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LOCAL SEMICONVEXITY OF KANTOROVICH POTENTIALS
ON NON-COMPACT MANIFOLDS ∗

Alessio Figalli1 and Nicola Gigli2

Abstract. We prove that any Kantorovich potential for the cost function c = d2/2 on a Riemannian
manifold (M, g) is locally semiconvex in the “region of interest”, without any compactness assumption
on M , nor any assumption on its curvature. Such a region of interest is of full µ-measure as soon as
the starting measure µ does not charge n − 1-dimensional rectifiable sets.
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1. Introduction and main result

Let (M, g) be an n-dimensional complete Riemannian manifold. We consider the Monge transport problem
on M with cost function c(x, y) = d(x,y)2

2 . This amounts to study the following problem: given two probability
measures μ and ν on M , minimize ∫

M

c(x, S(x)) dμ(x)

among all maps S : M → M such that S#μ = ν. The existence and uniqueness of an optimal transport map
under the assumption that μ gives no mass to (n− 1)-rectifiable sets and

inf
S#μ=ν

∫
M

c(x, S(x)) dμ(x) < +∞

has been proved in [4,5] (the result in the compact case was first proven in [8]). The strategy was the following:
first of all, one consider the Kantorovich minimization problem

inf
γ∈Π(μ,ν)

∫
M×M

c(x, y) dπ(x, y),
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where Π(μ, ν) denotes the set of probability measures on M × M which have μ and ν as first and second
marginal, respectively. Then, it is a well-known fact in optimal transport theory that an optimal π exists,
and it is contained in the c-subdifferential of a c-convex function ψ (see [9], Thms. 4.1 and 5.10): this means
that there exist two measurable functions φ : M → R ∪ {+∞} and ψ : M → R ∪ {−∞} such that

φ(x) = sup
y∈M

ψ(y) − c(x, y), ψ(y) = inf
x∈M

φ(x) + c(x, y) (1.1)

and π is concentrated on the set ∂cφ := ∪x∈M

({x} × ∂cφ(x)
)
, where

∂cφ(x) :=
{
y ∈M : φ(x) = ψ(y) − c(x, y)

}
.

This fact implies in particular that the set {φ < +∞} has full μ-measure.
Now, to complete the “classical” strategy in order to show existence and uniqueness of optimal maps, one

needs to prove that φ is differentiable μ-a.e. Indeed, this allows to show that ∂cφ(x) is a singleton for μ-a.e. x,
which implies that the optimal plan π is concentrated on the graph of a function T . Moreover, such a function
can be characterized μ-a.e. by the formula

∇xc(x, y)|y=T (x) = −∇φ(x) ⇔ T (x) = expx (∇φ(x)) (1.2)

(cf. [4], Thm. 4.3, or [7], Prop. 1.15, see also [8], Thm. 8).
However, in [4,5] the authors could not exactly complete the program described above, since they were not

able to show that the function φ (which is also called Kantorovich potential) is differential μ-a.e. Indeed, since in
the infimum appearing in (1.1) y varies in a non-compact set, φ does not a priori inherit the local semiconvexity
property of the functions x �→ − d(x,y)2

2 . Hence their strategy has been to prove a weaker statement, namely that
φ is approximately differentiable μ-a.e., which turns out to be enough for obtaining existence and uniqueness of
the optimal map. Moreover, at least when μ is absolutely continuous with respect to the volume measure, (1.2)
holds provided one replaces ∇ by the approximate gradient ∇̃ (see [4], Complement 3.4). The aim of this paper
is to fill the gap on the regularity of φ, showing that without any assumption on the manifolds nor on the
measures μ and ν, the potential φ is always locally semiconvex on the “region of interest”. More precisely, we
show the following:

Theorem 1.1. Let φ be a Kantorovich potential as above, set D := {φ < +∞} and let Ω be the interior
of D. Then φ is locally semiconvex in Ω, ∂cφ(x) is non-empty for any x in Ω, and ∂cφ is locally bounded in Ω.
Moreover, D \ Ω is (n− 1)-rectifiable.

