and control bounds. The methods of proof will differ
in the choices of ũ ≈ uα,h.

4.1. General control discretization, constant upper and lower bounds

For constant ua, ub, we have ui
a,h = ua, ui

b,h = ub, which results in ua,h = ua and ub,h = ub. Hence it holds
Uad,h ⊂ Uad, which allows for the choice ũ = uα,h. Then inequality (4.10) implies:

Proposition 4.5. Let ua, ub be constant. Then for every α0 > 0, h0 > 0 there is a constant C > 0 such that
for all α ≤ α0, h ≤ h0 it holds

‖uα − uα,h‖L2 ≤ C(h α−1 + h2 α−3/2)
where C is independent of α, h.

Proof. With the choice ũ = uα,h, inequality (4.10) gives

α

2
‖uα − uα,h‖2

L2 ≤ (cIM
2 + c2

IM
2)h2 α−1 + c2

AM2 h4 + ‖S‖2
L(H−1,L2)c

2
IM

2 h4 α−2

+ cAcIM
2 h3 α−1 +

α

4
‖uα − uα,h‖2

L2 + 2c2
AM2 h4 α−1,

which yields with suitable chosen C > 0 for α ≤ α0, h ≤ h0

‖uα − uα,h‖L2 ≤ C(h α−1 + h2 α−3/2). �

4.2. Piecewise constant control discretization, variable control bounds

Here, we choose piecewise constant control functions, that is, we require φi
h(x) ∈ {0, 1} everywhere on Ω for

all i, h. Hence the supports of two different trial functions are disjoint. Let us remark that the arguments in
the proof rely on the assumption ua ≤ 0 ≤ ub.

We choose ũh = Πhuα as in the previous subsection. We set ũ as

ũ =
Nh∑
i=1

(σi
aua + σi

bub)φi
h

with coefficients chosen as

σi
a =

{
ui

α,h/ui
a,h if ui

α,h < 0,

0 if ui
α,h ≥ 0,

σi
b =

{
0 if ui

α,h ≤ 0
ui

α,h/ui
b,h if ui

α,h > 0.

This implies σi
a, σi

b ∈ [0, 1], σi
aσi

b = 0 and ũ ∈ Uad. Moreover, it holds

ũ − uα,h =
Nh∑
i=1

(σi
a(ua − ui

a,h) + σi
b(ub − ui

b,h))φi
h.

Following [24], Lemmas 4.4 and 4.5, one finds

h‖ũ − uα,h‖L2 + ‖ũ − uα,h‖H−1 ≤ c h2 (‖∇ua‖L2 + ‖∇ub‖L2).

It remains to investigate the L1-norm of ũ. Here, we obtain

‖ũ‖L1 =
Nh∑
i=1

(
σi

a

∫
Ω

|ua|φi
h + σi

b

∫
Ω

|ub|φi
h

)
=

Nh∑
i=1

(σi
a|ui

a,h| + σi
b|ui

b,h|) = ‖uα,h‖L1,
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where we used essentially that the supports of the φi
h’s are pairwise disjoint. Using now this results on ũ and

the results for ũh above, we obtain from the inequality (4.10):

Proposition 4.6. Let ua, ub ∈ H1(Ω) satisfy ua ≤ 0 ≤ ub. The control space is discretized by piecewise
constant trial functions as above. Then for every α0 > 0, h0 > 0 there is a constant C > 0 such that for all
α ≤ α0, h ≤ h0 it holds

‖uα − uα,h‖L2 ≤ C(h α−1 + h2 α−3/2)

where C is independent of α, h.

4.3. Variational control discretization

The error estimate for the variational control discretization is a simple consequence of (4.6). Following [14],
we set Uh = U , which gives Uad,h = Uad.

Corollary 4.7. Let Uh = U . Then for every α0 > 0, h0 > 0 there is a constant C > 0 such that for all
α ≤ α0, h ≤ h0 the L2-error of the controls satisfies

‖uα − uα,h‖L2 ≤ C h2 α−1

with C independent of h, α.

