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FEEDBACK STABILIZATION OF A BOUNDARY LAYER EQUATION
PART 1: HOMOGENEOUS STATE EQUATIONS*

JEAN-MARIE BUCHOT! AND JEAN-PIERRE RAYMOND?

Abstract. We are interested in the feedback stabilization of a fluid flow over a flat plate, around a
stationary solution, in the presence of perturbations. More precisely, we want to stabilize the laminar-
to-turbulent transition location of a fluid flow over a flat plate. For that we study the Algebraic
Riccati Equation (A.R.E.) of a control problem in which the state equation is a doubly degenerate
linear parabolic equation. Because of the degenerate character of the state equation, the classical
existence results in the literature of solutions to algebraic Riccati equations do not apply to this
class of problems. Here taking advantage of the fact that the semigroup of the state equation is
exponentially stable and that the observation operator is a Hilbert-Schmidt operator, we are able to
prove the existence and uniqueness of solution to the A.R.E. satisfied by the kernel of the operator which
associates the ‘optimal adjoint state’ with the ‘optimal state’. In part 2 [Buchot and Raymond, Appl.
Math. Res. eXpress (2010) doi:10.1093/amrx/abp007], we study problems in which the feedback law
is determined by the solution to the A.R.E. and another nonhomogeneous term satisfying an evolution
equation involving nonhomogeneous perturbations of the state equation, and a nonhomogeneous term
in the cost functional.
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1. INTRODUCTION

We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary solution,
in the presence of perturbations. The control variable is a suction velocity through a small slot near the leading
edge of the plate.
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In the stationary case, the fluid flow in the boundary layer may be described by the Prandtl equations, or
similarly by the Crocco equations [14]:

Ujong—z)uw2%0 in (0,L) x (0,1),

v (wa—w) (&,0) =vsw(£,0), limw(,n) =0 for £€(0,L), (1.1)
87] n—1

w(0,m) = wy(n) for ne(0,1).

Here (0, L) represents a part of the plate where the flow is laminar, (0,1) is the thickness of the boundary layer
in the Crocco variables, (UZ,,0) is the velocity of the incident flow, wy is the velocity profile in Crocco variables
at £ =0, vy is a suction velocity throughout the plate, the positive constant v is the viscosity of the fluid. We
set Q= (0,L) x (0,1). The transformation used to rewrite the Prandtl equations into the Crocco equation is

B us(w,y) 1 Ous
E=o n=—p w(E,n)—U& oy DY) (1.2)

see [14], when (us, vs) is the stationary solution of the Prandtl system, and (z,y) € (0, L) x (0,00). Assuming
that the regularity and compatibility conditions between wy and vy stated in [14], Theorem 3.3.2, are satisfied,
the stationary equation (1.1) admits a unique solution w; in the class of functions w satisfying

ow

we Q). Kill -yl < w(En) < Kall ), \8—5 < K1),
o), W% ereq), e o )
on ’ on? ’ o¢ ’

where K1, K5, and K3 are positive constants. This class of solution will be called the class of ‘asymptotic type
solutions’ because they may correspond to an asymptotic profile of some solutions to the Prandtl equations
when x tends to infinity (see [7], Sect. 6, where we give an explicit example of such solutions). Another class
of solutions important for applications is the class of ‘Blasius type solutions’ (the term comes from the fact
that some solutions in that class can be obtained by solving the so-called Blasius differential equation) (see [7],
Sect. 6, [14], p. 129).

We are interested in stabilizing a flow over a flat plate when the longitudinal incident velocity is of the form:

Unolt) = US + use(1). (1.4)

Using the Crocco transformation (see (1.2) and [14]) when the velocity of the external flow Uy is positive
and only depends on t, the Prandtl system — describing the velocity field in the boundary layer over the flat
plate — is transformed into a degenerate parabolic equation stated over Q = (0, L) x (0, 1), called the Crocco
equation [3,4], System 4.7, p. 85, [14], p. 174, written down below:

ow ow Ul ow
E+Uoo7’a—€+ Uoo(lin)a_n
Pw UL .
fl/w28—n2+Uoow:0 in Q x (0,7,
w(n,0) = wo(&,m) in €, (1.5)
ow U!
<1/w8—n> (€,0,t) = (vs + Lyu) w(&,0,t) — U°° (t) for (&,t) € (0,L) x (0,T),
lim1 w(&,n,t) =0 for (&,t) € (0,L) x (0,7,
’I’]*}
w(0,n,t) = wi(n,t) for (n,t) € (0,1) x (0,T),
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where 1, is the characteristic function of the slot v = (z9,x1) C (0,L), u is a control variable and v; is the
function appearing in equation (1.1).

Due to the lack of existence result for the instationary Prandtl system when Uy (t) is of the form (1.4) (or to
the corresponding instationary Crocco equation — see [14] for some results corresponding to particular profiles,
and the more recent results in [20]), we have chosen to describe the velocity field in the boundary layer by solving
the Crocco equation linearized about the stationary solution wg. Since the perturbation u.(t) and the control
function u are supposed to be small with respect to U3, the linearized model is an accurate approximation of
the nonlinear one. This assertion, which is not proved, is actually confirmed by numerical experiments [4,7].
The Crocco equation (1.5) linearized about ws with a boundary control w is the degenerate parabolic equation:

O ety (t&m) € (0.00) x
2(0,&,m) = 20(&,m) &mn) e Q, L)
1.6
Vaz(t,0,m) = az(tn) (t,n) € (0,00) x (0,1),
0z
(bZ)(t,f,].) =0, 6_77(t’£’0) = (]]-Wu+g)(ta§) (t,f) € (0,00) X (OvL)a
where 5 92
z z
Az = —a(n)5; +0(&n) 75 — &)z,
o0& on
L (1) 80 "
Uso — Uoo .
f(tagan) - um(t)d(gvn) + Ué’o e(faﬂ)a g(tﬂg) - Vwé(g,O)Ugo
The coefficients a, b, ¢, d, e depend on the stationary solution ws of the Crocco equation, and are defined by:
s 0 ws
a=Uln, b=v(w)’, e=-2ws,
Ows Ows
= — = —Wg — 1 —
d=-n o’ €=V (1=mn) an

Assumptions on the coefficients a, b, ¢, d and e are not the same ones if wy belongs to the class of Blasius type
solutions or if it belongs to the class of asymptotic type solutions.

In this paper we only consider the class of asymptotic type solutions because we have studied equation (1.6)
in [6] when w, belongs to this class.

In the case of Blasius type solutions the so-called laminar-to-turbulent transition location — which is an
important criterion in applications — is a nonlinear mapping depending on the state variable w and on Us. Its
linearization about (ws, US,) — called the linearized transition location — is of the form [, ¥(&, ) z(t, &, 1) d€dn+
Colloo(t), where the function v belongs to L?(£2) and ¢y belongs to R (they can be determined numerically in a
precise manner see [7], Sect. 6, Test 3).

Here, we consider observation operators of the more general form

CZ(t, ) + yd(ta ) - /Q¢(,§777) Z(tvfa 7’) dﬁdﬂ + yd(ta ) € LQ(Q)v (18)

where ¢ € L?(Q x Q) and yq € L?(0,00; L?(£2)) are given. Thus C is a Hilbert-Schmidt operator in L%(Q2). (For
the linearized laminar-to-turbulent transition location the function ¢(z,y, &, n) = (£, n) only depends on (§,7)
and yq(t,-) = couno(t) only depends on t.) It is obvious that the identity in L?(f2) is not a Hilbert-Schmidt
operator, however the identity operator from L?(€2) into L?(Q) equipped with a norm weaker than the usual
one can also be written in the above form (see Prop. 2.1).
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Our main objective is to determine a control u, in feedback form, in order that the observation C'z(t) + y4(t)
decays to zero when t tends to infinity. For that we use the optimal control theory, and we consider the
linear-quadratic control problem

(Pt,9.2,5a:20) inf{J(z,u) | (z,u) € L*(0,00; Z) x LQ(O,oo; U), (z,u) satisfies (1.6)},

where Z = L?(Q), U = L*(0, L), and

1 [ 9 1 [ 9
Hew) =3 [ 100+ molzar+ 5 [ Tl a

where C' € £(Z) is the Hilbert-Schmidt operator of kernel ¢ defined above.

First of all we would like to explain in which aspects problem (P g 2, 44,2, ) is & classical matter of the optimal
control theory, and what are the questions that the existing results in the literature cannot answer.

In Section 2 we give a precise definition of solution to equation (1.6), and we prove that it can be rewritten
in the form

2 = Az + B(Lyu) + F, 2(0) = zp. (1.9)

Moreover, the solution z to equation (1.9) belongs to Cy([0,00); Z) N L?(0,00; Z), the mapping u + z is
continuous from L2(0,00;U) into Cy([0,00); Z) N L?(0,00; Z), and the semigroup (e*4);>( is exponentially
stable on Z. Thus it seems that we are in a very favorable position to characterize the optimal solution of
(Pt,9.20,ya,20) by means of a feedback law, and our control problem seems to enter into a classical setting.

Even if the analysis of the nonlinear model with the feedback law is not performed, let us explain why the
results obtained for the LQ control problem (Py.g, 2, y4,20) are quite new and interesting.

In Section 3, we are able to prove that (Py gz, 44,20) admits a unique solution (z,u), and that this solution
is characterized by an optimality system of the form

¥ =Az+B(Lyu) +F,  2(0) =z,
—p' =A*p+C*(Cz+yaq), ploo)=0, (1.10)
u=—1,B"p.

We want to prove that there exists an operator IT € £(Z) satisfying II = IT* > 0, and a function r € L?(0, c0; Z)
such that

p(t) = Tz(¢t) + r(t).
The main objective of the present paper is to obtain an algebraic Riccati equation characterizing II. The
equation satisfied by r, which involves the nonhomogeneous terms f, g, 25, and yq is studied in Part 2 [7]. To
find an equation satisfied by II, we study problem (Pf.g 2, y4,20) it the case when f =0, g = 0, 2z, = 0 and
ya = 0. Denoting this problem by (P.,), we can easily show that

inf(P,,) = %(Hzo, ZO)L2(Q).

Since A is a degenerate parabolic operator, we explain at the beginning of Section 5 why the existing results
in the literature are not sufficient to obtain a Riccati equation characterizing IT in the domain of A. To overcome
this difficulty we look for IT in the form of a Hilbert-Schmidt operator in L?(2), and we characterize the equation
satisfied by its kernel w. The existence of a weak solution to the algebraic Riccati equation satisfied by 7 is
studied in Section 5. In Section 6 we show that

1
inf(P,,) = 5/9 Q7T7«'0®207
X
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for all solution 7 to the algebraic Riccati equation. (zo® zo denotes the function defined in Qx Q by (x,y,&,n) —
zo(x,y)20(&,n).) Thus 7 is unique and it is the kernel of II. The analysis in the nonhomogeneous case, that is
when f, zp, g and y4 are not necessarily zero, is performed in Part 2 [7]. Numerical results are also given in [7],
showing the efficiency of the linear feedback law applied to the nonlinear Crocco equation in the presence of
perturbations.

2. ASSUMPTIONS AND PRELIMINARY RESULTS

As in [6], we make the following assumptions on the coefficients a, b, and c.

(H1) a(n) = U n for n € [0,1], and b € W1>°(Q). There exist positive constants C;, i = 1 to 4, such that

Ci]1 —n|? <b(&n) < Ca|l — 7,

b b ) (2.1)
a—n(fw)‘ <Csl—nf  and 8—5(5’77) < Cu[1 =1 for all (§,7) € Q.
(H2) The function ¢ belongs to L*°(€2), and we denote by Cy a positive constant such that
el e (@) < Co. (2.2)

The nonhomogeneous terms f, g, z; and the initial condition zy and the function ¢ satisfy
(Hs) 20 € L?(2), 2, € L?(0,00; L?(0,1)) and g € L%*(0, 00; L?(0, L)).

(Hy) f € L?(0,00; L2()), ¢ € L2(2 x Q) and yq € L?(0,00; L2()).
Let us recall some notation introduced in [5,6]. Let H'(0,1;d) be the closure of C*°([0,1]) in the norm:

1 5 1/2
z
121l e 0,1:0) = </O [2* + 1 —nf? ; dﬂ) : (2.3)

9z

0
To take the Dirichlet boundary condition bz (€, 1,¢) = 0 into account, we denote by H{ll}(O, 1;d) the closure of
Ce([0,1)) in the norm || - || g1 (0,1;4)- According to Triebel [16], Theorem 2.9.2,

H'(0,1;d) = H{11(0,1;d).

Let us set
FO = ([OaL) X {0}) U ({0} X (Oa 1)); Fl = ({L} X (Oa 1)) U ((OaL] X {1})

If the vectorfield (az, —bg—f}) belongs to (L?(Q2))2, and its divergence belongs to L?(£2), the normal trace on the

boundary I' of the vectorfield (az, fbg—f]) belongs to H /2 (T"). We denote this normal trace by T(az, fbg—f]).
Let us recall the definitions of some trace spaces (see [13] or [8], Chap. 7, Sect. 2, Rem. 1)

HA(T,) = {(p € L2(Ty) | 3 € HY(Q), v =0onT; and ¢ = ¢ on FO},
HYA(T)) = {cp € L2(I1) |3 € HY(Q), v =0on Ty and ¢ = ¢ on rl}.

z

We can define Tj (az, _bg_n) as an element in (Héé2 (Ty))" in the following way

0z 0z
To (a2, —b5-). ) = (7(a2-b5,) 200)
< 0\%% on 14 (HyL? (To))  Hol? (To) @z an 0¥ H-1/2(T),H1/2(I)

0
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for all ¢ € H(%Q(I‘o), where vo € L(H*(Q), H'/?(T)) is the trace operator and ¥ € H(Q) is a function such
that v =0 on I'y and ¥ = ¢ on Ty.
Similarly, if the vectorfield ( —az, fa%(bz)) belongs to (L%(€2))?, and its divergence belongs to L?(f2), the

normal trace on the boundary I" of the vectorfield ( —az, f%(bz)» denoted by T( —az, f%(bz)), belongs to
H~/2(T"), and we can define Tl( —az, —%(bz)) by

<T1( — 9% —(%(bz)) ’ (p>(H1/2(F1))’,H1/2(F1) - <T( — 9% _é%(bz)) ’ ,yow>H*1/2(F),H1/2(F)

00 00

for all ¢ € H(%Q(I‘l), where ¢ € H(Q) is a function such that ¢ = 0 on I'g and ¢ = ¢ on T'y.
The differential operators A and A* are defined by

0z 0%z dp  0?(bp)
Az=—-a—+b— — A*p=a—
: “ ¢ on? “ b a@§ * on?

