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STOCHASTIC DIFFERENTIAL GAMES INVOLVING IMPULSE CONTROLS ∗
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Abstract. A zero-sum stochastic differential game problem on infinite horizon with continuous and
impulse controls is studied. We obtain the existence of the value of the game and characterize it as
the unique viscosity solution of the associated system of quasi-variational inequalities. We also obtain
a verification theorem which provides an optimal strategy of the game.
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1. Introduction

The study of differential games with Elliot-Kalton strategies in the viscosity solution framework was initiated
by Evans and Souganidis [5]. Fleming and Souganidis [7] studied in a rigorous manner two-player zero-sum
stochastic differential games and their work translated former results on differential games from the purely
deterministic into the stochastic framework. Those interested in differential games are also referred to [2,6] and
the references therein.

Stochastic optimal control problems involving impulses were studied in many papers, especially for their
wide applications in finance. See, for instance, Cadenillas and Zapatero [3], Korn [8], Øksendal and Sulem [9].
Yong [12] studied optimal control problems for systems governed by ordinary differential equations with contin-
uous, switching and impulse controls. In Yong [13], deterministic differential game problems involving impulse
controls were considered; one player takes continuous controls whereas the other uses impulse controls. Shaiju
and Dharmatti [11] studied a zero-sum deterministic differential game problem, where the minimizer uses con-
tinuous, switching and impulse controls, while the maximizer takes continuous and switching controls. However,
stochastic differential game problems involving impulse controls seem missing, to the author’s knowledge.

In this paper, we study a zero-sum stochastic differential game problem, in which the maximizer uses con-
tinuous controls and the minimizer takes impulse controls. In Section 2, we formulate the stochastic differential
game problem and establish the associated quasi-variational inequalities (QVI for short). In Section 3, by the
dynamic programming principle we prove that the lower and upper value functions of the game satisfy the QVI
in the viscosity solution sense. Then we establish the existence of the value by proving a uniqueness theorem
for the QVI. Finally, we present a verification theorem which gives an optimal strategy of the game involving
impulses in Section 4.
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2. Formulation of the problem

Let B = (Bt)t≥0 be a d-dimensional standard Brownian motion, defined on a probability space (Ω, F , P),
equipped with the natural filtration (Ft)t≥0 satisfying the usual conditions. We are given U a compact subset
of R

d and K a compact subset of R
n. Let U denote the set of U -valued processes u = (ur)r≥0 such that

u is (Fr)-progressively measurable. We denote by K the set of processes η(·) =
∑
i≥1

ηi�(τi,∞](·) such that

(τi) ⊂ [0,∞], (τi) ↑ ∞ a.s., τi is an Ft-stopping time, and each ηi : Ω → K is Fτi -measurable. u ∈ U is called
the continuous control and η ∈ K is the impulse control.

Let us consider two functions b : R
n × U → R

n and σ : U → R
n×d which satisfy:

(H1) There exist λ̄ > 0 and c > 0 such that for any u ∈ U , x1, x2 ∈ R
n,

|b(x1, u) − b(x2, u)| ≤ λ̄|x1 − x2|, |b(0, u)| + |σ(u)| ≤ c.

Then, under (H1), the following stochastic differential equation (SDE):

Xx(t) = x +
∫ t

0

b
(
Xx(s), u(s)

)
ds +

∫ t

0

σ
(
u(s)

)
dBs + ξ(t) (2.1)

admits a unique solution Xx(·) for any x ∈ R
n and (u, ξ) ∈ U × K. The cost functional Jx : U × K → R is

given by

Jx(u, ξ) = E

{∫ ∞

0

e−λtf
(
Xx(t), u(t)

)
dt +

∑
i≥1

e−λτi l(ξi)�{τi<∞}

}
, (2.2)

where λ > 0 is a discount parameter, f : R
n ×U → R is the running cost function and l : K → R is the impulse

cost function. We assume that λ, f and l satisfy:

(H2) λ > λ̄; f is continuous and bounded, and is uniformly Lipschitz in x; l is continuous and bounded.
Moreover,

inf
ξ∈K

l(ξ) = c > 0; l(ξ1 + ξ2) < l(ξ1) + l(ξ2), ∀ ξ1, ξ2 ∈ K.

