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MONOTONICITY PROPERTIES OF MINIMIZERS AND RELAXATION
FOR AUTONOMOUS VARIATIONAL PROBLEMS

Giovanni Cupini1 and Cristina Marcelli2

Abstract. We consider the following classical autonomous variational problem

minimize

{
F (v) =

∫ b

a

f(v(x), v′(x)) dx : v ∈ AC([a, b]), v(a) = α, v(b) = β

}
,

where the Lagrangian f is possibly neither continuous, nor convex, nor coercive. We prove a mono-
tonicity property of the minimizers stating that they satisfy the maximum principle or the minimum
one. By virtue of such a property, applying recent results concerning constrained variational prob-
lems, we derive a relaxation theorem, the DuBois-Reymond necessary condition and some existence or
non-existence criteria.
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1. Introduction

This paper is devoted to the study of various aspects of the classical autonomous variational problem

minimize

{
F (v) =

∫ b

a

f(v(x), v′(x)) dx : v ∈ Υ

}
,

where Υ is the class of absolutely continuous functions u : [a, b] → I, u(a) = α, u(b) = β and I is a bounded
or unbounded real interval including α and β. The main feature is that the Lagrangian f : I × R → [0,+∞),
f = f(s, z), is quite general, since f may be discontinuous and f(s, ·) is not assumed to be convex or coercive.
As it is well known, the lack of convexity and coercivity does not allow the use of the classical direct methods
of the Calculus of Variations and the variational problem can have no solution.
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The mathematical literature on this context is very rich; different classes of Lagrangians have been considered
by many authors and in various settings of applicability. Among the many related papers, for the case of f
coercive but not convex we quote [21,25] (f smooth depending also on x), [17], see also [22], where, under very
weak regularity assumptions, Lagrangians of sum-type are considered. Concerning the case when f is non-
coercive, but convex, we indicate [8,11] where the existence of Lipschitz continuous minimizers is established
under different sets of assumptions, admitting some cases of linear growth for the integrand and, in case of [11],
even some cases in which f does not exhibit such a growth. We also mention [3–5,19] for the case of noncoercive,
nonautonomous Lagrangians. The existence of the minimum for a class of nonconvex f has been studied in [6]
under a growth assumption similar to that considered in [8,9], while the relaxation and the lipschitzianity of
solutions are studied in [7].

Despite the intensive researches on this topic, the theory does not seem sufficiently developed yet and many
questions are still open problems, concerning the necessary conditions for the optimality, the relaxation problem,
and the sufficient conditions to the existence of minimizers in the nonconvex and noncoercive case. Our aim in
this paper is to provide some answers to the previous questions.

Our starting point and main tool is the study of the monotonicity properties of the minimizers of F (when
they exist). It is well-known (see [18]) that if f(s, 0) < f(s, z) for every z �= 0, and s �→ f(s, 0) is increasing, then
any possible minimizer satisfies the maximum principle in any subinterval, i.e., there exists a point x0 ∈ [a, b]
such that the minimizer is decreasing in [a, x0], increasing in [x0, b]. This was recently improved in [12],
Theorem 3.1, where the strict inequality f(s, 0) < f(s, z) was replaced by the weak one. Moreover, under a
certain monotonicity condition on s �→ f(s, 0), it was shown that the minimizers satisfy the maximum principle
or the minimum one.

A study of the monotonicity properties of the minimizers was also carried out in [17,22] for proving the
existence of the minimum in the case of integrands having the sum structure f(s, z) = g(s) + h(z) with h
coercive but nonconvex, without any monotonicity condition on the term g. Subsequently, this investigation
was extended in [24] for coercive integrands having a general structure.

In this paper, with no coercivity hypothesis, we prove (see Thm. 3.1) that under the sole assumptions that
f(s, z) is Borel-measurable, s �→ f(s, 0) is lower semicontinuous and f(s, 0) = f∗∗(s, 0), then the competition
set Υ can be restricted to the subclass collecting those trajectories such that for some interval [τ1, τ2] ⊆ [a, b]
they are constant in [τ1, τ2], strictly monotone (and with a.e. non-vanishing derivative) in [a, τ1] and in [τ2, b].

Such a monotonicity property allows to use results known for constrained problems (see [20]). Indeed, a
first application is the DuBois-Reymond necessary condition (see Thm. 5.1), which in our non-smooth setting
assumes the form of a differential inclusion:

f(u(x), u′(x)) − c ∈ u′(x)∂f(u(x), u′(x)) a.e. in (a, b), (DBR)

where ∂f(s, ·) denotes the subdifferential in the sense of Convex Analysis, even if the integrand is nonconvex in
general. Notice that as an immediate consequence one derives that if u is a minimizer, then f(u(x), u′(x)) =
f∗∗(u(x), u′(x)) a.e. in (a, b).

The (DBR) condition was obtained also in [1] for integrands f : R
n × R

n → [0,+∞], in the convex case, see
also [14] for a related result in the nonconvex, coercive framework.

A further relevant property consists in an upper bound for the constant c in the condition (DBR), that is

c ≤ min
s∈u([a,b])

f(s, 0).

Thanks to this limitation on the constant c we are able to derive a non-existence result (see Prop. 5.2), stating
that if

ess sup
s∈[α,β]

lim inf
|z|→+∞

inf
ξ∈∂f∗∗(s,z)

(f∗∗(s, z) − zξ) > min
s∈[α,β]

f(s, 0)

then the minimum does not exist. In the recent paper [12] analogous results were proved to those described in
Section 5, but under a certain monotonicity assumption on f(·, 0).
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The monotonicity property of minimizers allows us also to treat the question of the relaxation. Indeed,
we prove (see Thm. 4.2) that if f∗∗(s, 0) attains its minimum value only on a set of s of null measure, or,
alternatively, if the detachment set Δs := {z : f∗∗(s, z) < f(s, z)} does not contain any interval (0, δ) or (−δ, 0)
(assumption (4.2)), then F admits minimum provided that the relaxed functional F ∗∗ admits a minimizer v
satisfying

v′(x) ∈ co(R \ Δv(x)) for a.e. x ∈ (a, b).
Finally, we prove that assumption (4.2) can be removed in the coercive case (see Thm. 4.3). Such a result

assumes a very simple form when the integrand has the affine-type structure

f(s, z) = g(s) + γ(s)h(z).

Indeed, we show that if g is lower semicontinuous, non-negative, γ is continuous with inf γ > 0, h is Borel-
measurable, coercive, with h(0) = h∗∗(0), then F admits minimum (see Cor. 4.4). This result extends those
proved in [17,22].

Our paper is organized as follows: in the next section we present the notations and some preliminary results,
as a reparametrization procedure, basic tool for the study of the monotonicity properties of the minimizers. In
Section 3 we study the monotonicity properties of the minimizers: the main result, Theorem 3.1, states that
the minimizers may be searched among the functions satisfying the maximum/minimum principle. Section 4 is
devoted to relaxation results, obtained in the general case (Thm. 4.2) and, in the coercive case, under weaker
assumptions (Thm. 4.3 and Cor. 4.4 for affine-type Lagrangians). Eventually, in Section 5 we claim that the
DuBois-Reymond is a necessary condition for the optimality (Thm. 5.1) and we state a nonexistence result
(Prop. 5.2) with some examples of applicability.

2. Notations and preliminary results

Let us consider the following autonomous minimization problem

minimize

{
F (v) =

∫ b

a

f(v(x), v′(x)) dx : v ∈ Υ

}
, (2.1)

where
Υ := {v ∈ W 1,1(a, b) : v(a) = α, v(b) = β, v(x) ∈ I},

I ⊆ R is a generic interval, possibly unbounded, including α, β, and f : I × R → [0,+∞) is a Borel-measurable
function with f(·, 0) lower semicontinuous. Note that f(s, ·) is not assumed to be convex or coercive.

By ∂f(s, z) we denote the classical subdifferential in the sense of Convex Analysis of f(s, ·) at z, that is

∂f(s, z) := {ξ ∈ R : f(s, w) − f(s, z) ≥ ξ(w − z) for every w ∈ R}.

As usual, f∗∗ denotes the convex envelope of f with respect to the second variable, i.e., fixed s ∈ I, f∗∗(s, ·)
is the largest convex function lower than f(s, ·).