The unbounded operators in L?(§)) associated with the above differential operators are given by:

0z
_ 200 7. L0 1. 2 397\ _

D(A) = {ze L2(0,L; HY0,1:d)) | Az € L3(Q), To(az, ban) o},

Az = Az for all z € D(A),

D(A") = {p € L2(0,L; H'(0,1;d)) | A*p € L2(Q) T1<f ap fi(bp)) - o}

Y Y ) Y ) ) 677 Y

A*p=A*p for all p € D(A*).
According to [6], Theorem 5.9, (A*, D(A*)) is the adjoint of (A, D(A)) and (A, D(A)) is the infinitesimal gen-
erator of a strongly continuous semigroup on L?(£2). As in [6], we also need to define the operators (A, D(Ay))
and (A5, D(A})) by setting D(Ag) = D(A), D(A;) = D(A"),

A =A¢ —ka¢, forall (€ D(A), and A (= A"C—Fka(, forall ( € D(A*).

The interest of introducing the operator (A, D(A)) is explained right now. We can easily verify that a function
2z € L*(0,T; L*(Q)) is a weak solution to

Z'=Az in(0,T), 2(0)= 2,
if and only if the function ¢ = e %€z is a weak solution to
¢ =A¢ in(0,T), ¢(0)=eFz. (2.4)
We are able to prove estimates for ¢ that can be translated in estimates for z. Actually, we have proved

in [6], Theorem 6.2, that, for all zo € L?(Q2), the weak solution ¢ € L?(0,T; L*(9)) to equation (2.4) obeys the
following inequality

1 1 13 1 t 1
5[ [P+ g [ [ alcennp dpar
0 0 0 JoO

SVENC T

1 [tos
+ —=C+(c+ ka)|(|2> drdndr < 5 / / e 2k |zo(z,n)[* dzdn, (2.5)
o Jo
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for all t € (0,7) and all £ € [0,L]. Formally estimate (2.5) could be obtained by multiplying equation (2.4)
by ¢ and by making integrations in space and time. In that case we obtain an equality in (2.5) in place of an
inequality. Due to the degenerate character of the operator 4; only an inequality has been proved in [6]. If
we choose k > 0 big enough, due to Lemma 2.1 below, inequality (2.5) can provide estimates for ¢ that can be
translated in estimates for z. The existence of k, for which we can establish a coercivity condition, is established
in [6], Lemma 3.1. Due to the crucial role of this coercivity condition, we state and we give a complete proof of
this lemma below.

Lemma 2.1. There exists k > 0 such that

| (e |5

for all € € [0, L], all z in H(0,1;d).

2 o

ob dz
0—77(5, ')d_nz + (=Co + ka) 2* )dn > — ”ZHHl(O v:ay + 12l1Z2(0.1)5 (2.6)

Proof. Step 1. With the first inequality in (2.1) we can easily verify that

1
dz
|z ||H1 0,1;d) = /0 <|Z|2 + [b(&, )| ‘dn

for all £ € [0, L], and all z € H*(0, 1;d), with a3 = min(Cy, 1) and some ag > ay.
Step 2. We set

2
) dn < az|2ll3 0 1:a) (2.7)

! dz|* ab(e, ) dz )
Br(&; 2, 2) _/0 (b(f,-) T o d_nz+ (—c+ ka)lz| ) d
Using (2.7) and inequality (2.1), we have
AP abdz )

ob dz 1
> / ( —n|? ‘ ‘ 8_d_’l72+ (C’0+ka§>|z|2> dﬂJF ”ZHHl(O,l,d)

From inequality (2.1), and Young’s inequality, it yields

1
Oz S a2 [
0 077d77 2¢ Jo

for all ¢ > 0. Consequently, [ (&; -, ) satisfies the estimate

C Cse
Br(&; 2, 2) H ||H1(0,1,d)+< : _—3>/ |1 _77|2

Now, we choose ¢ such that % = % — % > 0. We have

2 ! 1 Cs )
dn + —Co+ka—=-(1+—)||z]" dn.
0 2 5

! 1 Cs )
d77+ —Co+ka—=(1+—)]|z|* dn.
0 2 €

1
. Oq 2 Cl 2
Br(&;2,2) > 7|\Z||H1(o,1;d)+j/0 11— an
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To establish the lemma, it is enough to prove that, there exists k > 0 such that

1
Cl/ |1*77|2
0

with Cy = C1/(470), k = k/Fo, ¢ = ¢/Fo and 7o = 3 (£ +1) + Cp + 1.
This can be shown by arguing by contradiction. We suppose that exists a sequence (2,,), C H(0,1;d) that

satisfies
1 1
~ d
[Pt and G [ gp| S
0 0 dn

Due to the second condition in (2.8), the sequence (zy,), (or at least a subsequence) tends to 0 almost everywhere
in [0, 1] and strongly in L?(e, 1) for all € > 0. Since the imbedding from H'(0,1) in L*(0,1) is compact and since
((1=n)z,)n is bounded in H*(0,1), the sequence ((1 — 1)zy,),, tends to 0 in L?(0, 1). We know that the sequence
(2n)n converges to 0 in L?(1/2,1), and that the sequence ((1 —7)z,),, converges to 0 in L?*(0,1/2). Thus, the
sequence (zy,), converges to 0 in L2(0, 1), which is in contradiction with the first condition in (2.8). O

dz |? !
—1 d ka|z)? dn > ||z||?
T dur [ FaleP an >l

2 1
dn+n/ alz,|? dn < 1. (2.8)
0

Thanks to this lemma we can prove the following theorem.

Theorem 2.1. The operator (A, D(A)) is the infinitesimal generator of a strongly continuous semigroup expo-
nentially stable on L*(Q).

Proof. The complete proof of this result is given in [6], Proof of Theorem 6.1. We only explain how the
exponential stability of the semigroup (eAt)tZO, can be obtained. By using Lemma 2.1 and inequality (2.5), we
can show that, for all zy € L?(Q), the function z(t) = ez, obeys

121 £2(0,00:2(02)) < Cll20lL2(02)-
The exponential stability follows from Datko’s Theorem (see e.g. [21], Thm. 3.1(i)). 0

In the following we shall denote by w > 0 an exponent and C(w) > 1 a constant depending on w such that
el 2y < Clw)e ™ and e ziz2q) < C(w)e ™t for all t > 0.

As in [6], it is useful to introduce a parameter k to obtain estimates of solutions of different equations related
to the operator A.

Now we show that there is a norm in L?(), weaker than the usual one, which is associated with a Hilbert-
Schmidt operator. More precisely, we have the following:

Proposition 2.1. For 1 <i < oo and 1< j < oo, let us set

Vij(z,y) = \/%sin (%) V2sin (jmy),

and
[oe) 1 '
balz,y,&m) = Z W%,j(%w%,j(f’n) with o> 1.
i,j=1

Then ¢, belongs to L?(Q2 x Q). Let C,, be the Hilbert-Schmidt operator defined by

Cazz/9¢a(afa77)z(faﬂ)d§dﬂ
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The mapping
1/2
o0

2
1
20— [Cazllzey = | D 20 1 j2a (/Q v Z) ’

ij=1
is @ norm in L%(Q) weaker than the usual one.

Proof. The family (1; ;)1<i.j<oo is a Hilbertian basis of L?(02), and the family (; j ®1; j)1<i j<co is a Hilbertian
basis of L#(2 x Q). Thus it is easy to see that

oo

1
H¢a|\%2(§zx9) - Z 20 SN
) 1°% 4+

The end of proof is obvious. O

3. CONTROL SYSTEM

In this section, we want to prove that equation (1.6) can be rewritten as a control evolution equation of the
form
2= Az + B(1,u) + F, 2(0) = 2. (3.1)

In particular we want to define the operators A and B, and the function F'.

3.1. Existence and uniqueness results for the state equation

To define solutions to equation (1.6) by the transposition method, we introduce the adjoint system:
—p'=A*p+¢ in (0,00), p(oo) = 0. (3.2)

Due to Theorem 2.1, and with results in [6], we can prove the following theorem.
Theorem 3.1. Let 1) € L%(0,00; L%(Q)). The system (3.2) admits a unique weak solution p such that
p € Cb([0,00); L7(2)) N L*(0, 005 L*(0, L; H'(0, 1;))),
Vap € Cu([0, L]; L*(0, 00; L*(0, 1)),
where Cy, ([0, L]; L*(0, 00; L?(0,1))) is the space of continuous functions from [0, L] into L*(0,00; L*(0, 1)) equipped
with its weak topology and Cy([0,00); L%(Q)) is the space of bounded and continuous functions from [0, 00)
into L2(2). It satisfies the estimate

121l oo (0,005 22(92)) + IV apI| Los(0,1:12(0,00:22(0,1))) F 1Pl L2(0,00:L2(0,1: 12 (0,1:0))) < Cl1¥ || £2(0,00:22(02)) - (3-3)

We define weak solutions to equation (1.6) by the transposition method.

Definition 3.1. A function z € L? (0, 00; L*()) is a weak solution to equation (1.6) if and only if we have
| swardedn = | fodrdan+ [ p(0.mzic.n)dedn

%) L (o) 1
- / / b(E,0) (g + L u)(, €) p(r, €,0) drde + / / a(n)z (7, p(r, 0, ) drdn,  (3.4)
0 0 0 0

for all ¢ € L? (0, 00; LQ(Q)), where p is the solution to equation (3.2), and @ = £ x (0, c0).
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In [6], Theorem 6.6, it is shown that if z € L? (0, oo;LQ(Q)) is a weak solution to equation (1.6), in the
sense of semigroup theory, then it is also a solution in the sense of transposition, that is to say in the sense
of Definition 3.1. By taking in (3.4) functions ¢ of the form (¢, &,n) = —0'(t)C(&,n) — 0(t)A*¢(&,n), where
¢ € D(A*) and 6 € D(RT), we recover the weak formulation of the definition in the sense of semigroup theory.
The initial condition can also be recovered by choosing a particular sequence of functions 1.

Theorem 3.2. Let f be in L?(0,00; L%(Q)), g € L?*(0,00; L*(0, L)), u € L*(0,00; L*(0, L)), 2, € L?(0, 00; L?(0, 1)),
and zo € L*(2), then equation (1.6) admits a unique weak solution z € L?(0,00; L*(2)). Moreover

z € L*(0,00; L*(0, L; H'(0,1;d))) N Cy([0, 00); L*(92)),
Vaz € Cy([0, L]; L*(0,00; L*(0,1))),
and the solution obeys:
121l oo (0,00;22(92)) + 1V @2 Lo (0, 1:12(0,00:£2(0,1))) + 1211 22(0,00:L2(0,1: 1 (0,1:)))

< C5(||f||L2(Q) + lull L2(0,00;220,1)) + 1191l £2(0,00:22(0,1)) + 1261l £2(0,00:22(0,1)) + HZO||L2(Q>)- (3.5)

Proof. Theorem 3.2 is proved in [6], Theorem 6.6. Its proof relies on inequality (2.5), on Lemma 2.1, and on
an approximation procedure (the boundary terms u, g and z, are approximated by a sequence of distributed
terms). O

3.2. Dirichlet and Neumann operators

Let v belong to L?(0, L) and 2, € L?(0,1). We define the solution to the Neumann problem

Aw=0inQ, +aw(0,-)=0in (0,1), (bw)(,1)=0 and Z—ZC,O) =wv in (0,L), (3.6)
and to the Dirichlet problem
AC=01in Q, +/a((0,-) =+az, in (0,1), (b¢)(-,1) =0 and g—f’(-, 0)=0 1in (0,L), (3.7)

by the transposition method as follows.

Definition 3.2. A function w € L?(Q) is a weak solution to equation (3.6) if and only if we have

L
/QwA*p dédn = 7/0 b(&,0)v(&)p(&,0) d& for all p € D(A"). (3.8)

Similarly, a function ¢ € L?(Q) is a weak solution to equation (3.7) if and only if we have

1
[ capagan == [ ametmp.0)de  forallp € DA (39)
0
Using the method in [6], Proof of Theorem 6.6, we can establish the following theorem.
Theorem 3.3. Let v € L?(0, L), then equation (3.6) admits a unique weak solution w € L*(Q). Moreover
w e L*(0,L; HY(0,1;d)), Vaw € Cy([0, L]; L*(0, 1)),

and
[Vawll o< 0,:£2(0,1)) + 1wl £2(0,2:11 0,1:0)) < Cllvllz2(0,1)- (3.10)
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Let z, € L?(0,1), then equation (3.7) admits a unique weak solution ¢ € L?(Q2). Moreover

¢ € L*0,L; H'(0,1;d)), va¢ € Cy([0, L]; L*(0, 1)),
and the solution obeys:

IVaCll L= 0,z;22(0,1)) + ISl L2002 0,1:0)) < CllzllL2(0,1)- (3.11)
Proof. We briefly give the proof of (3.10). The second statement can be proved in the same way. The uniqueness
of solution to equation (3.6) is obvious. The only difficult point is the existence of a solution and estimate (3.10).
We proceed by approximation. We set v,(£,1) = nv(€)xn(n), where x,, is the characteristic function of the
interval (0,1). Let wy, be the solution to equation

Aw,, = buv,. (3.12)

It can be shown that ¢, = e *¢w,, satisfies an inequality similar to (2.5). More precisely, we have

o | [ (15

for all z € [0, L]. With Lemma 2.1 and classical majorizations we arrive at

2 1 x
MLy ka)gg> de dn < / / e H ho, (rdedy,  (3.13)
0 0

dn on

IVaSnll Lo (0,0:22(0,1)) + I<nll 220,258 (0,1:0)) < CllvnllL2(0,1)5

where the constant C' is independent of n. Therefore, there exists a subsequence, still indexed by n to simplify
the notation, such that
Cn —w weakly in L?(0, L; H'(0,1;d)),
Vag, — yaw weakly-star in L>(0, L; L%(Q)),
for some function w € L>(0,L; L?(0,1)) N L?(0, L; H'(0,1;d)). By passing to the limit in the variational
formulation satisfied by (,, we can show that w is a weak solution to equation (3.6). (]

(3.14)

3.3. Control system
We denote by N and D the operators defined by

Nv =w, Dz, =(

where w is the solution to equation (3.6), and ( is the solution to equation (3.7).
Observe that N belongs to L£(L?(0,L),L*(0,L; H*(0,1;d))), and that D belongs to L(L?(0,1),
L?(0,L; H'(0,1;d))). Moreover according to Definition 3.2, we have

N*A*p = —b(&,0)p(&,0) and D*A*p = —a(n)p(0,n) for all p € D(AY).