Then it’s easy to check that Jx(u, ξ) is well defined for any (u, ξ) ∈ U × K.

We now introduce the notion of nonanticipative strategies. The nonanticipative strategy set A for player-ξ
is the collection of all nonanticipative maps α from U to K. The nonanticipative strategy set B for player-u
is the collection of all nonanticipative maps β from K to U . For the detailed definitions, one is referred to
Definition 3.2 in [2]. Then for any x ∈ R

n, u ∈ U and α ∈ A , we have (u, α(u)) ∈ U × K. Thus, SDE (2.1)
admits a unique solution Xx corresponding to (u, α(u)), and the cost functional Jx(u, α(u)) is well defined.
Then we define the lower value function V− and the upper value function V+ by

V−(x) = inf
α∈A

sup
u∈U

Jx
(
u, α(u)

)
,

V+(x) = sup
β∈B

inf
ξ∈K

Jx
(
β(ξ), ξ

)
.

If V− = V+, then we say that the game admits a value and V := V− = V+ is called the value function of the
game. Furthermore, if there exists (u∗, ξ∗) ∈ U × K such that V (x) = Jx(u∗, ξ∗), then we say that (u∗, ξ∗) is
an optimal strategy of the game.

For a continuous function φ : R
n → R, the minimum cost operator N is defined by

N [φ](x) = inf
ξ∈K

{
φ(x + ξ) + l(ξ)

}
.
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Let us define the Hamiltonian H : R
n × R × R

n × Sn → R as follows:

H(x, p, P, Q) = sup
u∈U

{
f(x, u) − λp + b(x, u)∗P +

1
2
Tr[(σσ∗)(u)Q]

}
.

Then our stochastic differential game problem corresponds to the following QVI:

min
{
H

(
x, V (x), DV (x), D2V (x)

)
, N [V ](x) − V (x)

}
= 0, x ∈ R

n, (2.3)

or equivalently, ⎧⎨
⎩

H
(
x, V (x), DV (x), D2V (x)

) ≥ 0,
N [V ](x) ≥ V (x),
H

(
x, V (x), DV (x), D2V (x)

)(
N [V ](x) − V (x)

)
= 0.

3. Existence of the value

In this section, we show that both V− and V+ are viscosity solutions of QVI (2.3) and QVI (2.3) admits at
most one viscosity solution. Thus V− and V+ coincide. Hence, the value of our stochastic differential game
exists.

We denote by BUC(Rn) the set of functions φ : R
n → R such that φ is bounded and uniformly continuous.

Let C2(Rn) denote the set of R
n → R functions that are twice continuously differentiable with respect to their

arguments.
Let us first recall the definition of a viscosity solution of QVI (2.3). The reader more interested in viscosity

solutions is referred to Crandall et al. [4].

Definition 3.1. A function V ∈ BUC(Rn) is called:
(i) a viscosity subsolution of QVI (2.3) if for any ϕ ∈ C2(Rn), whenever V − ϕ attains a local maximum at

x ∈ R
n, it holds that

min
{
H

(
x, ϕ(x), Dϕ(x), D2ϕ(x)

)
, N [V ](x) − V (x)

} ≥ 0;
(ii) a viscosity supersolution of QVI (2.3) if for any ϕ ∈ C2(Rn), whenever V − ϕ attains a local minimum

at x ∈ R
n, it holds that

min
{
H

(
x, ϕ(x), Dϕ(x), D2ϕ(x)

)
, N [V ](x) − V (x)

} ≤ 0;

(iii) a viscosity solution of QVI (2.3) if it’s both a viscosity sub- and a supersolution of (2.3).

The main result of this section is:

Theorem 3.2. Assume (H1) and (H2). Then V− = V+ is the unique viscosity solution of QVI (2.3) in
BUC(Rn). Thus our stochastic differential game admits a value.

Before the proof of Theorem 3.2, some necessary preparations are needed.

Lemma 3.3. Assume (H1) and (H2). Then we have:
(i) V−, N [V−] ∈ BUC(Rn);
(ii) V+, N [V+] ∈ BUC(Rn).