As it was put in evidence in [17], a crucial assumption for the existence of the minimum in the nonconvex
case is the following

f(s, 0) = f∗∗(s, 0) for every s ∈ I. (2.2)
In the sequel we will also consider the relaxed problem

minimize

{
F ∗∗(v) =

∫ b

a

f∗∗(v(x), v′(x)) dx : v ∈ Υ

}
. (2.3)

Notice that F ∗∗ is well defined as shown in the following result.
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Lemma 2.1. Let f : I × R → [0,+∞) be a Borel-measurable function satisfying (2.2). Then, the function
s �→ f∗∗(s, z) is Lebesgue-measurable for every z ∈ R and the function x �→ f∗∗(v(x), v′(x)) is Lebesgue-
measurable for every v ∈W 1,1

loc (a, b).

Proof. Fixed z ∈ R, define gz : [0, 1] × I × R → [0,+∞),

gz(α, s, w) :=
{
αf(s, w) + (1 − α)f(s, z−αw

1−α ) if 0 ≤ α < 1,
f(s, w) if α = 1.

Since f is Borel measurable, then gz is Borel measurable, too. Moreover, see e.g. [13], Theorem 2.35,

f∗∗(s, z) = inf{αf(s, w1) + (1 − α)f(s, w2) : 0 ≤ α ≤ 1, w1, w2 ∈ R, αw1 + (1 − α)w2 = z}
= inf{gz(α, s, w) : 0 ≤ α ≤ 1, w ∈ R}.

In order to show that s �→ f∗∗(s, z) is Lebesgue-measurable, let us prove that the set

Ak :=
{
s ∈ I : inf

0≤α≤1,w∈R

gz(α, s, w) < k

}

is Lebesgue-measurable for every k ∈ R. To this end, define

Bk := {(α, s, w) ∈ [0, 1]× I × R : gz(α, s, w) < k}

and notice that Ak = π(Bk), where π : [0, 1] × I × R → I is the projection π(α, s, w) = s. Hence, since Bk is
Borel-measurable and π is a continuous function, then Ak is Lebesgue-measurable (see e.g. [2], Cor. 1.10.9) and
we get the claim.

Finally, since z �→ f∗∗(s, z) is continuous and s �→ f∗∗(s, 0) = f(s, 0) is a Borel function, then by [15],
Lemma 3, we deduce that the function x �→ f∗∗(v(x), v′(x)) is Lebesgue-measurable for every v ∈W 1,1

loc (a, b). �
The next lemma, proved in a slight stronger version in [12], Lemma 2.1, states that under condition (2.2) we

can also assume, without loss of generality, that

f(s, 0) = min
z∈R

f(s, z) for every s ∈ I. (2.4)

Lemma 2.2. Let f : I × R → [0,+∞) be a Borel-measurable function satisfying (2.2) and such that

there exists a Borel-measurable selection g(s) ∈ ∂f∗∗(s, 0) with g ∈ L∞
loc(I). (2.5)

Then there exists a Borel-measurable function f̃ : I × R → [0,+∞) with the following properties:
(a) f(s, 0) = f̃(s, 0) = (f̃)∗∗(s, 0) for every s ∈ I;
(b) f̃(s, 0) = min

z∈R

f̃(s, z) for every s ∈ I;

(c) there exists k ∈ R such that

F (u) = F̃ (u) + k for every u ∈ Υ,

where F̃ (u) stands for
∫ b

a
f̃(u(x), u′(x)) dx.

Moreover, if f is a lower semicontinuous function and g is continuous, then f̃ is lower semicontinuous too.

Proof. It is easy to show that the function f̃(s, z) := f(s, z) − g(s)z satisfies the properties (a) and (b) in the
statement. To prove (c), consider u ∈ Υ and define G(t) =

∫ t

α
g(s)ds. Then G ∈W 1,∞

loc (I), G◦u ∈ AC([a, b]) and
by the De La Vallée-Poussin lemma the chain rule (G◦u)′(x) = G′(u(x))u′(x) holds for a.e. x ∈ (a, b). Moreover,
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there exists a negligible set N ⊂ I such that G′(s) = g(s) for every s ∈ I \N . Let B be a Borel negligible set
such that N ⊆ B. We have that u−1(B) is Lebesgue-measurable and u′(x) = 0 for a.e. x ∈ u−1(B). Therefore

∫ b

a

g(u(x))u′(x)dx =
∫ b

a

G′(u(x))u′(x)dx =
∫ b

a

(G ◦ u)′(x)dx = G(β) −G(α). �

Remark 2.3. Replacing the Borel measurability of f with

x �→ f(v(x), v′(x)) is Lebesgue-measurable for every v ∈ Υ, (2.6)

in the assumptions of Lemma 2.2, then the assertion still holds, with f̃ not necessarily Borel-measurable, but
satisfying (2.6).

Remark 2.4. As for condition (2.5), notice that it is satisfied when f∗∗(·, z) is Borel-measurable for all z, and
f∗∗(·,±1) ∈ L∞

loc(I). Indeed, the function

g(s) := inf
n
n

[
f∗∗

(
s,

1
n

)
− f∗∗(s, 0)

]

is Borel-measurable and it is easy to prove that g(s) ∈ ∂f∗∗(s, 0). Moreover, note that

−f∗∗(s,−1) ≤ f∗∗(s, 0) − f∗∗(s,−1) ≤ g(s) ≤ f∗∗(s, 1) − f∗∗(s, 0) ≤ f∗∗(s, 1)

and we conclude that g ∈ L∞
loc(I).

One of the aims of the present paper is to study the monotonicity properties of the minimizers. A first step
to obtain monotone trajectories is the following lemma proved in [12].

Lemma 2.5 ([12], Lem. 3.2). Let u : [c, d] → R be an absolutely continuous function such that u(c) ≤ u(x)
(respectively u(c) ≥ u(x)) for every x ∈ [c, d]. Then, there exists an increasing (a decreasing) absolutely
continuous function v : [c, d] → R such that v(c) = u(c), v(d) = u(d), v(x) ≤ u(x) for every x ∈ [c, d], and

v(x) = u(x) and v′(x) = u′(x) for a.e. x such that there exists v′(x) �= 0. (2.7)

In the sequel we often will need to manipulate monotone functions. To this purpose, we now recall a
reparametrization introduced in [20], which allows to unify the constant tracts of a monotone function, as
follows.

Let v : [c, d] → [γ, δ] be a monotone increasing, absolutely continuous function, with v([c, d]) = [γ, δ] ⊆ I,
and define

Av := {x : ∃ v′(x) �= 0} and Bv := {x : ∃ v′(x) = 0}.
Consider the function χ+

v : [γ, δ] → [c, d] defined by

χ+
v (s) := c+

∫ s

γ

(w+
v )′(σ) dσ, where w+

v (s) := min{x ∈ [c, d] : v(x) = s}.

Moreover, chosen

s0 ∈
{
τ ∈ [γ, δ] : f(τ, 0) = min

s∈[γ,δ]
f(s, 0)

}
,

let us consider the function Ψ+
v : [c, d] → [γ, δ] defined by

Ψ+
v (x) :=

⎧⎪⎪⎨
⎪⎪⎩

(χ+
v )−1(x) if c ≤ x ≤ χ+

v (s0)

s0 if χ+
v (s0) ≤ x ≤ χ+

v (s0) + d− χ+
v (δ)

(χ+
v )−1(x − d+ χ+

v (δ)) if χ+
v (s0) + d− χ+

v (δ) ≤ x ≤ d.

(2.8)
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In [20], Lemmas 1–2, it was proved that χ+
v and Ψ+

v are well-defined, absolutely continuous functions satisfying

χ+
v (γ) = c, χ+

v (δ) ≤ d, (χ+
v )′(τ) > 0 for a.e. τ ∈ (γ, δ);

d− χ+
v (δ) = meas(Bv); (2.9)

for a.e. t ∈ Av there exists (χ+
v )′(v(t)) =

1
v′(t)

; (2.10)

Ψ+
v (c) = γ, Ψ+

v (d) = δ, (Ψ+
v )′(x) > 0 for a.e. x �∈ (χ+

v (s0), χ+
v (s0) + d− χ+

v (δ)).
In what follows we will use the following lemma.