Thus N*A*p is the trace of —bp on (0,L) x {0}.

Using the extrapolation method the semigroup (e4);cp+ can be extended to (D(A*))". Denoting the cor-
responding semigroup by (et“a)te]w, the generator (A\,D(.,Zl\)) of this semigroup is an unbounded operator
in (D(A*))" with domain D(A) = Z.

First assume that g € C1(0, 00, L2(0, L)), u € C}(0,00; L%(0, L)), and 2, € C}(0,00; L*(0,1)), and set

w(t) = N(Lyu(t) +9(t), () = Dz(l).
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Let z be the unique weak solution to equation (1.6), and set Z = z — w — (. We can check that Z is the weak
solution to the equation
Z/:Aszlfcldl’fa Z(O):Z(Ja
that is . . .
Z(t) = ez +/ e(t_T)'Af(T)dT 7/ e(t_T)'AU}/(T)dT f/ e(t_T)A('(T)dT.
0 0 0
Making integration by parts, we can show that (see e.g. [2]) equation (1.6) can be rewritten in the form

2 =Az+ f+ (~A)Ng + (—AN1,u) + (—A) Dz, 2(0) = zo. (3.15)

This equation is still meaningful if g € L%*(0,00;L%(0,L)), u € L*(0,00;L?(0,L)), and 2, € L*(0,00;
L?(0,1)). We set

F=f+(-A)Ng+ (-~A)Dz and B=(—A)N, (3.16)

and we obtain equation (3.1) if, by abuse of notation, we replace A by A.

4. OPTIMAL CONTROL

Let us recall the definition of
(Pt,9.2,5a:20) inf{J(z, u) | (z,u) € LQ(O, 00; Z) % LQ(O, oo; U), (z,u) satisfies (4.2)},

where
o0

o0
Hew) =3 [ ICs0 +molFar+ 5 [ Tl a (11)
with
z' = Az + B(1,u) + F, 2(0) = zo, (4.2)
and F is defined in (3.16). Let us recall that Z = L?(Q2), U = L?(0,L), C € L(Z), and yq € L?(0,00; Z) are
defined in the introduction. In the above setting || - ||z and || - || denote respectively the norm in Z and in U,
and the associated inner products will be denoted by (-,-)z and (-, ).

Theorem 4.1. Assume that (Hy) — (Ha) are fulfilled. Then problem (P g 2 ya,20) @dmits a unique solution
(z,a).

Proof. The proof is classical. We briefly introduce the main ingredients for the convenience of the reader. Let
us denote by z(u) the solution to equation (4.2) corresponding to u. Due to Theorem 2.1, J(z(0),0) < oc.
Thus (Pf.g.2,.44.20) admits minimizing sequences, and minimizing sequences are bounded in L?(0, 00;U). Due
to Theorem 3.2, if a sequence (u,,), converges weakly in L?(0,00,U) to some u, then (z(u,)), converges weakly
in L?(0,00; L?(0,L; H'(0,1;d))) to z(u). Thus, by standard arguments, if (u,), is a minimizing sequence,
converging to u for the weak topology of L2(0,c0; U), then

J(z(u),u) <liminf J(z(un), un) = Inf(Pf.g,2.y4,20)-

n—oo

Thus, (z(u),u) is a solution of (Py g 2, ya.2)- Lhe uniqueness follows from the strict convexity of the mapping
ur— J(z(u),u). O

Theorem 4.2. If (Z,u) is the solution to (Pf,g.2,.ya.20) then
u(t) = ]lvbﬂfyx{o} = —1,B"p(1), (4.3)
where P is the solution to equation (3.2) with

Y = C"(CZ + ya).
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Conversely if a pair (z,p) € (L2(07 oo; L2(0, Ly HY(0, 1; d))))2 obeys the system

{ 2 = Az + B(1,b(-,0)p(-,0)) + Fin (0,00), 2(0) = 20, (4.4)

—p'=Ap+C*(Cz+yq) in(0,00), p(x)=0,

then the pair (z,1,bpl,x(0}) is the optimal solution to problem (Pf.g 2y ya.z0)-

Proof. Let (z,u) be the optimal solution to problem (P g 2, yu.z0)- Set I(u) = J(z(u),u), where z(u) is the
solution to equation (4.2) corresponding to u. For every v € L?(0,00;U) and A € R*, we denote by z) the
solution to the equation (1.6) associated with @ + Av. We have

1

I(u+ M) — I(u) = 3 /000 (C(zx — 2),C(2x + 2) + 2ya) , AT + %/000 ((2)\U,€L)U + )\2||U(T)||?J) dr.  (4.5)

The function w = (z) — Z)/A is the solution of equation

w' = Aw + B(14v) in (0,00), w(0)=0.
Due to Theorem 3.2, we have

1wl 22(0,00:22(0,: 51 (0,1:0))) < Cllvll£2(0,00,0)-

Thus the sequence (zy)x converges to z in L?(0, 00; L?(0, L; H'(0,1;d))) when X tends to zero. Dividing I(u +
Av) — I(@) by A and passing to the limit when A tends to zero, we obtain

oo

I’(ﬂ)v:/ (Cw,Cz+ya), dT+/ (v, )y dr.
0 0

With formula (3.4) in which z is replaced by w and p by the solution of equation (3.2) corresponding to
Y =C*(CZzZ+ yq), we have

/OOO (Cw,CZ+yq), dT = — /Ooo[yb(g,o)u(r)p(ﬂg,o) dedr.

Hence
o0 o0
Fae=- [ [ w60 e0um gt + [ (@), v dr
0 o 0
Since (z,u) is the solution to the problem (Py g ., y4.2,), We have I'(u) = 0 and @ = 1,0p|,x 10y = —1,B*p.

Conversely, assume that (z,p) € (L2(07 oo; L2(0, Ly HY(0, 1; d))))2 is the solution of system (4.4). Let us set

U(t, 5) = ﬂy(&)b(&, O)p(t, €’ 0)

From previous calculations, it follows that
I'(w) = 0.

Due to the convexity of the mapping I we deduce that @ is the solution to problem (P4 2, ya.20)- O



STABILIZATION OF A BOUNDARY LAYER 519

5. RICCATI EQUATION

In this section, we study problem (Pf g 2, y4,20) i the case where f =0, 2z, =0, g = 0 and yq = 0. We
denote it by (P.,). In the previous section, we have proved that the solution (z,u) of (P,,) is characterized by

u = —1., B*p, where (z,p) € (L2(0, 00; L2(0, L; H(0,1;d))))” is the unique solution of system
v

2z = Az — B(1,B*p), 2(0) = zo,
(5.1)
- =Ap+C"Cz,  p(oo) =0.
Let us denote by II the operator
IT : zp+— p(0). (5.2)

This operator is well defined since p belongs to Cy ([0, 00); L%(€2)) (it is sufficient to apply Thm. 3.2 to the adjoint
equation).

5.1. Failure of existing results

Let us first explain why existing results in the literature do not permit to characterize Il as the weak solution
to an algebraic Riccati with tests functions (in the definition of weak solutions) belonging to D(A) (for existing
results to algebraic Riccati equations, we refer to [9-12,15]). Using the dynamic programming principle, as
in [11] it can be shown that the family of operators (S(t));cr+, defined by

S(t)z0 = 2(t),

where (z(t), p(t));cgr+ is the solution of (5.1), is a strongly continuous semigroup exponentially stable on Z. Let
us denote by (A, D(Am)) its infinitesimal generator (formally A = A — B(1,B*II)). Let s belong to (0, c0).
We denote by (2%, p®) the solution of the system

ddzt = Az° — B(]l’yB*pé) in (57 00)7 Zé(s) = Z(S)’
» (5.3)
_ (ft =A"p®+ C*Cz° in (s,00), p°(00) = 0.

It is clear that
p°(s) = I12°(s).
Moreover, from the dynamic programming principle, it follows that p®(s) = p(s). Thus we have extended the
identity (5.2) by showing that
p(t) = Tz(t) for all t € [0, 00).
Therefore we have proved that the optimal solution of (P,,) obeys the feedback law

a(t) = —1,B*IIz(1).

Moreover, with (5.3) we can show that

(HZO7 ZO)Z'

N =

inf(P,,) = %(p(O), ZQ)Z =

We can also show that II obeys the following integral equation (see [11]):
o0 *
II= / e AtCrCeAnt dt. (5.4)
0

However since II is involved in the definition of the operator A, the above equation is not really useful for the
computation of the operator II.
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Following [1], it can be shown that II obeys the following formulation of the A.R.E.
(Az,1IC) , + (2, A*¢) , — (1,B*1z,1,B*1I() , + (C*Cz,¢) , =0, Vz, ¢ € D(An). (5.5)

Unfortunately the characterization of D(App) is not obvious because it depends on IT which is precisely unknown,
and in general this variational formulation is not satisfied for z € D(A), and it cannot be used to characterize
the operator II (see [17-19]).

Here taking advantage of the regularizing properties of the operator C, we look for II in the form of a
Hilbert-Schmidt operator, and we are able to study the partial differential equation satisfied by the kernel of the
operator II. We show that this partial differential equation admits a unique solution 7 in L2(Qx Q)N L2 (2 x )
(see the definition of these spaces in Sect. 5.2). Showing in Section 6 that this unique solution m obeys

1
—/ T 20 @ 2o,
2 QxQ

we can conclude that II is a Hilbert-Schmidt operator and that = is the kernel of II.

Since we want to characterize the operator I1 € £(L?(£2)) by a kernel 7 € L?(2x Q), for notational simplicity
we write Q X  in the form Qx x Q=. The current point (X,Z) € Qx x Qz corresponds to X = (z,y) € Qx
and = = (&,7n) € Q=. With this notation IT and 7 — if it exists in L?(Q2x x Qz) — are related by the identity

inf(P,,) =

2(X) = / (X, Z)z()dE. (5.6)
Q
Similarly, A% (resp. AL) corresponds to the operator A* written in X-variable (resp. in E-variable), that is:

0% (b(z, y)p)

07 c(x,y)p

Axp = aly) g +
(resp. Afp = a(n)g—g + %ﬁ’;’)p) —c(&§,n)p). To write the equation satisfied by , let us introduce some new
operators. Let us set O = Qx x Q=. If z € L%(Q) and ¢ € L%(Q), we denote by z ® ¢ the function belonging
to L%(O) defined by
2®0(¢ : (X,E) — 2(X)((B).
We denote by L2(O) the space of functions 7 € L?(0O) satisfying:

[1]

(X, 2) =7(E, X) for almost all (X,Z2) € Qx x Q=.

We are going to see that
(o]
Dtz = {o= [ o4 v |u e 12(0)}.
0

is the domain of the infinitesimal generator of a strongly continuous exponentially stable semigroup on L?(O).
We also set

D(A% ) = D(Ax =) N L3(0).
In Section 6, we show that the operator II defined by (5.2) may be written in the form (5.6), where 7 is the
unique solution to the algebraic Riccati equation

€ D(ALE), Afm+ At — / 1b(s, 0)[2 (s, 0, Z)7(X, 5,0)ds + & = 0, (5.7)
Y

and ® € L2(0) is the function defined by

B(X,Z) = /Q 6(- X) 6(, ). (5.8)
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The function ¢ € L?(O) is the one defining the observation operator C' (see (1.8)). Observe that by Cauchy-
Schwarz inequality, we have
1®|22(0) < 101172(0)-
The existence of at least one solution to equation (5.7) is established in Theorem 5.8. The uniqueness is proved
in Theorem 6.2.
To study equation (5.7) we first study the differential Riccati equation

7' = Am + Asm — / b(s,0)|?7(t,s,0,Z)7(t, X,s,0)ds +® in (0,00), (5.9)
. :

7(0,-) = m € L(0).

Even if we prove that the solution of (5.7) is the limit when ¢ tends to infinity of the solution to equation (5.9)
when 9 = 0, we need to study equation (5.9) with my # 0 (see the proofs of Thm. 5.8 and Lem. 5.9).

5.2. Semigroup generated by A% + AX

Lemma 5.1. For every z € L*(Qx), and ¢ € L*(Qz), we have
etAX (Z ® etAE(:) — et.AXZ Q etAEC — et.AE (et.AXZ ® C) .

Proof. The result is a direct consequence of the definition of the tensor product. O
Lemma 5.2. For allt >0, 7 >0, 1 € L*>(O), we have

etA} eT.AE )= eTAE et.A} ,lp
Proof. The result can be deduced from Lemma 5.1 by using the density of L?(Q) ® L?(Q) into L?(0). O

With Lemma 5.2 we can prove the following result.

Lemma 5.3. Fort >0, let S*(t) € L(L*(O)) be defined by

SH(t) ¢ ap — etAx et Az,

The family (S*(t))i>0 is a strongly continuous exponentially stable semigroup on L?(0O).

Proof. We have S*(0) = I. Since etz e™4x = e™4x ez it is easy to show that S*()S*(1) = S*(t + 7).
Let us show that the semigroup (S*(t))¢>0 is weakly continuous on L?(Q). First we write:

/Owemxz(gemsc/owz(g)c/ﬂa/gx ((etAXZ*Z)TP(',E))etAE(Jr/Ol/JZ(etAEC*C)-

We know that
li tAz - =0.
tim [ vz (e42c =) =0
Moreover, for almost all = € Q=, we have

lim et4=¢ (% 2 — 2)y(-,E)dX =0,

t\.0 Qx

and

o (@ =2 E)

< Cllzll2 ) lI€l 22 191 22(0) -
L2(Q=)
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Therefore with the dominated convergence theorem we have:

lim /QE /QX (X2 — 2)y(-, 2)) e™=¢ = 0.