Proof. Due to Uad = Uad,h, we can choose ũh = uα and ũ = uα,h in (4.7), and we obtain

α‖uα − uα,h‖2
L2 + ‖yα − yα,h‖2

L2 ≤ −(yα,h − yα, (Sh − S)uα) − (yα − yd, (Sh − S)(uα − uα,h)), (4.11)

which immediately yields in terms of the constants introduced above

α‖uα − uα,h‖2
L2 + ‖yα − yα,h‖2

L2 ≤ (cAMh2)2 + (cAM h2)2 α−1. �

4.4. Discretization of the L1-norm

Up to now, we assumed that λα,h belongs to the subgradient of the L1-norm at uα,h. This property can be
maintained for piecewise constant control trial functions. In general, depending on the choice of Uh, λα,h will not
belong to a finite-dimensional subspace. For example, if Uh consists of piecewise linear functions over triangles,
then λh may have jumps along lines uh = 0 that are not grid lines. To overcome this difficulty, we introduce
an approximation of the L1-norm in the objective functional with the additional feature that its subdifferential
can be represented by a finite-dimensional subspace. As it will turn out, this additional approximation step will
not disturb the convergence estimate, in fact, both the error orders h and α as well as the leading constant in
the estimate remain unchanged.

Let us define now the approximation of the L1-norm by

‖uh‖L1,h :=
Nh∑
i=1

|ui
h|
∫

Ω

φi
h, (4.12)

which is a weighted l1-norm of the coefficients of uh, thus it is a norm on Uh.
Let uh, vh ∈ Uh be given with λi

h ∈ ∂|ui
h|, i = 1 . . .Nh. Then we have by the construction of λi

h

Nh∑
i=1

λi
h(ui

h − vi
h)
∫

Ω

φi
h ≤

Nh∑
i=1

(|ui
h| − |vi

h|)
∫

Ω

φi
h = ‖uh‖L1,h − ‖vh‖L1,h.
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Here, we see that the subgradient of ‖ ·‖L1,h can be represented by finitely many coefficients. Now, let us return
to the a-priori error analysis. Let uα,h be the solution of the discretized problem

min
1
2
‖yh − yd‖2

L2 + β‖uh‖L1,h +
α

2
‖uh‖2

L2 (4.13)

subject to the discretized equation (4.1) and the control constraints uh ∈ Uad,h. Then there exists a discrete
adjoint state pα,h and numbers λi

α,h ∈ ∂|ui
h|, i = 1 . . .Nh. Using the variational inequalities, we obtain instead

of (4.6) the slightly different estimate

α‖uα − uα,h‖2
L2 ≤ (αuα,h − pα,h, ũh − uα) + (αuα − pα, ũ − uα,h) − (pα,h − pα, uα − uα,h)

+ β(‖ũ‖L1 − ‖uα,h‖L1,h + ‖ũh‖L1,h − ‖uα‖L1), (4.14)

where the approximative L1-norm instead of the L1-norm is applied to uα,h and ũh. We will now estimate the
approximative L1-norms against the L1-norm. At first, we obtain

‖uα,h‖L1 =
∫

Ω

∣∣∣∣∣
Nh∑
i=1

ui
α,hφi

h

∣∣∣∣∣ ≤
∫

Ω

Nh∑
i=1

|ui
α,hφi

h| =
Nh∑
i=1

|ui
α,h|

∫
Ω

φi
h = ‖uα,h‖L1,h.

Let us define ũh = Πhuα as above. Then we find

‖ũh‖L1,h = ‖Πhu+
α + Πhu−

α ‖L1,h ≤ ‖Πhu+
α‖L1,h + ‖Πhu−

α ‖L1,h

=
Nh∑
i=1

(∫
Ω

u+
α φi

h −
∫

Ω

u−
α φi

h

)
=

Nh∑
i=1

∫
Ω

|uα|φi
h = ‖uα‖L1 .

That is, inequality (4.14) implies

α‖uα − uα,h‖2
L2 ≤ (αuα,h − pα,h, ũh − uα) + (αuα − pα, ũ − uα,h)

− (pα,h − pα, uα − uα,h) + β(‖ũ‖L1 − ‖uα,h‖L1), (4.15)

compare also the inequality (4.6). Hence, we can proceed as above to obtain:

Corollary 4.8. Let uα,h be the solution of the discrete problem (4.13) with approximated L1-norm (4.12). Let
the assumptions of Proposition 4.5 or Proposition 4.6 on Uh, ua, ub be satisfied. Then for every α0 > 0, h0 > 0
there is a constant C > 0 such that for all α ≤ α0, h ≤ h0 the L2-error of the controls satisfies

‖uα − uα,h‖L2 ≤ C(h α−1 + h2 α−3/2)

with C > 0 independent of α, h, where the constant C is the same as in Propositions 4.5 or 4.6.

