ESAIM: COCV 17 (2011) 178–189 DOI: 10.1051/cocv/2009046

LIPSCHITZ REGULARITY FOR SOME ASYMPTOTICALLY CONVEX PROBLEMS*

Lars Diening¹, Bianca Stroffolini² and Anna Verde²

Abstract. We establish a local Lipschitz regularity result for local minimizers of asymptotically convex variational integrals.

Mathematics Subject Classification. 35B65, 35J70.

Received October 3rd, 2008. Published online December 4, 2009.

1. Introduction

We consider local minimizers of variational integrals of the type

$$\mathcal{F}(\mathbf{u}) = \int_{\Omega} f(\nabla \mathbf{u}) \, \mathrm{d}x,\tag{1.1}$$

where Ω is a bounded, open subset of \mathbb{R}^n , $\mathbf{u}: \Omega \to \mathbb{R}^N$ is a vector valued function and $\nabla \mathbf{u}$ stands for the total derivative of u. A function $\mathbf{u} \in W^{1,p}(\Omega)$ is a local minimizer of $\mathcal{F}(\mathbf{u})$ if $\mathcal{F}(\mathbf{u}) \leq \mathcal{F}(\mathbf{u}+\eta)$, for every test function $\eta \in W_0^{1,p}(\Omega)$ with compact support in Ω .

In 1977 Uhlenbeck (see [26]) proved everywhere $C^{1,\alpha}$ regularity for local minimizers of functional when the integrand $f \in C^2$ is assumed to behave like $|\xi|^p$, with $p \geq 2$; Acerbi and Fusco considered the case 1 . Later on a large number of generalizations have been made, see for example the survey [22].

For the (p,q) case and the general growth case, see the papers of Marcellini [18–21] and [6,7]. Another direction of research is the one arising in the model of electro-rheological fluids [2,3].

For the Lipschitz regularity, the results are available when $f \in C^2$ is asymptotically, in a C^2 -sense, quadratic or super-quadratic at infinity (see [4] for the case p = 2 and [15,24] for the case p > 2; for the subquadratic case see [17]). For related results, see [11–14,23].

Keywords and phrases. Local minimizers, decay estimates, asymptotic behaviour.

^{*} The work of B.S. was supported by PRIN 2007 Project: "Calcolo delle Variazioni e Teoria Geometrica della Misura"; the work of A.V. was supported in part by Prin 2007 Project "Calcolo delle Variazioni e Teoria Geometrica della Misura" and in part by the European Research Council under FP7 Advanced Grant n° 226234: "Analytic Techniques for Geometric and Functional Inequalities".

¹ Institute of Mathematics, Eckerstr. 1, 79104 Freiburg, Germany. diening@mathematik.uni-freiburg.de

 $^{^2}$ Dipartimento di Matematica, Università di Napoli, Federico II, Via Cintia, 80126 Napoli, Italy. $\tt bstroffo@unina.it; \ anverde@unina.it;$

The argument of such results is the following: if the gradients of minimizers are very large, the problem becomes "regular" and so good estimates are known.

Moreover, Dolzmann and Kristensen [10] have proved local higher integrability with large exponents of minimizers when $f \in C^0$ approaches at infinity, in a C^0 -sense, the p-Dirichlet integrand, for some arbitrary

In a recent paper Diening and Ettwein [8] considered fractional estimates for non-differentiable systems with φ -growth. Using some of their techniques, we were able to prove in [9] excess decay estimates for vectorial functionals with φ -growth. In this paper we extend the results found in [4,15,17,24] to the case of a convex function satisfying the Δ_2 -condition with its conjugate $(\Delta_2(\{\varphi,\varphi^*\})<\infty)$, see Section 2 for the definitions. More precisely we have the following theorem:

Theorem 1.1. Let φ be an N-function such that

- (H1) $\varphi \in C^2((0,\infty)) \cap C([0,\infty))$ and $\varphi \in \Delta_2(\{\varphi,\varphi^*\});$
- (H2) $\Delta_2(\{\varphi,\varphi^*\}) < \infty$;
- (H3) $\varphi'(t) \sim t \varphi''(t)$;
- (H4) there exists $\beta \in (0,1]$ and c > 0 such that

$$|\varphi''(s+t) - \varphi''(t)| \le c_1 \varphi''(t) \left(\frac{|s|}{t}\right)^{\beta}$$

for all t > 0 and $s \in \mathbb{R}$ with $|s| < \frac{1}{2}t$. Moreover let $f : \mathbb{R}^{n \times N} \to \mathbb{R}$ be such that

- (F1) $f \in C^2(\mathbb{R}^{n \times N});$
- (F2) there exists L > 0 such that for all $\xi \in \mathbb{R}^{n \times N} \setminus \{0\}$

$$|\nabla^2 f(\xi)| \le L \varphi''(|\xi|); \tag{1.2}$$

(F3) there holds³

$$\lim_{|\xi| \to \infty} \frac{|\nabla^2 f(\xi) - \nabla^2 \varphi(\xi)|}{\varphi''(|\xi|)} = 0. \tag{1.3}$$

If $\mathbf{u} \in W^{1,\varphi}(\Omega)$ is a local minimizer of the functional \mathcal{F} , see (1.1), then $\nabla \mathbf{u}$ is locally bounded in Ω . Moreover, for every ball $B \subset \Omega$ we have

$$\operatorname{esssup}_{\frac{1}{2}B} \varphi(|\nabla \mathbf{u}|) \le c \left(1 + \int_{\mathcal{D}} \varphi(|\nabla \mathbf{u}|) \, \mathrm{d}x\right), \tag{1.4}$$

where c depends only on n, N, L, $\Delta_2(\{\varphi, \varphi^*\})$, c_1 , β , and the convergence in (1.3).

Let us point out that in the power case, with 1 [17], the authors considered the asymptotic behaviourlike $(\mu + t^2)^{\frac{p}{2}}$, $\mu > 0$. Here we are able to recover also the case $\mu = 0$.

³We use that φ can also be interpreted as a function from $\mathbb{R}^{n\times N}$ to \mathbb{R}^n by $\varphi(\xi) := \varphi(|\xi|)$.

