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Abstract. We investigate a global-in-time variational approach to abstract evolution by means of
the weighted energy-dissipation functionals proposed by Mielke and Ortiz [ESAIM: COCV 14 (2008)
494–516]. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence
of minimizers and approximate minimizers of these functionals to the unique solution of the gradient
flow. Sharp convergence rates are provided and the convergence analysis is combined with time-
discretization. Applications of the theory to various classes of parabolic PDE problems are presented.
In particular, we focus on two examples of microstructure evolution from [S. Conti and M. Ortiz,
J. Mech. Phys. Solids 56 (2008) 1885–1904.].
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1. Introduction

Assume we are given a real Hilbert spaceH with scalar product (·, ·) and corresponding norm |·|. Moreover, let
the functional φ : H → (−∞,∞] be proper, lower semicontinuous, bounded from below, and λ-convex for some
λ ∈ R, i.e., u �→ φ(u)−(λ/2)|u|2 is convex. Finally, let f ∈ L2(0, T ;H), and u0 ∈ D(φ) .= {u ∈ H : φ(u) <∞}.
This note is concerned with the classical gradient flow

u′ + ∂φ(u) � f a.e. in (0, T ), u(0) = u0. (1.1)

Gradient flows can be regarded as the paradigm of dissipative evolution. They arise almost ubiquitously in
connection with applications and have hence attracted a constant attention during the last four decades starting
from the fundamental work by Kōmura [23], Crandall-Pazy [14], and Brezis [7,8]. It is beyond our purposes
to even attempt to review the huge existing literature on gradient flows. Let us however mention that, even
restricting to the present quite classical setting [8], relation (1.1) stems in a variety of different applications such
as heat conduction, the Stefan problem, the Hele-Shaw cell, porous media, parabolic variational inequalities,
some classes of ODEs with obstacles, degenerate parabolic PDEs, and the mean curvature flow for Cartesian
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graphs, among many others [30], see Section 7 below. More recently, following the pioneering work by Otto [32],
an even larger class of PDE problems have been translated into gradient flows by resorting to probability spaces
endowed with the Wasserstein metric. The reader is referred to the recent monograph by Ambrosio et al. [1] for
a collection of results (let us however stress that the metric theory is beyond the reach of the analysis presented
here).

The general gradient-flow theory, although quite developed, is however not yet providing a sound description
of the evolution of nonlinear systems that develop evolving microstructures. For these systems, the energy φ
is generally not lower semicontinuous and equilibrium states which minimize φ do not exist. At the stationary
level, a classical solution to this obstruction is the relaxation of the functional φ. Namely, one changes φ with its
lower semicontinuous envelope sc−φ and interprets the respective minimization as an effective or macroscopic
problem. In the evolution case, the natural idea would be to introduce a functional on entire trajectories whose
minimizers solve the gradient flow (1.1) and consider its relaxation. Moving from these considerations Mielke
and Ortiz [26] introduced a variational reformulation of evolution problems as (limits of) minimizers of a class
of global-in-time functionals. These functionals feature the sum of the (scaled) energy and the dissipation,
integrated in time via an exponentially decaying weight. The resulting so-called weighted energy-dissipation
(WED) functionals Iε : H1(0, T ;H) → (−∞,∞] read, in the case of the gradient flow (1.1), as

Iε(v)
.=
∫ T

0

e−t/ε

(
1
2
|v′|2 +

1
ε

(
φ(v) − (f, v)

))
dt. (1.2)

We will check in Section 2.4 that, for all ε small, the functional Iε admits a unique minimizer in the closed
convex set K(u0ε)

.= {v ∈ H1(0, T ;H) : v(0) = u0ε} where u0ε is a suitable approximation of u0 (see below).
The WED functional approach has been originally applied in [26] to the description of rate-independent

evolution, which, roughly speaking, corresponds to replacing 2 by 1 in (1.2). Later on, the analysis of the
rate-independent case has been extended and adapted to time-discretizations in [27].

As for the gradient flow situation, a discussion on a linear case is contained in [26] together with a first example
of relaxation. More recently, two additional examples of relaxation related with micro-structure evolution have
been provided by Conti and Ortiz [13], see Section 7. In the above-mentioned papers, the problem of proving
the convergence uε → u is left open. This question is solved here and our main result reads as follows.

Theorem 1.1 (convergence). uε → u uniformly in H.

In the easiest possible setting, namely the scalar and linear case of

H = R, φ(u) = −u2/2, f = 0, u0 = 1, T = 1, (1.3)

the convergence result of Theorem 1.1 is illustrated in Figure 1.
Besides the stated uniform convergence, much more is true for we are in the position of providing a quan-

titative statement, even in finer topologies (see Sect. 5.1 below). Moreover, the assumptions on u0 can be
substantially weakened (Sect. 5.2) and we obtain some novel regularity results as a by-product (Sect. 5.3).
Furthermore, the convergence analysis can be extended to the case of sequences of approximate minimizers
(Sect. 5.6) and combined with time-discretization (Sect. 6). Finally, some application of the abstract theory to
a collection of examples of linear and nonlinear parabolic problems is provided in Section 7.

An important step toward the proof of Theorem 1.1 is the analysis of the Euler system for Iε in K(u0ε). In
particular, we prove that the minimizer uε fulfills

−εu′′ + u′ + ∂φ(u) � f a.e. in (0, T ), (1.4a)

u(0) = u0ε, (1.4b)

u′(T ) = 0. (1.4c)

Namely, to minimize Iε is equivalent to perform an elliptic-in-time regularization of the gradient flow (1.1).
We shall stress that, at all levels ε > 0, causality is lost. Consequently, the convergence for ε → 0 is generally
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Figure 1. Convergence in the special case (1.3). As ε → 0, the minimizers of Iε (dashed)
approach the solution of the gradient flow (solid). Note that minimizers fulfill the artificial
homogeneous Neumann boundary condition (1.4c) at T .

referred to as the causal limit of (1.4). As the problem above is second order in time, an extra boundary condi-
tion (1.4c) at the final point T is needed and our choice for a homogeneous Neumann condition is motivated by
simplicity. Other choices may be considered and a specific alternative, originally proposed in [26], is commented
in Section 5.7.

Before moving on, let us recall that the idea of taking the causal limit in an elliptic-in-time regularization
of a parabolic problem is not new. In the linear case, some results can be found in the classical monograph by
Lions and Magenes [24]. As for the nonlinear case, this procedure has been followed by Ilmanen [21] for proving
existence and partial regularity of the so-called Brakke mean curvature flow of varifolds. In [15], Section 4, a
conjecture suggests the weighted functional

u �→
∫

Ω×(0,∞)

e−t/ε

[
|utt|2 +

1
ε2

(
|∇u|2 + u2k

)]
dxdt

as elliptic regularization for studying the wave equation utt = Δu− ku2k−1.
Besides the WED functional approach here considered, a number of different variational principles have been

proposed for characterizing entire trajectories of evolution systems. In the linear realm, we shall mention Biot’s
work on irreversible Thermodynamics [5] and Gurtin’s principle for viscoelasticity and elastodynamics [17–19]
among many others (see also the survey by Hlaváček [20]). In the nonlinear setting, a crucial result is the
Brezis et al. principle [10,11,28,29] which specifically focuses on the case of convex functionals φ. The literature
on this principle is vast and the reader is referred to the recent monograph by Ghoussoub [16] and the papers
[38–40,45] for additional information. Apart from the convex case, we shall record the variational principle
from De Giorgi et al. which actually paved the way to the analysis of gradient flows of nonconvex functionals
(see [1,25,33–35], for instance). Finally, we mention Visintin [44], where generalized solutions are obtained as
minimal elements of a certain partial-order relation on the trajectories.

2. Preliminaries

We shall collect here some notation, general assumptions, and a selection of classical results on λ-convex
functions and the corresponding gradient flows.
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2.1. Convexity and λ-convexity

Throughout the paper H is a real Hilbert space with scalar product (·, ·) and norm | · |. Given the functional
φ : H → (−∞,∞] with effective domain D(φ) = {u ∈ H : φ(u) <∞}, we recall that its Fréchet subdifferential
∂φ : H → 2H is defined as

v ∈ ∂φ(u) iff u ∈ D(φ) and lim inf
w→u

φ(w) − φ(u) − (v, w − u)
|w − u| ≥ 0.