Finally, we will give an interpretation of the coefficients λi
α,h as coefficients for certain trial functions. Let us

construct a dual basis {μi
h} to {φi

h} satisfying

μi
h ∈ L∞(Ω),

∫
Ω

μi
hφj

h = δi,j ∀i, j = 1 . . .Nh.

Let us denote by Mh = (mij), mij =
∫
Ω

φi
hφj

h, the mass matrix of the φi
h’s. This matrix is invertible with

inverse matrix M−1
h = (mij). Setting μi

h =
∑Nh

j=1 mijφj
h yields a dual basis with the properties stated above.
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Defining λh =
∑Nh

i=1 λi
h

(∫
Ω φi

h

)
μi

h with the coefficients λi
h as above, we obtain

(λh, uh − vh) =
Nh∑
i=1

λi
h(ui

h − vi
h)
(∫

Ω

φi
h

)
≤ ‖uh‖L1,h − ‖vh‖L1,h. (4.16)

Therefore we have λh ∈ ∂‖uh‖L1,h.

4.5. Open problem: General control discretization, variable control bounds

Let us remark, that it is an open problem to prove analogous error estimates for the general control dis-
cretization as introduced above in Assumption 4.2 if the control constraints are not constant. That means in
particular, that for the discretization of controls by piecewise linear functions and non-trivial constraints no
a-priori estimates can be proven. Here, it is open to construct an approximating function ũ ≈ uα,h with ũ ∈ Uad

such that it holds
h‖ũ − uα,h‖L2 + ‖ũ − uα,h‖H−1 ≤ c h2

and
‖ũ‖L1 ≤ ‖uα,h‖L1 + c h2.

That is, a technique unifying the results of Sections 4.1 and 4.2 is missing.

5. Simultaneous error estimates

In this section we want to use the proven convergence results to obtain an error estimate for ‖u0 − uα,h‖L2 .
If we use the triangle inequality, we have

‖u0 − uα,h‖L2 ≤ ‖uα + uα,h‖L2 + ‖u0 − uα‖L2 ≤ C(hα−1 + h2α−3/2 + αd)

with d ≤ 1/2. Now we couple the mesh size h to the regularization parameter α. Since the error estimate is a
polynomial in h and α we suggest to use h = αγ with γ > 0. Now we have

‖u0 − uα‖L2 ≤ C(αγ−1 + α2γ−3/2 + αd),

hence the order of convergence is g = min(γ − 1, 2γ − 3/2, d). In order to maintain convergence for α → 0, we
require g > 0, which implies γ > 1 immediately. Since γ − 1 < 2γ − 3/2 for all γ > 1 we get g = min(γ − 1, d).
So the best possible order of convergence is d, and to reach this order we must have γ−1 ≥ d. If we now choose
γ = 3/2 this will hold for all d ≤ 1/2, which results in

‖u0 − uα,h‖L2 ≤ C′αd.

Therefore the discretization does not influence the order of convergence if we choose meshes that are fine enough
according to h ∼ α3/2.

6. A POSTERIORI error estimator

Here, we will develop an a-posteriori error estimate from the difference of uα and the computed approxima-
tion uh of the discrete solution uα,h: ‖uh − uα‖L2 for α > 0.

Let be given yh, ph ∈ Vh, uh ∈ Uad,h ∩ Uad, λh ∈ L2(Ω). We will derive the error estimate without assuming
that (yh, uh, ph, λh) are solutions of the discrete problem.