2. Technical Lemmas

In the sequel Ω will denote a bounded, open set of \mathbb{R}^n . To simplify the notation, the letter c will denote any positive constant, which may vary throughout the paper. For $w \in L^1_{loc}(\mathbb{R}^n)$ and a ball $B \subset \mathbb{R}^n$ we define

$$\langle w \rangle_B := \int_B w(x) \, \mathrm{d}x := \frac{1}{|B|} \int_B w(x) \, \mathrm{d}x, \tag{2.1}$$

where |B| is the *n*-dimensional Lebesgue measure of B. For $\lambda > 0$ we denote by λB the ball with the center as B but λ -times the radius. We write $B_r(x)$ for the ball with radius R and center x. For $U, \Omega \subset \mathbb{R}^n$ we write $U \subseteq \Omega$ if the closure of U is a compact subset of Ω . We define $\delta_{i,j} := 0$ for $i \neq j$ and $\delta_{i,i} = 1$.

The following definitions and results are standard in the context of N-functions. A real function $\varphi: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ $\mathbb{R}^{\geq 0}$ is said to be an N-function if it satisfies the following conditions: there exists the derivative φ' of φ , it is right continuous, non-decreasing and satisfies $\varphi'(0) = 0$ and $\varphi'(t) > 0$ for t > 0. In addition, φ is convex.

We say that φ satisfies the Δ_2 -condition, if there exists K>0 such that for all $t\geq 0$ holds $\varphi(2t)\leq K\,\varphi(t)$. By $\Delta_2(\varphi)$ we denote the smallest constant K. Since $\varphi(t) \leq \varphi(2t)$ the Δ_2 condition is equivalent to $\varphi(2t) \sim \varphi(t)$. For a family $\{\varphi_{\lambda}\}_{\lambda}$ of N-functions we define $\Delta_2(\{\varphi_{\lambda}\}_{\lambda}) := \sup_{\lambda} \Delta_2(\varphi_{\lambda})$.

By L^{φ} and $W^{1,\varphi}$ we denote the classical Orlicz and Sobolev-Orlicz spaces, i.e. $f \in L^{\varphi}$ iff $\int \varphi(|f|) dx < \infty$ and $f \in W^{1,\varphi}$ iff $f, \nabla f \in L^{\varphi}$. The space L^{φ} equipped with the norm $\|f\|_{\varphi} := \inf \{\lambda > 0 : \int \varphi(|f/\lambda|) dx \le 1\}$ is a Banach space. By $W_0^{1,\varphi}(\Omega)$ we denote the closure of $C_0^{\infty}(\Omega)$ in $W^{1,\varphi}(\Omega)$, where $W^{1,\varphi}(\Omega)$ is equipped with the norm $||f||_{\varphi} + ||\nabla f||_{\varphi}$ [5]. By $(\varphi')^{-1} : \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ we denote the function

$$(\varphi')^{-1}(t) := \sup \{ s \in \mathbb{R}^{\geq 0} : \varphi'(s) \leq t \}.$$

If φ' is strictly increasing then $(\varphi')^{-1}$ is the inverse function of φ' . Then $\varphi^*: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ with

$$\varphi^*(t) := \int_0^t (\varphi')^{-1}(s) \, \mathrm{d}s$$

is again an N-function and $(\varphi^*)'(t) = (\varphi')^{-1}(t)$ for t > 0. It is the complementary function of φ . Note that $\varphi^*(t) = \sup_{s>0} (st - \varphi(s))$ and $(\varphi^*)^* = \varphi$. For all $\delta > 0$ there exists c_δ (only depending on $\Delta_2(\{\varphi, \varphi^*\})$) such that for all $t, s \ge 0$ holds

$$t s \le \delta \varphi(t) + c_{\delta} \varphi^*(s). \tag{2.2}$$

For $\delta = 1$ we have $c_{\delta} = 1$. This inequality is called Young's inequality. For all $t \geq 0$

$$\frac{t}{2}\varphi'\left(\frac{t}{2}\right) \le \varphi(t) \le t\,\varphi'(t),$$

$$\varphi\left(\frac{\varphi^*(t)}{t}\right) \le \varphi^*(t) \le \varphi\left(\frac{2\,\varphi^*(t)}{t}\right).$$
(2.3)

Therefore, uniformly in $t \geq 0$

$$\varphi(t) \sim \varphi'(t) t, \qquad \varphi^*(\varphi'(t)) \sim \varphi(t),$$
 (2.4)

where the constants only depend on $\Delta_2(\{\varphi, \varphi^*\})$.

We define the shifted N-function $\varphi_a: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ by

$$\varphi_a(t) = \int_0^t \varphi_a'(s) ds \text{ where } \varphi_a'(t) = \frac{\varphi'(a+t)}{a+t}t.$$
 (2.5)

The shifted N-functions have been introduced in [8]. See [25] for a detailed study of the shifted N-functions. The function φ_a and its dual φ_a are again N-functions and satisfy the Δ_2 -condition uniformly in $a \geq 0$. In particular, $\Delta_2(\{\varphi_a, (\varphi_a)^*\}_{a>0}) < \infty$. For given φ we define the N-function ψ by

$$\frac{\psi'(t)}{t} := \left(\frac{\varphi'(t)}{t}\right)^{\frac{1}{2}}. (2.6)$$

It is shown in [8] that ψ also satisfies (H2)–(H3) and uniformly in t > 0 holds $\psi''(t) \sim \sqrt{\varphi''(t)}$. We define the function $\mathbf{V}(\mathbf{Q})$:

$$\mathbf{V}(\mathbf{Q}) := \frac{\psi'(|\mathbf{Q}|)}{|\mathbf{Q}|}\mathbf{Q}.$$

The following lemma can be found in [1].

Lemma 2.1. Let $\alpha > -1$ then uniformly in $\xi_0, \xi_1 \in \mathbb{R}^{n \times N}$ with $|\xi_0| + |\xi_1| > 0$ holds

$$(|\xi_0| + |\xi_1|)^{\alpha} \sim \int_0^1 |\xi_{\theta}|^{\alpha} d\theta, \qquad (2.7)$$

where $\xi_{\theta} := (1 - \theta)\xi_0 + \theta\xi_1$.