We denote by D(∂φ) the corresponding domain D(∂φ) .= {u ∈ H : ∂φ(u) 	= ∅}. The functional φ is said to be
proper if D(φ) 	= ∅ and λ-convex for some given λ ∈ R, if

v �→ ψ(v) = φ(v) − λ

2
|v|2 is convex.

Equivalently, φ is λ-convex if and only if

φ(ru + (1 − r)v) ≤ rφ(u) + (1 − r)φ(v) − λ

2
r(1 − r)|u − v|2 ∀u, v ∈ H, 0 ≤ r ≤ 1.

Let us explicitly remark that D(ψ) = D(φ), D(∂ψ) = D(∂φ), and ∂φ(v) = ∂ψ(v) + λv for all v ∈ D(∂φ). In
particular, the set ∂φ(v) turns out to be convex and closed. Hence, it possesses a unique element of minimal
norm which we indicate by (∂φ(u))◦.

A crucial tool in Convex Analysis is the Moreau-Yosida approximation ψδ : H → R of the proper, convex,
and lower semicontinuous function ψ : H → (−∞,∞] given, for all δ > 0, by

ψδ(u) = inf
v∈H

( |v − u|2
2δ

+ ψ(v)
)

∀u ∈ H.

Recall that ψδ ∈ C1,1(H) and that one has [8]

|Dψδ(u)| ≤ |(∂ψ(u))◦| and Dψδ(u) → (∂ψ(u))◦ ∀u ∈ D(∂ψ). (2.1)

For any proper functional φ : H → (−∞,∞] we denote by sc−φ the corresponding lower semicontinuous
envelope or relaxation, classically defined by

sc−φ(u) .= inf
{

lim inf
k→∞

φ(uk), uk → u strongly in H
}
.

2.2. Function spaces

Standard notation for spaces of vector-valued functions as Lp(0, T ;H), C([0, T ];H), W 1,p(0, T ;H), and
Hs(0, T ;H) will be used throughout, cf. [24]. Moreover, we will consider the following characterizations of
Besov spaces [4], Theorem 6.2.4, p. 142,

Bs
p q(0, T ;H) .= (Lp(0, T ;H),W 1,p(0, T ;H))s,q 0 < s < 1, 1 ≤ p, q ≤ ∞,

B−s
p′ q′(0, T ;H) .= (Bs

p q(0, T ;H))′ 0 < s < 1, 1 ≤ p, q <∞

where p′ and q′ are conjugate to p and q, respectively; and (X,Y )s,q denotes Lq interpolation. Let us recall the
identifications [43], Remark 4, p. 179, for all 0 < s < 1,

Hs(0, T ;H) = Bs
2 2(0, T ;H), Cs([0, T ];H) = (L∞(0, T ;H),W 1,∞(0, T ;H))s,∞,
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where the latter is the space of Hölder continuous functions endowed with the norm

‖u‖Cs([0,T ];H)
.= ‖u‖C([0,T ];H) + sup

t�=r

|u(t) − u(r)|
|t− r| ·

2.3. General assumptions and well-posedness for (1.1)

Unless otherwise stated, throughout this analysis we shall assume the following:

φ : H → (−∞,∞] is proper, lower semicontinuous, bounded from below

and u �→ ψ(u) .= φ(u) − λ

2
|u|2 is convex, (2.2a)

f ∈ L2(0, T ;H), (2.2b)

u0 ∈ D(φ). (2.2c)

The lower-bound request for φ can be weakened and is here chosen for the sake of simplicity only. As for the
λ-convexity assumption, note that any C1,1 perturbation of a convex function turns is λ-convex (but see (5.5)).

We assume from the very beginning that minψ = ψ(0) = 0. This can be achieved without loss of generality
simply by replacing ψ (and hence φ), f , and u0, by

ψ̃(u) .= ψ(u+ v) − (η, u) − ψ(v), f̃
.= f − η, ũ0

.= u0 − v

for some fixed v ∈ D(∂ψ) with η ∈ ∂ψ(v).
Let us recall that, the well-posedness of the gradient flow (1.1) follows from the classical theory of [7,8,14,23]

(see also [1]). Indeed, the assumption u0 ∈ D(φ) can be weakened to u0 ∈ D(∂φ). In this case as well, a strong
solution u ∈ H1

loc(0, T ;H) of (1.1) uniquely exists.

2.4. Well-posedness for the minimum problem

In the convex case λ− .= max{0,−λ} = 0 assumptions (2.2a)–(2.2b) guarantee that Iε admits a (unique)
minimizer in K(w0) for any w0 ∈ H . As for the general λ-convex case, existence and uniqueness of minimizers
follow by letting ε be small enough. More precisely, we have the following.

Proposition 2.1 (well-posedness for the minimum problem). Let φ : H → (−∞,∞] be λ-convex, f ∈
L2(0, T ;H), and w0 ∈ H. Letting ε be small enough, the functional Iε is κε-convex in K(w0) with respect
to the metric of H1(0, T ;H) for

κε
.= ε2e−T/ε. (2.3)

In particular, Iε is uniformly convex in K(w0).
Additionally, if φ is lower semicontinuous, then Iε admits a unique minimizer in K(w0).

Proof. Let us start by decomposing Iε into the sum of a quadratic part Qε and a convex remainder Rε as
follows:

Iε(u) =

(∫ T

0

e−t/ε

(
1
2
|u′|2 − λ−

2ε
|u|2
))

+

(∫ T

0

1
ε
e−t/ε

(
ψ(u) − (f, u)

)) .= Qε(u) +Rε(u). (2.4)

In order to handle Qε, we will exploit the auxiliary function v(t) .= e−t/(2ε)u(t). As we readily have that

e−t/(2ε)u′(t) = v′(t) +
1
2ε
v(t), (2.5)
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the value Qε(u) can be rewritten in terms of v as

Qε(u) =
∫ T

0

(
1
2
|v′|2 +

1
2ε

(v′, v) +
1 − 4ελ−

8ε2
|v|2
)

=
∫ T

0

(
1
2
|v′|2 +

1 − 4ελ−

8ε2
|v|2
)

+
1
4ε

e−T/ε|u(T )|2 − 1
4ε

|u(0)|2 .= Vε(v) +
1
4ε

e−T/ε|u(T )|2 − 1
4ε

|u(0)|2. (2.6)

Moreover, by possibly letting ε be small, standard computations lead to

e−T/ε‖u‖2
L2(0,T ;H) ≤ ‖v‖2

L2(0,T ;H) ≤ ‖u‖2
L2(0,T ;H), (2.7)

ε2e−T/ε‖u‖2
H1(0,T ;H) ≤ ‖v‖2

H1(0,T ;H) ≤ ε−2‖u‖2
H1(0,T ;H). (2.8)

Let now θ ∈ [0, 1] and u1, u2 ∈ K(w0) be given. Moreover, define vi(t)
.= e−t/2εui(t) for i = 1, 2. Arguing as

in (2.6), for all ε small enough one deduces that

Qε

(
θu1 + (1 − θ)u2

)
= Vε(θv1 + (1 − θ)v2) +

1
4ε

e−T/ε|θu1(T ) + (1 − θ)u2(T )|2 − 1
4ε

|w0|2

≤ θVε(v1) + (1 − θ)Vε(v2) − θ(1 − θ)
2

∫ T

0

(
|v′1 − v′2|2 +

1 − 4ελ−

4ε2
|v1 − v2|2

)

+
θ

4ε
e−T/ε|u1(T )|2 +

1 − θ

4ε
e−T/ε|u2(T )|2 − 1

4ε
|w0|2

= θQε(u1) + (1 − θ)Qε(u2) − θ(1 − θ)
2

∫ T

0

(
|v′1 − v′2|2 +

1 − 4ελ−

4ε2
|v1 − v2|2

)

≤ θQε(u1) + (1 − θ)Qε(u2) − θ(1 − θ)
2

‖v1 − v2‖2
H1(0,T ;H).

By exploiting the first estimate in (2.8), we have proved that Qε is κε-convex in K(w0) with respect to the
metric of H1(0, T ;H). As Iε = Qε +Rε and Rε is convex, the κε-convexity of Iε follows as well.