By optimality of (yα, uα) we know

0 ≤ J(Suh, uh) − J(yα, uα),
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which is equivalent to

0 ≤ 1
2
‖Suh − yd‖2

L2 −
1
2
‖yα − yd‖L2 +

α

2
‖uh‖2

L2 −
α

2
‖uα‖2

L2

+ β‖uh‖L1 − β‖uα‖L1 + (A(Suh) − uh − Ayα + uα, ph)

= −1
2
‖Suh − yα‖2

L2 −
α

2
‖uh − uα‖2

L2 + (αuh − ph, uh − uα)

+ β‖uh‖L1 − β‖uα‖L1 + (Aph + Suh − yd,Suh − yα),

since A(Suh) = uh, Ayα = uα, and ph ∈ H1
0 (Ω) holds. Let us take λ̃ ∈ ∂β‖uh‖L1 , which implies β‖uh‖L1 −

β‖uα‖L1 ≤ (λ̃, uh − uα). Furthermore, let us compute a function δh, such that

(αuh − ph + λh + δh, u − uh) ≥ 0 ∀u ∈ Uad.

In fact, if uh, ph, λh are known such a function δh can be computed, see e.g. [8,17]. We proceed with

0 ≤ −1
2
‖Suh − yα‖2

L2 −
α

2
‖uh − uα‖2

L2 + (αuh − ph + λh, uh − uα)

+ (λ̃ − λh, uh − uα) + (Aph + Suh − yd,Suh − yα)

which implies

0 ≤ −1
2
‖Suh − yα‖2

L2 −
α

2
‖uh − uα‖2

L2 − (δh, uh − uα)

+ inf
λ̃∈∂β‖uh‖L1

(λ̃ − λh, uh − uα) + (Aph + Suh − yd,Suh − yα).

Denoting by cL2,H−1 the norm of the embedding L2(Ω) → H−1(Ω), we obtain by the Cauchy-Schwarz inequality

1
2
‖Suh − yα‖2

L2 +
α

4
‖uh − uα‖2

L2 ≤ 4
α

{
‖δh‖2

L2 + inf
λ̃∈∂β‖uh‖L1

‖λ̃ − λh‖2
L2

+ 2‖S‖2
L2→H1

0

(
‖Aph + yh − yd‖2

H−1 + c2
L2,H−1‖S‖2

H−1→L2
‖Ayh − uh‖2

H−1

)}
.

Thus, we found an upper bound of the errors in control and state:

Theorem 6.1. Let be given yh, ph ∈ Vh, uh ∈ Uad,h ∩ Uad, λh ∈ L2(Ω). Let (yα, uα) be the solution of (P).
Then it holds

1
2
‖Suh − yα‖2

L2 +
α

4
‖uh − uα‖2

L2 ≤ 4
α

{
‖δh‖2

L2 + inf
λ̃∈∂β‖uh‖L1

‖λ̃ − λh‖2
L2

+ 2‖S‖2
L2→H1

0

(
‖Aph + yh − yd‖2

H−1 + c2
L2,H−1‖S‖2

H−1→L2
‖Ayh − uh‖2

H−1

)}
. (6.1)

Lower bounds of the error can be derived following the recent work of Li et al. [19] provided that (yh, uh) is
the solution of the discretized problem with associated adjoint state ph and subgradient λh.

To incorporate the estimate above in an adaptive refinement procedure it has to be specified how the error
estimator can be evaluated cell-wise. The function δh can be computed as follows

δh(x) =

⎧⎪⎨
⎪⎩
−(αuh − ph + λh)− if uh(x) = ua(x)
−(αuh − ph + λh) if ua(x) < uh(x) < ub(x)
−(αuh − ph + λh)+ if uh(x) = ub(x).

(6.2)
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Although δh is not a grid function, it is a computationally easy task to evaluate ‖δh‖L2(T ) for each cell of the
mesh. Similarly, a function λ̃h ∈ ∂β‖uh‖L1 can be constructed that realizes the minimum of ‖λ̃ − λh‖L2:

λ̃h(x) = β

⎧⎪⎨
⎪⎩

1 if uh(x) > 0
max(−1, min(λh(x), 1)) if uh(x) = 0
−1 if uh(x) < 0.

(6.3)

The H−1-residuals can be estimated by the standard residual estimate

‖Ayh − uh‖2
H−1 ≤ c1

∑
T∈Th

⎛
⎝h2

T ‖Ayh − uh‖2
L2(T ) +

∑
E⊂∂T\∂Ω

hE

∥∥∥∥
[

∂yh

∂nA

]∥∥∥∥
2

L2(E)

⎞
⎠.