N0
Thus the semigroup (S*(t))>0 is weakly continuous on L*(O). It is also strongly measurable on L?*(0). Thus

it is also strongly continuous on L?(0). Let us show that it is exponentially stable. Using the exponential
stability of the semigroups (e*4x);>¢ and (e*=);>¢, we can write

15* ()¢l 200y < Cwe™ e 58|20y < CZe ! [[¢] L2(0)-
The proof is complete. O

Let us denote by (A% =, D(A% =)) the infinitesimal generator of (S*(t));>0 in L*(0). From the exponential
stability of the semigroup (S*(t)):>0, it follows that

o0 o0
(*A}7E)71w _ / otAX otAs wdt  and D(A;(,E) = {/ ot AX otAz Ydt | ¢ e LQ(O)} .
0 0
We cannot give a more precise characterization of D(A}E). However, setting

H = L?(Qx; D(AL)) N L*(Qz; D(A%)),

we can show that H C D(A% z). Indeed if ¢ € H, we can write

) etAX gtAZ ) — ) etAZ ) — ) etAX gtAZ ) — otAz
hmm/ VY o = hmm/ ﬂzmﬂlmt\o/ Y Yoo
o t o t o t

tAXZ_Z
t

) et.AE _ ) e
= limy o / Pz # + limy o / P etA%:
(@] (@]

/w(AXz®§+z®AEC)=/ (A5 + AL)z @ C,
(@) (@)

for all z € D(A) and all ¢ € D(A). By a density argument we deduce that

tAY GtAZ )
limt\o/o %z@(:L(A}¢+AE¢)Z®C,

for all z € L2(Q) and all ¢ € L?(Q). Thus, if ¢ € H, ALy + A% belongs to L?(O) and

A2t = Al + Az, (5.10)
It is the reason why we shall often write A%+ + AL+ in place of A% 2%, and etAx+42) in place of etAx etz
or of etA;fvE, even if it is an abuse of notation.

We also introduce the operators Aj, y and Aj = defined by D(A;}, ) = D(A%), D(A} =) = D(AZ),

ixC=AxC—ka(y)¢  and A =C = AL~ ka(n)(,

where the parameter k£ > 0 is the one in Lemma 2.1.
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Theorem 5.1. (i) The adjoint of the operator e!*x et4= € L(L?(0)) is the operator e'Ax etA= € L(L?(0)).
The family of operators (S(t))¢>0, where S(t) = etAx etA= s the adjoint semigroup of (S*(t))i>0-

(it) The infinitesimal generator of (S(t));>0 in L*(O) is (Axz, D(Axz)), the adjoint of (A=,
D(Ax 2))-

(iii) The space L*(Qx; D(Az)) N L*(Qz; D(Ax)) is included in D(Ax ), and

Ax =9y = A=y + Ax 1) if ¥ € L*(Qx; D(Az)) N L*(Q=; D(Ax)).

(iv) The family of operators (S} (t))e>0, where Si(t) = etAkx et iz s a strongly continuous exponentially stable
semigroup on L*(O). Its infinitesimal generator (A}, x =, D(A} x z)) satisfies H C D(Aj, =) and

Arxzv =Xz + A xy  if v € LP(Qx; D(AL)) N L*(Qz; D(AY))-

Proof. The first, the second and the fourth statements are obvious. The third one can be proved as above,
when we have shown that H C D(A% z). O

We make the same kind of abuse of notation as above: we shall often write Azt + Ax1 in place of Ax =,
A% 2+ A: 1 in place of A% y 21, e/AX+A2) in place of e'AX e4= or of et4%= and ¢!At.x+Ak2) in place of

etAix etAkz or of efAkx=,

Since L2(0) is a closed subspace in L*(0), we can show that A% £, the restriction of A% = to LZ(0), is an
unbounded operator in L2(O) whose domain is defined by D(A% £) = D(A% =) N L2 (O).

Theorem 5.2. The operator (A)S(’*E, D(A)S(*E)) is the infinitesimal generator of an exponentially stable semigroup
on L%(0).

We denote by L2 (O) the cone in L2(0) of functions 7 satisfying:
/ﬂz®z20 for all z € L*(Q).
o

Let us notice that if f € L?(Q) and f > 0, then f ® f belongs to L% (0). If 1 € L2(O) and mp € L2(0), we
shall write m > mo if

/ (m—m)2®@2>0 for all z € L*(9).
o

We are going to prove that the optimal pair (@, Z) obeys the feedback law

a(t) = 1,b(s, 0) /Q (s,0,2)5(t, 5) d=, (5.11)

where 7 is solution to the algebraic Riccati equation (5.7).

5.3. Lyapunov equation

To prove the existence of a solution to system (5.9), we study the following differential Lyapunov equation:
' =Axm+ ALr + (¢, X,E) in (0, 00), 7(0,-) = mo. (5.12)

Weak solutions to equation (5.12) are defined as weak solutions for evolution equations.
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Theorem 5.3. Let ¢ be in L ([0,00); L2(O)) and mo € L2(0). The system (5.12) admits a unique weak
solution 7 in Li _(]0,00); L2(O)) defined by

loc

t
(t) = HAXFAD oy / =T AKHAD) (1) dr
0

(i) If ¢ belongs to L*(0,00; L2(0)), then

(0,00,L2(0))) -

171l 1 0,00:L2(0)) + |7l Lo (0,005 22 (0)) < C’(
(ii) If ¢ belongs to L°°(0,00; L2(0)), then
L2(0))-

([0,00); L2(0)), then m in Li

loc

17| Lo 0,00 £2(0)) < C(

(i4i) If in addition o belongs to L2 (O) and v € L} (10, 00); L2 (0)).

)
Proof. The first statement follows from Theorem 5.2. Assertions (i) and (zz) follows from Young inequality for
convolutions, and from the exponential stability of the semigroup (e*(Ax*+42)),54 on L2(0). To prove the third
assertion, we observe that

/ (et(A}"’A;)ﬂo) 2Rz :/ o (et(AX+AE)z®z) :/ ﬂoetAz@)etAz > 0.
@) @) 1)

The same kind of calculation can be made for the term

¢
/ (/ e(t_T)(A}+AE)w(7)dT> zZ® z.
o \Jo

The proof is complete. O

loc

Let k£ > 0 be the constant in Lemma 2.1, then 7 is a weak solution of equation (5.12) if and only if the
function
#(t, X,Z) = e e Mn(t, X, ) (5.13)
is the solution of equation

7= Ay xf+ Ap 2t e Me Ry (¢, X,E) in (0,00),  #(0,-) = e e Fm. (5.14)

Lemma 5.4. If ¥(t,-) = 2(t,-) @ ((t,-), with z € L*(0,T; D(A%)), ¢ € L*(0,T; D(A%)), and mo = 20 ® (o,
with zo € D(A*) and {y € D(A*), then the solution & of equation (5.14) belongs to WH(0,T; L*(O)) N
L>(0,T; L*(Q=; D(A%))) N L*°(0,T; L*(Qx; D(AL))).

Proof. We have
* * t * *
ﬁ(t) _ et.Ak,XeszZO ® et'A’“EeikECo + / e(tiT)Ak’Xeika(T) ® e(tfr)Ak,Eefkfc(T) dr
0
which gives
t
A;Xﬁ(t) — oAk x Az’Xefka:ZO ® etAZ,Ee*’%CO +/ e(tf‘r)AZ,xAz’Xefkmz(,r) ® e(tf'r)AZ,Ee*l&C(T) dr
0

and

t
Ay =7t(t) = e xe Ry @ ez Ar e TG + / et Ak xemhr (1) @ etm A= AL ceHE(C(T) dr
0
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Thus # € L*>(0,T; L*(Q=; D(A%))) N L>=(0,T; L*(Qx; D(AL))). Due to (5.10), we have
i = Ay x =7+ = A xT+ Af =7 +1p € LY(0,T; L*(0)).

Since A; 7 € L*(0,T;L*0)), Ai=t € L*0,T;L%(0)), and ¢ € L'0,T;L%*0)), we have
7€ WH(0,T; L?(0)) and the proof is complete. O

Theorem 5.4. The weak solution w of system (5.12) satisfies the estimate

t
mpdXd=EdT
(@]

2|7 ()Z2(0) + 17 1Z 20,8 L2 (0 s 20, Le L (0,1:)))) < CG( + |7T0||%§(0)>, (5.15)

for allt € [0,00) (for some Cg > 0).

Observe that estimate (5.15) is more precise than estimate (7) in Theorem 5.3. It is needed in the proof of
Theorem 5.5.

Proof. Let k > 0 be the parameter in Lemma 2.1. Let 7 be the solution of system (5.12). First assume that
P(t) = 2(t) ® ((t), with z € L2(0,T; D(A%)), ¢ € L*(0,T; D(A%)), and T = 20 ® (o, with 29 € D(A%) and
Co € D(AZ). Let us set 7(t, X, =) = e e ke (¢, X, Z). It is clear that # is the solution of system (5.14). We
can apply Lemma 5.4, and we can rewrite equation (5.14) in the form

7 =Ap xm+ ¥, 7(0) =e "e My = fy,

with ¥ = Az’Efr + e~ kre=k&y). This equation is considered as an evolution equation in L?(Qx), the variable =
being considered as a parameter. Thus applying [6], Theorem 6.2, we can write:

1/ fr(t)QdXdE—l/ 72 dX d= + / / / )#(7, Ly, 2)*dyd=dr
2 Jo 2 _
//( ob O

bRt (c+ ka)(X)fr2> dX d=dr

dy Oy

t
g/ / \IffrdXdEdrg/ / e e My 1 dX d=dr, (5.16)
0o JO 0o JO

for all £ > 0. Since Aj = is dissipative (see [6]) and & € L>(0,T; L*(Qx; D(A%))), we have

t
//AzafrfrdXdEdTgo.
0o Jo 7

This explains the last inequality in (5.16). In a similar way, we can prove that 7 satisfies the inequality

%/O ()dXd”f—/ 24X d= + //QX/ #(r, X, L,n)?dndX dr
//( - > obor

t
+ ——# + (c + ka)(E)7* dXdEdTg//e”“’e’kﬁwﬁdXdEdT, (5.17)
on On 0 Jo

y

7r
on




526 J.-M. BUCHOT AND J.-P. RAYMOND

for all t > 0. Thus, we have

/fr(t)QdXdEf/ 24X d= + /// y)7(r, Ly, E)*dy d=dr
O
// / #(r, X, L,n)*dndX dr
Qx

or|?  obor. .o -
By + a_ya_yw + (c+ ka)(X)7* | dX d=dT (5.18)
© or|®  obox oy _
//< =\an| T ooy 7r+(c+ka)(u)7r>dXdudr

t
gz/ /e_k‘”e_kfwfrdXdEdT,
0o JO

for all £ > 0. With Lemma 2.1, we obtain

i

Hff(t)H%g(O) - |\ﬁ0|\%§(0) + = HWHLz(o 402 (Qx 3 L2(0,L;H1(0,1;d))))

(5.19)
Cl —kz —kE | A =
||7T||L2(o L2(Qs:L2(0,L:H (0,13d)))) = 2 A Y dX d=Edr,

for all t > 0. By a density argument, we can show that this inequality also holds if ¥(t) = z(t) ® ((t), with
z € L2(0,T;L%(Q)), ¢ € L?(0,T; L*(2)), and 7y = 2o ® (o, with 29 € L?(2) and {, € L?(2). Finally, still
with a density argument we can establish inequality (5.19) for all ¢ € L*(0,T; L?(0)) and all my € L2(O). The
theorem clearly follows from (5.19) and (5.13). O

5.4. Differential Riccati equation

Now, we define weak solutions to equation (5.9).
Definition 5.1. A function 7 € L2(0,T; L2(O)) N L?(0,T; L*(Qx; L?(0, L; H(0,1;d)))) is a weak solution to
equation (5.9) if it is a weak solution of system (5.12) in (0,7") with

U6X2) = [ Ps.0PA(t5,0.Z)(t, X, 5,0)ds + B(X.Z),
Y

where @ is defined in (5.8).

Theorem 5.5. Let m be in L2(0).
system (5.9) admits a unique weak solution 7 that belongs to the space

20y and ||mol|L2(0), such that

L2(0,8 L*(Qx; L*(0,L; H'(0,1;d)))) N C([0,7]; L2(0O)).

Proof. Let M > 0 be a constant such that ||®| 120y < M and |70 r2(0) < M?/(2C6)'/2. Let t be the constant
defined by

3+3V2 2-¢ 2v2 — 1 1
OMAC2C2||b||% || =5 + CtM?2, ————CCICIM? ||b]|2,|t]3= | = min | ——=M> = |,
maX< 2O bl 6 — 5 et 16112 [£] min | 775 5
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where C7 and C, are the constants appearing in (5.21) and (5.22). Let us set
Ey = {w € C([0,7; L2(0)) N L*(0, L*(Qx; L*(0, L; H'(0,1; d)))),

17l < 0,6:2(0)) + 17l 220,822 (@x:22(0,L:H1 (0,1:0)))) < 3M2}-
Equipped with the metric corresponding to the norm:

Iz o.iiz20)) + I - L2 (0.5:02 (0522 (0,151 (0.1:a))))
FEy s is a complete metric space. Let v be in Ejy, then

U(t, X, E) = f/ b(s,0)|%v(t, s,0,Z)v(t, X,s,0)ds + ®(X, E)
v

belongs to L'(0,%; L2(0)). Due to Theorem 5.3, the equation

7' = Am + Asm — / |b(s,0)|?v(t, X, 5,0)v(t,5,0,Z)ds + ®(X,Z) in (0,7), (5.20)
. .

(0, ) = mo,

admits a unique weak solution 7, in L°(0,%; L2(0)). Due to Theorem 5.4, this solution also belongs to
L2(0,; L?(Q2x; L(0, L; H'(0,1;d)))). Let us show that the mapping ¥ : v+ 7, is a contraction in Ej;. The
proof is divided into two steps.