Once the above theorem is proved, the existence and uniqueness of an optimal map T whenever μ does not
charge (n − 1)-rectifiable sets follows in a standard manner (see for instance [8], Lem. 7, or [4], Thm. 3.1).
Moreover (1.2) holds μ-a.e., which allows to deduce (thanks to the fact that a semiconcave function is twice
differentiable vol-a.e.) that T is differential μ-a.e. provided μ 	 vol (see [3], Sect. 2, and [5], Prop. 3.4). This
last fact is important in order to compute the Jacobian of T and to obtain a change of variable formula (see [3],
Cor. 4.7) which turns out to be useful for many different application in Riemannian geometry. We refer to [9]
for a more complete presentation of the subject and more references.

The next section is devoted to the proof of the above theorem. At the end of the section, we will also discuss
some possible extensions of the above result to the case c = dp/p (p > 1), and to cost functions arising by
minimizing a particular class of Tonelli Lagrangian. Moreover, we also make some general comments on how to
deduce existence and uniqueness of optimal maps once the result is known in the compact case.

As a last comment, let us say that the approach we are going to describe is strongly inspired by a discussion
made by Villani in [9], Chapter 10, where the author introduces the assumptions (H∞1) and (H∞2), and he
proves that if the cost function satisfies these assumptions, then a result closely related to ours holds (see [9],
Thm. 10.24). The point is that it is unclear – at least to us – whether the squared distance satisfies those
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assumptions or not (in particular, the problem is in checking (H∞2)). Still, at least in the case c = dp/p or for
costs coming from some special Tonelli Lagrangians, it is possible to conclude. We invite the reader to compare
the proof of our result with the one of [9], Theorem 10.24.

Notice also that an approach similar to ours already appeared in [6], Appendix C.

2. Proof of the main theorem

Recall that D := {φ < +∞} and Ω is the interior of D. We divide the proof in three steps.

Step 1: φ is locally bounded in Ω.
Since φ is defined by a supremum of continuous functions (see (1.1)), the fact that φ is locally bounded from

below is immediate. Hence we only need to prove the bound from above.
We argue by contradiction, and we assume the existence of a sequence xn → x ∈ Ω such that φ(xn) → +∞.

For every n ∈ N, let us choose yn ∈M a point such that

φ(xn) ≤ ψ(yn) − c(xn, yn) + 1. (2.1)

In particular, as c = d2

2 ≥ 0, we have ψ(yn) → +∞ too. Hence, since

R � φ(x) ≥ ψ(yn) − c(x, yn),

we deduce that c(x, yn) → +∞, which further implies

c(xn, yn) =
d(xn, yn)2

2
→ +∞.

Now, let γn : [0, d(xn, yn)] → M be a minimizing geodesic parameterized by arc-length connecting xn to yn.
Since d(xn, yn) → +∞, any geodesic γn is defined at least on an interval [0, �], for some � > 0. Let us define the
following set:

Cn :=
{
x ∈M: there exists t ∈ [0, �] s.t. d(x, γn(t)) ≤ t/2

}
.

(Observe that in an Euclidean space Cn would just be a cone with height � and basis of radius �/2.) We claim
that

inf
Cn

φ→ +∞ as n→ +∞.

Indeed, if d(x, γn(t)) ≤ t/2 for some t ∈ [0, �], thanks to the triangle inequality and (2.1) we have

φ(x) ≥ ψ(yn) − d(x, yn)2

2
≥ ψ(yn) − [d(γn(t), yn) + d(x, γn(t))]2

2

≥ ψ(yn) − [d(γn(t), yn) + t/2]2

2
= ψ(yn) − [d(xn, yn) − t/2]2

2

≥ ψ(yn) − d(xn, yn)2

2
+ d(xn, yn)

t

2
− �2

8

≥ φ(xn) − 1 + d(xn, yn)
t

2
− �2

8
, (2.2)

where at the second line we used the identity d(γn(t), yn) = d(xn, yn) − t. Thanks to the above inequality, we
obtain that

inf
Cn

φ ≥ φ(xn) − 1 − �2

8
, (2.3)
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which proves the claim. Now, letting n → +∞ and assuming � sufficiently small (say, 1/10 of the minimal
injectivity radius in a neighborhood of x), it is easy to see by a simple compactness argument that the following
holds: let v ∈ TxM be a limit point for γ̇n(0) ∈ TxnM (in some chart around x), and set

C∞ :=
{
x ∈M: there exists t ∈ [0, �] s.t. d(x, expx(tv)) ≤ t/2

}
. (2.4)

Then, up to subsequences, Cn → C∞ in the Hausdorff distance, and φ ≡ +∞ in the interior of C∞. Since
x ∈ C∞, this contradicts the fact that x ∈ Ω, and concludes the proof.