Proof. We only prove (i). Let α0 ∈ A be the strategy that for any u ∈ U , α0(u) makes no impulses. Then by
the definition of V−, we have

V−(x) ≤ sup
u∈U

Jx(u, α0(u)) = sup
u∈U

E

{ ∫ ∞

0

e−λtf(Xx(t), u(t))dt

}
≤ c.

On the other hand, since the impulse cost l is positive valued, for any u ∈ U and α ∈ A ,

Jx(u, α(u)) ≥ E

{∫ ∞

0

e−λtf(Xx(t), u(t))dt

}
≥ −c.

Thus, V−(x) ≥ −c. Hence we obtain |V−(x)| ≤ c, ∀x ∈ R
n, and the boundedness of V− is proved.
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Now let us prove the continuity of V−. For any x, y ∈ R
n, u ∈ U and α ∈ A , we have

Xx(t) − Xy(t) = (x − y) +
∫ t

0

[
b(Xx(s), u(s)) − b(Xy(s), u(s))

]
ds.

Then by standard arguments it follows that E|Xx(t) − Xy(t)| ≤ eλ̄t|x − y|. Hence,

Jx(u, α(u)) − Jy(u, α(u)) = E

{ ∫ ∞

0

e−λt
[
f(Xx(t), u(t)) − f(Xy(t), u(t))

]
dt

}

≤ cE

{ ∫ ∞

0

e−(λ−λ̄)t|x − y|dt

}
=

c

λ − λ̄
|x − y|,

which follows that
|V−(x) − V−(y)| ≤ c

λ − λ̄
|x − y|, ∀x, y ∈ R

n.

Hence, V− is uniformly continuous. We obtain that V− ∈ BUC(Rn). And N [V−] ∈ BUC(Rn) is an immediate
consequence. �

Subsequently, for η(·) =
∑
i≥1

ηi�(τi,∞](·) ∈ K, we use the notation (η)1,i to denote τi and (η)2,i to denote ηi.

We now present the dynamic programming principle (DPP) for our game problem.

Lemma 3.4. For any x ∈ R
n and t > 0, we have:

(i)

V−(x) = inf
α∈A

sup
u∈U

E

{ ∫ t

0

e−λsf(Xx(s), u(s))ds +
∑

α(u)1,i≤t

e−λα(u)1,i l(α(u)2,i) + e−λtV−(Xx(t))

}
, (3.1)

where Xx(t) = Xx(t; u, α(u));
(ii)

V+(x) = sup
β∈B

inf
ξ∈K

E

{ ∫ t

0

e−λsf(Xx(s), β(ξ)(s))ds +
∑

(ξ)1,i≤t

e−λ(ξ)1,i l((ξ)2,i) + e−λtV+(Xx(t))

}
, (3.2)

where Xx(t) = Xx(t; β(ξ), ξ).

Proof. We only prove (i); the proof of (ii) is similar. Some proof ideas come from [2,6,7].
Let x be fixed, and let W (x) be the right-hand side of (3.1). We fix t, ε > 0. Then, there exists α1 ∈ A such

that for any u(·) ∈ U ,

W (x) ≥ E

{ ∫ t

0

e−λsf(Xx(s), u(s))ds +
∑

α1(u)1,i≤t

e−λα1(u)1,i l(α1(u)2,i) + e−λtV−(Xx(t))

}
− ε, (3.3)

where Xx(t) = Xx(t; u, α1(u)). By the definition of V−(x) and the properties of V− and J , it’s not difficult to
deduce that there exists α2 ∈ A such that

E
[
V−(Xx(t))

] ≥ E
[
JXx(t)(u, α2(u))

] − 3εe−λt, ∀u ∈ U . (3.4)
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For the proof of issue (3.4), we follow the proof of Proposition 1.10 in [7]. Let {Ai, i = 1, 2, . . .} be a partition
of R

n, and choose yi ∈ Ai. If the diameter of the Ai’s is sufficiently small, then for y ∈ Ai, the uniform
continuity of J and V− yields

Jyi(u, α(u)) ≥ Jy(u, α(u)) − εe−λt, ∀u ∈ U , α ∈ A ,

and
V−(y) ≥ V−(yi) − εe−λt.