Lemma 2.6. For a.e. x ∈ [c, χ+
v (δ)] such that there exists (Ψ+

v )′(x) > 0, there exists a unique t ∈ Av such that

Ψ+
v (x) = v(t) and (Ψ+

v )′(x) = v′(t). (2.11)

Proof. In view of the definition of the function Ψ+
v , it suffices to show that for a.e. x ∈ [c, χ+

v (δ)] there exists a
unique t ∈ Av such that

(χ+
v )−1(x) = v(t) and ((χ+

v )−1)′(x) = v′(t). (2.12)
To this aim, first of all observe that the composition g := χ+

v ◦ v is an increasing absolutely continuous
function, defined in [c, d] and assuming all the values of the interval [c, χ+

v (δ)].
Set Cv := {t ∈ Av : (2.10) holds}, we have that meas(Cv) = meas(Av). Moreover, meas(v(Bv)) = 0 and then

by the absolute continuity of χ+
v we get meas(g(Bv)) = 0. Hence, meas(g(Cv)) = χ+

v (δ) − c, that is for a.e.
x0 ∈ [c, χ+

v (δ)] there exists a value t0 ∈ Cv such that x0 = g(t0) = χ+
v (v(t0)), i.e. v(t0) = (χ+

v )−1(x0). Moreover,
by property (2.10) we get that there exists (χ+

v )′(v(t0)) = 1
v′(t0) > 0, so there exists also the derivative of the

inverse function ((χ+
v )−1)′(χ+

v (v(t0))) = ((χ+
v )−1)′(x0) = v′(t0).

Finally, since v′(t0) > 0 and v is increasing, we derive the uniqueness of the point t0. �

Analogous definitions and properties hold true when v is decreasing. Indeed, let us define

χ−
v (s) := d+

∫ s

γ

(w−
v )′(σ) dσ, where w−

v (s) := max{x ∈ [c, d] : v(x) = s}

and

Ψ−
v (x) :=

⎧⎪⎪⎨
⎪⎪⎩

(χ−
v )−1(x− c+ χ−

v (δ)) if c ≤ x ≤ χ−
v (s0) + c− χ−

v (δ)

s0 if χ−
v (s0) + c− χ−

v (δ) ≤ x ≤ χ−
v (s0)

(χ−
v )−1(x) if χ−

v (s0) ≤ x ≤ d

(2.13)

with the same meaning for s0 as above. It is easy to verify that making a change of variable, defining v∗(ξ) :=
v(d+ c− ξ), one has

w−
v (s) = d+ c− w+

v∗(s), χ−
v (s) = d+ c− χ+

v∗(s) , for every s ∈ [γ, δ]

and Ψ−
v (x) = Ψ+

v∗(d+ c− x) for every x ∈ [c, d]. Therefore, we get

χ−
v (γ) = d, χ−

v (δ) ≥ c, (χ−
v )′(τ) < 0 for a.e. τ ∈ (γ, δ),

χ−
v (δ) − c = meas(Bv)

and
Ψ−

v (c) = δ, Ψ−
v (d) = γ, (Ψ−

v )′(x) < 0 for a.e. x �∈ (χ−
v (s0) + c− χ−

v (δ), χ−
v (s0)).

Moreover, a result analogous to Lemma 2.6 holds true.
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Now, if v : [c, d] → [γ, δ] is a monotone function, we define

Ψv(x) := Ψ+
v (x) if v is increasing, Ψv(x) := Ψ−

v (x) if v is decreasing. (2.14)

By virtue of what we observed above, Ψv is a monotone function such that Ψv(c) = v(c), Ψv(d) = v(d) and

Ψv(x) = s0 for a.e. x such that Ψ′
v(x) = 0.

A key tool when dealing with relaxation problems is the Lyapunov Theorem for vector-valued functions (see
e.g. [10], p. 1477). Its original formulation requires the summability of the involved functions, but it has been
recently generalized in [20] to possibly non-summable functions. We state here a straightforward corollary of
that result.

Theorem 2.7. Let gj : A→ [0,+∞)m, j = 1, ..., h, be vector-valued measurable functions on a set A ⊂ R with

finite measure, and let λj : A → [0, 1], j = 1, ..., h, be measurable weight functions with
h∑

j=1

λj(x) = 1. Suppose

that
h∑

j=1

λj gj ∈ L1(A; Rm).

Then, there exists a decomposition E1, ..., Eh of A into disjoint measurable subsets such that gj ∈ L1(Ej ; Rm)
for all j and

h∑
j=1

∫
Ej

gj(x) dx =
∫

A

h∑
j=1

λj(x)gj(x) dx.

3. Monotonicity properties

The aim of this section is to investigate the monotonicity properties of the minimizers of F . More in detail,
set

Υ∗ := {v ∈ Υ : the following property (∗) holds true}

(*)
there exist τ1, τ2 ∈ [a, b], τ1 ≤ τ2, such that v is constant in [τ1, τ2] and

strictly monotone in [a, τ1] and in [τ2, b] with v′ �= 0 a.e. in [a, τ1] ∪ [τ2, b].

The main tool for the results of this paper is the following.

Theorem 3.1. Let f : I×R → [0,+∞) be a Borel-measurable function such that f(·, 0) is lower semicontinuous
and satisfying (2.2) and (2.5). Then

inf
Υ
F = inf

Υ∗
F and inf

Υ
F ∗∗ = inf

Υ∗
F ∗∗.

Moreover, if inf
Υ
F or inf

Υ
F ∗∗ is attained, then there exists a minimizer in Υ∗.

Proof. First we prove the result concerning the functional F . To this aim, notice that it suffices to show that
for every u ∈ Υ and every s0 ∈ u([a, b]) such that f(s0, 0) = min

s∈u([a,b])
f(s, 0), there exists w ∈ Υ∗ such that

w(x) ≡ s0 in [τ1, τ2] and
F (w) ≤ F (u).
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To do this, note that by Lemma 2.2 we can assume without loss of generality that (2.4) holds true. Fix u ∈ Υ
and choose s0 ∈ u([a, b]) such that f(s0, 0) = mins∈u([a,b]) f(s, 0). By the lower semicontinuity of f(·, 0), there
exist values s0 as above. Now, we define x1, x2 ∈ [a, b], x1 ≤ x2, ξ1 ∈ [a, x1] and ξ2 ∈ [x2, b] as follows:

x1 := min{x ∈ [a, b] : u(x) = s0}, x2 := max{x ∈ [a, b] : u(x) = s0};

ξ1 := max{x ∈ [a, x1] : u(x) = α} ≤ x1, ξ2 := min{x ∈ [x2, b] : u(x) = β} ≥ x2,

and we consider the function v : [a, b] → u([a, b]) defined by

v(x) :=

⎧⎨
⎩
u(x− a+ ξ1) if a ≤ x ≤ a+ x1 − ξ1
s0 if a+ x1 − ξ1 ≤ x ≤ b+ x2 − ξ2
u(x− b+ ξ2) if b+ x2 − ξ2 ≤ x ≤ b.

Observe that v ∈ Υ and F (v) ≤ F (u), indeed by (2.4) and the definition of s0 we get

F (v) = f(s0, 0)[b+ x2 − ξ2 − a− x1 + ξ1] +
∫ a+x1−ξ1

a

f(u(x− a+ ξ1), u′(x− a+ ξ1)) dx

+
∫ b

b+x2−ξ2

f(u(x− b+ ξ2), u′(x− b+ ξ2)) dx

=
∫ ξ1

a

f(s0, 0) dx+
∫ x1

ξ1

f(u(x), u′(x)) dx+
∫ x2

x1

f(s0, 0) dx+
∫ ξ2

x2

f(u(x), u′(x)) dx+
∫ b

ξ2

f(s0, 0) dx

≤
∫ b

a

f(u(x), u′(x)) dx = F (u).

Moreover, note that

v(a) = α, v(a+ x1 − ξ1) = s0 and min{α, s0} < v(x) < max{α, s0} for a < x < a+ x1 − ξ1;

v(b + x2 − ξ2) = s0, v(b) = β and min{β, s0} < v(x) < max{β, s0} for b+ x2 − ξ2 < x < b.