Here, the constant c1 does depend on Ω and the shape regularity of {Th}. Altogether, we obtain the following
computable error estimate.

Theorem 6.2. Let the assumptions of the previous Theorem 6.1 be satisfied. Let δh and λ̃h be computed
according to (6.2) and (6.3), respectively. Then it holds

‖Suh − yα‖2
L2 + α‖uh − uα‖2

L2 ≤ c

α

∑
T∈Th

η2
T (6.4)

with a constant c depending on Ω and the shape regularity of {Th} but independent of α and the actual mesh Th.
The cell-wise quantities ηT are defined by

ηT := ‖δh‖2
L2(T ) + ‖λ̃h − λh‖2

L2(T ) + h2
T

(
‖Ayh − uh‖2

L2(T ) + ‖Aph + yh − yd‖2
L2(T )

)

+
∑

E⊂∂T\∂Ω

hE

(∥∥∥∥
[

∂yh

∂nA

]∥∥∥∥
2

L2(E)

+
∥∥∥∥
[

∂ph

∂nA

]∥∥∥∥
2

L2(E)

)
· (6.5)

7. Numerical results

7.1. Constructed problems with known solutions

In this section we show constructed problems of the type (1.1). For convenience we choose A = −Δ. The first
problem is a one-dimensional one, which is suitable to test the regularization errors estimates of Section 3, since
in our experience the discretization error dominates the regularization error for higher dimensional domains.
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Example 7.1. First we choose Ω = (0, 1) for α = 0, β = 1/2. Further we set −ua = ub = 30. It can be
calculated easily, that

p̄(x) = sin(2π x)

ū(x) =

⎧⎪⎨
⎪⎩

ua where x ∈ (1/12, 5/12)
ub where x ∈ (7/12, 11/12)
0 elsewhere

ȳ(x) = −30

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−x/6 where x ∈ [0, 1/12)
x2/2 − x/4 + 1/288 where x ∈ [1/12, 5/12)
x/6 − 1/12 where x ∈ [5, 7/12)
−x2/2 + 3x/4 − 73/288 where x ∈ [7, 11/12)
−x/6 + 1/6 where x ∈ [11, 1]

yd = ȳ − Δp̄

= ȳ + 4π2 sin(2π x)

satisfies the optimality condition (2.2) (compare Fig. 1).

Example 7.2. This is a problem with Ω = (0, 2)2, α = 0, β arbitrary, ua = −1, ub = 5. For convenience we
set r = ((1 − x)2 + (1 − y2))1/2. The rotationally symmetric functions

p̄(r) = β

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4/3 − 432r4 where r ∈ [0, 1/6)
5/3 − 24r2 where r ∈ [1/6, 1/3)
19/5 − 312r2/5 + 864r4/5 where r ∈ [1/3, 1/2)
−144r4 + 96r2 − 16 where r ∈ [1/2, 1/

√
3)

Δp̄(r) = β

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−6912r2 where r ∈ [0, 1/6)
−96 where r ∈ [1/6, 1/3)
13 824r2/5 − 1248/5 where r ∈ [1/3, 1/2)
−2304r2 + 384 where r ∈ [1/2, 1/

√
3)

ū(r) =

{
ub where r ∈ [0, 1/6)
ua where r ∈ [1/3, 1/2)

ȳ(r) =

⎧⎪⎨
⎪⎩

5r2/4 + 5 log(1/2)/72 + log(2/3)/8 where r ∈ [0, 1/6)
5(log(3r) + 1/2)/72 + log(2/3)/8 where r ∈ [1/6, 1/3)
−r2/4 + log(2r)/8 + 1/16 where r ∈ [1/3, 1/2)

yd = ȳ − Δp̄

fulfill the optimality system. For convenience of the reader the plots of these functions can be found in Figures 2
and 3.
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Figure 2. Cross section of Example 7.2, α = 0, β = 2 × 10−5.
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Figure 3. Example 7.2, α = 0, β = 2 × 10−5.
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Example 7.3. This is a problem with Ω = (0, 1)2, 0 < α < β arbitrary, ua = −1, ub = 54/7. For convenience
we set r = ((1/2 − x)2 + (1/2 − y2))1/2. Then for

a = 23 328 β − 5832 α− 5832 αub b = −9720 β + 2268 α + 2592 αub

c = 1296 β − 288 α− 378 αub d = −55 β + 12 α + 18 αub

e = −432 β + 648 α f = 108 β − 216 α

the optimality system is fulfilled with

p̄(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−162αubr
2 + β + 3αub/2 where r ∈ [0, 1/18)