By the definition of V−, there exists αyi ∈ A such that

V−(yi) ≥ Jyi(u, αyi(u)) − εe−λt, ∀u ∈ U .

Thus, for y ∈ Ai, we have
V−(y) ≥ Jy(u, αyi(u)) − 3εe−λt, ∀u ∈ U .

It follows that

E
[
V−(Xx(t))

]
= E

[ ∞∑
i=1

�Ai(X
x(t))V−(Xx(t))

]

≥ E

[ ∞∑
i=1

�Ai(X
x(t))JXx(t)(u, αyi(u))

]
− 3εe−λt.

Now we define a mapping α2 by

α2(u)(s) =
∞∑

i=1

�Ai(X
x(t))αyi (u)(s), s > t.

Then α2 is nonanticipative and the relation (3.4) follows immediately. Consequently, by (3.3) and (3.4), we get

W (x) ≥ E

{∫ t

0

e−λsf(Xx(s), u(s))ds

+
∑

α1(u)1,i≤t

e−λα1(u)1,i l(α1(u)2,i) + e−λtJXx(t)(u, α2(u))

}
− 4ε. (3.5)

Now we define a strategy δ by

δ(u(·))(s) =
{

α1(u(·))(s), s ≤ t,
α2(u(· + t))(s − t), s > t.

It’s obvious that δ is a nonanticipative map since α1 and α2 are both so. Then, by change of variables, it follows
from (3.5) that

W (x) ≥ E

{ ∫ ∞

0

e−λtf(Xx(t), u(t))dt +
∑
i≥1

e−λδ(u)1,i l(δ(u)2,i)

}
− 4ε,

where Xx(t) = Xx(t; u, δ(u)). That is, W (x) ≥ Jx(u, δ(u)) − 4ε. By the arbitrariness of u, we obtain W (x) ≥
V−(x) − 4ε, which follows immediately that W (x) ≥ V−(x).
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We now prove the inequality W (x) ≤ V−(x). For fixed α ∈ A and ε > 0, there exists u1 ∈ U such that

W (x) ≤ E

{∫ t

0

e−λsf(Xx(s), u1(s))ds +
∑

α(u1)1,i≤t

e−λα(u1)1,i l(α(u1)2,i) + e−λtV−(Xx(t))

}
+ ε, (3.6)

where Xx(t) = Xx(t; u1, α(u1)). By the definition of V−(x), with the similar arguments that lead to (3.4), we
get that there exists u2 ∈ U such that

E
[
V−(Xx(t))

] ≤ E
[
JXx(t)(u2, α(u2))

]
+ εe−λt. (3.7)

Now we define ũ ∈ U as follows:

ũ(s) =
{

u1(s), s ≤ t,
u2(s − t), s > t.

Then by (3.6), (3.7) and change of variables, we obtain

W (x) ≤ E

{ ∫ ∞

0

e−λtf(Xx(t), ũ(t))dt +
∑
i≥1

e−λα(ũ)1,i l(α(ũ)2,i)�{α(ũ)1,i<∞}

}
+ 2ε,

where Xx(t) = Xx(t; ũ, α(ũ)). That is, W (x) ≤ Jx(ũ, α(ũ)) + 2ε. Finally, the arbitrariness of α and ε follows
that W (x) ≤ V−(x). �

As a consequence of the DPP, we have:

Lemma 3.5. The lower and upper value functions V∓ satisfy the following:
(i) V∓(x) ≤ N [V∓](x), ∀x ∈ R

n.
(ii) Let x ∈ R

n be such that a strict inequality holds in (i) (for V− or V+). Then, (correspondingly) there
exists t0 > 0 such that for any u ∈ U and t ≤ t0,

V∓(x) + t2 > E

{ ∫ t

0

e−λsf(Xx(s), u(s))ds + e−λtV∓(Xx(t))

}
,

where Xx(·) satisfies

Xx(t) = x +
∫ t

0

b(Xx(s), u(s))ds +
∫ t

0

σ(u(s))dBs.