Therefore, we can apply Lemma 2.5 and obtain that there exist two monotone functions w1 : [a, a+x1−ξ1] → R,
w2 : [b+ x2 − ξ2, b] → R, such that

w1(a) = v(a) = α, w1(a+ x1 − ξ1) = s0, w2(b+ x2 − ξ2) = s0, w2(b) = v(b) = β; (3.1)

wi(x) = v(x), w′
i(x) = v′(x) for a.e. x such that w′

i(x) �= 0, i = 1, 2. (3.2)

Thus, let us define w : [a, b] → R by

w(x) :=

⎧⎪⎪⎨
⎪⎪⎩

Ψw1(x) if x ∈ [a, a+ x1 − ξ1]

s0 if x ∈ [a+ x1 − ξ1, b+ x2 − ξ2]

Ψw2(x) if x ∈ [b+ x2 − ξ2, b],

where Ψ was defined in (2.14).
Of course, w is absolutely continuous, with w(a) = α, w(b) = β. Let us now show that w ∈ Υ∗.
Indeed, observe that if w1 is increasing then s0 ≥ α and w(x) = Ψw1(x) = Ψ+

w1
(x). Moreover, by defini-

tion (2.8) (taken for c = a, d = a+ x1 − ξ1, γ = α, δ = s0), we have

w(x) =

{
(χ+

w1
)−1(x) if a ≤ x ≤ χ+

w1
(s0)

s0 if χ+
w1

(s0) ≤ x ≤ a+ x1 − ξ1.
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Instead, if w1 is decreasing then w(x) = Ψw1(x) = Ψ−
w1

(x). Moreover, α ≥ s0 and by definition (2.13) (taken
for c = a, d = a+ x1 − ξ1, γ = s0, δ = α), we have χ−

w1
(s0) = a+ x1 − ξ1 and

w(x) =

{
(χ−

w1
)−1(x− a+ χ−

w1
(α)) if a ≤ x ≤ 2a+ x1 − ξ1 − χ−

w1
(α)

s0 if 2a+ x1 − ξ1 − χ−
w1

(α) ≤ x ≤ a+ x1 − ξ1.

Similar considerations for w2 lead to deduce that

w(x) =

{
s0 if b+ x2 − ξ2 ≤ x ≤ 2b+ x2 − ξ2 − χ+

w2
(β)

(χ+
w2

)−1(x− d+ χ+
w2

(β)) if 2b+ x2 − ξ2 − χ+
w2

(β) ≤ x ≤ b;

if w2 is increasing, whereas

w(x) =

{
s0 if b+ x2 − ξ2 ≤ x ≤ χ−

w2
(s0)

(χ+
w2

)−1(x) if χ−
w2

(s0) ≤ x ≤ b

if w2 is decreasing. Therefore, w ∈ Υ∗, that is there exist τ1 ∈ [a, ξ1] and τ2 ∈ [ξ2, b] such that w(x) is strictly
monotone in [a, τ1], constant (equal to s0) in [τ1, τ2] and again strictly monotone in [τ2, b].

It remains to prove that F (w) ≤ F (v). To this end, if w1 is increasing let h : [a, a + x1 − ξ1] → [a, τ1] be
the function defined by h(x) := χ+

w1
(w1(x)). It is a strictly increasing absolutely continuous function, satisfying

by (2.10) h′(x) = 1 for a.e. x ∈ Aw1 := {x ∈ [a, a+ x1 − ξ1]: w′
1(x) > 0}. Therefore, defining

g(x) :=

{
f((χ+

w1
)−1(x), ((χ+

w1
)−1)′(x)) if x ∈ Aw1

0 if x ∈ [a, a+ x1 − ξ1] \Aw1 ,

we have that g is a measurable non-negative function, hence we can apply the chain rule for absolutely continuous
functions, and taking Lemma 2.5 into account, we obtain

∫ τ1

a

f(Ψw1(x),Ψ
′
w1

(x)) dx =
∫ τ1

a

g(x) dx =
∫ a+x1−ξ1

a

g(h(t))h′(t) dt

=
∫

Aw1

g(h(t)) dt =
∫

Aw1

f(w1(t), w′
1(t)) dt =

∫
Aw1

f(v(t), v′(t)) dt.

By (2.9) and the definition of s0 we deduce that setting Bw1 := {x ∈ [a, a + x1 − ξ1]: w′
1(x) = 0}, we have

meas(Bw1) = a+ x1 − ξ1 − τ1. Therefore, by (2.4),

∫ a+x1−ξ1

a

f(Ψw1(x),Ψ
′
w1

(x)) dx =
∫ τ1

a

f(Ψw1(x),Ψ
′
w1

(x)) dx+ f(s0, 0)(a+ x1 − ξ1 − τ1)

≤
∫

Aw1

f(v(t), v′(t)) dt+
∫

Bw1

f(v(t), v′(t)) dt =
∫ a+x1−ξ1

a

f(v(t), v′(t)) dt.

An analogous argument works when w1 is decreasing and similarly we can also deduce that

∫ b

b+x2−ξ2

f(Ψw2(x),Ψ
′
w2

(x)) dx ≤
∫ b

b+x2−ξ2

f(v(x), v′(x)) dx;

therefore F (w) ≤ F (v). Thus, the assertion is proved for F .
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Notice that we used the Borel measurability of f only to guarantee that F is well defined, i.e., that (2.6)
holds, and this suffices to apply Lemma 2.2 (see Rem. 2.3). Therefore, in view of Lemma 2.1 the proof works
also for F ∗∗. �

Now we investigate more in detail what kind of monotonicity properties of the minimizers one can expect,
according to the behavior of f(·, 0). To this purpose, let us split the class Υ∗ into four subclasses as follows. Set

ΥM := {v ∈ Υ : ∃ τ1, τ2 ∈ (a, b) with τ1 ≤ τ2 : v′(x) < 0 a.e. in (a, τ1),

v′(x) = 0 a.e. in (τ1, τ2), v′(x) > 0 a.e. in (τ2, b)};
Υm := {v ∈ Υ : ∃ τ1, τ2 ∈ (a, b) with τ1 ≤ τ2 : v′(x) > 0 a.e. in (a, τ1),

v′(x) = 0 a.e. in (τ1, τ2), v′(x) < 0 a.e. in (τ2, b)};
Υ+ := {v ∈ Υ : ∃ τ1, τ2 ∈ [a, b] with τ1 ≤ τ2 : v′(x) > 0 a.e. in (a, τ1),

v′(x) = 0 a.e. in (τ1, τ2), v′(x) > 0 a.e. in (τ2, b)};
Υ− := {v ∈ Υ : ∃ τ1, τ2 ∈ [a, b] with τ1 ≤ τ2 : v′(x) < 0 a.e. in (a, τ1),

v′(x) = 0 a.e. in (τ1, τ2), v′(x) < 0 a.e. in (τ2, b)}.

Of course, Υ∗ = ΥM ∪Υm ∪Υ+ ∪Υ−. The class ΥM collects the non-monotone trajectories of Υ∗ satisfying
the maximum principle (in the sense that their restriction on any subinterval attains maximum value at the
boundary); similarly, the class Υm collects the non-monotone trajectories satisfying the minimum principle.

The next result can be immediately deduced in view of the proof of Theorem 3.1.

Corollary 3.2. Under the same assumptions of Theorem 3.1, let α ≤ β. Then in the statement of Theorem 3.1
the class Υ∗ can be replaced by the class Υ̃, according to various cases that can occur:

if min
s∈[α,β]

f(s, 0) = inf
s∈I

f(s, 0) ⇒ Υ̃ := Υ+;

if min
s∈[α,β]

f(s, 0) = inf
s∈I, s≤β

f(s, 0) ⇒ Υ̃ := Υm ∪ Υ+;

if min
s∈[α,β]

f(s, 0) = inf
s∈I, s≥α

f(s, 0) ⇒ Υ̃ := ΥM ∪ Υ+.

Finally, if there exist m1 := min
s≤β, s∈I

f(s, 0) and m2 := min
s≥α, s∈I

f(s, 0), setting

s1 := max{s ≤ β : f(s, 0) = m1}, s2 := min{s ≥ α : f(s, 0) = m2},

then the classes Υ̃ above can be restricted to those collecting the trajectories v taking values in [min{α, s1},
max{β, s2}].

Of course, an analogous result can be stated when α ≥ β, simply inverting them and replacing Υ+ with Υ−.

Remark 3.3. Consider the constrained problem

minimize

{
F (v) =

∫ b

a

f(v(t), v′(t)) dt : v ∈ Υ+

}
. (3.3)

By Theorem 3.1 this problem is equivalent to minimize F in the class

{v ∈W 1,1(a, b) : v(a) = α, v(b) = β, v′(x) ≥ 0 a.e. in (a, b)}.
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This variational problem has been investigated in [20]. By Corollary 3.2 if min
s∈[α,β]

f(s, 0) = inf
s∈I

f(s, 0), then the

existence results in [20] still hold true for the free problem (2.1).