Once the uniform convexity of Iε in K(w0) is established, the existence of a unique minimizer is a consequence
of the Direct Method whenever lower semicontinuity is assumed. �

The proof of Proposition 2.1 entails the existence of ε∗ > 0, possibly depending on λ− only, such that, for
all ε ∈ (0, ε∗), the functional Iε has a unique minimizer in K(w0). This can be seen as a manifestation of the
fact that, for small ε, we are close to the (causal) initial-value problem, where we can expect existence and
uniqueness. In the following, the parameter ε will be assumed to fulfill ε ∈ (0, ε∗) throughout.

Note that, for large values of the parameter ε, existence of minimizers may fail. Let us give an example for
this fact. In order to keep the presentation simple, we shall consider a scalar example, i.e. H = R, by dropping
the lower boundedness assumption on φ. We consider

φ(u) = −u
2

4
, f = 0, w0 = 0.

By fixing ε = 1, for simplicity, the corresponding WED functional reads

I1(u) .=
∫ T

0

e−t

( |u′|2
2

− u2

4

)

and we readily check that I1 is 2-homogeneous, namely I1(αu) = α2I1(u).
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Let us firstly prove that inf I1 = −∞ in K(0), in particular no global minimizer exists. To this aim it suffices
to consider v(t) .= et/2 − 1 and compute

I1(v) = −T/8 + (e−T − 1)/4 + (1 − e−T/2)

so that, for T suitably large, I1(v) < 0. Then, by homogeneity, we have that I1(αv) → −∞ as α→ ∞.
We now turn our attention to local minimizers. The Euler equation for I1 is

−u′′ + u′ − u/2 = 0

which, letting u(0) = 0, is solved by uα(t) .= αet/2 sin(t/2) for all α ∈ R.
If T 	= (3/2 + 2k)π, no choice of α 	= 0 fulfills u′α(T ) = 0. Namely, uα is not a local minimizer for α 	= 0.

Moreover, the trajectory δv (with v as above and δ > 0 small) is an admissible perturbation of the trivial
solution and I1(δv) = δ2I1(v) < 0 = I1(0). Namely, u = 0 is not a local minimizer either.

If T = (3/2 + 2k)π, all α ∈ R give rise to a solution of the Euler system and one has that I1(uα) = 0. Still,
exactly as for u = 0 (see above), the functions uα are not local minimizers as

I1(uα + αδv) = α2I1(u1 + δv) = α2

(
I1(u1) + δ2I1(v) + δ

∫ T

0

e−t

(
u′v′ − 1

2
uv

))

= α2δ2I1(v) +
α2δ

2

∫ T

0

(e−t/2 − 1) sin(t/2) < α2δ2I1(v) < 0 = I1(uα)

and uα + αδv is a strict competitor of uα, for δ small.
Uniqueness of minimizers directly follows by uniform convexity if φ is convex or ε is small (see above). In

the general λ-convex case a uniqueness result for large ε is however not to be expected. Indeed, by letting

φ(u) = IB(u) − u2/4, f = 0, w0 = 0,

where IB is the indicator function of the interval B .= [−eT/2, eT/2], as the trajectory v is such that I1(v) < 0
(for T large) and the functional is even, we have that I1 has two symmetric minimizers (global).

2.5. Approximation of the initial datum

As we have already mentioned in the Introduction, the initial datum u0 of the gradient flow (1.1) is approx-
imated here by a sequence u0ε and the minimization of Iε will take place in K(u0ε). Following Brezis [6] (see
also [2,9]), we introduce the interpolation sets Dr,p ⊂ H for 0 < r < 1, 1 ≤ p ≤ ∞ as

Dr,p = {u ∈ D(∂ψ) : ε �→ ε−r|u− Jεu| ∈ Lp
∗(0, 1)}

where Jε = (id + ε∂ψ)−1 is the standard resolvent operator and Lp
∗(0, 1) is the Lp space endowed with the Haar

measure dε/ε. We will use the equivalence [6], Theorem 2,

u0 ∈ Dr,p iff

⎧⎪⎪⎨
⎪⎪⎩

∃ε ∈ [0, 1] �→ v(ε) : v ∈W 1,1
loc (0, 1],

continuous in [0, 1], v(0) = u0, v(ε) ∈ D(∂ψ) a.e., and

ε1−r
(
|(∂ψ(v(ε)))◦| + |v′(ε)|

)
∈ Lp

∗(0, 1).

As we have that u0 ∈ D(φ) ≡ D(ψ) ≡ D1/2,2 and D1/2,2 ⊂ D1/2,∞ [9], Theorem 6, we fix from the very
beginning the sequence u0ε

.= v(ε) → u0 in H in such a way that

ε−1/2|u0 − u0ε| + ε1/2|(∂φ(u0ε))◦| ≤ c0, (2.9)
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for some fixed c0 > 0 (recall that (∂φ(u))◦ = (∂ψ(u))◦ + λu). Note that the first term in the left-hand side
above is under control as

|u0 − u0ε| ≤
∫ ε

0

|v′(e)| de ≤ ε1/2

(∫ ε

0

(|v′(e)|e1/2
)2 de

e

)1/2

≤ ε1/2‖e �→ e1/2v(e)‖L2∗(0,1).

In particular, we will use the fact that

φ(u0ε) = φ(u0) + ((∂φ(u0ε))◦, u0ε − u0) ≤ φ(u0) + c20. (2.10)

As we shall comment below, in case u0 ∈ D(∂φ) no approximation u0ε is actually needed and the minimization
of Iε could be considered in the fixed K(u0) as well. A concrete example of sets Dr,p is provided in Section 7.1.

2.6. Time-discretization

In the following, we shall also be considering the classical time-discretization of the gradient flow (1.1) by
means of the so-called implicit Euler scheme which, given n ∈ N and the constant time-step τ = T/n, consists
in the system

u0 = u0 and
ui − ui−1

τ
+ ∂φ(ui) � f i for i = 1, . . . , n. (2.11)

Whenever a suitable approximation (f1, . . . , fn) ∈ Hn of f is given, the latter system turns out to admit a
unique solution (u0, u1, . . . , un) ∈ Hn+1 for τ small. In fact, (2.11) is equivalent to the successive minimization
problems

u0 = u0 and ui = Argmin
u∈H

( |u− ui−1|2
2τ

+ φ(u) − (f i, u)
)

for i = 1, . . . , n, (2.12)

where all of the functionals above are uniformly convex (for small τ) and lower semicontinuous.
Given any vector (v0, . . . , vn) ∈ V n+1 (V = H, R), we will denote by vτ : (0, T ] → V and vτ : [0, T ] → V the

corresponding backward piecewise constant and piecewise affine interpolants on the time-partition. Namely, we
have

vτ (t) = vi, vτ (0) = v0, vτ (t) = αi(t)vi + (1 − αi(t))vi−1 for t ∈ ((i− 1)τ, iτ ], i = 1, . . . , n,

where αi(t) = (t−(i−1)τ)/τ , for i = 1, . . . , n. Finally, we will also set δvi = (vi−vi−1)/τ , so that, in particular,
δvτ = v′τ . A basic convergence result for (2.11) is combined with the error analysis by Ambrosio et al. [1] (see
also [30]) in the following.

Lemma 2.2 (convergence of time-discretizations). Let (f1
τ , . . . , f

n
τ ) be such that f τ → f strongly in L2(0, T ;H)

and (u0
τ , . . . , u

n
τ ) solve (2.11). Then uτ → u strongly in H1(0, T ;H) where u solves (1.1).

By letting f ≡ 0 and τ small enough (in particular λτ > −1), we have that

|(u− uτ )(t)| ≤ c1
√
τφ(u0)e−2λτ t where λτ

.= ln
(

1 + λτ

τ

)
(2.13)

where c1 depends solely on λ. Moreover, if u0 ∈ D(∂φ) we also have

|(u − uτ )(t)| ≤ c2τ |(∂φ(u0))◦|e−2λτ t (2.14)

where c2 depends solely on λ.

Note that the factor e−2λτ t in (2.13)–(2.14) essentially plays the role of the exponential e−2λt. In particular,
if λ > 0 the error constant decays whereas if λ < 0 it deteriorates exponentially with time. Although we restrict
here to the error control for f ≡ 0 for the sake of simplicity, the non-homogeneous case can be considered as
well. The reader is referred to [30] for some results in this direction.
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3. Euler equation

As already mentioned in the Introduction, our analysis relies on the specific structure of the Euler equation
for Iε, namely its linearity with respect to the time-derivatives. The aim of this section is to provide some detail
on the Euler system and we shall start form the following.