Proof. We only prove the assertions for V−. We obtain (i) by letting t ↓ 0 in (3.1). By Lemma 3.4-(i), for any
t > 0, there exists αt ∈ A such that for any u ∈ U ,

V−(x) + t2 > E

{ ∫ t

0

e−λsf(Xx(s), u(s))ds +
∑

αt(u)1,i≤t

e−λαt(u)1,i l(αt(u)2,i) + e−λtV−(Xx(t))

}
,

where Xx(t) = Xx(t; u, αt(u)). To get (ii) for V−, it’s enough to show that, for some t0 > 0, θt := αt(u)1,1 ≥ t
for any 0 ≤ t ≤ t0. If this is not true, then (without loss of generality) there would be a sequence tn ↓ 0 such
that θtn < tn. This implies that

V−(x) + (θtn)2 > E

{∫ θtn

0

e−λsf(Xx(s), u(s))ds + e−λθtn
l(αθtn

(u)2,1) + e−λθtn
V−(Xx(θtn))

}
.

Then by letting n → ∞ we obtain that V−(x) ≥ N [V−](x), which contradicts the hypothesis that a strict
inequality holds in (i). The proof is concluded. �
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We are now ready to prove:

Proposition 3.6. Under (H1) and (H2), V− and V+ are viscosity solutions of QVI (2.3).

Proof. We only prove that V− is a viscosity solution of QVI (2.3). Let us show in a first step that V− is a
viscosity subsolution. For this, we suppose that ϕ ∈ C2(Rn) and x ∈ R

n are such that V− − ϕ attains a
local maximum at x. Without loss of generality, we assume that V−(x) = ϕ(x). From Lemma 3.5, we have
N [V−](x) − V−(x) ≥ 0, so it suffices to prove that H(x, ϕ(x), Dϕ(x), D2ϕ(x)) ≥ 0. To this end, let α0 ∈ A be
the strategy that for any u ∈ U , α0(u) makes no impulses. Then by Lemma 3.4, for any ε > 0, there exists
uε(·) ∈ U such that

ϕ(x) ≤ sup
u∈U

Jx(u, α0(u))

≤ E

{ ∫ t

0

e−λsf(Xx(s), uε(s))ds + e−λtV−(Xx(t))

}
+ εt

≤ E

{ ∫ t

0

e−λsf(Xx(s), uε(s))ds + e−λtϕ(Xx(t))

}
+ εt,

where Xx(·) satisfies

Xx(t) = x +
∫ t

0

b(Xx(s), uε(s))ds +
∫ t

0

σ(uε(s))dBs,

for t > 0 small enough. By Itô’s formula applied to e−λtϕ(Xx(t)), we obtain

0 ≤ εt − λE

∫ t

0

e−λsϕ(Xx(s))ds + E

∫ t

0

e−λsf(Xx(s), uε(s))ds

+ E

∫ t

0

e−λs
{
b∗(Xx(s), uε(s))Dϕ(Xx(s)) +

1
2
Tr[(σσ∗)(uε(s))D2ϕ(Xx(s))]

}
ds.

Dividing t and letting t ↓ 0, we get that for some uε ∈ U ,

0 ≤ f(x, uε) − λϕ(x) + b∗(x, uε)Dϕ(x) +
1
2
Tr[(σσ∗)(uε)D2ϕ(x)] + ε,

which follows H(x, ϕ(x), Dϕ(x), D2ϕ(x)) + ε ≥ 0. From the arbitrariness of ε, we obtain H(x, ϕ(x), Dϕ(x),
D2ϕ(x)) ≥ 0.

