ESAIM: COCV 16 (2010) 806–807 DOI: 10.1051/cocv/2009045

ERRATUM OF "THE SQUARES OF THE LAPLACIAN-DIRICHLET EIGENFUNCTIONS ARE GENERICALLY LINEARLY INDEPENDENT"

YANNICK PRIVAT¹ AND MARIO SIGALOTTI^{1, 2}

Received September 2nd, 2009. Published online December 4, 2009.

ESAIM: COCV 16 (2009) 794-805

Firstly, we would like to clarify that domains are, by definition, connected. This is not precisely stated in the definition of Σ_m in Section 2.1.

Secondly, in the proof of Theorem 2.4 we claim that "each $\Lambda_k(t)$ converges, as $t \to +\infty$, to an eigenvalue of the Laplacian-Dirichlet operator on $\hat{\Omega}$ ". In general, this is not true.

The result stated in Theorem 2.4, however, is true and can actually be strengthened as follows.

Theorem 2.4. Let $(F_n)_{n\in\mathbb{N}}$, $(\mathcal{P}_n)_{n\in\mathbb{N}}$ and $(\mathcal{R}_n)_{n\in\mathbb{N}}$ be as in the statement of Theorem 2.3. Then, for every $m \in \mathbb{N} \cup \{+\infty\}$, a generic $\Omega \in \Sigma_m$ satisfies \mathcal{P}_n for every $n \in \mathbb{N}$.

A proof of this result can be based on the following strengthened version of Proposition 2.2.

Proposition 2.2 (Teytel). Let m > 2 and Ω_0 , Ω_1 be two domains in Σ_m that are C^m -differentiably isotopic. Then there exists an analytic curve $[0,1] \ni t \mapsto Q_t$ of C^m -diffeomorphisms such that Q_0 is equal to the identity, $Q_1(\Omega_0) = \Omega_1$ and the Laplacian-Dirichlet operator has simple spectrum on every domain $\Omega_t = Q_t(\Omega_0)$ for t in the open interval (0,1).

Teytel proves Proposition 2.2 in the case where Ω_0 and Ω_1 are \mathcal{C}^m -differentiably isotopic to the unit d-dimensional ball. His argument applies also, without modifications, to pairs of domains belonging to the same isotopy class.

The proof of Theorem 2.4, in its new formulation, works by replacing:

- "Fix $m \in \mathbb{N} \cup \{+\infty\}$. [...] We are left to prove that \hat{A}_j is dense in Σ_m ." with "Fix $m \in \mathbb{N} \cup \{+\infty\}$. Thanks to Theorem 2.3, a generic $\hat{\Omega} \in D_m$ satisfies \mathcal{P}_n for every $n \in \mathbb{N}$. Fix one such $\hat{\Omega}$ and notice that, in particular, the spectrum $(\lambda_n^{\hat{\Omega}})_{n \in \mathbb{N}}$ is simple.

Define, for every $n \in \mathbb{N}$, the set

$$\hat{\mathcal{A}}_n = \{ \Omega \in \Sigma_m \mid \Omega \text{ satisfies } \mathcal{P}_n \}.$$

The openness of \hat{A}_n in Σ_m can be proved following exactly the same argument used in the proof of Theorem 2.3 to show that each A_n is open in D_m . We are left to prove that \hat{A}_n is dense in Σ_m . Without loss of generality m > 2."

 $^{^{\}rm 1}$ Institut Élie Cartan de Nancy, UMR 7502 Nancy-Université – INRIA – CNRS, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France

² INRIA Nancy - Grand Est, France. Mario.sigalotti@inria.fr

ERRATUM 807

- "Moreover, $t \mapsto \Omega_t$ is an analytic path in Σ_m . [...] Since, for t small enough, $\Lambda_k(t) = \lambda_{j_k}^{\Omega_t}$, we deduce that Ω can be approximated arbitrarily well in Σ_m by an element of $\hat{\mathcal{A}}_j$." with "Moreover, each Ω_t is isotopic to Ω . It follows from Proposition 2.1 that we can fix t large enough in such a way that Ω_t verifies \mathcal{P}_n . Proposition 2.2 implies that there exists an analytic path of domains $s \mapsto \tilde{\Omega}_s$ such that $\tilde{\Omega}_0 = \Omega$, $\tilde{\Omega}_1 = \Omega_t$ and the spectrum of the Laplacian-Dirichlet operator on $\tilde{\Omega}_s$ is simple for every $s \in (0,1)$.

Hence, as in the proof of Theorem 2.3, we can deduce that $\tilde{\Omega}_s$ satisfies \mathcal{P}_n for all but finitely many $s \in [0,1]$. In particular, Ω is in the closure of $\hat{\mathcal{A}}_n$."