4. Relaxation and existence results

In this section we investigate the relation between the solvability of (2.1) and of (2.3), under the condi-
tion (2.2).

To this aim we will adopt the following notations.
For every s ∈ I we set

Δs := {z ∈ R : f∗∗(s, z) < f(s, z)},
A+(s) := {z > 0 : (0, z) ⊂ Δs},
A−(s) := {z < 0 : (z, 0) ⊂ Δs}.

Moreover, let

φ+(s) :=
{

0 if A+(s) = ∅
supA+(s) if A+(s) �= ∅, φ−(s) :=

{
0 if A−(s) = ∅
inf A−(s) if A−(s) �= ∅. (4.1)

In the sequel we will consider the following condition:

meas ({s ∈ [α, β] : f∗∗(s, 0) = μ and φ+(s) > 0 or φ−(s) < 0}) = 0, (4.2)

where μ := min
σ∈[α,β]

f∗∗(σ, 0).

Remark 4.1. Condition (4.2) is trivially satisfied if the restriction of f∗∗(·, 0) to [α, β] has at most countable
many minimizers or if φ±(s) ≡ 0 in [α, β], that is when for every s ∈ [α, β] the detachment set Δs does not
contain any interval (−δ, 0) or (0, δ).

Our first main result of this section is the following relaxation theorem.

Theorem 4.2. Let f : I×R → [0,+∞) be a Borel-measurable function, with f(·, 0) lower semicontinuous, and
such that the detachment set Δs is open for every s ∈ I. Suppose that (2.2), (2.5) and (4.2) hold true.

If (2.3) is solvable and admits a minimizer v such that

v′(x) ∈ co(R \ Δv(x)) for a.e. x ∈ (a, b), (4.3)

then (2.1) is solvable too.

In the next result, we show that assumption (4.2) can be removed provided that f(s, z)− f(s, 0) is coercive;

i.e., there exists Φ : [0,+∞) → R satisfying lim
|z|→+∞

Φ(|z|)
|z| = +∞, such that

f(s, z) − f(s, 0) ≥ Φ(|z|) ∀ s ∈ I and ∀ z ∈ R. (4.4)

Theorem 4.3. Let f : I×R → [0,+∞) be a Borel-measurable function and let f(·, 0) be continuous. Let (2.2),
(2.5) and (4.4) be satisfied. Moreover, assume that Δs is open for every s ∈ I and

φ+ is lower semicontinuous and φ− is upper semicontinuous. (4.5)

Then, if problem (2.3) is solvable, also problem (2.1) is solvable.
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The result below is the application of the above result to Lagrangians having an affine structure. It improves
the analogous ones proved in [17,22] for integrands of sum type g(s) + h(z).

Corollary 4.4. Let f : I × R → R, f(s, z) = g(s) + γ(s)h(z). Assume that g, γ : I → [0,+∞) are contin-
uous, inf γ > 0, and h : R → [0,+∞) is a lower semicontinuous function, coercive, satisfying h(0) = h∗∗(0).
Then (2.1) is solvable.

To present the proof of Theorem 4.2 we need the following auxiliary result, which states that under certain
conditions it is possible to modify the minimizer of the relaxed problem in such a way that its derivative is far
from 0 in the intervals where the trajectory is strictly monotone.

Lemma 4.5. Let f : I × R → [0,+∞) be a Borel-measurable function satisfying (2.2) with f(·, 0) lower
semicontinuous and assume that (2.5) and (4.2) hold true.

If problem (2.3) is solvable, then there exists a minimizer v ∈ Υ∗ such that

v′(x) ≥ φ+(v(x)) for a.e. x such that v′(x) > 0
v′(x) ≤ φ−(v(x)) for a.e. x such that v′(x) < 0. (4.6)

Proof. By Theorem 3.1, since (2.3) is solvable, there exists a solution v belonging to Υ∗.
Assume firstly that v′(x) > 0 a.e. in (a, τ1), v′(x) < 0 a.e. in (τ2, b). Recall that we can choose the value s0

in such a way that

s0 := min
{
σ ∈ v([a, b]) : f∗∗(σ, 0) = min

s∈v([a,b])
f∗∗(s, 0)

}
(4.7)

and consequently,
f∗∗(v(x), 0) > f∗∗(s0, 0) for every x ∈ [a, τ1) ∪ (τ2, b]. (4.8)

Observe now that the restriction of v to the interval (a, τ1) is a minimizer of the constrained problem

minimize
∫ τ1

a

f∗∗(u(x), u′(x)) dx : u ∈ Υ+
0

where
Υ+

0 := {u ∈ W 1,1(a, τ1) : u(a) = α, u(τ1) = s0, u
′(x) ≥ 0 a.e. in (a, τ1)}.

Hence, by [20], Theorem 7 and Remark 4, v satisfies the following DuBois-Reymond condition

f∗∗(v(x), v′(x)) − c ∈ v′(x)∂f∗∗(v(x), v′(x)) a.e. in (a, τ1) (4.9)

for some constant c ≤ f∗∗(s0, 0).
For every s there exist q(s) and m(s) such that

f∗∗(s, z) = q(s) +m(s)z for every z ∈ [0, φ+(s)].

From the previous relation written for z = 0 we deduce q(s) = f∗∗(s, 0), so we can write

f∗∗(s, z) = f∗∗(s, 0) +m(s)z for every z ∈ [0, φ+(s)]. (4.10)

Thus, by (4.9) we deduce the existence of a constant c ≤ f∗∗(s0, 0) such that

f∗∗(v(x), 0) +m(v(x))v′(x) − c = v′(x)m(v(x)) for a.e. x ∈ (a, τ1) with v′(x) < φ+(v(x)).

Hence by (4.8) we get

f∗∗(s0, 0) < f∗∗(v(x), 0) = c ≤ f∗∗(s0, 0) for a.e. x ∈ (a, τ1) such that v′(x) < φ+(v(x)),
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thus
v′(x) ≥ φ+(v(x)) for a.e. x ∈ (a, τ1).

The same argument works in (τ2, b) and one deduces that v′(x) ≤ φ−(v(x)) for a.e. x ∈ (τ2, b).
The case v′(x) < 0 a.e. in (a, τ1) and v′(x) > 0 a.e. in (τ2, b) can be treated similarly to the previous one,

taking

s1 := max
{
σ ∈ v([a, b]) : f∗∗(σ, 0) = min

s∈v([a,b])
f∗∗(s, 0)

}
instead of s0, in such a way that (4.8) holds again.

Finally, let us consider the case when v is monotone increasing, with v′(x) > 0 a.e. in (a, τ1), v(x) ≡ s0
in (τ1, τ2), v′(x) > 0 a.e. in (τ2, b). The same argument as above shows that v′(x) ≥ φ+(v(x)) for a.e. x ∈ (a, τ1),
so let us consider the interval (τ2, b).

Let w denote the restriction of v in (τ2, b); then since w′(x) > 0 a.e. we derive that its inverse function w−1

is absolutely continuous too (see e.g. [2]). Hence, by (4.2) we have

meas
({x ∈ (τ2, b) : f∗∗(v(x), 0) = μ and v′(x) < φ+(v(x))})

≤ meas
({x ∈ (τ2, b) : f∗∗(v(x), 0) = μ and 0 < φ+(v(x))})

= meas
(
w−1({s ∈ (s0, β) : f∗∗(s, 0) = μ and φ+(s) > 0})) = 0.

Hence, repeating the argument above, starting from the DuBois-Reymond condition (4.9), we deduce that

f∗∗(s0, 0) < f∗∗(v(x), 0) = c ≤ f∗∗(s0, 0) for a.e. x ∈ (τ2, b) such that v′(x) < φ+(v(x)),

thus
v′(x) ≥ φ+(v(x)) for a.e. x ∈ (τ2, b). �

A straightforward consequence of the lemma above is the following non-existence result.

Proposition 4.6. Suppose that the assumptions of Lemma 4.5 hold true. If α < β and φ+(s) ≡ +∞, then (2.3)
has no solution. The same conclusion holds if α > β and φ−(s) ≡ −∞.

Now, we are ready to prove our first relaxation theorem.

Proof of Theorem 4.2. Let v be a minimizer of (2.3). By Theorem 3.1 we can assume that v ∈ Υ∗. Moreover,
if s0 is as in (4.7), we can assume that v(x) ≡ s0 in [τ1, τ2] and v is strictly monotone in (a, τ1) and in (τ2, b),
with v′(x) �= 0 almost everywhere.

