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1. INTRODUCTION

We consider local minimizers of variational integrals of the type
Fw) = [ (Vwds (L1)
Q

where € is a bounded, open subset of R”, u: Q — R is a vector valued function and Vu stands for the total
derivative of u. A function u € W1?(Q) is a local minimizer of F(u) if F(u) < F(u+mn), for every test function
n € WyP(€) with compact support in Q.

In 1977 Uhlenbeck (see [26]) proved everywhere C™® regularity for local minimizers of functional when the
integrand f € C? is assumed to behave like [£|P, with p > 2; Acerbi and Fusco considered the case 1 < p < 2.
Later on a large number of generalizations have been made, see for example the survey [22].

For the (p, q) case and the general growth case, see the papers of Marcellini [18-21] and [6,7].

Another direction of research is the one arising in the model of electro-rheological fluids [2,3].

For the Lipschitz regularity, the results are available when f € C? is asymptotically, in a C?-sense, quadratic
or super-quadratic at infinity (see [4] for the case p = 2 and [15,24] for the case p > 2; for the subquadratic case
see [17]). For related results, see [11-14,23].
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The argument of such results is the following: if the gradients of minimizers are very large, the problem
becomes “regular” and so good estimates are known.

Moreover, Dolzmann and Kristensen [10] have proved local higher integrability with large exponents of
minimizers when f € C° approaches at infinity, in a C°-sense, the p-Dirichlet integrand, for some arbitrary
p > 1, see also [16].

In a recent paper Diening and Ettwein [8] considered fractional estimates for non-differentiable systems with
p-growth. Using some of their techniques, we were able to prove in [9] excess decay estimates for vectorial
functionals with ¢-growth. In this paper we extend the results found in [4,15,17,24] to the case of a convex
function satisfying the Ag-condition with its conjugate (A2({p,¢*}) < o0), see Section 2 for the definitions.
More precisely we have the following theorem:

Theorem 1.1. Let ¢ be an N-function such that

(HL) @ € C*((0,00)) N C([0,00)) and ¢ € My({p, ¢*});
(H2) As({ep, 9" }) < o0o;

(H3) @'(1) ~ 19" (1);

(H4) there exists 3 € (0,1] and ¢ > 0 such that

s B
et -0l <aso(H)

for allt >0 and s € R with |s| < 3t.
Moreover let f : RN — R be such that

(F1) f e C? RN,
(F2) there exists L > 0 such that for all £ € R™N \ {0}

IV2F(©)] < Le"(I€]); (1.2)
(F3) there holds®

V) - VPel€)]
ST ()

=0. (1.3)

If u e WH2(Q) is a local minimizer of the functional F, see (1.1), then Vu is locally bounded in Q. Moreover,
for every ball B C Q we have

esssup ¢(|Vu|) < e (1 +][<p(|Vu|) dx), (1.4)

1
1B
2 B

where ¢ depends only onn, N, L, Ao({p,¢*}), c1, B, and the convergence in (1.3).

Let us point out that in the power case, with 1 < p < 2 [17], the authors considered the asymptotic behaviour
like (p + tQ)g , it > 0. Here we are able to recover also the case p = 0.

3We use that ¢ can also be interpreted as a function from R™*N to R™ by ¢(€) := ¢(|£]).
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2. TECHNICAL LEMMAS

In the sequel 2 will denote a bounded, open set of R™. To simplify the notation, the letter ¢ will denote any
positive constant, which may vary throughout the paper. For w € L{ _(R™) and a ball B C R™ we define

loc

(w)p ::][w(:n)d:c = % /B w(z) dz, (2.1)
B

where |B| is the n-dimensional Lebesgue measure of B. For A > 0 we denote by AB the ball with the center
as B but A-times the radius. We write B, (x) for the ball with radius R and center z. For U, C R"™ we write
U € Q if the closure of U is a compact subset of 2. We define §; ; := 0 for ¢ # j and 6;; = 1.