Step 1. Let us show that ¥ is a mapping from Ej; into Ej;. With Theorem 5.4, we can write
t
2 2 = = =
2||7Tv(t)||L§(0) + ||7Tv||L2(o,t;L2(QX;L2(0,L;H1(o,1;d)))) < Cs /o /OM(Ta X,5)®(X,E)dXd=dr

¢
/ / T [/ b(s,0)|*v(r, X, 5,0)v(T, 5,0,Z) ds] dXd=dr
0o JO 0%

+Cs]|mol| 220y + Co

)

for all ¢ € [0,7]. With Holder’s inequality, and due to assumptions on ® and my, we have CG|‘ﬂ0|‘%g(0) < M*)2
and

t
Co / / 7o, X, Z)®(X, Z) dX d=dr
0o JO

< Cotllmo |l o (0,2:2(00) 1@ L2 (0)

1
CEPM* + S |17l e 0 522000

N

< Cgt|my | oo (0,6:02(0)M? <
With a trace theorem we have

/ [b(s, 0)[*[o(7, X, 5,0)| |v(7, 5,0, E) | ds < CHbIIZ0(7, -, E) 2o, Larrrva+e’ (0, 15a) 10(T X, M 20,1724 (0, 1:) )
.
(5.21)

for all &’ > 0. (The constant C, depends on &’ > 0.) Thus we can write

2 2 2
< GBSV IZ2 0,522 (01220, 72 4 0,101

/ 155, 0)2[o (-, 5,0, )] [o(-, 5,0, )] ds
Yy

LY(0,£LZ(0))
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With the interpolation identity

[L2(0,; L*(Qux5 L*(0, L; H'(0, 15.d)))), L%(0, & L*(Qx; L2(0, L L*(0, 1)) (5 a—s

= L7906 L2 (Qx; L2(0, L; HY/2H/8729 (0, 1;d))),  0<e<1,

we have
2/(4—¢) (2—¢)/(4—¢)
I HL“*f(O,E;Lz(ﬂx;L2(0,L;H1/2+5/(8*25>(0,1;d)))) <l |‘L2(0,E;L2(Qx;LZ(O,L;HI(O,I;d))))” ’ ”Loo(O,E;L2(QX;L2(0,L;L2(0,1))))'
(5.22)
Setting &/ = £/(8 — 2¢), from Holder’s inequality it follows that
_ _2—=
vl 20,2 L2 (005 L2(0, 1724 (0,150)))) < [EIZED (V]| Lae 0,802 (512 (0, L5 H1/2 42/ 5-22) (0,1:d))))
Thus, we obtain
—_ 2—= 4/(4—
‘ / b(s, O)FF[e(:, 5,0, ) oC-, 5,0, )| ds < CIIBIIECE I = ”UHL/?((O,;J{%QX;L2(O,L;H1(O,1;d))))
v L1(0,5L2(0))
(4—2¢)/(4—¢) 4 22 27 ==
< vll o0 22052200, 1:22(0,1yy)) < OMT GHIIDISCE] 3=

From the previous inequality, it yields

Cs

t
/ /m [/|b(s,0)|21j(7',X,s,O)v(T,s,O,E)ds} dXd=dr
0o JO 0%

< g 7ol Lo 0,5:22(0))

L1(0,£;L2(0))

/ 1b(s, 0)[20(s, 0, Yo (s,0,-) ds

4—2¢

_2-c 1 _ 1
< IM* C2||b]12,CF Cs[t] =< [|mo || L= (0,5:22(0)) < 581M8 CH[bllsCTCE It == +§||7rv||%°°(0,f;L§(O))' (5.23)

Collecting together the previous estimates we arrive at

1 o A=2e
+ 581M8 CoIBISCTCE == + [1mollT o 0,122 (0)-

Therefore we have

2 < 102—2M4 M1 MECHIbIA CAo2 | s
7l 70 0,522 (0)) < 3Gt t5 38 SIS CrCs e == )

— 4—2¢e
HWH%z(o,t’;LZ(QX;LZ(O,L;H1(0,1;d)))) < (Cgt—zM‘l + M* +81M° C§||b||i00?062|t| ie ) )
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and
1+ \/§ _a—2e\ 1/2
||7T||Loo(0,f;L§(O)) + ||'/T||L2(0,E;L2(QX;L2(0’L;H1(Oyl;d)))) < 7 (Cg?M‘l + M* 4+ 81 M8 Cft”b”ioc?caﬂ =2 )
1+V2 /. L
: f/%f (CofM® + M2 + 0M* C2 b2 CFC[155F ) < 3012,

provided that t obey the condition:

442 ~2 9 |3 2== ) 2\/§ —1 2
—e A .

Thus we have proved that m, belongs to Ejy.

Step 2. Let m; and 72 be two solutions to system (5.20) respectively associated with v1 € Epy and vy € Eyy.
The function (m; — 72) is the solution of

m =7y =A% (m —m2) + AL(m —m) +¢  in (0,7), (m1 —m2)(0) =0, (5.24)

where

vt X, E) = —/|b(s,0)|21)1(t,s,O,E)(Ul(t,X,3,0)—vg(t,X,s,O))ds
v

+/ |b(s,0)|2(vg(t,s,0,E) —v1(t,5,0,2))va(t, X, 5,0) ds.
v

With the same estimates as in Step 1, we obtain

With Cauchy-Schwarz inequality and with Theorem 5.4, we get

/b2vl (v —vg) ds
N

/ b2(v2 —v1)vads
¥

d
L1(0,£L2(0)) L1(0,t;L2(0))

_2-c
< 3CTC2MPE == ||b]1 2, (lvr — v2ll L 0,502 (0)) + 1 — v2ll 20,522 (0x x (0,L)5H1 (0, 13))))-

4—2¢

1 a2
2||(7T1*7T2)(t)||%§(0)+ ||7T1*7T2||%2(o,t;L2(QXx(o,L);Hl(o,1;d))) < 19030?03M4||b||io|t| 4 (||v1 - ’U2||Loo(o,t’;L2(0))

2
+ llvr — vall L2052 (x x (0,L); 1 0,150))) + |71 — 7T2||%oo(07g;L§(o)),

for all ¢ € [0,¢]. Thus, we have

IN

1 o A=2e
171 = 72l 2w (0,2 0 190620}103M4||blliolt| == (llor = va2llLe(0,:L2(0))

2
+ o1 — vl L2(0,. L2 (0x % (0,1): H1 (0,1:d)))) >

1 o A=2e
1 = 72 220,822 (0,150 0,11 S ICECTCIMABIISIH == (o1 = vall = 0.iiz2(0))

2
+ [Jvr — UQHLQ(O,E;L?(QXX(O,L);Hl(o,l;d)))) ;
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and

71 = m2llo0,22(0)) + 171 = Tall L2002 (Qx x (0,2);H1 (0,1:d)))

3+3\f

————CsCIC2M?|b||2, fikss = (Ilvr = vall L= (o,5:12(0)) + 01 — V2]l L2(0,8 L2 (00 %0, LYs 1 (0,1;0))) -

By definition of ¢, we have

3+3f 3+3\f

————CsCICZM? [|b]12, 7%

————CsCFC2M? ||b]12,

N | =

therefore, it yields

1
171 — 72l Lo 0,6522(0)) + 171 — 72| 20,522 (Qx x (0,L); H (0,1:0))) < 5(Hv1 — 2| o= (0,5L2(0))

+[[o1 = Vsl L2(0,5L2 (2 x (0,L): (0,1:4))))-
Thus the mapping ¥ : v — 7, is a contraction in the complete metric space Ejs, and equation (5.24) admits a

unique weak solution 7 in Fj;. O

Theorem 5.6. In addition to assumptions in Theorem 5.5 we assume that mo in L% (O). Then the solution 7
of equation (5.9) belongs to C([0,1]; L3(0)).

To prove this theorem, we have to establish different lemmas.

Lemma 5.5. Let 7 be in [0,%), and v € C*([r,]; L?(0,L)). There exists a sequence (f)n in C*([7,t];
L?(Q)) such that

bfngo //bucp

for all p € L*(7,%; L*(0, L; HY(0,1;d))).

1/2 el L2 (5020, Lm0, a0 Ul L2 (-, L2 (1)) »

Proof. Let 6 € C2([0,1)) be such that 0 < 6 and fo y)dy = 1. Let us set

fn(ta €, y) = n@(ny)u(t, :L')]]-’Y(x)
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For n > 2, we have

: Qbfnw—/TtAb(-,O)

(b(z,y)e(t, x,y) = b(-, 0)p(t, z, 0))dy> dz dt

/V<Iu| </Oy d(byp (t,x,C)‘dg)dy>dmdt

dy
|u| % ‘M(t x C)‘d(j dn |dzdt
O ay ) )

//<|u|/01—29n></0é\%f<t,x,o |

2 3
d¢ ) dn) dzdt
C

) lellz2(r 20,250 0,1 [ull L2(r B 22 (4))- U

IN

/

IN

IN

Lemma 5.6. Let ¢ be in C([7,t]; D(A% %)), mo € D(A%X L), and 7 be the solution of
- = Ay + ALr + ¢ in(1,1), w(t) = 7o,
where 7 € [0,1). Let u be in L2(1,t;U), z0 € L*(2), and z be the solution to equation
2’ =Az+ B(1u) in (1,1), 2(1) = 20. (5.25)

Then 7 and z obeys the following identity:

// =) + A% =n(t, X, ) z(t)®z(t):/7rozf)®zﬂ / )70 ® 20
+2/Tt/7b(s,0)u(t, s)/ﬂw(t,s,(),E)z(t,E) d=dsdt. (5.26)

Proof. We first prove the identity when u belongs to Cl([r,#]; L?(0,L)). Let (f.). be the sequence in
C([r,]; L*(Q)) defined in Lemma 5.5, and (zo,,)n be a sequence in D(A) converging to zo in L*(2). Let
us denote by z, the solution to

2= Az —bfn, 2(0) = z0,n-

As in Lemma 6.2 we can show that the sequence (2,), is bounded in L*°(r,#; L%*(Q)) and in L%(7,t;
L?(0,L; H'(0,1;d))), the sequence (y/az,), is bounded in L*(0, L; L?(7,%; L?(0,1))), and all the sequence
(2n)n converges to the solution z of equation (5.25) for the weak-star topology of L>(7,#; L?(Q2)) and the weak
topology of L?(7,t; L?(0, L; H'(0,1;d))). Moreover, z belongs to C([r,]; L?(f2)), we can show that, for every
t € (1,1], (2n(t))n converges to z(t) for the weak topology of L?(2). Since bf, belongs to C([r,#]; L?(2)),
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we have z, € O([r,1]; D(A)) N C'([r,1]; L*(2)), and = € C([r,{]; D(A% z)) N C([r,]; L}(O)), we can write

// "(t, X,E) + A% =7(t, X, B)) 2n(t) @ zn(t // t) @ 2 (t // t) Ax zn(t) ® 2n(t)
// t) @ A=z, (t)

// (t, X,Z) 2n(t) ® 2n(t // (t, X, E) 2,,(t) @ 2 (1)
+/T /Oyr(t,X,E)zn(t)®z;(t)

//bfntX (t, X,E)zn(t //bfn ;E)zn(t, X)
:/Owozn(f)@)znf) / z0n®z0n+2//bfntX) (t, X,Z)zn(t, 2).

Let us pass to the limit when n tends to infinity in the above identity. For every ¢ € (7,1], (25 (t))n converges
2(t) for the weak topology of L?(2). Thus

lim (zn(t)®zn(t))(go®():/O(z(t)@)z(t))(cp@C),

n—oo @)

for all ¢ € L?(Qx), and all ¢ € L?(Qz). Since L?(Qx) ® L*(Qz) is dense in L%(O), we obtain

lim (zn(t)®zn(t))<,0=/ (2() @ 2(t) ¢

for all ¢ € L?(0). In particular we have

lim [ (5(t) + Ase27(0)) 2a(t) © za(t) = /O ((8) + Ak =7(8)) 2(t) ® (1)

n—oo @)

for almost all ¢ € (7,¢). Moreover

/0 (7'(t) + Ax =7(1) zn(t) ® zn(t)‘ < [l )20y lznllis (L2 @) < Cllv(E )Lz ©)-

With the dominated convergence theorem we can write

Jim Tt ( /O (' (8) + A 2m(1)) zn(t)®zn(t)) dt — / ' ( /O (' () + A =m(1)) z(t)®z(t)) dt.

n—oo
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From Lemma 5.5 it follows that

t t
bfn(t,X)/ﬂ(t,X,E)Zn(t,E)dEdth*/ /b(s,O)u(t, s)/ m(t,5,0,2)z,(t, E)d= dsdt
Q Q r Jy Q

< 1/2 [ull2(r2(4)) H/ 5 E)zn( E)dE
L2(7,t;L2(0,L;H(0,1;d)))

C
< mHUHLQ(T,E;LQ(W))HWHL2(T,E;L2(QE;LQ(O,L;Hl(O,l;d))))”’ZRHL“(T,E;L?(QE))'

Therefore identity (5.26) is established when u belongs to C*([7,#]; L?(0, L)). When u belongs to L?(r,t; L2(0, L))
we recover identity (5.26) by a density argument. (I

Lemma 5.7. Let w be the solution to equation

—7' = Am+ Afm — / b(s,0)[*n(t,5,0,E)w(t, X,5,0)ds + ® in (7,1),
v

ﬂ(t_) = To,

(5.27)

where T € [0,t) and mo € L2(0). For all u € L?(0,00;U), 29 € L?(2), we have

// X) 2(t, )dXdudtJr //|u| dsdt + = /ﬂozf)®z_) o)

fg/ 7(7) zo®z0+ u(t, s) 50)/ m(t,s,0,2) 2(t,2)| dsdt,

where z is the solution to equation (5.25).