Finally, in view of the proof of Theorem 3.1, by Lemmas 2.5 and 2.6, we can also assume that condition (4.3)
holds true for the modified minimizer too.

Let us now consider the interval (a, τ1) (supposing it to be non-degenerate) and assume that v′(x) > 0 a.e.
in (a, τ1) with v(τ1) = s0 (the proof is analogous if v is decreasing in [a, τ1]).

By Lemma 4.5 we can also assume that v′(x) ≥ φ+(v(x)) for a.e. x such that v′(x) > 0. So, by definition
of φ+ and by virtue of (4.3) the functions

ξ1(x) := sup{z : z ≤ v′(x) and f(v(x), z) = f∗∗(v(x), z)},

ξ2(x) := inf{z : z ≥ v′(x) and f(v(x), z) = f∗∗(v(x), z)}
are well-defined and positive. Moreover, since Δs is open for every s ∈ [α, β], we have

f(v(x), ξi(x)) = f∗∗(v(x), ξi(x)) for every x ∈ (a, τ1), i = 1, 2 (4.11)

and f∗∗(v(x), ·) is affine in [ξ1(x), ξ2(x)] (notice that this interval can be degenerate).
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We claim that ξ1 and ξ2 are measurable functions. Indeed, as for ξ1(x), let us define g : [a, b]×R → [0,+∞)
by

g(x, z) := f(u(x), z) − f∗∗(u(x), z) + (z − u′(x))+
where (a)+ denotes the positive part of the real number a. By Lemma 2.1, now applied to the Borel function
(x, z) �→ f(u(x), z) in place of (s, z) �→ f(s, z), we get that x �→ f∗∗(u(x), z) is Lebesgue-measurable for all z.
Then (x, z) �→ −f∗∗(u(x), z) + (z − u′(x))+ is a Carathéodory function so, by [16], Proposition VIII.1.1, there
exists a Borel function h : [a, b]×R → [0,+∞), such that h(x, z) = −f∗∗(u(x), z)+ (z−u′(x))+ for almost all x
and every z ∈ R. Therefore, the function g̃ : [a, b] × R → [0,+∞), defined by g̃(x, z) := f(u(x), z) + h(x, z), is
Borel-measurable and

g(x, ·) = g̃(x, ·) for almost all x. (4.12)
As in the proof of Lemma 2.1, since the set Bk := {(x, z) ∈ (g̃)−1({0}) : z > k} is Borel-measurable for every k,
then π(Bk) is Lebesgue-measurable, where π is the projection π(x, z) := x. As it is easy to verify, for every
k ∈ R we have

{x ∈ [a, b] : ξ1(x) > k} = π({(x, z) ∈ g−1({0}) : z > k}),
and the last set is equal almost everywhere to π(Bk), because of (4.12). Hence ξ1 is Lebesgue-measurable. The
proof for ξ2 is analogous.

Set
ψi(s) :=

1
ξi(v−1(s))

, for s ∈ (α, s0), i = 1, 2.

We claim that ψ1, ψ2 are measurable functions. Indeed, again by [16], Proposition VIII.1.1, there exists Borel
functions ξ̃1, ξ̃2 such that ξ̃i(x) = ξi(x) for a.e. x ∈ (a, b), i = 1, 2. Set ψ̃i(s) := 1/ξ̃i(v−1(s)), i = 1, 2. Since
v−1 is continuous, then ψ̃i(s) is Borel-measurable for i = 1, 2. Moreover, set Ai := {x : ξi(x) �= ξ̃i(x)}, we have
v(Ai) = {s : ψi(s) �= ψ̃i(s)} and by the absolute continuity of v we get meas(v(Ai)) = 0, i = 1, 2. Therefore,
the functions ψi are Lebesgue-measurable, i = 1, 2.

Notice that since ξ1(x) ≤ v′(x) ≤ ξ2(x), we have ψ2(s) ≤ 1
v′(v−1(s)) ≤ ψ1(s), hence there exists a measurable

weight function λ : (α, s0) → [0, 1] such that

1
v′(v−1(s))

= λ(s)ψ1(s) + (1 − λ(s))ψ2(s). (4.13)

Hence, in particular, the map s �→ λ(s)ψ1(s) + (1 − λ(s))ψ2(s) is summable in (α, s0).
Let us define f̃ , ˜f∗∗ : I × (0,+∞) → R as

f̃(s, z) := f

(
s,

1
z

)
z, ˜f∗∗(s, z) := f∗∗

(
s,

1
z

)
z.

In [20], Lemma 5, it was proved that ˜f∗∗(s, ·) is affine in (c, d), c > 0, if and only if f∗∗(s, ·) is affine in ( 1
d ,

1
c ).

Therefore, by (4.11) we deduce that

f̃(s, ψi(s)) = ˜f∗∗(s, ψi(s)) a.e. in (α, s0), i = 1, 2 (4.14)

and ˜f∗∗(s, ·) is affine in [ψ2(s), ψ1(s)]. Hence, by (4.13)

˜f∗∗
(
s,

1
v′(v−1(s))

)
= λ(s) ˜f∗∗(s, ψ1(s)) + (1 − λ(s)) ˜f∗∗(s, ψ2(s)) (4.15)

so, in particular, also the map s �→ λ(s) ˜f∗∗(s, ψ1(s)) + (1 − λ(s)) ˜f∗∗(s, ψ2(s)) is summable in (α, s0), being∫ s0

α

˜f∗∗
(
s,

1
v′(v−1(s))

)
ds =

∫ τ1

a

f∗∗(v(x), v′(x)) dx ≤ F ∗∗(v).
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Thus, we can apply Theorem 2.7 to the functions gi(s) := (ψi(s), ˜f∗∗(s, ψi(s))), i = 1, 2, deducing the
existence of a decomposition of (α, s0) into disjoint measurable subsets F1, F2 such that, if we define γ(s) :=
ψ1(s)χF1(s) + ψ2(s)χF2(s), then by (4.13) we have∫ s0

α

γ(s) ds =
∫ s0

α

1
v′(v−1(s))

ds (4.16)

and by (4.14), (4.15)∫ s0

α

f̃(s, γ(s)) ds =
∫

F1

˜f∗∗(s, ψ1(s)) ds+
∫

F2

˜f∗∗(s, ψ2(s)) ds

=
∫ s0

α

[λ(s) ˜f∗∗(s, ψ1(s)) + (1 − λ(s)) ˜f∗∗(s, ψ2(s))] ds =
∫ s0

α

˜f∗∗
(
s,

1
v′(v−1(s))

)
ds. (4.17)

Consider
U(s) := a+

∫ s

α

γ(σ) dσ;

we have that U is an absolutely continuous function, with U(α) = a, and by (4.16)

U(s0) = a+
∫ s0

α

γ(s) ds = a+
∫ s0

α

1
v′(v−1(s))

ds = a+
∫ τ1

a

1
v′(x)

v′(x) dx = τ1.

Finally, since U(s) is absolutely continuous with U ′(s) > 0 a.e. in [α, s0], then also the inverse function
v̂(x) := U−1(x), x ∈ [a, τ1], is absolutely continuous (see e.g. [2]). Moreover, v̂(a) = α and v̂(τ1) = s0 and
finally by (4.17)∫ τ1

a

f(v̂(x), v̂′(x)) dx =
∫ s0

α

f(s, v̂′(U(s)))U ′(s) ds =
∫ s0

α

f̃(s, γ(s)) ds

=
∫ s0

α

˜f∗∗
(
s,

1
v′(v−1(s))

)
ds =

∫ τ1

a

f∗∗(v(x), v′(x)) dx.

A similar construction can be made in the interval [τ2, b] so that the modified trajectory v̂ (kept equal to s0
in [τ1, τ2]) satisfies the following chain of inequalities

F (v̂) =
∫ b

a

f∗∗(v(x), v′(x)) dx ≤
∫ b

a

f∗∗(w(x), w′(x)) dx ≤ F (w)

for every trajectory w ∈ Υ, that is v̂ is a minimizer of (2.1). �
Remark 4.7. By the proof of the above result and Lemma 4.5, we have that if the assumptions of Theorem 4.2
hold true and if there exists a solution v to (2.3) satisfying (4.3), then there exists a solution w to (2.1)
satisfying (4.6).