Theorem 3.1 (Euler equation). Let uε minimize Iε in K(u0ε). Then, uε ∈ H2(0, T ;H) and there exists a
function ξε ∈ L2(0, T ;H) such that

−εu′′ε + u′ε + ξε = f a.e. in (0, T ), (3.1a)

uε(0) = u0ε, (3.1b)

u′ε(T ) = 0, (3.1c)

ξε ∈ ∂φ(uε) a.e. in (0, T ). (3.1d)

3.1. Analysis of a regularized convex problem

For the sake of proving Theorem 3.1, we focus on a regularized problem first. Let ψδ be the Yosida approxi-
mation of ψ at level δ > 0. We have the following.

Lemma 3.2. There exists a unique uδ ∈ H2(0, T ;H) such that

−εu′′δ + u′δ + Dψδ(uδ) = f a.e. in (0, T ), (3.2a)

uδ(0) = u0ε, (3.2b)

u′δ(T ) = 0. (3.2c)

Proof. By possibly redefining Dψδ as Dψδ(· + u0ε), we assume with no loss of generality that u0ε = 0. Let
V = {u ∈ H1(0, T ;H) : u(0) = 0} and denote by V ′ the corresponding dual. A weak formulation of (3.2) is
provided by the equation Au+Bu = �, where A, B : V → V ′ and � ∈ V ′ are given, for all v ∈ V , by

〈Au, v〉 .= ε

∫ T

0

(u′, v′) +
∫ T

0

(u′, v), 〈Bu, v〉 .=
∫ T

0

(Dψδ(u), v), 〈�, v〉 .=
∫ T

0

(f, v)

where 〈·, ·〉 denotes the duality pairing between V ′ and V . The linear operator A is coercive as

〈Au, u〉 = ε

∫ T

0

|u′|2 +
1
2
|u(T )|2 ∀u ∈ V.

On the other hand, B is clearly monotone and continuous. Hence, A+B is maximal monotone and coercive [3],
Corollary 1.1, p. 39. Namely, Au + Bu = � admits at least a solution u ∈ V [3], Corollary 1.3, p. 48. Finally,
as A is strongly monotone, this solution is unique. The weak form of Au+Bu = � reads

ε

∫ T

0

(u′, v′) =
∫ T

0

(−u′ − Dψδ(u) + f, v) ∀v ∈ V. (3.3)

By choosing v ∈ V such that v(T ) = 0 we recover u ∈ H2(0, T ;H) and relation (3.2). Hence, again from (3.3),
by using the already established (3.2), one has that ε

(−u′(T ), v(T )
)

= 0 for all v ∈ V and (3.2c) follows. �
The forthcoming discussion of Section 4.1 will in particular entail the validity of the following estimate.

Lemma 3.3 (estimate on uδ). Let uδ solve (3.2). Then

‖uδ‖H2(0,T ;H) ≤ c (3.4)

where c > 0 depends on ‖f‖L2(0,T ;H), |u0|, c0, and ε but not on δ.
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3.2. Proof of Theorem 3.1

Let us assume with no loss of generality λ = −λ− ≤ 0, decompose the functional Iε into its convex and its
non-convex part as Iε = Cε +Nε, and extend it to the whole L2(0, T ;H), namely, for v ∈ L2(0, T ;H), we let

Cε(v)
.=
∫ T

0

e−t/ε

(
1
2
|v′|2 +

1
ε

(
ψ(v) − (f, v)

))
for v ∈ K(u0ε) and ∞ otherwise,

Nε(v)
.= −λ

−

2ε

∫ T

0

e−t/ε|v|2.

We shall now compute subdifferentials in the weighted space L2(0, T, e−t/εdt;H). As Nε is clearly C1, one has
that

∂Iε = ∂Cε + DNε in L2(0, T, e−t/εdt;H).

As the minimality of u implies that 0 ∈ ∂Iε(u), what is now needed is a description of the set ∂Cε(u) as, clearly,
DNε(u) = −λ−u/ε. We shall prove that ∂Cε(u) = Aε(u) where the possibly multivalued operator Aε is defined
on D(Aε)

.= {v ∈ H2(0, T ;H) ∩K(u0ε) : v′(T ) = 0} as

Aε(u) .=
1
ε

(
− εu′′ + u′ + ∂Ψε(u) − f

)
.

In the latter, the integral functional Ψε : L2(0, T ;H) → (−∞,∞] is given by

Ψε(u) .=
∫ T

0

e−t/εψ(u) dt if t �→ ψ(u(t)) ∈ L1(0, T ) and Ψε(u) .= ∞ else

and the subdifferential ∂Ψε is again taken in L2(0, T, e−t/εdt;H).
Let us firstly check that Aε(u) ⊂ ∂Cε(u). Let η ∈ L2(0, T ;H) such that η ∈ ∂Ψε(u), namely η ∈ ∂ψ(u)

almost everywhere. For all w ∈ K(u0ε) we compute that

1
ε

∫ T

0

e−t/ε
(
−εu′′ + u′ + η − f, w − u

)
=
∫ T

0

(
(−e−t/εu′)′, w − u

)
+

1
ε

∫ T

0

e−t/ε
(
η − f, w − u

)
=
∫ T

0

e−t/ε
(
u′, w′ − u′

)
+

1
ε

∫ T

0

e−t/ε
(
η − f, w − u

)
=

1
2

∫ T

0

e−t/ε
(|w′|2 − |u′ − w′|2 − |u′|2)+

1
ε

∫ T

0

e−t/ε
(
ξ − f, w − u

)
η∈∂Ψ(u)

≤ 1
2

∫ T

0

e−t/ε
(|w′|2 − |u′|2)+

1
ε

(
Ψε(w) − Ψε(u)

)

− 1
ε

∫ T

0

e−t/ε
(
f, w − u

)
= Cε(w) − Cε(u).

In order to prove the converse inclusion ∂Cε(u) ⊂ Aε(u) we shall check that the monotone operator Aε is
maximal [8], namely that, for all g ∈ L2(0, T ;H), the problem (id +Aε)(uε) � g admits a (unique) solution uε.
We proceed by regularization and passage to the limit. Let ψδ be the Yosida approximation of ψ at level δ > 0.
Let now uδ solve (3.2) with ψδ(·) replaced by ψδ(·) + ε| · |2/2 and f replaced by f + εg. Namely, we have that

− εu′′δ + u′δ + Dψδ(uδ) + εuδ = f + εg a.e. in (0, T ). (3.5)
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The bound (3.4) still holds, independently of δ (but depending on g) and we can extract subsequences, without
relabeling, in such a way that

uδ → uε weakly in H2(0, T ;H), (3.6)

Dψδ(uδ) → ηε weakly in L2(0, T ;H), (3.7)

pass to the limit for δ → 0 in (3.5) and (3.2c), and get

− εu′′ε + u′ε + ηε + εuε = f + εg a.e. in (0, T ) (3.8)

and (3.1c), respectively. As the initial condition (3.1b) is clearly satisfied, one is left with the proof of the
inclusion (3.1d). To this aim, let us test the regularized equation (3.5) by uδ and pass to the lim sup as δ → 0.
We obtain by lower semicontinuity that

lim sup
δ→0

∫ T

0

(Dψδ(uδ), uδ) = lim sup
δ→0

(
− ε

∫ T

0

|u′δ|2 − ε(u′δ(0), u0ε) − 1
2
|uδ(T )|2

+
1
2
|u0ε|2 − ε

∫ T

0

|uδ|2 +
∫ T

0

(f + εg, uδ)

)

≤− ε

∫ T

0

|u′ε|2 − ε(u′ε(0), u0ε) − 1
2
|uε(T )|2

+
1
2
|u0ε|2 − ε

∫ T

0

|uε|2 +
∫ T

0

(f + εg, uε)
(3.8)
=
∫ T

0

(ηε, uε).

The above lim sup estimate is sufficient for identifying the limit ηε [8], Proposition 2.5, p. 27. In particular, we
have proved that uε solves (id +Aε)(uε) � g and the assertion of the theorem follows.

4. Proof of Theorem 1.1

4.1. Key estimate

Given the minimizer uε of Iε in K(u0ε) we have checked that uε solves (3.1). The proof of Theorem 1.1
consists in a direct control of the distance between uε and the solution u of the gradient flow (1.1). This check
is performed in Section 4.2. The key step in the computation is the validity of some estimates on uε which are
independent of ε. Let us state this crucial point in the following lemma.