Step 2: D \ Ω is (n− 1)-rectifiable.
This fact is a simple consequence of the proof of Step 1: assume that x ∈ D \ Ω, and let {xn} ⊂ Dc be a

sequence converging to x. Then, choosing a sequence {yn} ⊂M such that

ψ(yn) − c(xn, yn) ≥ n

(this can always be done as φ(xn) = +∞), we deduce that

inf
Cn

φ ≥ n− 1

(compare with (2.3)), so that φ ≡ +∞ in the interior of a “cone” C∞ with vertex at x, height � and width �/2
(see (2.4)). Hence we have proved that at every point x ∈ D \ Ω there exists an open cone of fixed height and
width, with vertex at x, which is contained outside D, and thus outside D \ Ω. Then, it is a well-known result
in geometric measure theory that D \ Ω is (n − 1)-rectifiable, i.e. contained in a countable union of Lipschitz
surfaces (see for instance the proof of [1], Thm. 2.61, or the one of [9], Thm. 10.48).

Step 3: ∂cφ(x) is non-empty and bounded as x varies in a compact subset of Ω. In particular, φ is
locally semiconvex in Ω.

Let K ⊂⊂ Ω, take x ∈ K, and let y ∈M be such that

φ(x) ≤ ψ(y) − c(x, y) + 1.

We claim that d(x, y) is uniformly bounded, independently of y. Indeed, assuming without loss of generality
d(x, y) ≥ 1, as in the proof of Step 1 we can consider the point γ(�) on the (unit speed) geodesic from x to y,
where � ≤ dist(K,Ωc)/2. Then, by (2.2) we get

φ(γ(�)) ≥ φ(x) − 1 + d(x, y)
�

2
− �2

8
·

Since by Step 1 φ is uniformly bounded on the set

K� := {x ∈M : dist(x,K) ≤ �} ⊂⊂ Ω,

the claim follows.
The proof of Step 3 is now easy: thanks to (1.1) the function ψ(y) is upper semicontinuous. Hence, if x ∈ K

and {yk} ⊂M is a maximizing sequence for φ, in the sense that

φ(x) ≤ ψ(yk) − c(x, yk) +
1
k
,

then by compactness (recall that d(x, yk) is uniformly bounded) there exists a point y such that

φ(x) ≤ ψ(y) − c(x, y).
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Since the opposite inequality is always true, we obtain that equality holds and y ∈ ∂cφ(x). Moreover dist(K, y) ≤
C0 for some constant C0 depending only on K. Hence

φ(x) = sup
y∈M, dist(K,y)≤C0

ψ(y) − c(x, y) ∀x ∈ K,

and the semiconvexity of φ in the interior of K follows. This concludes the proof of the main theorem.

Remark 2.1 (the case c = dp/p). The above result can be easily extended to the case c(x, y) = d(x,y)p

p , p > 1.
Indeed the only difference arises in the proof of (2.2), where by using the inequality (a− b)p ≤ ap − pap−1b for
any 0 ≤ b ≤ a we get

φ(x) ≤ φ(xn) − 1 + d(xn, yn)p−1 t

2
∀x ∈ Cn.

Once one has the above inequality, the rest of the proof follows with no changes. Let us however point out
that, since x �→ dp(x, y)/p is not semiconcave in the classical sense (i.e. distributional locally second derivatives
bounded from above) but only with a modulus of semiconcavity ω(t) = tp−1 (see [4], Appendices A and B), the
potential function will only be ω-semiconvex, which is however enough for the potential to be differentiable out
of a countably (n− 1)-rectifiable set.

Remark 2.2 (costs induced by Lagrangian). A variant of the above argument still works when the cost
function arises by minimizing a Lagrangian which behaves like θ(|v|x), where θ : [0,+∞) → [0,+∞) is convex,
superlinear, and θ(0) = 0:

c(x, y) = inf
γ(0)=x, γ(1)=y

∫ 1

0

L
(
γ(t), γ̇(t)

)
dt

when L : TM → R is a Lagrangian satisfying:
(a) L is C2;
(b) for every (x, v) ∈ TM , ∂2L

∂v2 (x, v) is positive definite on TxM ;
(c) there exist a convex superlinear function θ : R

+ → R
+, with θ(0) = 0, and A1, A2, A3 positive constants,

such that
θ
(|v|x) −A1 ≤ L(x, v) ≤ A2 θ

(|v|x)
+A3, ∀ (x, v) ∈ TM.