+ β + αū(r) where r ∈ [1/18, 1/9)
ar3 + br2 + cr + d where r ∈ [1/9, 1/6)
− β + αū(r) where r ∈ [1/6, 2/9)
324α(r − 1/4)2 − β − 5α/4 where r ∈ [2/9, 5/18)
− β + αū(r) where r ∈ [5/18, 1/3)
e(r − 1/3)3 + f(r − 1/3)2 + 18α(r − 1/3)− β where r ∈ [1/3, 1/2)

Δp̄(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−648αub where r ∈ [0, 1/18)
αub − 18/r where r ∈ [1/18, 1/9)
9ar + 4b + c/r where r ∈ [1/9, 1/6)
α − 18/r where r ∈ [1/6, 2/9)
324α(4 − 1/(2r)) where r ∈ [2/9, 5/18)
18α/r where r ∈ [5/18, 1/3)
e(9r − 4 + 1/(3r)) + f(4 − 2/(3r)) + 18α/r where r ∈ [1/3, 1/2)

ū(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ub where r ∈ [0, 1/18)
−18 ub(r − 1/9) where r ∈ [1/18, 1/9)
0 where r ∈ [1/9, 1/6)
−18(x − 1/6) where r ∈ [1/6, 2/9)
ua where r ∈ [2/9, 5/18)
−6 + 18r where r ∈ [5/18, 1/3)

ȳ(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ubr
2/4 + ȳ(1/18)− 1/168 where r ∈ [0, 1/18)

ubr
2/2 − 2ubr

3 − log(9r)/252 + ȳ(1/9)− 5/189 where r ∈ [1/18, 1/9)
log(6r)/36 + ȳ(1/6) where r ∈ [1/9, 1/6)
3r2/4 − 2r3 + log(9r/2)/72 + ȳ(2/9) − 11/729 where r ∈ [1/6, 2/9)
− r2/4 + 91 log(18r/5)/1944 + 25/1296 + ȳ(5/18) where r ∈ [2/9, 5/18)
− 3r2/2 + 2r3 + log(3r)/9 + 5/54 where r ∈ [5/18, 1/3)

yd = ȳ − Δp̄.

These functions are plotted in Figures 4 and 5.

7.2. Verification of regularization error

In order to verify the estimates of the regularization error obtained in Section 3, we solved Example 7.1,
because this one dimensional problem allows solving with very fine meshes. We choose the approximation
parameter α > 0 in order to use a semi-smooth Newton method. The mesh parameters h are set to h = 1

10 α3/2
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Figure 4. Cross section of Example 7.3, α = 10−4, β = 1.5 × 10−4.

Figure 5. Example 7.3, α = 10−4, β = 1.5 × 10−4.
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Figure 6. Solution of Example 7.1, h = 0.1 α3/2.

like recommended in Section 5. The unknowns were discretized with linear FEM trial functions. For the solution
of the nonlinear system the semi-smooth Newton method by Stadler [27] was used. The error ‖u0 − uα,h‖L2

is displayed in Figure 6. And we observed that the experimental order of convergence coincides with the
theoretically obtained rate 1/2.

7.3. A-posteriori error estimates and adaptive mesh refinement

We used the error estimator of Section 6 in a mesh adaptation procedure. Given a solution (yα,H , uα,H , pα,H ,
λα,H) on a coarse grid TH , a subset of triangles T ′

H ⊂ TH were marked for refinement. The subset was chosen
such that ∑

T∈T ′
H

η2
T ≥ θ2

∑
T∈TH

η2
T

holds. That is, triangles that carry most of the error were selected. The marked triangles were then refined
with the red-green-refinement algorithm, which results in a finer mesh Th. In the error indicator η given by
Theorem 6.2, e.g. (6.5), we used (yh, uh, ph, λh) = (yα,H , uα,H , pα,H , λα,H), i.e. the approximation of the discrete
solution were taken as test functions.