Proof. Let 7 be the solution to equation (5.9). Setting 7(t) = #(f—t), we can verify that 7 is the solution to equa-
tion (5.27). Let (¢¢)¢ be a sequence in C([r, ]; D(A% %)), converging to 7fv |b(s,0)|?7(t,s,0,Z)7(t, X, s,0)ds+P
in L?(7,t; L%(0)), and (mo,¢)¢ be a sequence in D(A% ), converging to mo in L2(O). Let 7 be the solution to

—my = Axme+ Azme e i (7,0),  me(t) = 7o (5.29)

With Lemma 5.6 applied to 7y, we can write

#
/wo,gz(ﬂééz@—/ ﬂg(T)ZQ@ZQ—I—Q/ /b(s,O)u(t,s)/wg(s,O,E)z(t,E)dEdsdt
(@] (@] T Jy Q
t
_ / / (m)(t, X, 5) + A ame(t, X, ) 2(£) ® 2(t) dXd= dt
T JO

7
—/ /W(t,X,E)z(t)®z(t)dXdEdt.
T JO
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By passing to the limit when ¢ tends to infinity, we obtain:

/Om) z(f)@z(f)f/ow(ﬂ zo®zo+2/:/yb(s,0)u(t, s)/Qw(s,O,E)z(t,E)dEdsdt

i

2 t
dsdt — / / ®(X,)2(t, X) 2(t,E) dX A= dt.
T JO

b(s,0) /Q 7(s,0, X)z(t, X)dX

Thus we have

1/t 1/t 1
—/ / <I>(X,E)z(t,X)z(t,E)dXdEdtJr—/ /|u|2dsdt+—/ 7o 2(t) ® z(t) dXd=
2 T JO 2 T Jy 2 (@)

1

t t
= —/ 77(7)20@20—1—/ /|u(t,s)|2 dsdt—/ /b(s,O)u(t,s)/w(s,O,E)z(t,E)dEdsdt
2 (@} T Jy T JY Q2
1 [t °
+—// dsdt
2 )./
*1/ (T) 20 ® % +l/t/
—2 O’/TT 0 0 B s

The proof is complete. O

b(s,O)/Qﬂ'(s,O,X)z(t,X)dX

2

u(t, S)*b(S,O)/ﬂ(t,S,O,E)Z(t,E) dsdt.
Q

Let 7 be the solution of equation (5.27), and consider the evolution equation
= Az — B(1,B*1lz) in (1,1), 2(1) = 20, (5.30)
where
B Tlz(s,t) = fb(s,O)/ 7(t,s,0,2)z(t,2)dE for s € (0, L), t € (7,1).
Weak solutions to equation (5.30) are deﬁnﬁd as weak solutions to equation
2= Az+ B(lyu) in (1,1), 2(7) = 20, (5.31)

when u = —B*Ilz. This is meaningful because if z € L?(r,#; L?(Q2)), then 1,B*I1z € L*(r,¢; L?(0, L)).

Lemma 5.8. Equation (5.30) admits a unique weak solution in L*°(,t; L*(Q))). Moreover this solution also
belongs to L?(7,t; L*(0, L; H*(0,1;d))).

Proof. We first show that equation (5.30) admits a unique weak solution in L>(7,#; L?(Q)), for some ¢ > 7,
by using a fixed point argument. We need an estimate of the solution z of equation (5.31) in the case when
we L> < (r,t; L(0, L)) for some ' > 0.

Step 1. Estimate for the solution to equation (5.31). We use the technique in [6], Proof of Theorem 6.6,
and an approximation process. Set f,.(t,z,y) = nl g 1)(y)u(t, z)1,, where 1, 1, is the characteristic function

of (0,1). Let us denote by z, the solution to
2 =Az—0bfn, 2(1) = 20,
and ¢, = e *®z, be the solution to

¢ = A — e Fp f, (1) = e k2.
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From [6], Inequality 6.4, it follows that

//cngy, dédy——// ¥ o€, ) dEdy + = //acn:cy,>dyde
Ll

a—a—Cn (c + ka)C? ) d¢dydo < / / / e ™b f, ¢, dedy dh,  (5.32)
Y
for all ¢ € (,1) and all z € [0, L]. We have

T 1/n
e*kﬁu(z,e)n/ b dydedo
0

ek p £, ¢ dedy de‘ =
0

< ”“”L3 ey lPSrllc iz 0. 0./2))
< - L.
Cllull 4 A0 IIb@IILFE&#NW’MH?E(W)))
2/(4—¢) (2—€)/(4—¢)
= C||“||L§%Z<T,E;L2<0L 16 Call2 TtL2<0LHl(o,l,d»)”bC”HLx(r,f;m(o,L;L?(o,l)))

c? 2 a 2
< ;HUHL3 S 5||<nHLz(T,t’;L?(o,L;Hl(o,1;d)))

5 ||<’ﬂ ||L‘X’(T,E;Lz(O,L;LQ(O,l)))’

for all > 0 and 0 < e < 1. With (5.32) and with Lemma 2.1, we obtain

1
2 _ 1 _ 2
§HCTL||L°°(T,E;L2(Q)) + 5||\/agn||LOO(O,L;Lz(T,t;N(O,l))) + _||CnHL2(7—,t;L2(O,L;H1(O 1)) < —HUHLS c hL2(0D))

3o
+ 5 ||CnHL2(TtL2(0L H1(0,1;d)) ||CnHL°°(-rtL2 0,L:22(0,1)) T 5 / / ZO & y) d§dy

Thus, choosing « suitablely, we prove that there exists a constant C' > 0 such that

||<n”L°c(T,E;L2(Q))+||\/ECn||LOO(O,L;L2(T,E;L2(0,1)))+HCnHL2(T,E;L2(0,L;H1(0,1 ) < C(HUH 4= JrHZO||L2(Q))-

( ,t;L2(0,L))

By passing to the limit when n tends to infinity, we recover the same estimate for {, and next for z. Thus we
have

121l oo (7,52 () + H\/aZHL“(O,L;LQ(T,E;LQ(O,I))) + 2l 2(r 520,051 (0,150))) < 07(”u”L2*5'(T,E;L2(O,L))+HZO||L2(Q))’

(5.33)
for some &’ > 0, and where C7 is independent of 7 and ¢.

Step 2. Existence of solution to equation (5.30). If v belongs to L>(7,t; L?(2)), then from calculations in the
proof of Theorem 5.5 it follows that

| BTl oot (220,17 < CHIE = 7177 ol oo 22001 (5.34)
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for some constant Cg depending on |[|¢[|12(q), but independent of 7 and ¢. We choose t > 0 such that
Cr Cslt — 7|77 < 1/2. Let v be in L*°(7,{; L%(Q)) and z, € L>(r,#; L2(2)) be the solution to

2z’ = Az — B(1,B*Iv) in (7,t), 2(0) = 2.

Let us denote by W the mapping v — z,. Let v; and vy be in L°°(r,; L*(Q)). With (5.33) and (5.34) we have
|z, — 20, ”LOO(T,{;L?(Q)) < C7 C'8|£ — 7> [Jvr — UQHL“(T,E;LQ(Q))-

Since CCsglt — 7'|ﬁ < 1/2, ¥ is a contraction in L>(7,#; L?(Q)). Thus equation (5.30) admits a unique
solution z € L*(r,#; L*(Q)). If z € L*(r,t; L*(Q)), with (5.33) and (5.34) it follows that z belongs to
L3(7,t; L*(0,L; H'(0,1;d))). We can repeat the fixed point argument on (7,2 — 7) in the following way.
Let us set

E = {’U € L*(r,2t — 7, L*(Q)) | Vl(r ) = z},

where z is the solution of (5.30) in (,1). Step by step, we prove that equation (5.30) admits a unique solution
in L>(7,1; L*(2)). Observe that 1,B*rz belongs not only to L>~¢ (7, L(0, L)), but also to L?(r,; L2(0, L)).
]

Proof of Theorem 5.6. Let m be the solution to equation (5.9). Let us show that = > 0. Let us set @(t) =
7(t — t). We verify that # is the solution to equation (5.27). Denote by II the operator whose kernel
is 7. Let z be the solution to equation (5.30). We can apply Lemma 5.7 to z with u(t) = —1.,B*Ilz(t) =
1, b(s,0) fo #(X,5,0)2(X,t)dX, and we get

1 1 1 [t 1!
—/ ﬁ'(T)zo®zo——/ ﬂoz(f)®z(ﬂ:—/ / @(X,E)z(t,X)z(t,E)dXdEdt+—/ /|B*ﬁ'z|2dsdt.
2 o 2 @] 2 T JO 2 T Jy

Since T € L% (O) we have

Lat-naon= [ #naonz [ @020

for all 7 € [0,7). The proof is complete. O

Theorem 5.7. The solution 7 to equation (5.9) exists over the time interval (0,00) and satisfies

7]l Lo 0,00:22(0)) < C (1@l L2(0) + 7ol 2(0)) -

Moreover, there exist two constants Cy and Cig, independent of T > 0, such that

8—3e

8-3c 8-sc
HTrH%2(O,T;L2(Qx;L2(O,L;H1(O,1;d)))) <CyT (H‘I’H?ig(O) + H7TOH?£§(O) + H‘I’Hf;fo) + ||7TO||L25(EO ) + ClOHWOH%g(O)

(5.35)
for all T >0 and all e > 0. (Cy depends on € > 0.)

Proof. We argue by contradiction, we suppose that there exists a maximal solution which is not a global one.
Let [0, Tinax| be the maximal interval such that, for all ¢ € [0, Tmax| equation (5.9) admits a solution 7 in
L*°(0,t L2(0)) N L%(0,t; L?(Qx; L*(0, L; HY(0,1;d)))) and

limg_,.. (17l L 0,6:02(0)) + 7l 20,6 L2 (0x 5220, 1511 (0,1:0))))) = O©- (5.36)
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Let 7¢ be the solution to the Lyapunov equation (5.12) corresponding to
Y(t, X,2) = ®(X,2).
We can verify that 7, — 7 is the solution to Lyapunov equation (5.12) corresponding to
Y(t, X, E) = / |b(s,0)|*n(t, 5,0, E)7(t, X,5,0)ds > 0.
v
From assertion (iii) in Theorem 5.3 it follows that m¢(¢) > 7(t) for all t € [0, Tynax[. We have
oy = so{ [ s{ [ 70z Idlann = 1) 24X olnn =1

= Sup{/ 7TZ®<dXdE | H<||L2(QE) = 1, ||Z||L2(QE) = 1},
O

and

/Ome@g‘gi/{ow(z+c)®(z+c)+i/w(z—C)®(2—C)

o

1 1
<ifmer0er0+g [ mE-006-0

< 2 el eszzion (I3ame) + 1)) -
Thus
(7]l Lo (0, Tmans22(0)) < Cllmell Lo (0,00:22(0)) < C (1@l 2(0) + 70l L2(0)) - (5.37)
Therefore we have
(7] Lo (0, Timan; L2 (0)) < 00 (5.38)

and
limg_ 7, 17 220,502 (0x;02(0,L:HY (0,1;d)))) = OO

Now, as in the proof of Theorem 5.5, we can write

2||7T(T)||%§(0) + ||7T||%2(O,T;L2(QX;L2(O,L;H1(O,1;d)))) <GCeT ||7T||2Loo(o,T;L§(0))||‘1’| o)+ CG||7TO||2L§(O)

4—2¢

212 177|222 (| e =
+ Cs |7l 0,7 22(0) [0301 IBI5 I T Il f<t0,00;22 (0 1T 22 (0,7 L2(00x s 20, L3112 (0,150)))) |
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for all 0 < T' < Thax. With Young’s inequality and with (5.37), we obtain

||W0||2Lg(0)

171220122005 :L2 0, Lk (0,1:a)))) < C
_4
[CG C3Ci ”bHQ 7| 5||7T||Loo (0,00:L2(0)) ”W”z;(aO,T;LQ(QX;LQ(O,L;HI(O,I;d))))}

<GT ||7r||%°°(O,T;L§(O)) @l r20) + CGH”OH%@(@)

-9 2 2 3=t
+ Tmoye o C2CE I ITV I, S s

2
5||7THL2(O,T;L2(Qx;L2(0,L;H1(071§d))))'

Thus with (5.37) we obtain

||7T||%2(O,T;L2(QX;L2(0,L;H1(0,1;d)))) <CT <|‘I’||L2(o (o) + ||W0||L2(o)) + CIO||7TO||2L3(0)

By passing to the limit when T tends to Tiax, we obtain a contradiction with (5.36). Thus we obtain the
existence of solution for all 7" > 0, and the estimates in the theorem are already proved. (]

5.5. Algebraic Riccati equation

By studying the asymptotic behaviour of the solution to the differential Riccati equation (5.9), we prove the
existence of a solution to the algebraic Riccati equation (5.9). Let ¢ be in L?(0), the solution to equation

m€ D(Axz), Axm+Azm+v¢ =0, (5.39)

is explicitly defined by
o0
™= / et etz dt.
0

Moreover to give a meaning to the nonlinear term in the Riccati equation (5.7), we have to look for solutions 7
such that the trace of 7 on v x {0} x Qz and on Qx x v x {0} are well defined. Thus it is natural to define
solutions to equation (5.7) as follows.

Definition 5.2. A function 7 € D(A% £) N L*(Qx; L*(0, L; H'(0,1;d))) is a weak solution to equation (5.7) if
it is solution of equation (5.39) with

W(X,Z) = —/ 1b(s,0) (s, 0,Z)m(X, 5,0) ds + B(X,Z).
Y

Remark 5.1. Observe that if 7 € D(A§ £)NL*(Qx; L*(0, L; H'(0,1;d))), then w € L*(Qz; L*(0,1; H'(0,1;d)).
Moreover, if 7 €  L?*Qx;L2(0,L; H(0,1;d))) n L*Q=;L*(0,L; H'(0,1;d))), then the term
f7 |b(s,0)|?m(s,0,Z)7(X, s,0) ds belongs to L2(0). Thus Definition 5.2 is meaningful.

Lemma 5.9. Let (mon)n be a sequence in L2(O) and let mp o belong to L?(O). We assume that, for all n,
m>mn, Ton < Tom < To.co and that, for all ¢ € L*(Q), (fQX 7o.nC)n converges to fo 7o¢ in L?(Qz).

Let my, (respectively moo) be the solution to equation (5.9) corresponding to the initial condition o ,, (respectively
T0,00). Then, for all T >0 and all 2o € L*(Q), the sequence ([, mn(T)z0 ® 20)n converges to [, m(T)z0 @ 2.

Let us notice that if (fﬂx 70,n()n converges to fo mo¢ in L?(Qz), then (f,_ m0,n()n converges to [,,_ mo¢ in
L?(Qx) because 7, and o belong to L2(0).
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Proof. Let m be the solution to (5.27) with (7,%) = (0,7T) and #(T) = 7, and let 7, be the solution to (5.27)
in (1,t) = (0,7) corresponding to the terminal condition 7, (T") = mp . To prove the lemma it is sufficient to
establish that

lim 7 (0) 20 ® 29 = / 7(0) 20 ® 2.
o

n—oo o

Let us introduce the control problem
Q) inf{IOT(z, u) | (z,u) € L*(0,T; Z) x L*(0,T;U), (2,u) satisfies (5.40)}7

where

I (z,u) / / 2(1, X) 2(1,2) dAX A= dr + = / /|u|2 —/WoZ(T)@Z(T),

2= Az + B(1,u), 2(0) = 2o, (5.40)

and let us consider the family of control problems

and

(QF ) inf {10, (2,u) | (2,u) € L2(0,T; 2) x L*(0, T5U), (2, u) satisfies (5.40) |,

where

1§, (z,u) = / / 2(1, X) 2(7,2) dXdEdr + = / /|u|2 —/wo,nz(T)@az(T).