The following definitions and results are standard in the context of N-functions. A real function ¢ : RZ% —
RZY is said to be an N-function if it satisfies the following conditions: there exists the derivative ¢’ of o, it is
right continuous, non-decreasing and satisfies ¢’(0) = 0 and ¢’(¢) > 0 for ¢ > 0. In addition, ¢ is convex.

We say that ¢ satisfies the As-condition, if there exists K > 0 such that for all ¢ > 0 holds ¢(2t) < K ¢(t).
By As(p) we denote the smallest constant K. Since ¢(t) < ¢(2t) the Ay condition is equivalent to p(2t) ~ (t).
For a family {¢x}, of N-functions we define Aa({@r},) := supy Az(pr).

By L¥ and W% we denote the classical Orlicz and Sobolev-Orlicz spaces, i.e. f € L? iff [¢(|f])dz < oo
and f € WL iff f,Vf € L?. The space L¥ equipped with the norm [N, :==nf{A>0: [o(f/A)dx <1}
is a Banach space. By W,'#(2) we denote the closure of C§°(€2) in W1#(£2), where W'#(Q) is equipped with
the norm |, + [V /], [5]

By (¢')7! : R2% — R2% we denote the function

(¢ )7H(t) ;== sup {s € RZ0 : ' (s) < t}.

If ¢ is strictly increasing then (¢’)~! is the inverse function of ¢/. Then ¢* : RZ% — RZ? with

(1) = / (') (s) ds

is again an N-function and (¢*)'(t) = (¢’)~*(t) for t > 0. It is the complementary function of ¢. Note that
©*(t) = supzsq(st — (s)) and (¢*)* = p. For all § > 0 there exists ¢; (only depending on As({¢,¢*})) such
that for all ¢, s > 0 holds

ts <dp(t) +csp*(s). (2.2)
For § = 1 we have ¢s = 1. This inequality is called Young ’s inequality. For all ¢ > 0
t t
57(3) S e <o),
* N 2.3)
p*(t N 29" (1 (
s0< ())Sso(t)§s0< t()>~

Therefore, uniformly in ¢ > 0

where the constants only depend on As({p, p*}).
We define the shifted N-function p, : RZ® — RZ9 by

platt),

a-+t (2:5)

palt) = / gy(s)ds where @y (t) =
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The shifted N-functions have been introduced in [8]. See [25] for a detailed study of the shifted N-functions.
The function ¢, and its dual ¢, are again N-functions and satisfy the As-condition uniformly in ¢ > 0. In
particular, Az ({@a; (a)*},>0) < 00. For given ¢ we define the N-function ¢ by

W) (so'(t))? (2.6)

t t

It is shown in [8] that v also satisfies (H2)—(H3) and uniformly in ¢ > 0 holds ¢ (t) ~ \/¢"(t). We define the
function V(Q):

vig) - Y0

The following lemma can be found in [1].
Lemma 2.1. Let a > —1 then uniformly in &, & € RN with [&] + [£1] > 0 holds

o 1
(6] + l€2]) ™ ~ /0 &9/ a6, @1

where &g := (1 — 0)&y + 0.
Moreover, we need the following generalization of Lemma 2.1.

Lemma 2.2 ([8], Lem. 20). Let ¢ be an N-function with As({p, p*}) < co. Then uniformly for all &y, & € R™N
with |&o] + &1 > 0 holds

/1 ¢'(16]) 4o - ¢ U]+ 160D (2.8)
0

|6 [Sol +1&a]
where &g := (1 — 0)&y + 0&1. The constants only depend on As({e, ©*}).