Indeed, the only main difference consists in the choice of the cone Cn and the proof of (2.2): if x ∈ M , and
(xn), (yn) are like in Step 1, we consider γn : [0, 1] → M to be a minimizer for L going from xn to yn, that is

c(xn, yn) =
∫ 1

0

L
(
γn(t), γ̇n(t)

)
dt, γn(0) = xn, γn(1) = yn,

and we set

Cn :=
{
x ∈M : there exists t ∈ [0, 1] s.t. d(x, γn(t)) ≤ η d(xn, γn(t)), with d(xn, γn(t)) ≤ �

}
,

where η, � > 0 are small constants to be chosen. Let now x ∈ M be such that d(x, γn(t)) ≤ η t for some
t ∈ [0, �], and take σ : [0, t] →M a constant-speed minimizing geodesic connecting γn(t) to x. Then |σ̇(τ)|σ(τ) =
d(xn, γn(t))/t ≤ η d(x, γn(t))/t, and thanks to the above assumptions on L we get

c(x, yn) − c(xn, yn) ≤
∫ t

0

L
(
σ(τ), σ̇(τ)

)
dτ −

∫ t

0

L
(
γn(τ), γ̇n(τ)

)
dτ

≤
∫ t

0

A2θ
(|σ̇(τ)|σ(τ)

)
dτ −

∫ t

0

θ
(|γ̇n(τ)|γn(τ)

)
dτ + (A1 +A3) t

≤ t

[
A2 θ

(
η
d(x, γn(t))

t

)
− θ

(
d(x, γn(t))

t

)
+ (A1 +A3)

]
,
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where at the last step we used Jensen’s inequality to estimate the second term. We now observe that, since
θ(0) = 0 and θ is convex, θ(η s) ≤ η θ(s) for all s ≥ 0. Hence, if we choose η = 1/(2A2) we have

c(xn, yn) − c(x, yn) ≥ t

2
θ

(
d(x, γn(t))

t

)
− (A1 +A3) t,

and arguing as in (2.2) we obtain

φ(x) ≥ φ(xn) − 1 +
t

2
θ

(
d(x, γn(t))

t

)
− (A1 +A3) t.

This estimate allows to prove that if φ(xn) → +∞, then there exists a cone with (locally) fixed height and
width, and with vertex at x, such that φ ≡ +∞ inside this cone. This allows to prove Steps 1 and 2. To get
Step 3, we have to show that, if

φ(x) ≤ ψ(y) − c(x, y) + 1,
then d(x, y) is uniformly bounded. The proof of this fact is analogous of the one above, although a bit more
involved: thanks to the above assumptions, the Hamiltonian H(x, p) behaves like θ∗(|p|x), where θ∗ is the
Legendre transform of θ. Hence, by exploiting the conservation of the Energy, as in proof of [4], Proposition B.17,
one can show that |γ̇(t0)| at some t0 ∈ [0, 1] controls maxt∈[0,1] |γ̇(t)| if γ is a minimizer. In this way, one can
still prove d(x, y) has to be uniformly bounded, and the proof of Step 3 follows easily. (We leave the details to
the interested reader.)

Remark 2.3 (compact vs. non-compact). Let us point out that, if one is simply interested in knowing that the
optimal transport map exists and is unique, without having any information on its structure (namely, that is
induced by a Kantorovich potential through the first formula in (1.2)), then the argument for passing from the
compact to the non-compact case is pretty simple (what we are going to say is not new – e.g. the argument was
used already in [2], Thm. 6.2.10 – still we believe it is worth to repeat it here). Assume indeed that existence
and uniqueness of optimal maps is known whenever μ and ν are compactly supported (together with some
suitable assumptions on μ). Then, in the general case, one simply takes an optimal plan π and consider its
restriction to Kn × Kn, where {Kn} is an increasing sequence of compact sets such that ∪nKn = M . If μn

and νn denote the first and second marginal of πn := π�(Kn×Kn)

π(Kn×Kn) respectively, then it is well-known that πn is
an optimal transport plan between them (see for instance [9], Thm. 4.6). Hence any πn is concentrated on a
graph, and letting n→ +∞ also π has to be concentrated on a graph. This proves the existence. Moreover the
fact that any optimal plan is concentrated on a graph immediately implies uniqueness, as a linear combination
of optimal plans is still optimal.
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