Let us denote by (T, zo) the value function of (QOT,ZO) and by (z,u) its optimal pair. Similarly, we denote by
©n (T, 20) the value function of (Qf , ., ) and by (2, uy) its optimal pair. From Lemma 5.7, it follows that (z,u)
and (zy,uy) obey the feedback formulas

u(t,s)zb(s,O)/ 7(t,$,0,2) z(t,E)d= and un(t,s):b(s,O)/ Tn(t, $,0,E) z,(t, E) dZ,

and the value functions satisfy

1 1
PT) = [ 7Oz wd puTz)=; [ w0265
2 Jo 2 Jo

We are going to show that (u,), converges to u in L2(0,T;U). First, since we have
Igjn(znv un) < I()T,n(% u),

we notice that the sequence (uy), is bounded in L?(0,7;U) and that, from any subsequence, we can extract
another subsequence, still indexed by n to simplify the notation, weakly converging in L?(0,T;U) to some .
Let us denote by z the solution to (5.40) corresponding to . We can easily see that (z,), converges to z for the
weak topology in L?(0,T; Z) and that z,(T) converges to z(T') for the weak topology of Z. Thus, by passing
to the inferior limit when n tends to infinity, we obtain

I§ o (2,0) < liminf IT, (2n, un) < liminf I7, (zn,un) < lim If, (z,u) = I§ (2, u),

n—00 n—oo n—00
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where ny € N is given fixed (here we have used that 7, < 7, when ng < n). Next by passing to the limit
when ng tends to infinity, we obtain

Ig(zvﬂ) = lim IO Tlg(z?a) < Ig(zvu)
) = IF(z,u), 4 = u, 2 = 2, (up), converges to u in L?(0,T;U) and (z,), converges to z

Thus I7(z,u
T); Z). Therefore

in C(]0,

1 1
i (T, 20) = Jim 5 [ 7a(0)20® 50 = (T 0) = 5 [ #(0) 09 20,
O O

n—00 n—00

The proof is complete. O

Theorem 5.8. The algebraic Riccati equation (5.7) admits at least one solution m in the sense of Definition 5.2,
and it satisfies:

Il st 0. 0ty < C (||<1>||L2<o> o <1>||L2<0)) (5.41)

Proof. Step 1. Let m be the solution to equation (5.9) corresponding to my = 0, and 7. be the solution to
equation (5.9) corresponding to 7.(0) = 7(), ¢ > 0. For all t > 0 and zo € L?(f2), let us introduce the control
problem

(PL.) mf{Jg(z, w) | (z,u) € L2(0,1; Z) x L0, U), (2,u) satisfies (5.42)},
where .
1
Ji(z,u) / / X) z2(r,E)dXd=dT + = / /|u|2,
and
Z' = Az + B(1yu), 2(0) = zo. (5.42)

Let us denote by ¢(t, z9) the value function of (7§, ). From Lemma 5.7 it follows that

1
olt.0) =5 [ 7lt) 0920
@]

Since (t + €, z0) > (t, z9), we have

/7r(t+5)z0®20:/ﬂg(t)z()@zoZ/7r(t)z0®z0.
o o o

Thus the mapping ¢t — [, 7(t) z0 ® zo is nondecreasing. We denote by II(t) € L(L?*(2)) the operator defined
by:

(T1(#)2) (X) = /Q w(t, X, E)2(2) d=.

Since ||| Lo (0,00;22(0)) < 00, and

(H(t)za C) L2(Q) = E(H(t)(z + C)a (Z + C))Lz(g) - i(H(t)(Z - C)a (Z - C))Lz(g)v (543)

we have

Sup | (11(8)2,.€) 12y | < o0,
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for all t > 0, 2 € L?(Q), and all ¢ € L*(Q). Applying the Banach-Steinhaus Theorem, we deduce
that sup H(H(t)z,~)L2H£(L2(Q)) < o0. Applying another time the Banach-Steinhaus Theorem, we obtain
t>0

. X 2
il;%) | (TI(t)-, -) .0 ||£(L2(Q)><L2(Q)) < 00. Therefore there exists Iyin € £(L*(£2)) such that

lim (H(t)z,C)LQ(Q) = (HminZ’OL?(Q)' (5.44)

t—o0

Since II(t) = II*(t) > 0, it follows that Iy, = II%; > 0. Let us notice that ||(Imin — I(£))Y2| z(r2()) is

min =

bounded uniformly with respect to ¢t € R*, thus we have
(Mo = TL())¢ N 22 (02) < Cll(Mamin — (1) 2¢| 20
and with (5.44) we deduce
Jim (ot — TE(0))C] 220

(5.45)
< Ctli)IEOH(Hmiﬂ - H(t))l/QCHLQ(Q) = tli%((ﬂmm - H(t))g’ C)Lz(g) =0.

Besides the sequence (m(n)), is bounded in L2 (O). Without loss of generality, we can suppose that (7(n)),
converges to some iy € Li(@) weakly in LE(O). Thus we also have

lim m(n)z® (= / TminZ ® C.
o

n—00 o

By uniqueness of the limit, we have

/(9 TminZ ® ¢ = (Hminz7 C) L2(Q)"

From (5.45) it follows that

T | (o — 7)) sy = .
Therefore the assumptions of Lemma 5.9 are satisfied by the sequence (7(n)), and the limit myin.

Step 2. We show that mnin is solution to the algebraic Riccati equation (5.7). Let 7 be the solution to (5.9)
corresponding to my = Tmin. Let 7T be the solution to (5.9) corresponding to mp = 0, and 7, the solution to
(5.9) corresponding to my = 7(n). By using the dynamic programming principle, we have

() =7({t+n), t>0.

Due to the first step, we have

lim T(n)z ® z = lim Tn(0)z® z = / TminZ ® 2,

for all z € L?(2). Due to Lemma 5.9, we can write

/ Ft)z@z= lim [ 7,(t)z® z.
o n—x Jo

Therefore
/ 7(t)z ®z= lim Tn(t)z ® z = lim 7‘r(t+n)z®z:/ TminZ ® 2
o
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for all ¢ > 0 and all z € L%*Q). Thus, 7 is constant and equal to myup,. This implies that
Tmin € L?(Qx; L2(0, L; H'(0,1;d))), and that

d [ .
0 = T 07r(t)z®z
= (Axz,7(t)z) + (7(t)z, A=2) —AL(bﬁ(t)z)@(bfr(t)z)ds+/O<I>(X,E)Z(X)Z(E)dXdE

(-AXZ; 7Tminz) + (Trminza -AEZ) - / / (bﬂ-minz) & (bﬂ-minz) ds +/ (I’(X, E)Z(X) (E) dXd=.
v JO (@]

Consequently, 7y is a solution to the algebraic Riccati equation (5.7).
Let us prove estimate (5.41). With estimate (5.35) for 7 and the fact that 7 is constant with respect to t,
we have

THWH%%QX;L2(0,L;H1(0,1;d))) = H7TH%2 0,T;L2(Qx;L2(0,L; H' (0,1;d))))

<CT <|(I)||L2(0) + H7Tm1n||L2(0) + H(I)”p(o + H7Tm1n||L2(o ) + CHﬂminH%g(O)'

Choosing T' = 1 and using ||7min| r20) < C’||<I>HL§(@), the proof is complete. O

6. FEEDBACK CONTROL LAW

The main objective of this section is to prove that the algebraic Riccati equation (5.7) admits a unique
solution 7 and that (Z,a), the optimal solution to (P, ), obeys the feedback formula

(s, 7) = 1.,(s) b(s, 0) (/Q (s,0,2)5(, Z) dE) . sc(0,L), TecR*.

To prove this result we first show that if 7 is a solution to equation (5.7), and if II is the Hilbert-Schmidt
operator of kernel 7, then the equation

7' = Az — B(1,B*Ilz) in (0,T),  z(0)= 2o,
admits a unique solution (Thm. 6.1). Next we show that if
z' = Az + B(1,u), 2(0) = zo,

then we have (see Lem. 6.4):

[ee]
Lraenr [
@] 0 el

2

J(z,u) = u(r, s) — b(s,0) /m 7(8,0,2) z(1,E)| dsdr.

N =
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Combining these results we prove that any solution 7 to the algebraic Riccati equation (5.7) obeys

1
—/ T 20 ® 29 = inf(P,,).
2 Jo

The uniqueness follows.

To establish such results we have to justify some integration by parts. We do it by using a regularization
argument which is developed in the two following lemmas.

Lemma 6.1. Let u belong to C1(]0,00); L?(0, L)). There exists a sequence (fn)n in CL([0,00); L2(Q)) such that

t t
C
/ /bfnSD*/ /bwp < =7 leleznez om0 llelL20.6220.0))
0 JQ 0 Jy n

for all t > 0 and all ¢ € L*(0,00; L?(0, L; H'(0,1;d))).

Proof. The proof is similar to that of Lemma 5.5, where C' is independent of ¢. O
Remark 6.1. If we identify B(1,u) with the functional defined in L?(0, co; L*(0, L; H(0,1;d))) by

o [ [ s 0)utt) plt .00 dsat
0 vy

the sequence (b f,,),, can be considered as an approximation of B(1,u) € L*(0,00; L(0, L; (H(0,1;d))")).

Lemma 6.2. Let u be in C1([0,00); L?(0, L)), (fn)n be the sequence in C([0,00); L?(Q2)) defined in Lemma 6.1,
z be the solution to equation
2 = Az + B(Lyu), 2(0) = zo,
and z, be the solution to equation
2 =Az—bfn, 2(0) = zo.
Then (z,)n converges to z for the weak topology of L*(0,00; L?(0, L; H(0,1;d))) and for the weak-star topology
of L>(0,00; L?(2)).

Proof. Let k > 0 be the parameter defined in Lemma 2.1. We set ¢ = e **z and ¢, = e **2,. To prove the
lemma it is sufficient to show that ((,), converges to ¢ for the weak topology of L?(0,00; L?(0, L; H(0,1;d)))
and the weak-star topology of L°°(0,00; L?(£2)). The functions ¢ and ¢, are respectively the solutions to

(= A+ B(Mye M), ((0) = e Fz,
and

Go=AC—e " b fn,  (a(0) =e .
With [6], Theorem 6.2, we can write

1 1 t 1 1 t 1 L 84—
- nt2+—//anL, 77'2dd7'——/e_’““22—}—/// b| =L
5 [1@P+5 [ [ aGyrrayar—g [t [0 [0 (5] 5

t 1 oL
+ (c+ kza)(,%) drdydr < —/ / / e~k £ ¢, da dy dr.
0o Jo Jo

2

b 9¢,

From Lemma 6.1, it follows that

/0 t /Q b £, Gy

C
<l 2(0,6:220,00) 10Cn || 22(0,6:22 (0, 1; 7 (0,1:0))) (1 + m) .
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Combining the two previous inequalities, with Lemma 2.1, we obtain:

_ C
/Kn / / au(L,y,7)dydr — —/ e 20| + 1||<TIHL2 (0,6:L2(0,L; ' (0,1;d)))

1 c\ 9 €
<5 <1 + m) lullZ200,4;220,1)) + 5”anH%2(O,t;L2(O,L;H1(O,l;d)))a

for all € > 0. Thus, we can choose € > 0 to obtain:

0 1
1617 00 (0,00:22(52)) +/o /O a (L, y,7)% Ay AT + [[Cull2(0.00:22(0,2: 11 (0,1:0)))

<c (||u||%2<o,oo;mo,m> - ||) |

The sequence (), being bounded in L?(0, co; L?(0, L; H'(0,1;d))) and in L>(0, co; L*(2)), we can easily prove
that (), converges to ¢ for the weak topology of L?(0,00; L2(0, L; H(0,1;d))) and the weak-star topology of
L>°(0, 00; L3()). O

Lemma 6.3. Let 7 be a solution to the Riccati equation (5.7), u € L?(0,00; L?(0, L)), 20 € L%(Q), and z be the
solution to equation

2= Az + B(1,u), 2(0) = zo.
Then z satisfies the following identity:

/ /((A} +AL)m) 2(t) @ 2(t) dX dEdt = —/7T20®ZodXdE
o Jo o

—|—2/OooLb(s,o)u(t,s)/Qﬂ(s,O,E)z(t,E)dEdsdt. (6.1)

Proof. We first prove the identity when u belong to C!([0,00); L?(0,L)). Let (f.)n be the sequence in
CL([0,00); L?(€2)) defined in Lemma 6.1, and (20,,)» be a sequence in D(A) converging to 2o in L*(Q). Let us
denote by z, the solution to

2 =Az—0bfy, 2(0) = 20,
Since z, € C([0,00); D(A)) N C*([0,00); L*(£2)), we can write

T T
/ /((A} + A7) zn(t)®zn(t)dXdEdt:/ /ﬂszn(t)@)zn(t)dXdEdt
0 (@] 0 (@]
+/O /szn(t)@)Agzn(t)dXdEdt

T T
:/ /wz%(t)@zn(t)dXdEdt—l—/ /ﬂ'zn(t)®z;(t)dXdEdt
o Jo

+/OT/0bfn(t,X)7r( D)on(t, D) dXd_dH/ /bfn V) (X, Z)zn (1, X) AX A2 dt
:/(an(T)@zn(T)dXdE—/

wzo,n(E)zom(X)dXdE—i—Q/ /bfn(t,X)w(X,E)zn(t,E)dXdEdt.
(@) 0 (@)
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We first pass to the limit when n tends to infinity. As in the proof of Lemma 5.6, we can show that

n—oo

T T
hm/o /O((AX + Az)m) zn(t)®zn(t)dXd:dt:/0 /(9((AX+AE)7T) 2(t) @ 2(t) dX d= dt.