Lemma 4.1 (key estimate). Let uε minimize Iε in K(u0ε). For all ε small there exists a constant c > 0
depending on ‖f‖L2(0,T ;H), |u0|, and c0, but independent of ε such that

ε ‖u′′ε‖L2(0,T ;H) + ε1/2 ‖u′ε‖L∞(0,T ;H) + ‖u′ε‖L2(0,T ;H) + ‖ξε‖L2(0,T ;H) ≤ c, (4.1)

where ξε is defined in Theorem 3.1.

The full proof of this result will be achieved by means of a time-discretization technique and is postponed to
Section 6.5. Let us however provide here a simplified argument in case we have

ξε ∈W 1,1(0, T ;H) and ξε(0) = (∂φ(u0ε))◦. (4.2)

The latter, being false in general, directly follows from uε ∈ H2(0, T ;H) as soon as φ is smooth, say φ ∈ C1,1.
Henceforth the symbol c will denote a positive constant, possibly varying from line to line and depending on

‖f‖L2(0,T ;H), |u0|, and c0 but independent of ε.
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From equation (3.1a) we clearly have that −εu′′ε +u′ε+ξε is in L2(0, T ;H). Our aim is now to deduce separate
bounds for the three terms above. We argue as follows

∫ T

0

|εu′′ε |2 +
∫ T

0

|u′ε|2 +
∫ T

0

|ξε|2 =
∫ T

0

|−εu′′ε + u′ε + ξε|2 + 2
∫ T

0

(εu′′ε , u
′
ε) − 2

∫ T

0

(u′ε, ξε) + 2
∫ T

0

(εu′′ε , ξε)

=
∫ T

0

|f |2 + 2
∫ T

0

(εu′′ε , u
′
ε) − 2

∫ T

0

(u′ε, ξε) + 2
∫ T

0

(εu′′ε , ξε)

=
∫ T

0

|f |2 + ε|u′ε(T )|2 − ε|u′ε(0)|2 − 2φ(uε(T )) + 2φ(u0ε) + 2
∫ T

0

(εu′′ε , ξε).

The last term above may be controlled by virtue of (4.2) as

2
∫ T

0

(εu′′ε , ξε) = −2ε
(
u′ε(0), ξε(0)

)− 2ε
∫ T

0

(u′ε, ξ
′
ε) ≤ ε|u′ε(0)|2 + ε|ξε(0)|2 − 2ελ

∫ T

0

|u′ε|2 (4.3)

where we have used u′(T ) = 0 and the λ-convexity of φ. Hence, by collecting these computations we have that

1
2

∫ T

0

|εu′′ε |2 +
1 + 2ελ

2

∫ T

0

|u′ε|2 +
1
2

∫ T

0

|ξε|2 + φ(uε(T )) ≤ φ(u0ε) +
ε

2
|ξε(0)|2 +

1
2

∫ T

0

|f |2 ≤ c+ cε|ξε(0)|2,

where, in the last inequality, we have used (2.10). Now, by taking ε small with respect to λ in such a way that

2ελ− ≤ 1/2, (4.4)

we conclude that

ε‖u′′ε‖L2(0,T ;H) + ‖u′ε‖L2(0,T ;H) + ‖ξε‖L2(0,T ;H) ≤ c+ cε1/2|(∂φ(u0ε))◦|. (4.5)

Classical interpolation between L2(0, T ;H) and H1(0, T ;H) (cf. [4,24] or by Gagliardo-Nirenberg) gives

‖u′ε‖C0([0,T ];H) ≤ c‖u′ε‖1/2
L2(0,T ;H)‖u′ε‖1/2

H1(0,T ;H) = c
(
‖u′ε‖L2(0,T ;H) + ‖u′ε‖1/2

L2(0,T ;H)‖u′′ε‖1/2
L2(0,T ;H)

)

≤ c
(
1 + |(∂φ(u0ε))◦|

)
, (4.6)

so that (4.1) follows from (2.9).
Besides the regular case φ ∈ C1,1, the above argument easily adapts to the situation where ∂φ is single-valued.

This can be done my means of a nested approximation argument via Moreau-Yosida approximations in (4.3).

4.2. Proof of Theorem 1.1

The strategy of this proof is elementary. We shall directly compare the minimizer uε of Iε and the unique so-
lution u of the gradient flow (1.1). In particular, take the difference between (1.1) and the Euler equation (3.1a),
test it on wε

.= u− uε, and integrate in time getting

ε

∫ t

0

|w′
ε|2 +

1
2
|wε(t)|2 +

∫ t

0

(ξ−ξε, wε) =
1
2
|u0−u0ε|2 +ε

∫ t

0

(u′, w′
ε)−ε(u′ε(t), wε(t))+ε(u′ε(0), u0−u0ε), (4.7)
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where ξ ∈ ∂φ(u) almost everywhere. Using λ-convexity we find

ε

∫ t

0

|w′
ε|2 +

1
2
|wε(t)|2 + λ

∫ t

0

|wε|2 = |u0 − u0ε|2 + ε

∫ t

0

(
|u′|2 + |w′

ε|2
)

+ ε2|u′ε(t)|2 +
1
4
|wε(t)|2 +

ε2

2
|u′ε(0)|2.

Owing to Lemma 4.1 and applying Gronwall’s lemma, we readily compute that

ε

2

∫ t

0

|w′
ε|2 +

1
4
|wε(t)|2 ≤ c

(
|u0 − u0ε|2 + ε

∫ t

0

|u′|2 + ε2|u′ε(t)|2 + ε2|u′ε(0)|2
)

≤ cε, (4.8)

where now c depends on λ− as well. The strong convergence uε → u in C([0, T ];H) follows. Let us observe
that, by inspecting the proof of Lemma 4.1, in case u0 ∈ D(∂φ) one realizes that no approximation of the initial
datum is actually needed and the convergence result holds for minimizers of Iε in K(u0) as well.

5. Extensions and comments

5.1. Sharper statements

The proof of Theorem 1.1 can be made precise in two different directions. Firstly, the convergence proof is
quantitative for we have obtained an explicit convergence rate. Secondly, we can exploit real interpolation in
order to check convergence in some finer topology as well.

Let us refer to [4] for notation and results on real interpolation between Banach spaces, in particular for the
definition of (C([0, T ];H), H1(0, T ;H))η,1 which is used in the following result.

Theorem 5.1 (sharper convergence result). For 0 < η < 1 we have that

‖u− uε‖(C([0,T ];H),H1(0,T ;H))η,1 ≤ cε(1−η)/2, (5.1)

where c > 0 depends on ‖f‖L2(0,T ;H), |u0|, c0, T , λ−, and η, but not on ε.

Proof. By interpolation we have that

‖u− uε‖(C([0,T ];H),H1(0,T ;H))η,1 ≤ c‖u− uε‖1−η
C([0,T ];H)‖u− uε‖η

H1(0,T ;H)

(4.8)

≤ cε(1−η)/2ε0 = cε(1−η)/2, (5.2)

and the result is established. �

Let us make concrete this discussion in the Hilbert scale Hs(0, T ;H). Recalling that

(C([0, T ];H), H1(0, T ;H))η,1 ⊂ (L2(0, T ;H), H1(0, T ;H))η,2 = Bη
2 2(0, T ;H) = Hη(0, T ;H),

we get the following.

Corollary 5.2 (strong convergence in Hη(0, T ;H)). For 0 < η < 1 we have that

‖u− uε‖Hη(0,T ;H) ≤ cε(1−η)/2 (5.3)

where c > 0 depends on ‖f‖L2(0,T ;H), |u0|, c0, T , λ−, and η, but not on ε.
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5.2. Weaker assumptions

The above results can be easily extended to the case when

u0 ∈ Dr,∞ for some 0 < r < 1. (5.4)

Let us ask for a sequence u0ε ∈ D(∂φ) such that u0ε → u0 strongly inH and ε−r|u0−u0ε|+ε1−r|(∂φ(u0ε))◦| ≤ c0
for some c0 > 0, see (2.9). The arguments leading to the key estimate (4.1) still holds (note that (2.10) is fulfilled)
and we deduce that

ε‖u′′ε‖L2(0,T ;H) + ε1/2‖u′ε‖L∞(0,T ;H) + ‖u′ε‖L2(0,T ;H) + ‖ξε‖L2(0,T ;H) ≤ cεr−1/2.