We now proceed to prove that V− is a viscosity supersolution. Let ϕ ∈ C2(Rn) and x ∈ R
n be such

that V− − ϕ attains a local minimum at x. Without loss of generality, we assume again that V−(x) = ϕ(x).
If N [V−](x) − V−(x) = 0, then there’s nothing to prove. If N [V−](x) − V−(x) > 0, we need to prove that
H(x, ϕ(x), Dϕ(x), D2ϕ(x)) ≤ 0. By Lemma 3.5, there exists t0 > 0 such that for any u ∈ U and t ≤ t0,

V−(x) + t2 > E

{∫ t

0

e−λsf(Xx(s), u)ds + e−λtV−(Xx(t))

}
,

where Xx(·) satisfies

Xx(t) = x +
∫ t

0

b(Xx(s), u)ds +
∫ t

0

σ(u)dBs.
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By Itô’s formula, we obtain that

t2 > −λE

∫ t

0

e−λsϕ(Xx(s))ds + E

∫ t

0

e−λsf(Xx(s), u)ds

+ E

∫ t

0

e−λs
{
b∗(Xx(s), u)Dϕ(Xx(s)) +

1
2
Tr[(σσ∗)(u)D2ϕ(Xx(s))]

}
ds.

By dividing t and letting t ↓ 0, we get

0 ≥ f(x, u) − λϕ(x) + b∗(x, u)Dϕ(x) +
1
2
Tr[(σσ∗)(u)D2ϕ(x)], ∀u ∈ U,

which follows that H(x, ϕ(x), Dϕ(x), D2ϕ(x)) ≤ 0. The proof is complete. �

We will show that QVI (2.3) admits at most one viscosity solution. A necessary lemma is given in the
following. For the proof, one is referred to Lemma 4.4 in [12].

Lemma 3.7. Suppose V is a uniformly continuous function. Let y0 ∈ R
n and ξ0 ∈ K be such that

V (y0) = N [V ](y0) = V (y0 + ξ0) + l(ξ0).

Then there exists δ > 0 which depends on V , such that

V (y) < N [V ](y), ∀ |y − (y0 + ξ0)| ≤ δ.

Now let us give the following:

Proposition 3.8. Assume (H1) and (H2). Let v and ω be viscosity solutions of QVI (2.3) in BUC(Rn). Then
v = ω.

Proof. We only prove v ≤ ω. The inequality of the opposite direction can be proved similarly. To this end, we
assume that sup

x∈Rn

(v(x) − ω(x)) > 0. Then we can find x̄ ∈ R
n and δ > 0 such that

sup
x∈O(x̄)

(v(x) − ω(x)) > 0, (3.8)

and
N [ω](x) > ω(x), ∀x ∈ O(x̄), (3.9)

where O(x̄) = {x ∈ R
n : |x − x̄| < δ}. In fact, there exists y0 ∈ R

n such that v(y0) − ω(y0) > 0. If N [ω](y0) >
ω(y0), then considering the uniform continuity of v, ω and N [ω], we obtain (3.8) and (3.9) by taking x̄ = y0.
Suppose it’s not the case. Then let us assume that for some ξ0 ∈ K, ω(y0) = N [ω](y0) = ω(y0 + ξ0) + l(ξ0). We
choose x̄ = y0 +ξ0. Then by Lemma 3.7, there exists δ > 0 such that N [ω](x) > ω(x), ∀x ∈ O(x̄). On the other
hand, it’s easy to check that v(x̄) − ω(x̄) = v(x̄) + l(ξ0) − ω(y0) ≥ v(y0) − ω(y0) > 0. Hence, we obtain (3.8)
and (3.9). In the sequel, we assume, without loss of generality, that

v(x) ≤ ω(x), ∀ |x − x̄| = δ.

Now let us define the Hamiltonian H : R
n × R × R

n × Sn → R as follows:

H(x, p, P, Q) = inf
u∈U

{
− f(x, u) + λp − b(x, u)∗P − 1

2
Tr[(σσ∗)(u)Q]

}
.



STOCHASTIC DIFFERENTIAL GAMES INVOLVING IMPULSE CONTROLS 757

Then it’s obvious that H = −H . By Definition 3.1 and Proposition 3.6, together with (3.9), it’s easy to check
that, for any ϕ ∈ C2(Rn), if v − ϕ attains a local maximum at x ∈ O(x̄), then H(x, ϕ(x), Dϕ(x), D2ϕ(x)) ≤ 0,
and if ω − ϕ attains a local minimum at x ∈ O(x̄), then H(x, ϕ(x), Dϕ(x), D2ϕ(x)) ≥ 0. Hence, in O(x̄), v and
ω are, respectively, viscosity subsolution and supersolution of the following equation:

H(
x, V (x), DV (x), D2V (x)

)
= 0.