Remark 4.8. A variant in the definition of φ± can be considered. For every s ∈ I let us denote

Ã+(s) := {z > 0 : f∗∗(s, ·) is affine in (0, z)}, Ã−(s) := {z < 0 : f∗∗(s, ·) is affine in (z, 0)}

and define

φ̃+(s) :=
{

sup Ã+(s) if Ã+(s) �= ∅
0 if Ã+(s) = ∅, φ̃−(s) :=

{
inf Ã−(s) if Ã−(s) �= ∅
0 if Ã−(s) = ∅.

With this change (to be done also in the definition of (4.2)) Theorem 4.2 still holds true. We choose defini-
tion (4.1) for φ± in order to have a weaker condition (4.2).
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Remark 4.9. If α = β then (4.2) is trivially satisfied.

In order to prove Theorem 4.3 we use an argument similar to that presented in [17], Theorem 6, based upon
the approximation result [17], Lemma 5, stated below, for the sake of completeness.

Lemma 4.10. Let g : R → R be a lower semicontinuous function. Then there exists a sequence (gn) of C1(R)
functions such that:

(i) gn(s) → g(s) for every s ∈ R;
(ii) for each n and each interval [γ, δ]

{s ∈ [γ, δ] : g′n(s) = 0} is finite;

(iii) for each interval [γ, δ] there exists n0 such that

gn(s) ≤ gn+1(s) for all s ∈ [γ, δ] and all n > n0.

Moreover, if g is bounded below then also the sequence (gn) is equibounded below.

Proof of Theorem 4.3. Define g : R → [0,+∞), g(s) := f(s, 0) if s ∈ I and extended by lower semicontinuity
on R \ I, so to be constant on the connected components of R \ I. Let gn(s) be as in Lemma 4.10. Since g ≥ 0
then there exists L ∈ R such that gn(s) ≥ L for all s and for all n.

For all n, consider hn : I × R → R,

hn(s, z) := f(s, z)− f(s, 0) + gn(s),

so that
h∗∗n (s, z) = f∗∗(s, z) − f(s, 0) + gn(s).

As it is well known (see e.g. [10], Thm. 10.3.i), the function Φ in (4.4) can be assumed to be convex, so that

h∗∗n (s, z) ≥ Φ(|z|) + gn(s) ≥ Φ(|z|) + L. (4.18)

Moreover, by Lemma 2.1 the function s �→ h∗∗n (s, z) is Lebesgue-measurable on I, for every z ∈ R. Hence,
by [15], Theorem 1, the functional

H∗∗
n (v) =

∫ b

a

h∗∗n (v(t), v′(t)) dt, v ∈ Υ

is well defined and lower semicontinuous. Thus, by the direct method of the Calculus of Variations, for every
n ∈ N there exists a solution un to

minimizeH∗∗
n (v) =

{∫ b

a

h∗∗n (v(t), v′(t)) dt : v ∈ Υ

}
. (H∗∗

n )

Notice that
{z ∈ R : f∗∗(s, z) < f(s, z)} = {z ∈ R : h∗∗n (s, z) < hn(s, z)}

so that (2.2) and Lemma 4.10 (ii) imply

meas
({

s ∈ [α, β] : h∗∗n (s, 0) = min
σ∈[α,β]

h∗∗n (σ, 0)
})

= meas
({

s ∈ [α, β] : gn(s) = min
σ∈[α,β]

gn(σ)
})

= 0.
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Thus, by Lemma 4.6, we may assume that un ∈ Υ∗ and

u′n(x) ≥ φ+(un(x)) for a.e. x such that u′n(x) > 0
u′n(x) ≤ φ−(un(x)) for a.e. x such that u′n(x) < 0. (4.19)

More precisely, since each un is in Υ∗, there exist an, bn, cn and dn in [a, b], an ≤ bn ≤ cn ≤ dn, such that

u′n(x) ≤ φ−(un(x)) for a.e. x ∈ [a, an]
u′n(x) ≥ φ+(un(x)) for a.e. x ∈ [an, bn]
u′n(x) = 0 for a.e. x ∈ [bn, cn]
u′n(x) ≥ φ+(un(x)) for a.e. x ∈ [cn, dn]
u′n(x) ≤ φ−(un(x)) for a.e. x ∈ [dn, b].

(4.20)

Fix ū ∈ Υ such that F ∗∗(ū) < +∞ and let J̄ := ū([a, b]), compact sub-interval of I. By Lemma 4.10 (iii)
there exists n̄ such that

gn(s) ≤ gn+1(s) for all s ∈ J̄ and all n > n̄. (4.21)

Therefore, by (4.18), the minimality of un, (4.21) and Lemma 4.10 (i) we have that for all n > n̄

∫ b

a

(Φ(|u′n(x)|) + L) dx ≤ H∗∗
n (un) ≤ H∗∗

n (ū) ≤
∫ b

a

f∗∗(ū(x), ū′(x)) dx < +∞. (4.22)

So, we can assume, possibly up to subsequences, that there exists u0 ∈ Υ and points a′, b′, c′, d′ in [a, b] such
that un ⇀ u0 in W 1,1(a, b), an → a′, bn → b′, cn → c′, dn → d′. In particular, up to subsequences, un pointwise
converges to u0 and u′n weakly converges to u′0 in L1.

We claim that
u′0(x) ≤ φ−(u0(x)) for a.e. x ∈ [a, a′]
u′0(x) ≥ φ+(u0(x)) for a.e. x ∈ [a′, b′]
u′0(x) = 0 for a.e. x ∈ [b′, c′]
u′0(x) ≥ φ+(u0(x)) for a.e. x ∈ [c′, d′]
u′0(x) ≤ φ−(u0(x)) for a.e. x ∈ [d′, b].

(4.23)

Indeed, as for the first inequality, if u′0(x) − φ−(u0(x)) > 0 in a subset C ⊂ [a, a′] having positive measure,
then there exists an integer n̄ such that for every n ≥ n̄ we have an > a′ − 1

2meas(C). Therefore, setting
C̃ := C \ [a′ − 1

2meas(C), a′] we have meas(C̃) > 0 and C̃ ⊂ [a, an] for every n ≥ n̄. Then, by (4.20), using the
weak convergence of (u′n)n, the Fatou Lemma and the upper semicontinuity of φ−, we get

0 ≥ lim inf
n→+∞

∫
C̃

(
u′n(x) − φ−(un(x))

)
dx =

∫
C̃

u′0(x) dx− lim sup
n→+∞

∫
C̃

φ−(un(x)) dx

≥
∫

C̃

u′0(x) dx−
∫

C̃

lim sup
n→+∞

φ−(un(x)) dx ≥
∫

C̃

(
u′0(x) − φ−(u0(x))

)
dx > 0,

which is absurd, and the first inequality of (4.23) is proved. The other inequalities can be proved in a similar
way.

By (4.22) and taking the coercivity of Φ into account, we have that (|u′n|)n>n̄ is bounded in L1(a, b), then
there exists a compact interval [A,B] including un([a, b]) for all n > n̄.

By Lemma 4.10 (iii) there exists n0 ≥ n̄ such that

gn(s) ≤ gn+1(s) for all s ∈ [A,B] and all n > n0.
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By the convexity of h∗∗n (s, ·), for all k > n0 we get

lim inf
n→+∞H∗∗

n (un) ≥ lim inf
n→+∞

∫ b

a

f∗∗(un(x), u′n(x)) dx+ lim inf
n→+∞

∫ b

a

(gn(un(x)) − f(un(x), 0)) dx

≥
∫ b

a

f∗∗(u0(x), u′0(x)) dx+ lim inf
n→+∞

∫ b

a

(gk(un(x)) − f(un(x), 0)) dx.

By the continuity of gk and f(·, 0)

lim inf
n→+∞

∫ b

a

(gk(un(x)) − f(un(x), 0)) dx ≥
∫ b

a

(gk(u0(x)) − f(u0(x), 0)) dx

and the last term goes to 0 as k goes to +∞, due to Lemma 4.10 (i). Thus,

lim inf
n→+∞H∗∗

n (un) ≥ F ∗∗(u0).

Now, fix v ∈ Υ. By Lemma 4.10 (iii) applied with [c, d] = v([a, b]) and by the minimality of un

F ∗∗(v) = lim
n→+∞H∗∗

n (v) ≥ lim inf
n→+∞H∗∗

n (vn).