In particular, estimate (4.8) turns out to be

ε

2

∫ t

0

|w′
ε|2 +

1
4
|wε(t)|2 ≤ c

(
|u0 − u0ε|2 + ε

∫ t

0

|u′|2 + ε2|u′ε(t)|2
)

≤ cε2r,

and uniform convergence holds for all r > 0. Of course, the convergence rates of Theorem 5.1 are to be modified
as follows:

‖u− uε‖(C([0,T ];H),H1(0,T ;H))η,1 ≤ c‖u− uε‖Hη(0,T ;H) ≤ cεr−η/2.

Some concretization of this construction in the frame of linear parabolic PDEs is given in Section 7.1.
The λ-convexity assumption on the functional can be relaxed to

∃λ : [0,∞) → R such that φ is λ(r)-convex on {|u| ≤ r} for all r ≥ 0. (5.5)

This assumption includes the case of a C2 functional which is not C1,1. Indeed, by testing (3.1a) by u′ε and
taking the integral on (0, T ), one has that

ε

2
|u′(0)|2 +

∫ T

0

|u′ε|2 + φ(uε(T )) = φ(u0ε) +
∫ T

0

(f, u′ε).

In particular, a bound in H1(0, T ;H) for uε, independent of ε, follows and it suffices to fix r
.= supε,t |uε(t)|

in (5.5) and repeat the argument of Lemma 4.1 with λ = λ(r) fixed.

5.3. Regularity result

A regularity theory for the gradient flow (1.1) in the Hölder scale Cs([0, T ];H) has been outlined by Savaré
in [36] where he proves that

u0 ∈ D(∂φ) and f ∈ B
−1/2
2 1 (0, T ;H) ⇒ u ∈ C([0, T ];H),

u0 ∈ D(∂φ) and f ∈ B
1/2
2 1 (0, T ;H) ⇒ u ∈ W 1,∞(0, T ;H).

Although classical nonlinear interpolation [41,42] does not directly apply to the present situation, some inter-
mediate regularity is expected. At level 1/2, we readily have D1/2,2 = D(φ) and

(B−1/2
2 1 (0, T ;H), B1/2

21 (0, T ;H))1/2,2 = L2(0, T ;H), (C([0, T ];H),W 1,∞(0, T ;H))1/2,∞ = C1/2([0, T ];H).

Using H1(0, T ;H) ⊂ C1/2([0, T ];H) we easily establish the intermediate regularity

u0 ∈ D(φ) and f ∈ L2(0, T ;H) =⇒ u ∈ C1/2([0, T ];H).
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On the other hand, we are in the position of completing this regularity theory for weaker assumptions on the
initial data u0 (but keeping f ∈ L2(0, T ;H) fixed). Indeed, we have that the following regularity result, which
is, to our knowledge, new even in the classical convex setting for φ.

Lemma 5.3 (regularity).

u0 ∈ Dr,∞, f ∈ L2(0, T ;H) =⇒ u ∈ Cr([0, T ];H).

Proof. The result follows easily from the fact that ε1−r‖uε‖W 1,∞(0,T ;H)+ε−r‖u−uε‖C([0,T ];H) ≤ c, if u0 ∈ Dr,∞.
This entails in particular that u ∈ (C([0, T ];H),W 1,∞(0, T ;H))r,∞ = Cr([0, T ];H). �

5.4. Sharpness of the convergence rates

Although specific situations (see below) exhibit a stronger convergence rate, in general the above proved
error bounds are sharp as the estimates (recall (4.8))

‖u− uε‖C([0,T ];H) ≤ cε1/2+δ (5.6)

‖u− uε‖H1(0,T ;H) ≤ cεδ (5.7)

are false for all δ > 0.
We shall prove this fact by contradicting the maximal regularity u ∈ H1(0, T ;H) via interpolation. In

particular, assume (5.6). From (4.8) we have that, for all 0 < η < 1,

‖u− uε‖Cη/2([0,T ];H) ≤ c‖u− uε‖(C([0,T ];H),C1/2([0,T ];H))η,∞

≤ c‖u− uε‖(C([0,T ];H),H1(0,T ;H))η,1 ≤ c ε(1−η)(1/2+δ).

Choosing η such that 1/2 = (1 − η)(1/2 + δ) and recalling (4.1) we get that

ε1/2‖uε‖W 1,∞(0,T ;H) + ε−1/2‖u− uε‖Cη/2([0,T ];H) ≤ c.

Hence, by interpolation we have that

u ∈ (Cη/2([0, T ];H),W 1,∞(0, T ;H))1/2,∞ = Cs([0, T ];H) for s =
1
2
η

2
+

1
2

1 >
1
2
·

On the other hand, as we surely have that, for any s > 1/2, there exist functions in H1(0, T ;H) which do not
belong to Cs([0, T ];H), this clearly amounts to a contradiction.

A similar (easier) argument proves the sharpness in H1(0, T ;H). Indeed, assume (5.7). Then, estimate (4.1)
ensures that

ε1/2‖uε‖W 1,∞(0,T ;H) + ε−δ‖u− uε‖H1(0,T ;H) ≤ c.

Choosing the interpolation level 0 < δ < 1 we obtain

u ∈ (H1(0, T ;H),W 1,∞(0, T ;H))δ,∞ ⊂ (C1/2([0, T ];H),W 1,∞(0, T ;H))δ,∞ = Cr([0, T ];H)

with r = δ + (1 − δ)/2 = (1 + δ)/2 > 1/2 which again is contradicting the maximal regularity u ∈ H1(0, T ;H).
Note that the above proofs rely on the choice of a general datum f ∈ L2(0, T ;H) and a more regular setting

could give rise to better convergence rates. Let us stress that we do not presently know if strong convergence
holds in H1(0, T ;H). On the other hand, we have just proved that no rate in H1(0, T ;H) can be expected.
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Figure 2. The convergence rate in C[0, T ] in the special case of system (1.3). The solid line
is the function ε �→ max[0,T ] |u− uε| and the dashed line is linear in ε (log-log scale).

5.5. Special case of (1.3)

In the specific situation of the scalar and linear case of (1.3), some improved convergence rate of uε is
available. In particular, one can explicitly prove that

|(u− uε)(t)| = ε
(
e(t−1)/ε−1 − e−1/ε−t−1

)
≤ 2ε

e
,

so that a linear convergence rate is achieved in C([0, T ];H), see Figure 2.
Moreover, strong convergence in H1(0, 1) holds with rate 1/2 as we have that

‖u− uε‖H1(0,1) ∼
√
ε

(
1

2e2
+

2
e

)
·

5.6. Approximate minimizers, relaxation

The convergence result of Theorem 1.1 can be extended to the case of qualified sequences of approximate
minimizers of the functional Iε.

Theorem 5.4 (convergence for approximate minimizers). Let vε ∈ K(u0ε) be such that

Iε(vε) ≤ inf
K(u0ε)

Iε + αε, αε = o(ε2e−T/ε) as ε→ 0. (5.8)

Then vε → u in C([0, T ];H).

Note that the above statement can be generalized in the many directions commented above. In particular, a
convergence rate in C([0, T ];H) can be derived and the requirement on αε can be weakened in case φ is convex.

Proof. Let vε fulfill (5.8) and ε be small enough. Moreover, let uε denote the minimizer of Iε in K(u0ε). By
using the κε-convexity of Iε from Proposition 2.1 we readily obtain that, for all θ ∈ [0, 1),

Iε(uε) ≤ Iε
(
θuε + (1 − θ)vε

) ≤ θIε(uε) + (1 − θ)Iε(vε) − θ(1 − θ)
2

κε‖uε − vε‖2
H1(0,T ;H).
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Dividing by 1 − θ and taking θ → 1 we get that

κε

2
‖uε − vε‖2

H1(0,T ;H) ≤ Iε(vε) − min
K(u0ε)

Iε ≤ αε.

As αε = o(κε) for ε→ 0, we have uε − vε → 0 in H1(0, T ;H) and the assertion follows from Theorem 1.1. �

The convergence result of Theorem 5.4 may be extended in the direction of relaxation. In particular, sequences
of approximate minimizers converge even if φ is not λ-convex nor lower semicontinuous, provided that sc−Iε is
itself a WED functional for a λ-convex and lower semicontinuous potential. This is the case, for instance, for
the two relaxation examples of Sections 7.5–7.6 below.