Moreover, we need the following generalization of Lemma 2.1.

Lemma 2.2 ([8], Lem. 20). Let φ be an N-function with $\Delta_2(\{\varphi, \varphi^*\}) < \infty$. Then uniformly for all $\xi_0, \xi_1 \in \mathbb{R}^{n \times N}$ with $|\xi_0| + |\xi_1| > 0$ holds

$$\int_0^1 \frac{\varphi'(|\xi_\theta|)}{|\xi_\theta|} d\theta \sim \frac{\varphi'(|\xi_0| + |\xi_1|)}{|\xi_0| + |\xi_1|},\tag{2.8}$$

where $\xi_{\theta} := (1 - \theta)\xi_0 + \theta\xi_1$. The constants only depend on $\Delta_2(\{\varphi, \varphi^*\})$.

Remark 2.3. Let φ be an N-function with $\Delta_2(\{\varphi,\varphi^*\})<\infty$. Then it has been shown in [8], p. 546, and [25], Lemma 5.19, that there exists $0<\gamma<1$ and and N-function ρ with $\Delta_2(\{\rho,\rho^*\})<\infty$ such that $(\varphi(t))^{\gamma}\sim\rho(t)$ uniformly in $t\geq 0$. It is important to remark that γ and $\Delta_2(\{\rho,\rho^*\})$ only depend on $\Delta_2(\{\varphi,\varphi^*\})$. Note that $\varphi(t)\sim t\,\varphi'(t),\,\varphi(t)\sim(\rho(t))^{\frac{1}{\gamma}},\,$ and $\rho(t)\sim t\,\rho'(t)$ imply $\varphi'(t)\sim(\rho'(t))^{1/\gamma}t^{1/\gamma-1}$.

The next Lemma contains useful properties of the function V (see [8], Lem. 3, or [9,25]).

Lemma 2.4. For every $\xi_0, \xi_1 \in \mathbb{R}^{n \times N}$ with $|\xi_0| + |\xi_1| > 0$ holds

$$|\mathbf{V}(\xi_0) - \mathbf{V}(\xi_1)|^2 \sim |\xi_0 - \xi_1|^2 \varphi''(|\xi_0| + |\xi_1|) |\mathbf{V}(\xi_0)|^2 \sim \varphi(|\xi_0|).$$
(2.9)

3. Proof of the main result

We need two lemmas that measures the differences of f and φ in a C^2 sense. The first lemma is a rough estimate using only the upper estimates for $\nabla^2 f$ and $\nabla^2 \varphi$. The second lemma is more subtle using that $\nabla^2 f$ and $\nabla^2 \varphi$ are close for large arguments. It is the analogue of Lemma 5.1 in [15] and Lemma 2.4 in [17].

Lemma 3.1. Let φ satisfy (H1)-(H4) and f satisfy (F1)-(F3). Then there exists c>0 such that for all $\xi_0, \xi_1 \in \mathbb{R}^{n \times N}$ holds

$$\int_{0}^{1} \left| \left[\nabla^{2} f(\xi_{\theta}) - \nabla^{2} \varphi(\xi_{\theta}) \right] \right| d\theta \left| \xi_{1} - \xi_{0} \right|^{2} \le c \left| \mathbf{V}(\xi_{1}) - \mathbf{V}(\xi_{0}) \right|^{2}, \tag{3.1}$$

where $\xi_{\theta} = (1 - \theta)\xi_0 + \theta\xi_1$. Note that c depends only on n, N, L, and $\Delta_2(\{\varphi, \varphi^*\})$.

Proof. Due to (1.2), Lemmas. 2.2 and 2.4 we estimate

$$\int_{0}^{1} \left| \left[\nabla^{2} f(\xi_{\theta}) - \nabla^{2} \varphi(\xi_{\theta}) \right] \left| d\theta | \xi_{1} - \xi_{0} \right|^{2} \le (L+1) \int_{0}^{1} \varphi''(\xi_{\theta}) d\theta | \xi_{1} - \xi_{0} |^{2}$$

$$\le c (L+1) \varphi''(|\xi_{0}| + |\xi_{1}|) |\xi_{1} - \xi_{0}|^{2}$$

$$\le c (L+1) |\mathbf{V}(\xi_{1}) - \mathbf{V}(\xi_{0})|^{2}.$$

This proves the assertion.

Lemma 3.2. Let φ satisfy (H1)-(H4) and f satisfy (F1)-(F3). Then for every $\varepsilon > 0$ there exist $\sigma(\varepsilon) > 0$ such that for all $\xi_0, \xi_1 \in \mathbb{R}^{n \times N}$ with max $\{|\xi_0|, |\xi_1|\} \geq \sigma(\varepsilon)$ holds

$$\int_{0}^{1} \left| \left[\nabla^{2} f(\xi_{\theta}) - \nabla^{2} \varphi(\xi_{\theta}) \right] \right| d\theta \left| \xi_{1} - \xi_{0} \right|^{2} \leq \varepsilon \left| \mathbf{V}(\xi_{1}) - \mathbf{V}(\xi_{0}) \right|^{2}, \tag{3.2}$$

where $\xi_{\theta} = (1 - \theta)\xi_0 + \theta\xi_1$. Note that σ depends only on $\varepsilon, n, N, L, \Delta_2(\{\varphi, \varphi^*\})$, and the limit in (1.3).

Proof. Fix $\varepsilon > 0$. In the following let $\delta = \delta(\varepsilon) > 0$. The precise value of δ will be chosen later. Due to (1.3) there exists $\Lambda(\delta) > 0$ such that

$$|\nabla^2 f(\xi) - \nabla^2 \varphi(\xi)| \le \delta \varphi''(|\xi|) \tag{3.3}$$

for all $\xi \in \mathbb{R}^{n \times N}$ with $|\xi| \geq \Lambda(\delta)$.