So, we have proved that u0 is a solution to (2.3), satisfying (4.23). Thanks to (4.23) we can avoid the use of
Lemma 4.5 in the proof of Theorem 4.2. Since assumption (4.2) was used only to apply such a lemma, and
since, by (4.4), for every s ∈ I

co {z ∈ R : f∗∗(s, z) = f(s, z)} = co {z ∈ R : f∗∗(s, z) − f(s, 0) = f(s, z) − f(s, 0)} = R

so that u0 satisfies (4.3), we obtain the assertion. �

We conclude this section with the proof of the relaxation result for coercive Lagrangians of affine type.

Proof of Corollary 4.4. It is a straightforward consequence of Theorem 4.3. In fact, by Lemma 2.2, without loss
of generality we can assume that h(z) ≥ h(0) for all z. Then

f(s, z) − f(s, 0) = γ(s)[h(z) − h(0)] ≥ (inf γ)[h(z) − h(0)]

and condition (4.4) is satisfied. Moreover, since f has the affine structure with inf γ > 0, then Δs does not
depend on s and is open. �

Remark 4.11. We note that results similar to some of those stated in this section appeared, in the coercive
setting, in two papers by Ornelas (see [23,24]), but they are based on some preliminary results announced
without proof, referred back to preprints by the same author, never appeared or available in any form to the
scientific community. In particular, the proof of a property called by the author derivative bounded away from 0,
analogous to that proved in the present Lemma 4.5, was never published, according to our knowledge.

5. Necessary conditions and non-existence results

In this section, we establish the validity of the DuBois-Reymond necessary condition expressed in terms of
a differential inclusion involving the subdifferential of f(s, ·) in the sense of Convex Analysis, even if f(s, ·) is
non-convex in general.

From now on we need to strengthen slightly the regularity assumptions on the function f . Throughout this
section we will assume f(·, 0) continuous and f(s, ·) continuous at z = 0 for every s ∈ I.
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In [12] the validity of the DuBois-Reymond condition was proved under a certain monotonicity assumption
on f(·, 0) (see [12], Thm. 4.1 and (H3)). Such a result is based upon [12], Theorem 3.1, which has the same
assertion of Theorem 3.1 here proved. It is easy to see that with no change in the proofs, just using the present
Theorem 3.1 and taking account of [21], Remark 4, the result holds true also in the present more general setting,
stated as follows.

Theorem 5.1. Let f : I × R → [0,+∞) be Borel-measurable, with f(·, 0) continuous and f(s, ·) continuous at
z = 0 for every s ∈ I. Suppose that (2.2) and (2.5) hold true.

If (2.1) is solvable then there exists a solution u ∈ Υ∗ such that ∂f(u(x), u′(x)) �= ∅ for a.e. x ∈ (a, b) and
the following DuBois-Reymond condition holds

f(u(x), u′(x)) − c ∈ u′(x) ∂f(u(x), u′(x)) a.e. in (a, b) (5.1)

for some constant c ≤ min
s∈u([a,b])

f(s, 0).

Moreover, if u′(x) = 0 in a set having positive measure then c = min
s∈u([a,b])

f(s, 0).

Hence, f(u(x), u′(x)) = f∗∗(u(x), u′(x)) for a.e. x in (a, b), and ∂f(u(x), u′(x)) = ∂f∗∗(u(x), u′(x)) for a.e. x
in (a, b). In particular,

f∗∗(u(x), u′(x)) − c ∈ u′(x) ∂f∗∗(u(x), u′(x)) for a.e. x ∈ (a, b), (5.2)

for some constant c ≤ min
s∈u([a,b])

f(s, 0).

The limitation on the constant c in condition (5.1) allows to derive the following non-existence result, which
is the analogous of [12], Proposition 5.1.

Proposition 5.2. Let α ≤ β. Under the same assumptions of Theorem 5.1, suppose further that

ess sup
s∈[α,β]

lim inf
|z|→+∞

inf
t∈∂f∗∗(s,z)

(f∗∗(s, z) − zt) > min
s∈[α,β]

f(s, 0). (5.3)

Then, problem (2.1) does not admit solution.

Proof. The proof goes as that of the analogous result in [12], but now we use Theorem 5.1 in place of [12],
Theorem 4.4. Nevertheless we write it for the sake of completeness.

First observe that by the convexity of f∗∗ we have that the function

gs(z) := inf
t∈∂f∗∗(s,z)

(f∗∗(s, z) − zt)

is increasing in (−∞, 0) and decreasing in (0,+∞), for every s ∈ I. Indeed, if z2 ≥ z1 ≥ 0 and ξ ∈ ∂f∗∗(s, z2),
we have f∗∗(s, z1) − f∗∗(s, z2) ≥ ξ(z1 − z2) and ξ ≥ sup∂f∗∗(s, z1); so, since z1 ≥ 0 we get

gs(z1) = f∗∗(s, z1) − z1 sup ∂f∗∗(s, z1) ≥ f∗∗(s, z1) − z1ξ ≥ f∗∗(s, z2) − z2ξ ≥ gs(z2).

The proof of the monotonicity in (−∞, 0) proceeds similarly. As a consequence, lim inf
|z|→+∞

gs(z) = inf
z∈R

gs(z). So,

by (5.3) there exists a set H ⊂ [α, β] having positive measure such that

inf
t∈∂f∗∗(s,z)

(f∗∗(s, z) − zt) > min
s∈[α,β]

f(s, 0) for every s ∈ H, z ∈ R. (5.4)

Assume by contradiction that (2.1) admits a solution. Then, by Theorem 5.1 there exists an optimal trajectory u
satisfying the condition (5.2) for some constant c ≤ mins∈u([a,b]) f(s, 0). Put A := {x ∈ [a, b] : u(x) ∈ H},
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we have meas(A) > 0 since u is absolutely continuous. Hence

c ∈ f∗∗(u(x), u′(x)) − u′(x)∂f∗∗(u(x), u′(x)) for some x ∈ A

and this implies

inf
t∈∂f∗∗(u(x),u′(x))

(f∗∗(u(x), u′(x)) − u′(x)t) ≤ min
s∈[α,β]

f(s, 0) for some x ∈ A

in contradiction with (5.4). �

The previous result finds a simple immediate application to the relevant case of integrands having the affine
structure

f(s, z) = g(s) + γ(s)h(z).

Set
� := lim inf

|z|→+∞
inf

t∈∂h∗∗(z)
(h∗∗(z) − zt).

The following result holds.

Proposition 5.3. Let g, γ : I → [0,+∞) be continuous functions. Let h : R → [0,+∞) be lower semicontinu-
ous, continuous at 0 and such that h(0) = h∗∗(0). Suppose moreover that � > −∞.

Then, if
max

s∈[α,β]
{g(s) + γ(s)�} > min

s∈[α,β]
{g(s) + γ(s)h(0)} (5.5)

problem (2.1) has no solution.

Proof. First note that the assumptions of Theorem 5.1 are trivially satisfied.
Let s̄ ∈ [α, β] be such that

g(s̄) + γ(s̄)� = max
s∈[α,β]

{g(s) + γ(s)�}.

If (5.5) holds, by the continuity of g and γ we have g(s) + γ(s)� > mins∈[α,β]{g(s) + γ(s)h(0)} for every s in a
neighborhood of s̄. Since, by definition of �,

lim inf
|z|→+∞

inf
t∈∂f∗∗(s,z)

(f∗∗(s, z) − zt) = g(s) + γ(s) lim inf
|z|→+∞

inf
t∈∂h∗∗(z)

(h∗∗(z) − zt)

= g(s) + γ(s)�,

then we have that (5.3) holds. By Proposition 5.2 we deduce the conclusion. �

Example 5.1. Let f(s, z) := γ(s)
(√

1 + z2 + k
)
, with γ continuous and non-negative and k > 0. In this case

it is easy to check that � = k, so if k max
s∈[α,β]

γ(s) > (k + 1) min
s∈[α,β]

γ(s), problem (2.1) does not admit solution.

Example 5.2. Let f(s, z) := g(s) + γ(s)|z|, with g, γ continuous and non-negative. In this case � = h(0) = 0,
so if g is not constant then problem (2.1) has no solution.

Example 5.3. Let f(s, z) := g(s)+ γ(s)
√

1 + z2, with g, γ continuous and non-negative. In this case � = 0, so
if max

s∈[α,β]
g(s) > min

s∈[α,β]
{g(s) + γ(s)}, problem (2.1) does not admit solution.

Acknowledgements. The authors thank an anonymous referee for pointing out the paper [15], that allowed the proof of
Lemma 2.1.
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