Remark 2.3. Let ¢ be an N-function with Az ({p, ¢*}) < co. Then it has been shown in [8], p. 546, and [25],
Lemma 5.19, that there exists 0 < v < 1 and and N-function p with As({p, p*}) < oo such that (p(t))7 ~ p(t)
uniformly in ¢ > 0. It is important to remark that v and Aq({p, p*}) only depend on Ay({¢, ¢*}). Note that

1 . _
p(t) ~ &' (1), @(t) ~ (p(t)7, and p(t) ~ tp'(t) imply @'(t) ~ (o' ()77

The next Lemma contains useful properties of the function V (see [8], Lem. 3, or [9,25]).
Lemma 2.4. For every &, & € RN with [&] + |£1] > 0 holds

V(&) = V(&)[* ~ [&0 — & ¢" (6] + [€1l)
[V (€0)I* ~ @(|él)-

3. PROOF OF THE MAIN RESULT

(2.9)

We need two lemmas that measures the differences of f and ¢ in a C? sense. The first lemma is a rough
estimate using only the upper estimates for V2f and V2¢. The second lemma is more subtle using that V?2f
and V2 are close for large arguments. It is the analogue of Lemma 5.1 in [15] and Lemma 2.4 in [17].

Lemma 3.1. Let ¢ satisfy (H1)-(H4) and f satisfy (F1)—-(F3). Then there exists ¢ > 0 such that for all
&,&1 € R™*N holds

/0 V27 (€0) — V2o(o)][d0 161 — & < ¢ |VI(&1) — V(E) [ (3.1)

where & = (1 — 0)&o + 0&1. Note that ¢ depends only on n, N, L, and Az ({p, ¢*}).
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Proof. Due to (1.2), Lemmas. 2.2 and 2.4 we estimate

1 1
/0 V2 £(¢9) — V2(0)][ab]€1 — &l < (L +1) / ' (Es) dBlEs — &2
< c(L+1)¢"(J6] + &) &1 — &l
<c(L+1)|V(&) - V(&)

This proves the assertion. O

Lemma 3.2. Let ¢ satisfy (H1)-(H4) and f satisfy (F1)—(F3). Then for every € > 0 there exist o(g) > 0 such
that for all &,&1 € R™N with max {|&], |€1]} > o(e) holds

/O I2£() — V2o())|d0 |61 — &l < £ [V(&1) — V)| (3.2)

where &g = (1 — 0)& + 0&1. Note that o depends only on e,n, N, L, Ao({p, ¢*}), and the limit in (1.3).

Proof. Fix € > 0. In the following let 6 = §(¢) > 0. The precise value of § will be chosen later. Due to (1.3)
there exists A(d) > 0 such that

IV2£(€) = V()] < 5" (I¢]) (3.3)

for all £ € R™N with [£] > A(6).

Let o(e) := K A(6) with K > 2, where the precise value of K will be chosen later. Let &, & € RN with
max {|&], 1]} > o(e). By symmetry we can assume without loss of generality |1 > o(g). For 0 € (0,1)
define & = (1 — 0)& + 0¢,. We split the domain of integration on the left hand side of (3.2) into IS =
{0 €[0,1]: |&] < A(6)} and I ={0 € [0,1] : |&| > A()}. Thanks to (3.3), Lemmas 2.2 and 2.4 we get

(1) := /p V2 £ (&) — VZ0(£0)]]d0 €1 — &

< 89" (|&] + &) 161 — &of?
< cd|V(&) - V(&)

If we choose § > 0 small enough, then

(I) < z|V(&) = V(&)

€
2

Assumptions (F2) and (H3) yield

(I1) = /Ig V2 £ (&) — V2(€0)]|dO |1 — &of?

SC(L+1)/I<%C19|§1§0|2-

Due to Remark 2.3 there exists 0 < v < 1 and an N-function p with As({p, p*}) < oo such that (p(t))7 ~ p(t)
uniformly in ¢ > 0. Since 1/y —2 > —1 we can find o > 1 such that o/(1/y —2) > —1, where 1 = L + L.