It’s easy to check that the function H is proper in the sense that

H(x, p1, P, Q1) ≤ H(x, p2, P, Q2), if p1 ≤ p2 and Q1 ≥ Q2.

And for any p1 ≥ p2 and (x, P, Q) ∈ R
n × R

n × Sn,

H(x, p1, P, Q) −H(x, p2, P, Q) = λ(p1 − p2). (3.10)

Now let us assume that Q1, Q2 ∈ Sn, α > 0 satisfy the following inequality:(
Q2 0
0 −Q1

)
≤ α

(
I −I
−I I

)
. (3.11)

Then it’s easy to check that Q2 − Q1 ≤ 0, and thus Tr[(σσ∗)(u)(Q2 − Q1)] ≤ 0. From the Lipschitz properties
of b and f , it follows that

H(y, p, α(x − y), Q1) −H(x, p, α(x − y), Q2) ≤ c(α|x − y|2 + |x − y|). (3.12)

Then by (3.10) and (3.12), we conclude from Theorem 3.3 in [4] that

sup
x∈Ō(x̄)

(v(x) − ω(x)) ≤ 0,

which contradicts (3.8). Hence, sup
x∈Rn

(v(x) − ω(x)) ≤ 0 and the proof is concluded. �

Proof of Theorem 3.2. Theorem 3.2 is easily obtained by Lemma 3.3, Proposition 3.6 and Proposition 3.8. �

4. A verification theorem

In [1,3,8], verification theorems were considered for stochastic optimal control problems involving impulses,
which provide the optimal controls. In this section, we present a verification theorem which gives an optimal
strategy of our zero-sum stochastic differential game.

We suppose that a classical solution of QVI (2.3) exists, denoted by v. Then v separates the space R
n into

two disjoint regions: a continuation region

C :=
{
x ∈ R

n : v(x) < N [v](x) and H
(
x, v(x), Dv(x), D2v(x)

)
= 0

}
and an intervention region

Σ :=
{
x ∈ R

n : v(x) = N [v](x) and H
(
x, v(x), Dv(x), D2v(x)

) ≥ 0
}
.

In the sequel, we assume that for any (u(·), ξ(·)) ∈ U × K,

lim
t→∞E

[
e−λtv(Xt+)

]
= 0,



758 F. ZHANG

and

E

∫ ∞

0

|e−λsv′(Xs)σ(us)|2ds < ∞,

where X(·) is the solution of SDE (2.1) corresponding to (u(·), ξ(·)). We define, for any u ∈ U , the operator Lu

by

Luϕ(x) = −λϕ(x) + b∗(x, u)Dϕ(x) +
1
2
Tr[(σσ∗)(u)D2ϕ(x)], x ∈ R

n, ϕ ∈ C2(Rn).

Firstly we give the following:

Definition 4.1. The following mixed continuous-impulse stochastic control

(
u∗(·), ξ∗(·)) =

⎛
⎝u∗(·),

∑
i≥1

ξ∗i �(τ∗
i ,∞](·)

⎞
⎠

is called the QVI-control associated with v (if it exists):

P
{∀ (t, Xt) ∈ R

n × C : u∗(t) ∈ argmax
u∈U

{Luv(Xt) + f(Xt, u)}} = 1;

τ∗
0 = 0, ξ∗0 = 0;

τ∗
1 = inf

{
t > 0 : v(Xt) = N [v](Xt)

}
,

ξ∗1 = arg inf
{
v(X(τ∗

1 ) + ξ) + l(ξ), ξ ∈ K
}
;

and, for every n ≥ 2,

τ∗
n = inf

{
t > τ∗

n−1 : v(Xt) = N [v](Xt)
}
,

ξ∗n = arg inf
{
v(X(τ∗

n) + ξ) + l(ξ), ξ ∈ K
}
.

Here, X is the trajectory corresponding to (u∗(·), ξ∗(·)).
We are now ready to present the verification theorem for our stochastic differential game problem involving

impulses.