Let $\sigma(\varepsilon) := K \Lambda(\delta)$ with $K \ge 2$, where the precise value of K will be chosen later. Let $\xi_0, \xi_1 \in \mathbb{R}^{n \times N}$ with $\max\{|\xi_0|, |\xi_1|\} \ge \sigma(\varepsilon)$. By symmetry we can assume without loss of generality $|\xi_1| \ge \sigma(\varepsilon)$. For $\theta \in (0, 1)$ define $\xi_\theta := (1 - \theta)\xi_0 + \theta\xi_1$. We split the domain of integration on the left hand side of (3.2) into $I^{\le} = \{\theta \in [0, 1] : |\xi_\theta| \le \Lambda(\delta)\}$ and $I^> = \{\theta \in [0, 1] : |\xi_\theta| > \Lambda(\delta)\}$. Thanks to (3.3), Lemmas 2.2 and 2.4 we get

$$(I) := \int_{I^{>}} \left| \left[\nabla^{2} f(\xi_{\theta}) - \nabla^{2} \varphi(\xi_{\theta}) \right] \right| d\theta \left| \xi_{1} - \xi_{0} \right|^{2}$$

$$\leq \delta \varphi''(|\xi_{0}| + |\xi_{1}|) \left| \xi_{1} - \xi_{0} \right|^{2}$$

$$< c \delta \left| \mathbf{V}(\xi_{1}) - \mathbf{V}(\xi_{0}) \right|^{2}.$$

If we choose $\delta > 0$ small enough, then

$$(I) \leq \frac{\varepsilon}{2} |\mathbf{V}(\xi_1) - \mathbf{V}(\xi_0)|^2.$$

Assumptions (F2) and (H3) yield

$$(II) := \int_{I^{\leq}} \left| \left[\nabla^2 f(\xi_{\theta}) - \nabla^2 \varphi(\xi_{\theta}) \right] \right| d\theta \, |\xi_1 - \xi_0|^2$$

$$\leq c \, (L+1) \int_{I^{\leq}} \frac{\varphi'(|\xi_{\theta}|)}{|\xi_{\theta}|} \, d\theta \, |\xi_1 - \xi_0|^2.$$

Due to Remark 2.3 there exists $0 < \gamma < 1$ and an N-function ρ with $\Delta_2(\{\rho, \rho^*\}) < \infty$ such that $(\varphi(t))^{\gamma} \sim \rho(t)$ uniformly in $t \ge 0$. Since $1/\gamma - 2 > -1$ we can find $\alpha > 1$ such that $\alpha'(1/\gamma - 2) > -1$, where $1 = \frac{1}{\alpha} + \frac{1}{\alpha'}$.

With the previous estimate, Hölder's inequality, and $\varphi'(t) \sim (\rho'(t))^{1/\gamma} t^{1/\gamma-1}$ we get

$$(II) \le c (L+1) |I^{\le}|^{\frac{1}{\alpha}} \left(\int_0^1 \frac{\varphi'(|\xi_{\theta}|)^{\alpha'}}{|\xi_{\theta}|^{\alpha'}} d\theta \right)^{\frac{1}{\alpha'}} |\xi_1 - \xi_0|^2$$

$$\le c (L+1) |I^{\le}|^{\frac{1}{\alpha}} \left(\int_0^1 \frac{(\rho'(|\xi_{\theta}|))^{\alpha'/\gamma}}{|\xi_{\theta}|^{\alpha'(1/\gamma - 2)}} d\theta \right)^{\frac{1}{\alpha'}} |\xi_1 - \xi_0|^2.$$

Using that $\rho'(|\xi_{\theta}|) \leq \rho'(|\xi_{0}| + |\xi_{1}|)$, Lemma 2.1, $\varphi'(t) \sim (\rho'(t))^{1/\gamma} t^{1/\gamma-1}$, and Lemma 2.4 we get

$$(II) \le c (L+1) |I^{\le}|^{\frac{1}{\alpha}} \frac{(\rho'(|\xi_0|+|\xi_1|))^{1/\gamma}}{(|\xi_0|+|\xi_1|)^{1/\gamma-2}} |\xi_1 - \xi_0|^2$$

$$\le c (L+1) |I^{\le}|^{\frac{1}{\alpha}} |\mathbf{V}(\xi_1) - \mathbf{V}(\xi_0)|^2.$$

Let us now estimate $|I^{\leq}|$. Recall that $|\xi_0| \geq \sigma(\varepsilon) = K\Lambda(\delta)$. If $|\xi_1 - \xi_0| \geq (K-1)\Lambda(\delta)$, then

$$|I^{\leq}| \leq \frac{2\Lambda(\delta)}{|\xi_1 - \xi_0|} \leq \frac{2}{K - 1}.$$
(3.4)

If on the other hand $|\xi_1 - \xi_0| < (K - 1)\Lambda(\delta)$, then $|I^{\leq}| = 0$. Thus, (3.4) holds in both cases. It follows that

$$(II) \le c (L+1) \left(\frac{2}{K-1}\right)^{\frac{1}{\alpha}} |\mathbf{V}(\xi_1) - \mathbf{V}(\xi_0)|^2.$$

If we choose $K \geq 2$ large enough, then

$$(II) \leq \frac{\varepsilon}{2} |\mathbf{V}(\xi_1) - \mathbf{V}(\xi_0)|^2.$$

Combining the estimates for (I) and (II) we get the claim.

We define the functional $\mathcal{F}_{\varphi}: W^{1,\varphi}(\Omega) \to \mathbb{R}$ by

$$\mathcal{F}_{\varphi}(\mathbf{u}) := \int_{\Omega} \varphi(|\nabla \mathbf{u}|) \, \mathrm{d}x. \tag{3.5}$$

Lemma 3.3 (comparison estimate). Let φ , f, and \mathbf{u} be as in Theorem 1.1. Then for every $\varepsilon > 0$ there exists $\kappa(\varepsilon) > 0$ such that the following holds: If B be a ball with $B \subset \Omega$ and \mathbf{v} is the local minimizer of the functional \mathcal{F}_{φ} , see (3.5), satisfying $\mathbf{v} - \mathbf{u} \in W_0^{1,\varphi}(B)$, then

$$\oint_{\mathcal{D}} \left| \mathbf{V}(\nabla \mathbf{u}) \right|^2 dx \le \kappa(\varepsilon)$$
(3.6)

or

$$\oint_{R} \left| \mathbf{V}(\nabla \mathbf{u}) - \mathbf{V}(\nabla \mathbf{v}) \right|^{2} dx \le \varepsilon \oint_{R} \left| \mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B} \right|^{2} dx.$$
(3.7)

Note that $\kappa(\varepsilon)$ and $\gamma(\varepsilon)$ depend only on ε , n, N, L, $\Delta_2(\{\varphi, \varphi^*\})$, and the convergence in (1.3).