The problem data is chosen according to Example 7.3, where we set α = 10−4 and β = 1.5 × 10−4. The
problem was discretized using P1-elements for states and adjoints and P0-elements for the control. Hence we
can expect ‖uα,h − uα‖L2 ∼ h due to Propositions 4.5 and 4.6. As solution algorithm we used the semi-smooth
Newton method, see Stadler [27].

Starting with a mesh with 128 triangles, we computed a sequence of solutions and adaptively generated
meshes. For comparison we computed solutions of the discretized problem for uniform refined meshes.

In Figure 7, we plotted the L2-norms of the error uα,h − uα and the values of the error estimator, i.e.
eu := ‖uα,h − uα‖L2 and ηu := ρ

√∑
η2

T . The scaling factor ρ was chosen such that the scaled error estimator
coincides with the true error on the coarsest mesh. As one can expect, the adaptive process yields better
approximation results: with the same number of unknowns the error is significantly smaller than for uniform
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Figure 7. Errors in the control eu and scaled error estimator ηu.

refined meshes. Moreover, the plot of the error estimator shows that estimator and error are of the same order.
This indicates that the error estimator is both reliable and efficient.

A. Proof of Lemma 3.5

At first let us state the following convergence result, which is cited from [30], Lemma 2.24, without proof.

Lemma A.1. Let f(h) ∈ L2(Ω) for all h ∈ Uδ(0) with δ > 0 and let f(h) → f̄ in L2(Ω) for h ↘ 0, i.e.,

lim
h↘0

‖f(h) − f̄‖L2 → 0.

Then for g ∈ L2(Ω), with g(x) > 0 we have

max
(
− g

h
, f(h)

)
→ f̄ as h ↘ 0, (A.1)

max (0, f(h)) → max(0, f̄) as h ↘ 0, (A.2)

max
(
0, f(h) − g

h

)
→ 0 as h ↘ 0. (A.3)

Now we are able to proof the differentiability of (uα, yα, pα).

Proof of Lemma 3.5. The idea of the proof can be found in [27], proof of (3.11).
In a first step, we show that the difference quotient of uα converges in the weak topology for almost all α > 0.

After this, we obtain that this limit exists also in the strong topology and thus is the Gâteaux-derivative of uα.
As can be seen from Lemma 3.1, the mapping α �→ uα is locally Lipschitz continuous from (0, +∞) to L2(Ω).

Moreover, for every ε > 0, the mapping α �→ uα is globally Lipschitz continuous from [ε, +∞) to L2(Ω). Let
ε > 0 be arbitrary. Then it is well-known, see e.g. Aronszajn [1], p. 165, that α �→ uα is weakly differentiable
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almost everywhere on [ε, +∞). Therefore, we have for almost all α > ε

1
α − α′ (uα − uα′) ⇀ u̇α in L2(Ω) as α′ → α.

Since ε > 0 was arbitrary, this convergence result holds for almost all α > 0.
Let us recall that operator S : L2(Ω) → L2(Ω) is compact, while S∗ : L2(Ω) → L∞(Ω) is continuous, which

implies strong convergence of the difference quotients for yα and pα

yα′ − yα

α′ − α
=

S(uα′ − uα)
α′ − α

→ Su̇α =: ẏα in L2(Ω) as α′ → α,

pα′ − pα

α′ − α
=

−S∗(yα′ − yα)
α′ − α

→ −S∗ẏα =: ṗα in L∞(Ω) as α′ → α.

For the remainder of the proof, let us choose α > 0, such that α �→ uα is (weakly) differentiable at α. Let us
write uα as (cf. Fig. 1 and [27])

uα =α−1
(
max(0, pα − β) + min(0, pα + β)

− max(0, pα − β − αub) − min(0, pα + β − αua)
)
. (A.4)

Let us compute the directional derivatives u̇+
α , u̇−

α of the right hand side of (A.4) with respect to α in the
directions +1 and −1. We will show that both associated difference quotients converge strongly in L2(Ω).
By the weak convergence of the difference quotient of uα, we obtain u̇α = u̇+

α = −u̇−
α and thus the strong

convergence of the difference quotient.
Let us exemplarily calculate the convergence of the derivative in direction +1 of the first addend of (A.4).