Corollary 5.5 (convergence without convexity and lower semicontinuity). Assume that sc−Iε is a WED func-
tional fulfilling (2.2a)–(2.2b). Moreover, let vε ∈ K(u0ε) be such that

Iε(vε) ≤ inf
K(u0ε)

Iε + αε, αε = o(ε2e−T/ε) as ε→ 0.

Then vε → u in C([0, T ];H).

Proof. Let uε be the unique minimizer of sc−Iε in K(u0ε). As we clearly have that

sc−Iε(vε) ≤ Iε(vε) ≤ inf
K(u0ε)

Iε + αε = sc−Iε(uε) + αε,

we are in the position of applying directly Theorem 5.4 to the functional sc−Iε and conclude. �

5.7. Another choice for the artificial boundary condition in T

The choice of the homogeneous Neumann boundary condition in T for (1.4a) is just motivated by the sake of
simplicity and one may wonder if other possibilities would give rise to better convergence results. We shall not
discuss here this issue in full generality but rather consider the original setting by Mielke and Ortiz [26] where
the functional Īε : H1(0, T ;H) → (−∞,∞] given by

Īε(v)
.=
∫ T

0

e−t/ε

(
1
2
|v′|2 +

1
ε

(
φ(v) − (f, v)

))
dt+ e−T/ε

(
φ(v(T )) − (fT , v(T ))

)
,

for a given fT ∈ H , are considered instead. The corresponding Euler system includes (1.4a)–(1.4b) along with
the boundary condition

u′(T ) + ∂φ(u(T )) � fT . (5.9)

By choosing fT = f(T ) for f regular, the above condition is enforcing, independently of ε, the attainment of
the gradient flow equation (1.1) at the final time T .

The results of this paper can be equivalently stated for minimizers vε of Īε in K(u0ε) and the corresponding
proofs just follow from the (sometimes technical) adaptation of the present ones to that case. In particular, the
convergence vε → u in C([0, T ];H) holds. The difference in considering vε may be related to the fact that we
impose no artificial constraint on the first time-derivative in T . On the other hand, by asking for (5.9) we are
(formally) imposing v′′ε (T ) = 0.

Despite the fact that the very same analytical results are available for the two different choices of boundary
conditions in T (and that the same sharpness of convergence rates can be checked, see Sect. 5.4), the use of Īε
instead of Iε could show some advantage in some situation. In the very specific scalar and linear case of (1.3)
an illustration of the uniform convergence of vε is given in Figure 3. The plots in Figures 1 and 3 are produced
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Figure 3. The convergence result in the special case (1.3) with different boundary conditions.
As ε → 0, the minimizers vε of Īε (dashed lines) approach the solution of the gradient flow
(solid line).
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Figure 4. The functions ε �→ ‖u− uε‖C[0,T ] (solid) and ε �→ ‖u− vε‖C[0,T ] (dashed) in a log-log scale.

by the same choices of ε. In particular, it is evident that that the trajectory vε are closer to u than the former uε.
Explicit convergence rates can be easily computed for vε in the specific case of (1.3) from

|(u − vε)(t)| ∼ 4ε2
(
e(t−1)/ε−1 − e−1/ε−t−1

)
≤ 4ε2

e
, ‖u− vε‖H1(0,1) ∼ 2

√
2ε

e
·

The comparison between the convergence rates for uε and vε are reported in Figures 4 and 5.

5.8. Cauchy argument

An alternative strategy for the proof of Theorem 1.1 is that of directly checking that uε is a Cauchy sequence
in C([0, T ];H). By taking the difference between the Euler equation (3.1a) at level ε and the same equation at
level μ, testing it with w

.= uε − uμ, and integrating in time one gets that

ε

∫ t

0

|w′|2 +
1
2
|w(t)|2 +

∫ t

0

(ξε − ξμ, w) = ε(w′(t), w(t)) − ε(w′(0), w(0)) +
1
2
|w(0)|2 + (ε− μ)

∫ t

0

(u′′μ, w).
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Figure 5. The functions ε �→ ‖u − uε‖H1(0,T ) (solid) and ε �→ ‖u − vε‖H1(0,T ) (dashed) in a
log-log scale.

Let us now exploit λ-convexity and integrate by parts the last term in the above right-hand side obtaining

ε

∫ t

0

|w′|2 +
1
2
|w(t)|2 + λ

∫ t

0

|w|2 ≤ ε(w′(t), w(t)) − ε(w′(0), w(0)) +
1
2
|w(0)|2

+ (ε− μ)(u′μ(t), w(t)) − (ε− μ)(u′μ(0), w(0)) − (ε− μ)
∫ t

0

(u′μ, w
′)

=
1
2
|w(0)|2 + (εu′ε(t) − μu′μ(t), w(t)) − (εu′ε(0) − μu′μ(0), w(0)) − (ε− μ)

∫ t

0

(u′μ, w
′)

≤ |w(0)|2 +
1
4
|w(t)|2 + cε2‖u′ε‖2

C([0,T ],H) + cμ2‖u′μ‖2
C([0,T ],H) + (ε+ μ)‖u′μ‖L2(0,T ;H)‖w′‖L2(0,T ;H),

where we have exploited Lemma 4.1. In particular, we find ε
∫ t

0 |w′|2 + 1
4 |w(t)|2 + λ

∫ t

0 |w|2 ≤ c(ε+ μ), and the
Cauchy character in C([0, T ];H) follows by Gronwall’s lemma. Once uε is proved to admit a strong limit u it
is standard to check that indeed u solves (1.1).

The advantage of this argument with respect to the former proof of Theorem 1.1 is that it does not rely on
the well-posedness of the limiting gradient flow (1.1). Thus, we can state a modification of Theorem 1.1:

Proposition 5.6 (convergence without lower semicontinuity). Let φ be proper, bounded below, λ-convex but not
necessarily lower semicontinuous. Let f ∈ L2(0, T ;H), u0 ∈ D(φ), u0ε fulfill (2.9), and uε solve (3.1). Then,
uε → u strongly in C([0, T ];H) and weakly in H1(0, T ;H) where u is the unique solution of the gradient flow

u′ + ∂φ(u) � f a.e. in (0, T ), u(0) = u0, (5.10)

where ∂φ is the strong×weak closure of ∂φ in H ×H, namely

∂φ(u) .= {ξ ∈ H : ∃(uk, ξk) → (u, ξ) strongly × weakly in H ×H and ξk ∈ ∂φ(uk)}.

Proof. As the compactness of the sequence uε in C([0, T ];H) (as well as its boundedness in H1(0, T ;H)) has
been already established, owing to Lemma 4.1 and by passing to the limit in (3.1a) we get the assertion. �
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For the sake of illustrating the above result, let us remark that the inclusion

∂φ ⊂ ∂(sc−φ), (5.11)

may be strict. First of all, we have that ∂φ = ∂ψ+λ id, where ∂ψ is the corresponding closure of ∂ψ (note that
∂ψ does not coincide with ∂ψ as ψ may be not lower semicontinuous).

On the one hand, by exploiting the very definition of subdifferential and relaxation we readily get that
∂ψ ⊂ ∂(sc−ψ). Indeed, for η ∈ ∂ψ(u) there exists (uk, ηk) → (u, η) strongly×weakly such that

(ηk, wk − uk) ≤ ψ(wk) − ψ(uk) ≤ ψ(wk) − sc−ψ(uk) ∀wk ∈ H.

Fix now w ∈ H and choose wk → w to be such that ψ(wk) → sc−ψ(w). By passing to the lim inf in the above
inequality we get that η ∈ ∂(sc−ψ)(u).

On the other hand, let H = R and φ be defined by

φ(u) .=

⎧⎪⎪⎨
⎪⎪⎩

0 for u < 0

1 for u = 0

∞ otherwise

so that we immediately compute the relaxation

sc−φ(u) =

{
0 for u ≤ 0

∞ otherwise.

The corresponding subdifferentials read

∂φ(u) =

{
0 for u < 0

∅ otherwise,
∂φ(u) =

{
0 for u ≤ 0

∅ otherwise,
∂(sc−φ)(u) =

⎧⎪⎪⎨
⎪⎪⎩

0 for u ≤ 0

[0,∞) for u = 0

∅ otherwise.