Theorem 4.2. Assume (H1) and (H2). Let v ∈ BUC(Rn) be a classical solution of QVI (2.3). If the QVI-
control (u∗(·), ξ∗(·)) associated with v is admissible, then v is the value function of our stochastic differential
game. Thus, (u∗(·), ξ∗(·)) is an optimal strategy of the game.

Proof. By Theorem 3.2 we know that V := V− = V+ is the unique viscosity solution of QVI (2.3) in BUC(Rn).
Hence, we obtain

v(x) = inf
α∈A

sup
u∈U

Jx(u, α(u)) = sup
β∈B

inf
ξ∈K

Jx(β(ξ), ξ).

We now only need to show that v(x) = Jx(u∗(·), ξ∗(·)). By an appropriate version of Itô’s formula (see, e.g.,
Sect. IV.45 of [10]), we obtain for any t > 0 and n ≥ 1,

e−λ(t∧τ∗
n)v(X(t∧τ∗

n)+) − v(x) =
n∑

i=1

{ ∫ t∧τ∗
i

t∧τ∗
i−1

e−λsLu∗
s (Xs)ds +

∫ t∧τ∗
i

t∧τ∗
i−1

e−λsv′(Xs)σ(u∗
s)dBs

}

+
n∑

i=1

�{τ∗
i ≤t}e−λτ∗

i
{
v(Xτ∗

i +) − v(Xτ∗
i
)
}
.
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From Definition 4.1, we have

e−λ(t∧τ∗
n)v(X(t∧τ∗

n)+) − v(x) =
n∑

i=1

{
−

∫ t∧τ∗
i

t∧τ∗
i−1

e−λsf(Xs, u
∗
s)ds +

∫ t∧τ∗
i

t∧τ∗
i−1

e−λsv′(Xs)σ(u∗
s)dBs

}

−
n∑

i=1

�{τ∗
i ≤t}e−λτ∗

i l(ξ∗i ).

Taking expectations, we obtain

v(x) − E
[
e−λ(t∧τ∗

n)v(X(t∧τ∗
n)+)

]
= E

{
n∑

i=1

[
�{τ∗

i ≤t}e−λτ∗
i l(ξ∗i ) +

∫ t∧τ∗
i

t∧τ∗
i−1

e−λsf(Xs, u
∗
s)ds

−
∫ t∧τ∗

i

t∧τ∗
i−1

e−λsv′(Xs)σ(u∗
s)dBs

]}
. (4.1)

Since the QVI-control is assumed to be admissible, we have τ∗
n ↑ ∞. Hence,

lim
n→∞E

[
e−λ(t∧τ∗

n)v(X(t∧τ∗
n)+)

]
= E

[
e−λtv(Xt+)

]
.

We also have

lim
n→∞E

{ ∫ t∧τ∗
n

0

e−λsv′(Xs)σ(u∗
s)dBs

}
= 0.

Thus, by letting n → ∞ in (4.1) we get

v(x) − E
[
e−λtv(Xt+)

]
= E

{ ∞∑
i=1

[
�{τ∗

i ≤t}e−λτ∗
i l(ξ∗i ) +

∫ t∧τ∗
i

t∧τ∗
i−1

e−λsf(Xs, u
∗
s)ds

] }
. (4.2)

It’s easy to check that
lim

t→∞E
[
e−λtv(Xt+)

]
= 0,

and

lim
t→∞E

{ ∞∑
i=1

[
�{τ∗

i ≤t}e−λτ∗
i l(ξ∗i ) +

∫ t∧τ∗
i

t∧τ∗
i−1

e−λsf(Xs, u
∗
s)ds

] }

= E

{ ∞∑
i=1

[
�{τ∗

i <∞}e−λτ∗
i l(ξ∗i ) +

∫ ∞

0

e−λsf(Xs, u
∗
s)ds

] }
.

Hence, by letting t → ∞ in (4.2) we have

v(x) = E

{ ∞∑
i=1

[
�{τ∗

i <∞}e−λτ∗
i l(ξ∗i )

]
+

∫ ∞

0

e−λsf(Xs, u
∗
s)ds

}
.

That is, v(x) = Jx(u∗, ξ∗). Thus, (u∗, ξ∗) constitutes an optimal strategy of the game. �
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