«
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With the previous estimate, Holder’s inequality, and ¢ (t) ~ (p/(t))/7 /771 we get

1

1 o’ ol
I L+ 1D)|IS|): #&D™ 4y &2
(I1) < (L + D|IF] (/ o & — &l

1/ o' )y of
1 P (1€
0 |l
Using that o' (|&]) < p'(|€] + |€1]), Lemma 2.1, ¢/ (¢) ~ (o' (t))*/7 /771 and Lemma 2.4 we get

(0 (|| + &)
(|€o] + [&1])/7—2
< L+ DIIE[F|V(E) - V(&)

(II) < c(L+ D|I5|= & — &2

Let us now estimate |I=|. Recall that || > o(e) = KA(S). If [& — &| > (K — 1)A(5), then

200) _ 2

5] < .
| |_|§1—€0|_K—1

(3.4)

If on the other hand [&; — &| < (K — 1)A(§), then |I<| = 0. Thus, (3.4) holds in both cases. It follows that
5 \3%
1 < e+ () Ve - Ve

If we choose K > 2 large enough, then

(IT) < Z|V(&1) — V(&)™

<

2

Combining the estimates for (I) and (I7) we get the claim. O
We define the functional F, : W?(Q) — R by

Fo(u) ::/an(|Vu|)d:E. (3.5)

Lemma 3.3 (comparison estimate). Let ¢, f, and u be as in Theorem 1.1. Then for every ¢ > 0 there
exists k() > 0 such that the following holds: If B be a ball with B C Q and v is the local minimizer of the
functional F,, see (3.5), satisfying v —u € Wol""(B), then

][ |V(Vu)|2 dz < k(e) (3.6)
][|V(vu) ~V(VV)[Pdz < e ][ IV(Vu) — (V(Vu)) 5| da. (3.7)

Note that k(g) and (g) depend only on e, n, N, L, Aay({p,¢*}), and the convergence in (1.3).
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Proof. In the following let B always be a ball and let v be the local minimizer of the functional F, see (3.5),
satisfying v — u € W, '#(B). Since V is surjective we can choose & € R"*N such that V(&) = (V(Vu))p. Let
o be as in Lemma 3.2.

We start the proof with an auxiliary result.

Claim. There holds

][|V(Vu) —(V(Vu))s|* dz + Tp, (3.9)

][|V(Vu) — V()P de < %
B

where I'p := 0 if |§o] > o(¢/16) and T'p := 2cp(co(e/16)) if |{o| < o(e/16). The constant ¢ depends only
onn, N, L, and As(p, ¢*).

Define g : R™*N — R by

9(&) = ¢(&) + f (&) — (o) + [V £ (o) = V(o) (€ = &o)-

It is easy to see that v is also a local minimizer of

/ g(Vv)dz. (3.9)
B
such that v —u € W, '¥(B). The Euler equation for (3.9) and the ellipticity of g yield
1
/ [9(Vu) — g(Vv)] dz :/ </ (1—-60)V3g((1 —0)Vv +0Vu)dd (Vu — Vv), (Vu — Vv)> dz
B B \Jo
1
>c / / (1—0)¢"(|(1 = 0)Vv + 0Vu|)df [Vu — Vv|? dz.
BJo
Now with ¢ (t)t ~ ¢'(t), Lemmas 2.2 and 2.4 it follows
/ [g(Vu) — g(Vv)]dz > c/ ¢"(IVu| + |[Vv])|[Vu — Vv|? dz
B B
(3.10)
> c/ V(Va) = V(Vv)P da.
B

Now, since u is a local minimizer for 7, u — v € Wol"p(B), and B C Q it follows that

/B [9(V) — g(Vv)] dz = /B [g(V) — F(Vu)]da + /B [F(Vu) — £(V)]da
+ /B F(Vv) — g(V)|da
< /B [g(V) — F(Vu)]da + /B F(Tv) — g(Vv)] da = (1),

Observe that for every & € R™*N holds

f(&) —g(&) = </O (1= 0)[V?f(&) — VZ9(&)]do (&1 — &), (&1 — €0)>7 (3.11)

where &g := (1 — )& + 0&;.
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If |&| > o(g/16), then it follows from (3.11) and Lemma 3.2 that

< 16(/ [V(Vu) — V(&) d:c+/ [V(Vv) — (§O)|2dx).