Due to Lemma 6.2, (2,), is bounded in L?(0,00; L?(0, L; H*(0,1;d))), and (z,), converges to z weakly in
L?(0,00; L?(0, L; H'(0,1;d))). Moreover, with Lemma 6.1, we have

T T
/ / bfn/ (X, E)zn(t,E)dEdthf/ /bu/ 7(s,0,2)z,(t,E)d=Eds dt
0 Qx = 0 Yy =

C

< —_—
=iz

||U||L2(0,T;L2(0,L)) .
L2(0,T;L2%(0,L; H'(0,1;d)))

/ (-, E)zn (-, E) d=
Q=

Since || [o,_ 7(-,Z)2n (-, E)|lL2(0,7302(0,L: 17 (0,15d))) i bounded, passing to the limit when n tends to infinity, we
obtain

/OT/O((A} + AL)T) 2(t) ® 2(t) dX d=Edt = /OWZ(T)@z(T)f/OWZO@ZO
—2/0TL6(570)16(?2S)Aw(s,o,z)z(t,a)dadsdt,

when u belongs to C1([0, 00); L?(0, L)). Since u € C1(]0,00); L*(0, L)), due to the exponential stability on L?(2)
of the semigroup (e*);>o, it follows that

lim mz(T)® 2(T) = 0.
T—oo Jo

Passing to the limit when T tends to infinity, we finally obtain

/ / (A% + AL)7) z02d X dE = —/ 720(2)20(X)dXd=E + 2/ /b(s,O)u(t,s)/ 7(s,0,E)z(t, E)d=dsdt,
0 (@] (@] 0 v

Q
(6.2)
when u belongs to C1([0,00); L2(0,L)). Let us now consider the case where u € L?(0,00; L%(0,L)). Since
CL([0,00); L2(0, L)) is dense in L2(0,00; L%(0, L)), there exists a sequence (u,), in C2([0,00); L%(0, L))
converging to u in L2(0, 00; L?(0, L)). The solution z, of equation

z, = Azn + B(Lyuy), 21, (0) = 20,

converges to z in L2(0,00; L?(0, L; H(0,1;d))). Thus we can write the identity (6.1) for z,, and we establish
(6.1) for z by passing to the limit when n tends to infinity. (]

Lemma 6.4. Let 7 be a solution to the system (5.7), u € L%(0,00;U), 20 € L*(Q), and z be the solution to
equation

2= Az + B(1,u), 2(0) = zo.
Then the cost function satisfies

1 [e.¢]
J(z,u):a/oﬂ'zO@Zo—i—/O /
.

2

u(T, s)—b(s,O)/ 7(s,0,2) z(1,E)dZ| dsdr. (6.3)
Q
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Proof. With Lemma 6.3 and equation (5.7), we can write

—/ 7T20®ZQ+2/ /b(s,O)u(t,s)/ﬂ(s,O,E)z(t,E)dEdsdt :/ / (A% + AL)m) z(t) @ z(t) dX d=dt
o 0o Jy Q 0o Jo

I

2 oo
ds dt —/ / B(X,5)2(t, X) 2(t, =) dX dE dt.
0 O

b(s,O)/ 7(s,0,2)z(t,2) d=
)

Thus we have

1 [ _ _ 1y )

J(z,u) = 5/, O@(X,:)z(t,X)z(t,:)dXd:dt—|—5 ; |u)*ds dt
v
1 1 oo oo
= —/ 7rz0®zo+—/ /|u|2dsdt—/ /b(s,O)u(t,s) /w(s,O,E)z(t,E)dE dsdt
2 (@] 2 0 v 0 ¥ Q
iy |
2 0 ~

b(s,O)/ﬂ'(s,O,E)z(t,E)dE dsdt
Q

2

= l/ 20 & 20 +1/OO/ u(t, s) —b(s,O)/ (s,0,X)z(t,Z2)d=| dsdt.
2 Jo 2Jo Jy Q
The proof is complete. O
For a given solution 7 to equation (5.7), we consider the evolution equation
2z’ = Az — B(1,B*Ilz) in (0,00), 2(0) = 2o, (6.4)

where

B Iz(t,s) = fb(s,O)/ 7(s,0,2)z(t,E)dE, se€(0,L), t € (0,00).
Q

Weak solutions to equation (6.4) are defined as weak solutions to equation
2 =Az+ B(1,u) in (0,7), 2(0) = zo, (6.5)

with u = —B*Ilz. This is meaningful because if z € L?(0,T; L*(Q)), then B*Ilz € L*(0,T; L*(0, L)).

Lemma 6.5. For a given solution m to equation (5.7), equation (6.4) admits a unique weak solution in
L*°(0,T; L?(2)). Moreover this solution also belongs to L*(0,T; L*(0, L; H(0,1;d))).

Proof. We first show, by using a fixed point argument, that equation (6.4) admits a unique weak solution
in L>°(0,%; L*(Q)), for some 0 < £ < T. In (3.5), it is stated that the weak solution z of equation (6.5) obeys

120l Lo 0,7 22(2)) + Va2l Lo (0,2:L2(0,7:L2(0,1))) + 121l 20,7322 (0, L: 1 0, 1:0))) < C (||U||L2<0,T;L2<0,L>> + ||ZO||L2<Q>)’
(6.6)

where C5 is independent of T'. If v belongs to L°°(0,T; L?(2)), then from Theorem 5.8 it follows that

|1, B*110|| 20,7 22(0.)) < C11 T2 ||v]| e 0.7:22(02)) s (6.7)
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for some constant Cy; depending on ||| r2(o), but independent of 7. We choose ¢ > 0 such that Cs Cy1[t|'/? <
1/2. Let v be in L*(0,¢; L*(Q2)) and 2, € L>(0,%; L?(Q2)) be the solution to

z' = Az — B(1,B*IIlv) in (0,?), 2(0) = zp.
Let us denote ¥ the mapping v +— 2,. Let vy and vz be in L>(0,#; L(Q2)). With (6.6) and (6.7) we have
26, — Zva |l Lo (0,5:L20)) < C5 Cua[HY?[lv1 — val L (0,0.2(2))-
Since C5C1[t|Y/? < 1/2, ¥ is a contraction in L>(0,%; L?(Q2)). Thus equation (6.4) admits a unique solution

in L>=(0,£ L3(Q)). If v € L?(0,t; L*(Q)), with (6.6) and (6.7) it follows that z belongs to L?(0,T; L*(0, L;
H'(0,1;d))). We can repeat the fixed point argument on (,2t) in the following way. Let us set

E= {u € 1°°(0,25 L2(Q)) | vl(0.) = z}

where z is the solution of (6.4) in (0,%). Step by step, we prove that for all 7" > 0 equation (6.4) admits a
unique solution in L>(0,T; L?(Q)) for all T' > 0. O

Theorem 6.1. For a given solution w to equation (5.7), equation (6.4) admits a unique weak solution in
Cy([0,00); L2(£2)). Moreover this solution also belongs to L?(0,00; L(0, L; H*(0,1;d))) and

121 Los (0,00522(02)) + IV@2l| Lo (0,£:22(0,00:22(0,1))) F 1201 22(0,0052.2(0,L: 211 (0,1:0))) < Csll 201l L2(0)- (6.8)
Proof. Let u be in L?(0,00; L?(0, L)), z0 € L?(£2), and z be the solution to equation
z' = Az + B(1,u), 2(0) = zp.
As in the proof of Lemma 6.3, we can show that
T
/ / (A + A7) 2(8) @ 2(t) dX A2 dt — / 7 2(T) @ =(T) — / T2 ® %
0o Jo o o
T
- 2/ /b(s7 0) u(t, s)/ 7(s,0,2)z(t, =) d=Eds dt.
0 ¥ Q

Next, as in the proof of Lemma 6.4, we can establish the identity

17 _ _ _ 17 ) 1

= ®(X,E)z(t,X) 2(t,E)dX d=dt + = lu*dsdt+ = | 72(T)® 2(T)
2Jo Jo 2Jo Jy 2 Jo

yEn—yy

2 Jo 2 )y J,
In particular, if u(t, s) = b(s,0) [, 7(s,0,E)z(t,Z) d=, we obtain
T

I

This means that the solution to equation (6.4) 1is such that the mapping (¢,s) —
1,b(s,0) [, 7(s,0,Z)z(t, 2)d= belongs to L*(0, 00; L2(0, L)). Estimate (6.8) follows from (6.6) for T = oo. [

2

u(t,s)fb(s,O)/w(s,O,E)z(t,E)dE dsdt.
Q

2

b(s,O)/Qﬂ(s,O,X)z(t,X)dX

dsdt < / T 20 ® 20.
1)

Theorem 6.2. The algebraic Riccati equation (5.7) admits a unique solution.
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Proof. Let (z,u) be the solution to problem (P.,). Let m be a solution to equation (5.7), and let z be the
solution to equation (6.4) corresponding to 7. From Theorem 6.1 we deduce that —1,B*rz is an admissible
control. Due to Lemma 6.4 we have:

1
J(z,u)z—/ﬂzo®zo,
2Jo
and
1 > ’
J(Z,ﬂ):—/ 7rzo®z0+/ /ﬂ(T,S)*b(S,O)/ 7(s,0,2) z(1,E)dE| dsdr.
2 Jo 0o Jy 0=
Thus 1
J(z,u):J(E,ﬂ):—/ﬂz()@zO,
2 Jo
and

a(r,s) :b(s,())/ 7(s,0,Z) 2(r, =) d=.

Q=
Henceforth, there is a unique operator m such that

1
—/ T 20 @ 2o = inf(Py,),
2 Jo

for all z9 € L?(). The proof is complete. O

Theorem 6.3. Let (Z,4) be the optimal solution to problem (P.,). The optimal control @ obeys the feedback
formula

a(r,s) = 1(s) b(s,0) (/Q ﬂ(s,O,E)E(T,E)dE) s€(0,L), 7€ (0,00), (6.9)

where T is the solution to the algebraic Riccati equation (5.7). The optimal cost is given by

1
J(z,u) = 5/07120@20.

Proof. Theorem 6.3 is a direct consequence of Theorem 6.1 and Lemma 6.4. U

We finish this section by introducing the infinitesimal generator of the semigroup associated with the optimal
solution of problem (P). For every zo € L?(Q2), let us denote by z, the solution to equation (6.4). According
to Theorem 6.1, the family of operators

(zo — 2z, (t))

is an exponentially stable semigroup on L?(Q2). The exponential stability follows from (6.8) and from Datko’s
Theorem [21], Theorem 3.1(i), Part IV. Let us denote it by (e!47);> and by (A, D(A,)) its infinitesimal
generator. Since (e'7);>( is an exponentially stable semigroup on L%(Q), the domain D(A,) is defined by

t>0

D(A;) = {/OOOeTA"wdT |y € LQ(Q)}.

Moreover,
FAS D(-AT() and Aqz = ¥,
if and only if

z= —/ e™ A7 o dr.
0

We are now going to give another characterization of D(A;).
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Theorem 6.4. A function z € L*() belongs to D(A) if and only if z is the solution to the variational problem

z € L*0,L; H'(0,1;d)),

Az, calculated in the sense of distributions in €2, belongs to L?(Q2), (6.10)

Az=1 in Q, To (az, fb%) =—1,(s) b(s,O)Q/ 7(s,0,E) z(E) d=.
dy Q

Proof. Let z € D(A;) be the unique solution to the equation A,z = v, that is to say

(oo}
z= —/ ey dr.
0

Thus z is the limit in L2?(£2), when ¢ tends to infinity, of the function ((t) defined by
t t
((t) = —/ A dr = —/ (=) 4y ds.
0 0

Observe that ( is the solution to the equation

¢'=A¢—-B(1,BT¢) -, ((0)=0.
Therefore ¢ obeys the following boundary condition

T, (aC(t), —baC—(t))

=-1 bs,OQ/ws,O,E t,2)d=.
By +b(s,0) Q( )¢(t,E)

We can pass to the limit when ¢ tends to infinity in the above identity, and we obtain the same one for z.
To prove that Az, calculated in the sense of distributions in €2, is equal to v, we notice that, for all ¢ € D(Q),

we have d
G | coo= [ coxo- [

tH/QC(t)w

belongs to C*(]0,00)), it admits a limit and together with its derivative when ¢ tends to infinity. Thus the limit
of [, ¢(t)A*¢ — [, ¢, when ¢ tends to infinity, is equal to zero, i.e.:

Thus the mapping

/zA*ga—/z/;cp:O for all ¢ € D(Q).
Q Q

This means that Az = in D'(Q).
Now we want to show that z € L?(0, L; H*(0,1;d)). Observe that

12ll220) < Cllvll2(e),
and that ¢ belongs to L2 ([0, 00); L?(0, L; H*(0,1;d))). Thus we have

loc

d _ Op 0t 0p  ObOC(H)
G [ cwe= [ (ac3E 12505 - BEL s~ ccit)e) dedy

Y / 2(5.0) / (5,0, X)C(t, X) dX ds,
Yy
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for all p € F, where
F = {p € L2(0,L; H'(0,1,0)) N H'(0, L; L*(0,1)) | (L") = 0}.

As previously we can show that, if ¢ € F', the mapping

d
=3 | coe

tends to zero when t tends to infinity. Thus z is also the solution of the variational equation

Oy 0z0p  0bOz / / / e e
gyt 22, dedy — 0 7(5,0,2)z(2)d=2ds =0
/Q<az " D ; ygo czgo) xdy ngo—i— 7(,0(5, ) . (5,0,2)z(8) s )

for all ¢ € F. With the estimate of z in L?(2), and with the estimates obtained in [6] we can show that
12l 220, st 0,1:09) < CllYl L2(0)-

Let us give a short explanation. Setting Z = e ¥z, with k& > 0, we can show that Z is the solution of the
variational equation

dp 0z0¢p 0b0Z /71@ / .
aZ— —b—————p—(ctka)Zy |dedy — | e "y + 5,0)e™"g(s)ds = 0,
/Q 5 Vayay ay oy e (CThaZe | drdy— | g | ofs, 00 g(s)

for all p € F, where
g(s) = / 7(s,0, X)z(E) d=.
Q
We can verify that

19llL2(0,0) < CllzllL2(2)-
Next using the techniques in [6], the following estimate can be shown

1 Z1 20,111 0,150)) < Cllgll2(0,1)5

from which we can deduce the corresponding estimate for z.

Conversely, if z is a solution to the variational problem (6.10), with the results in [6], Section 5, we can
show that z is the limit in L?(f2), when ¢ tends to infinity of the function ¢ introduced above. The proof is
complete. O
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