Proof. In the following let B always be a ball and let \mathbf{v} be the local minimizer of the functional \mathcal{F}_{φ} , see (3.5), satisfying $\mathbf{v} - \mathbf{u} \in W_0^{1,\varphi}(B)$. Since V is surjective we can choose $\xi_0 \in \mathbb{R}^{n \times N}$ such that $\mathbf{V}(\xi_0) = \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_B$. Let σ be as in Lemma 3.2.

We start the proof with an auxiliary result.

Claim. There holds

$$\oint_{B} \left| \mathbf{V}(\nabla \mathbf{u}) - \mathbf{V}(\nabla \mathbf{v}) \right|^{2} dx \le \frac{\varepsilon}{2} \oint_{B} \left| \mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B} \right|^{2} dx + \Gamma_{B}, \tag{3.8}$$

where $\Gamma_B := 0$ if $|\xi_0| \ge \sigma(\varepsilon/16)$ and $\Gamma_B := 2c \varphi(c \sigma(\varepsilon/16))$ if $|\xi_0| < \sigma(\varepsilon/16)$. The constant c depends only on n, N, L, and $\Delta_2(\varphi, \varphi^*)$.

Define $g: \mathbb{R}^{n \times N} \to \mathbb{R}$ by

$$g(\xi) = \varphi(\xi) + f(\xi_0) - \varphi(\xi_0) + [\nabla f(\xi_0) - \nabla \varphi(\xi_0)](\xi - \xi_0).$$

It is easy to see that \mathbf{v} is also a local minimizer of

$$\int_{B} g(\nabla \mathbf{v}) \, \mathrm{d}x. \tag{3.9}$$

such that $\mathbf{v} - \mathbf{u} \in W_0^{1,\varphi}(B)$. The Euler equation for (3.9) and the ellipticity of g yield

$$\int_{B} [g(\nabla \mathbf{u}) - g(\nabla \mathbf{v})] dx = \int_{B} \left\langle \int_{0}^{1} (1 - \theta) \nabla^{2} g((1 - \theta) \nabla \mathbf{v} + \theta \nabla \mathbf{u}) d\theta (\nabla \mathbf{u} - \nabla \mathbf{v}), (\nabla \mathbf{u} - \nabla \mathbf{v}) \right\rangle dx$$

$$\geq c \int_{B} \int_{0}^{1} (1 - \theta) \varphi''(|(1 - \theta) \nabla \mathbf{v} + \theta \nabla \mathbf{u}|) d\theta |\nabla \mathbf{u} - \nabla \mathbf{v}|^{2} dx.$$

Now with $\varphi''(t) t \sim \varphi'(t)$, Lemmas 2.2 and 2.4 it follows

$$\int_{B} [g(\nabla \mathbf{u}) - g(\nabla \mathbf{v})] dx \ge c \int_{B} \varphi''(|\nabla \mathbf{u}| + |\nabla \mathbf{v}|) |\nabla \mathbf{u} - \nabla \mathbf{v}|^{2} dx$$

$$\ge c \int_{B} |\mathbf{V}(\nabla \mathbf{u}) - \mathbf{V}(\nabla \mathbf{v})|^{2} dx.$$
(3.10)

Now, since **u** is a local minimizer for \mathcal{F} , $\mathbf{u} - \mathbf{v} \in W_0^{1,\varphi}(B)$, and $B \subset \Omega$ it follows that

$$\begin{split} \int_{B} [g(\nabla \mathbf{u}) - g(\nabla \mathbf{v})] \, \mathrm{d}x &= \int_{B} [g(\nabla \mathbf{u}) - f(\nabla \mathbf{u})] \, \mathrm{d}x + \int_{B} [f(\nabla \mathbf{u}) - f(\nabla \mathbf{v})] \, \mathrm{d}x \\ &+ \int_{B} [f(\nabla \mathbf{v}) - g(\nabla \mathbf{v})] \, \mathrm{d}x \\ &\leq \int_{B} [g(\nabla \mathbf{u}) - f(\nabla \mathbf{u})] \, \mathrm{d}x + \int_{B} [f(\nabla \mathbf{v}) - g(\nabla \mathbf{v})] \, \mathrm{d}x =: (I). \end{split}$$

Observe that for every $\xi_1 \in \mathbb{R}^{n \times N}$ holds

$$f(\xi_1) - g(\xi_1) = \left\langle \int_0^1 (1 - \theta) [\nabla^2 f(\xi_\theta) - \nabla^2 g(\xi_\theta)] d\theta (\xi_1 - \xi_0), (\xi_1 - \xi_0) \right\rangle, \tag{3.11}$$

where $\xi_{\theta} := (1 - \theta)\xi_0 + \theta \xi_1$.