If on the other hand || < o(¢/16), then it follows from (3.11), Lemmas 3.2 and 3.1, and (2.9) that

1>
(1) < — (/BX{|Vu20(E/16)}|V(vu) ~ V(&) dﬂer/BX{\Vvlzo(e/ls)}|V(VV) - V(€0)|2d93)

16
+c </X{Vu|<a(e/16)}|v(vu) ~ V(&) dﬂ?Jr/X{\vVKa(a/m)}|V(VV) ~ V(&) dﬂf)

(/ V(Vu) — V(&) d:v—f—/ [V(Vv) — (£O)|2dx) + cp(co(e/16)).

This and the previous estimate prove
][ }V(Vu) — V(Vv)}de < 15_6</ [V(Vu) — V(§0)|2 dx +/ [V(Vv) — V(§0)|2dm> + %FB,
B B
B

where I'p := 0 if || > o(e/16) and T'p := 2cp(co(e/16)) if || < o(e/16). We estimate by adding and
subtracting V(Vv) in the second integrand

5V - vigwys s [ [ViTY) - (viwsfac )

o

Z</ [V(Vu) — (V(Vu))z|? dx+/B|V(Vv) — V(Vu)[? dx)~

This and the previous estimate shows
][|V(Vu) —~ V(W) dz < % </ IV(Vu) - V(&)[? dm) +T'p,
B

which proves the auxiliary result (3.8).
Let us now prove the claim of the lemma. If |{y] > o0(¢/16), then the claim follows from (3.8), since in this
case I'p = 0. So let us assume in the following that |£y| < o(¢/16), which implies I'p = 2c p(co(e/16)). If

Ty < 3][ IV (V) — (V(Vu) 5| da,

then the claim follows again from (3.8). So we can assume in the following that

2FB

][\V(vu) V(Vu)) B| dr < ==
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This, [£| < 0(g/16), and (2.9) imply

FIvowf ar <2 £ [vow - (vowyal as + 2 (Vi)

4r
< TB + cp(co(e/16)) =: k(e).
This proves the lemma. O
The following result on the decay of the excess functional for local minimizers can be found in [9], Theorem 6.4.

Proposition 3.4 (decay estimate for v). Let ¢ satisfy (H1)—(H4), let B C Q be a ball, and let v be the local
minimizer of the functional F,, see (3.5), satisfying v —u € W()I"P(B). Then there exists 3 > 0 and ¢ > 0 such
that for every ball B C 2 and every \ € (0,1) holds

][ [V(Vv) = (V(Vv))p]2ds < c)\”][ [V(Vv) — (V(Vv))p|*dz.
A\B B

Note that ¢ and 3 depend only on n, N, L, Ao({¢,©*}), and c;.

We will now combine Proposition 3.4 and Lemma 3.3 to derive a decay estimate for the excess functional
of u.

Lemma 3.5 (decay estimate for u). Let ¢, f, and u be as in Theorem 1.1. Then exists kg > 0 and Ao such
that the following holds: if B is a ball with B C §2, then

][IV(VH)I2 < Ko (3.12)
B
][ IV(Vu) — (V(V))r 52 do < %][ V(Vu) — (V(Vu) 52 da. (3.13)
Ao B B

Note that ko and Ao depend only on n, N, L, Ao({p,©*}), c1, B, and the limit in (1.3).
Proof. Let B be a ball with B C Q2. With Proposition 3.4 we estimate for any A € (0,1)

][ [V(Vu) — (V(Vu))ag|2dz < 2][|V(Vu) —V(Vv)[*dz +][ [V(VV) — (V(VV))ap|*dz
AB AB AB
<9 x”][w(vu) VTV de + cx’][w(vV) V() p?da
B B
< AT V(VU) — V(VV) 2 dz + e A7 [V(Vu) — (V(Vu)) g [2dz.
! !