The arguments for the other terms of (A.4) and the derivative in direction −1 are analogous.
Let us define g(α) := pα−β

α and f(h) := 1
h(g(α + h) − g(α)). Then we have

lim
h↘0

f(h) = ġ(α) =
ṗα

α
+

β − pα

α2
·

Now we show the convergence of the difference quotient of max(0, g(α)), i.e. the strong convergence of
1
h (max(0, g(α + h)) − max(0, g(α))). We analyze the behavior of the difference quotient on different subsets
of Ω.

Case 1. On the set G1 := {x ∈ Ω : g(α)(x) > 0} it holds

1
h

(
max(0, g(α + h)) − max(0, g(α))

)
=

1
h

[max(0, g(α + h)) − g(α)]

= max
(
−g(α)

h
, f(h)

)
→ ġ(α) in L2(G1) as h ↘ 0, (A.5)

where we refer to (A.1) in Lemma A.1.

Case 2. On the set G2 := {x ∈ Ω : g(α)(x) = 0}, we find using (A.2) in Lemma A.1

1
h

(
max(0, g(α + h)) − max(0, g(α))

)
=

1
h

[max(0, g(α + h))]

= max (0, f(h)) → max(0, ġ(α)) in L2(G2) as h ↘ 0. (A.6)
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Case 3. On the set G3 := {x ∈ Ω : g(α)(x) < 0}, we obtain

1
h

(
max(0, g(α + h)) − max(0, g(α))

)
=

1
h

[max(0, g(α + h))]

= max
(

0, f(h) +
g(α)

h

)
→ 0 in L2(G3) as h ↘ 0, (A.7)

where we applied (A.3) of Lemma A.1.
Thus, the directional derivative of max(0, g(α)) in direction 1 is given by

ġ(α)χI ,

where I = {x ∈ Ω : g(α)(x) > 0 or g(α)(x) = 0, ġ(α)(x) ≥ 0}. Moreover, due to (A.5)–(A.7), the difference
quotients of g(α) converge strongly to ġ(α) in L2(Ω).

The calculations for the other addends are similar and yield strong convergence of the difference quotients.
Defining

I1 := {pα ∈ (β, β + αub) or pα = β, ṗα ≥ 0 or pα = β + αub, ṗα ≤ αub}
I2 := {pα ∈ (−β + αua,−β) or pα = −β, ṗα ≤ 0 or pα = −β + αua, ṗα ≥ αua}

we obtain

u̇+
α =

(
− 1

α2
pα +

1
α

ṗα

)
χI1∪I2 +

β

α2
(χI1 − χI2). (A.8)

The calculation of the directional derivative in direction −1 gives with

I3 := {pα ∈ (β, β + αub) or pα = β, ṗα ≤ 0 or pα = β + αub, ṗα ≥ αub}
I4 := {pα ∈ (−β + αua,−β) or pα = −β, ṗα ≥ 0 or pα = −β + αua, ṗα ≤ αua}

the expression

− u̇−
α =

(
− 1

α2
pα +

1
α

ṗα

)
χI3∪I4 +

β

α2
(χI3 − χI4). (A.9)

Let us compare equations (A.8) and (A.9) for u̇α. Multiplying these equations with the characteristic functions
of the sets {pα = β}, {pα = β + αub}, {pα = −β} and {pα = −β + αua}, we obtain

pα = β ⇒ ṗα = 0
pα = β + αub ⇒ ṗα = αub

pα = −β ⇒ ṗα = 0
pα = −β + αua ⇒ ṗα = αua.

Hence (A.9) implies that the derivative of uα on these sets is 0 and

u̇α =
(
− 1

α2
pα +

1
α

ṗα

)
χI1∪I2 +

β

α2
(χI1 − χI2)

holds, where

I1 = {pα ∈ (β, β + αub)}
I2 = {pα ∈ (−β + αua,−β)}.



OPTIMAL CONTROL PROBLEMS WITH SPARSITY FUNCTIONAL 885

Therefore the sets I1 and I2 are independent of ṗα. Together with the equations

ẏα = Su̇α,

ṗα = −S�ẏα

we obtain the linear system for the derivative (u̇α, ẏα, ṗα) as claimed. �
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