If $|\xi_0| \geq \sigma(\varepsilon/16)$, then it follows from (3.11) and Lemma 3.2 that

$$(I) \le \frac{\varepsilon}{16} \left(\int_{B} |\mathbf{V}(\nabla \mathbf{u}) - \mathbf{V}(\xi_{0})|^{2} dx + \int_{B} |\mathbf{V}(\nabla \mathbf{v}) - \mathbf{V}(\xi_{0})|^{2} dx \right).$$

If on the other hand $|\xi_0| \leq \sigma(\varepsilon/16)$, then it follows from (3.11), Lemmas 3.2 and 3.1, and (2.9) that

$$(I) \leq \frac{\varepsilon}{16} \left(\int_{B} \chi_{\{|\nabla \mathbf{u}| \geq \sigma(\varepsilon/16)\}} |\mathbf{V}(\nabla \mathbf{u}) - \mathbf{V}(\xi_{0})|^{2} dx + \int_{B} \chi_{\{|\nabla \mathbf{v}| \geq \sigma(\varepsilon/16)\}} |\mathbf{V}(\nabla \mathbf{v}) - \mathbf{V}(\xi_{0})|^{2} dx \right)$$

$$+ c \left(\int_{B} \chi_{\{|\nabla \mathbf{u}| < \sigma(\varepsilon/16)\}} |\mathbf{V}(\nabla \mathbf{u}) - \mathbf{V}(\xi_{0})|^{2} dx + \int_{B} \chi_{\{|\nabla \mathbf{v}| < \sigma(\varepsilon/16)\}} |\mathbf{V}(\nabla \mathbf{v}) - \mathbf{V}(\xi_{0})|^{2} dx \right)$$

$$\leq \frac{\varepsilon}{16} \left(\int_{B} |\mathbf{V}(\nabla \mathbf{u}) - \mathbf{V}(\xi_{0})|^{2} dx + \int_{B} |\mathbf{V}(\nabla \mathbf{v}) - \mathbf{V}(\xi_{0})|^{2} dx \right) + c \varphi(c \sigma(\varepsilon/16)).$$

This and the previous estimate prove

$$\oint_{B} \left| \mathbf{V}(\nabla \mathbf{u}) - \mathbf{V}(\nabla \mathbf{v}) \right|^{2} dx \le \frac{\varepsilon}{16} \left(\int_{B} \left| \mathbf{V}(\nabla \mathbf{u}) - \mathbf{V}(\xi_{0}) \right|^{2} dx + \int_{B} \left| \mathbf{V}(\nabla \mathbf{v}) - \mathbf{V}(\xi_{0}) \right|^{2} dx \right) + \frac{1}{2} \Gamma_{B},$$

where $\Gamma_B := 0$ if $|\xi_0| \ge \sigma(\varepsilon/16)$ and $\Gamma_B := 2c \varphi(c \sigma(\varepsilon/16))$ if $|\xi_0| < \sigma(\varepsilon/16)$. We estimate by adding and subtracting $\mathbf{V}(\nabla \mathbf{v})$ in the second integrand

$$\frac{\varepsilon}{16} \left(\int_{B} |\mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B}|^{2} dx + \int_{B} |\mathbf{V}(\nabla \mathbf{v}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B}|^{2} dx \right) \\
\leq \frac{\varepsilon}{4} \left(\int_{B} |\mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B}|^{2} dx + \int_{B} |\mathbf{V}(\nabla \mathbf{v}) - \mathbf{V}(\nabla \mathbf{u})|^{2} dx \right).$$

This and the previous estimate shows

$$\oint_{B} |\mathbf{V}(\nabla \mathbf{u}) - \mathbf{V}(\nabla \mathbf{v})|^{2} dx \le \frac{\varepsilon}{2} \left(\int_{B} |\mathbf{V}(\nabla \mathbf{u}) - \mathbf{V}(\xi_{0})|^{2} dx \right) + \Gamma_{B},$$

which proves the auxiliary result (3.8).

Let us now prove the claim of the lemma. If $|\xi_0| \ge \sigma(\varepsilon/16)$, then the claim follows from (3.8), since in this case $\Gamma_B = 0$. So let us assume in the following that $|\xi_0| < \sigma(\varepsilon/16)$, which implies $\Gamma_B = 2c \varphi(c \sigma(\varepsilon/16))$. If

$$\Gamma_B \le \frac{\varepsilon}{2} \oint_B \left| \mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_B \right|^2 dx,$$

then the claim follows again from (3.8). So we can assume in the following that

$$\int_{B} \left| \mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B} \right|^{2} dx \leq \frac{2\Gamma_{B}}{\varepsilon}.$$

This, $|\xi| \leq \sigma(\varepsilon/16)$, and (2.9) imply

$$\int_{B} |\mathbf{V}(\nabla \mathbf{u})|^{2} dx \leq 2 \int_{B} |\mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B}|^{2} dx + 2 |\mathbf{V}(\xi_{0})|^{2}
\leq \frac{4\Gamma_{B}}{\varepsilon} + c \varphi (c \sigma(\varepsilon/16)) =: \kappa(\varepsilon).$$

This proves the lemma.

The following result on the decay of the excess functional for local minimizers can be found in [9], Theorem 6.4.

Proposition 3.4 (decay estimate for \mathbf{v}). Let φ satisfy (H1)–(H4), let $B \subset \Omega$ be a ball, and let \mathbf{v} be the local minimizer of the functional \mathcal{F}_{φ} , see (3.5), satisfying $\mathbf{v} - \mathbf{u} \in W_0^{1,\varphi}(B)$. Then there exists $\beta > 0$ and c > 0 such that for every ball $B \subset \Omega$ and every $\lambda \in (0,1)$ holds

$$\int_{B} |\mathbf{V}(\nabla \mathbf{v}) - \langle \mathbf{V}(\nabla \mathbf{v}) \rangle_{B}|^{2} dx \le c \lambda^{\sigma} \int_{B} |\mathbf{V}(\nabla \mathbf{v}) - \langle \mathbf{V}(\nabla \mathbf{v}) \rangle_{B}|^{2} dx.$$

Note that c and β depend only on n, N, L, $\Delta_2(\{\varphi, \varphi^*\})$, and c_1 .

We will now combine Proposition 3.4 and Lemma 3.3 to derive a decay estimate for the excess functional of \mathbf{u} .

Lemma 3.5 (decay estimate for **u**). Let φ , f, and **u** be as in Theorem 1.1. Then exists $\kappa_0 > 0$ and λ_0 such that the following holds: if B is a ball with $B \subset \Omega$, then

$$\oint_{\mathcal{D}} \left| \mathbf{V}(\nabla \mathbf{u}) \right|^2 \le \kappa_0 \tag{3.12}$$

or

$$\oint_{\lambda_0 B} |\mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{\lambda_0 B}|^2 dx \le \frac{1}{2} \oint_B |\mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_B|^2 dx.$$
(3.13)

Note that κ_0 and λ_0 depend only on n, N, L, $\Delta_2(\{\varphi, \varphi^*\})$, c_1 , β , and the limit in (1.3).