In the following we fix A € (0, 1) such that ¢ A7 < i, which implies

][IV(VH) —(V(Vu))ap|* dz < cY”][IV(VU) ~ V(Vv)[* da + i][IV(Vu) —(V(Vu))p|* da. (3.14)
AB B B
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Due to Lemma 3.3 there exists kg > 0 such that

][ [V(Vu)|* dz < ko (3.15)
B
c)\_"][ [V(Vu) - V(Vv) [ dz < i][ [V(Vu) - (V(Vu)) 5| da. (3.16)
B B

In combination with (3.14) we get that (3.15) holds or
1
][ [V(Vu) — (V(Vu))rp|* dz < 5][ [V(Vu) — (V(Vu))p|* da.
AB B

This proves the claim. ]
We are now in position to prove our main result.

Proof of Theorem 1.1. Let B C Q and let R denote the radius of B. Due to (2.9) it suffices to show that
[V(Vu(2))]* < ¢ <1 +][ IV (Vu)|? d:c) (3.17)
B

for almost all z € $B. Since u € Wh?(Q), it follows by Lemma 2.4 that V(Vu) € L?*(€2). Thus for almost
every z € %B holds

Jim ][ V(Vu(2)) — (V(Vu)) g, )|? dz = 0. (3.18)

r—0
B, (z)

Let E denote the set of z € B such (3.18) holds. To prove the theorem it suffices to show that

V(Vu)P <e |1+ ][ IV(Vu)? dz (3.19)

Br(z)

for every z € F.
Fix z € E. Then due to Lemma 3.5 there exists ko > 0 and Ao € (0,1) such that for every r € (0, R/2) holds

IV(Vu)|” de < ko (3.20)

B, (z)

or

V(TW) ~ (VVw)s, P dr < 5 [ IV(TW) = (V(Ta)) 5,0 do. (3:21)

B)\Q‘V'(Z) By (2)
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This allows us to distinguish two cases:
(i) There exists a sequence of radii r; — 0 such that (3.20) holds for every r;.
(ii) There exists Ry > 0 such that (3.20) holds for all » < Ry.

In the case (i) it follows with (3.18) that
[V(Vu)(2)* < ro.

Let us now consider the case (i). Let rg := sup {s € (0, R/2) : (3.21) holds for all » < s}, then ro > Ry > 0.
By continuity of the expressions in (3.21) with respect to r € (0, R), it follows that also ro satisfies (3.21). Let
L= )\akro for k € Ny. Repeated use of (3.21) shows

F VT - vV, o dr <2 [ Ve - (VTw)s, o P s
B"'k (2) B (2)
for every k € N. But then, since
%

VT3, )~ VT, ol SN | [VITW = V(T o do |

B’V‘k (2)

we get using (3.18)

IV(Vu)(2)] < Y [(V(V)s,, ) — (V(VW) 5, o] + (V(VW) 5, )|
k=0

<>t (VT - (VT 0 dz) L V(Y)s, o
k=0

By (2)
1 (3.22)
é(wan)( f |V<Vu><V<Vu>>Bm<z>|2dz> VT, o]
By (2)
§(4Ag”+1)< ][ |V(Vu)|2dz>2
Bry(2)

If ro = R/2, then we estimate with (3.22), Br/s(2) C B, and |Bg/s(2)| = 27"|B]

V(Vu)(2)2 < 27 (4 05" + 1)2][ V(Vu) dz,
B

which proves (3.19). So we can continue under the assumption that 0 < ro < R/2. We will show in the following
that in this case ro satisfies (3.20). The definition of 1o and 79 < R/2 imply that for every j € N there exists
rj € [ro, min{rg + %,R/2}) such that (3.20) holds. Since r; — g for j — oo, we conclude by continuity of

T fBT(Z) [V(Vu)|® dz on (0, R) that also o satisfies (3.20). This and (3.22) imply

IV(V)(2)2 < (425" + 1) k0.

This concludes the proof of Theorem 1.1. O
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