Proof. Let B be a ball with $B \subset \Omega$. With Proposition 3.4 we estimate for any $\lambda \in (0,1)$

$$\int_{\lambda B} |\mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{\lambda B}|^{2} dx \leq 2 \int_{\lambda B} |\mathbf{V}(\nabla \mathbf{u}) - \mathbf{V}(\nabla \mathbf{v})|^{2} dx + \int_{\lambda B} |\mathbf{V}(\nabla \mathbf{v}) - \langle \mathbf{V}(\nabla \mathbf{v}) \rangle_{\lambda B}|^{2} dx$$

$$\leq 2 \lambda^{-n} \int_{B} |\mathbf{V}(\nabla \mathbf{u}) - \mathbf{V}(\nabla \mathbf{v})|^{2} dx + c \lambda^{\sigma} \int_{B} |\mathbf{V}(\nabla \mathbf{v}) - \langle \mathbf{V}(\nabla \mathbf{v}) \rangle_{B}|^{2} dx$$

$$\leq c \lambda^{-n} \int_{B} |\mathbf{V}(\nabla \mathbf{u}) - \mathbf{V}(\nabla \mathbf{v})|^{2} dx + c \lambda^{\sigma} \int_{B} |\mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B}|^{2} dx.$$

In the following we fix $\lambda \in (0,1)$ such that $c \lambda^{\sigma} \leq \frac{1}{4}$, which implies

$$\oint_{\lambda B} |\mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{\lambda B}|^2 dx \le c \lambda^{-n} \oint_{B} |\mathbf{V}(\nabla \mathbf{u}) - \mathbf{V}(\nabla \mathbf{v})|^2 dx + \frac{1}{4} \oint_{B} |\mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B}|^2 dx.$$
(3.14)

Due to Lemma 3.3 there exists $\kappa_0 > 0$ such that

$$\oint_{B} \left| \mathbf{V}(\nabla \mathbf{u}) \right|^{2} \mathrm{d}x \le \kappa_{0} \tag{3.15}$$

or

$$c \lambda^{-n} \oint_{R} \left| \mathbf{V}(\nabla \mathbf{u}) - \mathbf{V}(\nabla \mathbf{v}) \right|^{2} dx \le \frac{1}{4} \oint_{R} \left| \mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B} \right|^{2} dx.$$
 (3.16)

In combination with (3.14) we get that (3.15) holds or

$$\oint_{\lambda B} |\mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{\lambda B}|^2 dx \le \frac{1}{2} \oint_{B} |\mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B}|^2 dx.$$

This proves the claim.

We are now in position to prove our main result.

Proof of Theorem 1.1. Let $B \subset \Omega$ and let R denote the radius of B. Due to (2.9) it suffices to show that

$$|\mathbf{V}(\nabla \mathbf{u}(z))|^2 \le c \left(1 + \int_{B} |\mathbf{V}(\nabla \mathbf{u})|^2 dx\right)$$
 (3.17)

for almost all $z \in \frac{1}{2}B$. Since $\mathbf{u} \in W^{1,\varphi}(\Omega)$, it follows by Lemma 2.4 that $\mathbf{V}(\nabla \mathbf{u}) \in L^2(\Omega)$. Thus for almost every $z \in \frac{1}{2}B$ holds

$$\lim_{r \to 0} \oint_{B_r(z)} |\mathbf{V}(\nabla \mathbf{u}(z)) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B_r(z)}|^2 dx = 0.$$
(3.18)

Let E denote the set of $z \in \frac{1}{2}B$ such (3.18) holds. To prove the theorem it suffices to show that

$$\left| \mathbf{V} (\nabla \mathbf{u}(z)) \right|^2 \le c \left(1 + \int_{B_R(z)} \left| \mathbf{V} (\nabla \mathbf{u}) \right|^2 dx \right)$$
(3.19)

for every $z \in E$.

Fix $z \in E$. Then due to Lemma 3.5 there exists $\kappa_0 > 0$ and $\lambda_0 \in (0,1)$ such that for every $r \in (0,R/2)$ holds

$$\int_{B_r(z)} \left| \mathbf{V}(\nabla \mathbf{u}) \right|^2 dx \le \kappa_0$$
(3.20)

or

$$\oint_{B_{\lambda_0 r}(z)} |\mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B_{\lambda_0 r}(z)}|^2 dx \le \frac{1}{2} \oint_{B_r(z)} |\mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B_r(z)}|^2 dx.$$
(3.21)

This allows us to distinguish two cases:

- (i) There exists a sequence of radii $r_i \to 0$ such that (3.20) holds for every r_i .
- (ii) There exists $R_0 > 0$ such that (3.20) holds for all $r \leq R_0$.

In the case (i) it follows with (3.18) that

$$|\mathbf{V}(\nabla \mathbf{u})(z)|^2 \le \kappa_0.$$

Let us now consider the case (i). Let $r_0 := \sup\{s \in (0, R/2) : (3.21) \text{ holds for all } r \leq s\}$, then $r_0 \geq R_0 > 0$. By continuity of the expressions in (3.21) with respect to $r \in (0, R)$, it follows that also r_0 satisfies (3.21). Let $r_k := \lambda_0^{-k} r_0$ for $k \in \mathbb{N}_0$. Repeated use of (3.21) shows

$$\int_{B_{r_k}(z)} |\mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B_{r_k}(z)}|^2 dx \le 2^{-k} \int_{B_{r_0}(z)} |\mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B_{r_0}(z)}|^2 dx$$

for every $k \in \mathbb{N}$. But then, since

$$\left| \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B_{r_k}(z)} - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B_{r_{k+1}}(z)} \right| \le \lambda_0^{-n} \left(\int_{B_{r_k}(z)} \left| \mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B_{r_k}(z)} \right|^2 dx \right)^{\frac{1}{2}},$$

we get using (3.18)

$$|\mathbf{V}(\nabla \mathbf{u})(z)| \leq \sum_{k=0}^{\infty} |\langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B_{r_{k+1}}(z)} - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B_{r_{k}}(z)}| + |\langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B_{r_{0}}(z)}|$$

$$\leq \lambda_{0}^{-n} \sum_{k=0}^{\infty} 2^{-k} \left(\int_{B_{r_{0}}(z)} |\mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B_{r_{0}}(z)}|^{2} dx \right)^{\frac{1}{2}} + |\langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B_{r_{0}}(z)}|$$

$$\leq \left(2\lambda_{0}^{-n} \right) \left(\int_{B_{r_{0}}(z)} |\mathbf{V}(\nabla \mathbf{u}) - \langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B_{r_{0}}(z)}|^{2} dx \right)^{\frac{1}{2}} + |\langle \mathbf{V}(\nabla \mathbf{u}) \rangle_{B_{r_{0}}(z)}|$$

$$\leq \left(4\lambda_{0}^{-n} + 1 \right) \left(\int_{B_{r_{0}}(z)} |\mathbf{V}(\nabla \mathbf{u})|^{2} dx \right)^{\frac{1}{2}}.$$

$$(3.22)$$

If $r_0 = R/2$, then we estimate with (3.22), $B_{R/2}(z) \subset B$, and $|B_{R/2}(z)| = 2^{-n}|B|$

$$|\mathbf{V}(\nabla \mathbf{u})(z)|^2 \le 2^n (4\lambda_0^{-n} + 1)^2 \int_{R} |\mathbf{V}(\nabla \mathbf{u})|^2 dx,$$

which proves (3.19). So we can continue under the assumption that $0 < r_0 < R/2$. We will show in the following that in this case r_0 satisfies (3.20). The definition of r_0 and $r_0 < R/2$ imply that for every $j \in \mathbb{N}$ there exists $r_j \in [r_0, \min\{r_0 + \frac{1}{j}, R/2\})$ such that (3.20) holds. Since $r_j \to r_0$ for $j \to \infty$, we conclude by continuity of $r \mapsto f_{B_r(z)} |\mathbf{V}(\nabla \mathbf{u})|^2 dx$ on (0, R) that also r_0 satisfies (3.20). This and (3.22) imply

$$|\mathbf{V}(\nabla \mathbf{u})(z)|^2 \le (4\lambda_0^{-n} + 1)^2 \kappa_0.$$

This concludes the proof of Theorem 1.1.

References

- [1] E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: the case 1 < p < 2. J. Math. Anal. Appl. 140 (1989) 115–135.
- [2] E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal. 156 (2001) 121–140.
- [3] E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164 (2002) 213–259.
- [4] M. Chipot and L.C. Evans, Linearization at infinity and Lipschitz estimate for certain problems in the Calculus of Variations. Proc. Roy. Soc. Edinburgh Sect. A 102 (1986) 291–303.
- [5] A. Cianchi, Some results in the theory of Orlicz spaces and applications to variational problems, in *Nonlinear Analysis*, Function Spaces and Applications 6, Acad. Sci. Czech Repub., Prague, Czech Republic (1999) 50–92.
- [6] A. Cianchi and N. Fusco, Gradient regularity for minimizers under general growth conditions. J. Reine Angew. Math. 507 (1999) 15–36.
- [7] M. Cupini, M. Guidorzi and E. Mascolo, Regularity of minimizers of vectorial integrals with p-q growth. Nonlinear Anal. 54 (2003) 591–616.
- [8] L. Diening and F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth. Forum Math. 20 (2008) 523–556.
- [9] L. Diening, B. Stroffolini and A. Verde, Regularity of functionals with φ-growth. Manuscripta Math. 129 (2009) 449–481.
- [10] G. Dolzmann and J. Kristensen, Higher integrability of minimizing Young measures. Calc. Var. Partial Differ. Equ. 22 (2005) 283–301.
- [11] M. Foss, Global regularity for almost minimizers of nonconvex variational problems. Ann. Mat. Pura Appl. 187 (2008) 263–321.
- [12] M. Foss, A. Passarelli di Napoli and A. Verde, Global Morrey regularity results for asymptotically convex variational problems. Forum Math. 20 (2008) 921–953.
- [13] M. Fuchs, Regularity for a class of variational integrals motivated by nonlinear elasticity. Asymptotic Anal. 9 (1994) 23–38.
- [14] M. Fuchs, Lipschitz regularity for certain problems from relaxation. Asymptotic Anal. 12 (1996) 145–151.
- [15] M. Giaquinta and G. Modica, Remarks on the regularity of the minimizers of certain degenerate functionals. Manuscripta Math. 57 (1986) 55–99.
- [16] J. Kristensen and A. Taheri, Partial regularity of strong local minimizers in the multi-dimensional calculus of variations. Arch. Ration. Mech. Anal. 170 (2003) 63–89.
- [17] C. Leone, A. Passarelli di Napoli and A. Verde, Lipschitz regularity for some asymptotically subquadratic problems. Nonlinear Anal. 67 (2007) 1532–1539.
- [18] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal. 105 (1989) 267–284.
- [19] P. Marcellini, Regularity and existence of solutions of elliptic equations with p,q-growth conditions. J. Diff. Eq. 90 (1991) 1–30.
- [20] P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Pisa 23 (1996) 1–25.
- [21] P. Marcellini and G. Papi, Nonlinear elliptic systems with general growth. J. Diff. Eq. 221 (2006) 412–443.
- [22] G.R. Mingione, Regularity of minima: An invitation to the dark side of the calculus of variations. Appl. Math. 51 (2006) 355–426.
- [23] A. Passarelli di Napoli and A. Verde, A regularity result for asymptotically convex problems with lower order terms. *J. Convex Anal.* **15** (2008) 131–148.
- [24] J.P. Raymond, Lipschitz regularity of solutions of some asymptotically convex problems *Proc. Roy. Soc. Edinburgh Sect. A* 117 (1991) 59–73.
- [25] M. Růžička and L. Diening, Non-Newtonian fluids and function spaces, in Nonlinear Analysis, Function Spaces and Applications 8, Acad. Sci. Czech Repub., Prague, Czech Republic (2007) 95–143.
- [26] K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems. Acta Math. 138 (1977) 219-240.