In particular, the inclusion in (5.11) is strict.
Note that, from the one hand, Proposition 5.6 is more general than Theorem 1.1 as the lower semicontinuity

assumption on φ is dropped. This would in principle open the way to relaxation. On the other hand, Proposi-
tion 5.6 directly assumes the existence of solutions to the Euler system (3.1), a circumstance that we checked
for lower semicontinuous functionals only (see Thm. 3.1).

6. Time-discretization

The convergence result of Theorem 1.1 can be efficiently combined with time-discretization which, in turn,
provides a sound frame for the proof of Lemma 4.1 out of the regular case of (4.2).

We start by recalling the notation for the constant time-step τ = T/n and introducing the functional Iετ

defined on discrete trajectories (v0, . . . , vn) ∈ Hn+1 as

Iετ (v0, . . . , vn) =
n∑

i=1

ρi
ετ

τ

2

∣∣∣∣vi − vi−1

τ

∣∣∣∣
2

+
n−1∑
i=1

(ρi
ετ − ρi+1

ετ )
(
φ(vi) − (f i, vi)

)
.
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Here, the weights (ρ1
ετ , . . . , ρ

n
ετ ) are given by

ρi
ετ =

(
ε

τ + ε

)i

for i = 1, . . . , n. (6.1)

In particular, (ρ1
ετ , . . . , ρ

n
ετ ) is nothing but the solution of the constant time-step implicit Euler discretization

of the problem ρ′ + ρ/ε = 0 with initial condition ρ(0) = 1. As this choice ensures that, for i = 1, . . . , n− 1,

ρi
ετ − ρi+1

ετ =
τ

ε
ρi+1

ετ > 0, (6.2)

and we have by Lemma 2.2 that ρετ (t) → e−t/ε uniformly as τ → 0 for ε > 0 fixed, the functional Iετ may be
regarded as a quadrature of the time-continuous functional Iε.

Before moving on, let us motivate our specific choice for the functional Iετ . First of all, we recall that the
incremental minimization scheme of (2.12) in equivalent to

u0 = u0 and ui = Argmin
u∈H

(
1
2

∣∣∣∣u− ui−1

τ

∣∣∣∣
2

+
φ(u) − (f i, u)

τ
− φ(ui−1) − (f i−1, ui−1)

τ

)
(6.3)

for i = 1, . . . , n. (6.4)

Indeed, the latter is nothing but (2.12) where, at each level i, we have added the inconsequential term
−(φ(ui−1) − (f i−1, ui−1))/τ . Here, the point f0 ∈ H is assumed to be given (its actual value being
irrelevant).

The latter minimization problems are usually solved sequentially. On the other hand, a direct computation
shows that

Iετ (v0, . . . , vn) =
n∑

i=1

ρi
ετ τ

(
1
2

∣∣∣∣vi − vi−1

τ

∣∣∣∣
2

+
φ(vi) − (f i, vi)

τ
− φ(vi−1) − (f i−1, vi−1)

τ

)

− ρn
ετ

(
φ(vn) − (fn, vn)

)
+ ρ1

ετ

(
φ(v0) − (f0, v0)

)
. (6.5)

Hence, the minimization of Iετ in Kτ (u0ε)
.= {(v0, . . . , vn) ∈ Hn+1 : v0 = u0ε} roughly corresponds to collect

all the minimization problems in (6.4) in a single constrained minimization problem for the entire discrete
trajectory (u0, . . . , un). This in particular motivates our reference to the values ρi

ετ as Pareto weights in analogy
with the corresponding notion in multi-objective optimization [12]. More specifically, as ρ1

ετ � ρ2
ετ � . . .� ρn

ετ

for ε→ 0, it turns out that, by minimizing Iετ , a much larger priority is accorded to the first minimum problem
in (6.4) with respect to the second, to the second with respect to the third, and so on. Hence, the limit ε → 0
again formally corresponds to causality restoring, see also [27].

Exactly as in the time-continuous situation, in case φ is convex, the functional Iετ turns out to be uniformly
convex for all ε. In particular, a unique minimizer of Iετ in Kτ (w0) exists for all w0 ∈ H . The same holds true
for general λ-convex functionals whenever ε and τ are chosen to be small enough. Indeed, we have the following.

Proposition 6.1 (well-posedness of the discrete minimum problem). For ε and τ small and all w0 ∈ H, the
functional Iετ admits a unique minimizer in Kτ (w0).
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Proof. This argument is the discrete analog of the proof of Proposition 2.1. In particular, we start by decom-
posing Iετ into a quadratic part Qετ and a convex remainder Rετ as

Iετ (u0, . . . , un) =

(
n∑

i=1

τ

2
ρi

ετ

∣∣δui
∣∣2 − n−1∑

i=1

(ρi
ετ − ρi+1

ετ )
λ−

2
|ui|2

)
+

(
n−1∑
i=1

(ρi
ετ − ρi+1

ετ )
(
ψ(ui) − (f i, ui)

))

.= Qετ (u0, . . . , un) +Rετ (u0, . . . , un).

The result follows by checking that, for small ε and τ , the functional Qετ is uniformly convex on Kτ (w0).
To this aim, for all (u0, . . . , un) ∈ K(w0) let (v0, . . . , vn) be defined as vi .=

√
ρi

ετu
i. Then, we compute that

(see (2.5))

δui =
1√
ρi−1

ετ

δvi + viδ

(
1√
ρi

ετ

)
=

1√
ρi

ετ

(
rετ δv

i +
1 − rετ

τ
vi

)

where rετ
.=
√
ε/(ε+ τ). By observing that ρi

ετ − ρi+1
ετ = ρi

ετ (1 − r2ετ ), the value Qετ (u0, . . . , un) can hence be
rewritten as

Qετ (u0, . . . , un) =
n∑

i=1

τ

2

(
r2ετ |δvi|2 +

(1 − rετ )2

τ2
|vi|2 +

2rετ (1 − rετ )
τ

(δvi, vi)
)
−

n−1∑
i=1

(1 − r2ετ )λ−

2
|vi|2

=
n∑

i=1

τr2ετ

2
|δvi|2 +

(1 − rετ )2

2τ
|vn|2 +

n−1∑
i=1

[
(1 − rετ )2

2τ
− (1 − r2ετ )λ−

2

]
|vi|2

+
rετ (1 − rετ )

τ

(
1
2
|vn|2 +

1
2

n∑
i=1

|vi − vi−1|2 − 1
2
|w0|2

)
.

As we readily check that

[
(1 − rετ )2

2τ
− (1 − r2ετ )λ−

2

]
→ 1

2τ
− λ−

2
as ε→ 0,

for all ε and τ small (depending on λ− only), the functional Qετ turns out to be uniformly convex in K(w0). �

The main result of this section is the convergence of minimizers of the time-discrete functional Iετ to solutions
of the gradient flow (1.1) as the time-step τ and the causal parameter ε go to 0. To this aim, we assume for
the very beginning that f τ → f strongly in L2(0, T ;H). This convergence holds, for instance, if f τ is built on
local means. We have the following.

Theorem 6.2 (convergence + discretization). uετ → u in C([0, T ];H) as ε+ τ → 0.

6.1. Discrete Euler equation

The functional Iετ is the quadratic perturbation of a convex functional. Hence, its Fréchet subdifferential
is readily computed and, letting (u0

ε, . . . , u
n
ε ) be the minimizer of Iετ in Kτ (u0ε), from 0 ∈ ∂Iετ (u0

ε, . . . , u
n
ε ) we

have that there exist ξi
ε ∈ ∂φ(ui

ε), i = 1, . . . , n− 1, such that

0 ∈
n∑

i=1

ρi
ετ τ(δu

i
ε, δv

i) +
n−1∑
i=1

(ρi
ετ − ρi+1

ετ )(ξi
ε − f i, vi) ∀(v0, . . . , vn) ∈ Kτ (0).
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The first term in the above right-hand side reads (recall that v0 = 0)

n∑
i=1

ρi
ετ τ(δu

i
ε, δv

i) =
n−1∑
i=1

(ρi
ετ δu

i
ε − ρi+1

ετ δui+1
ε , vi) + ρn

ετ (δun
ε , v

n),

and, by using (6.2), we have that

ρi
ετδu

i
ε − ρi+1

ετ δui+1
ε = (ρi

ετ − ρi+1
ετ )δui

ε + ρi+1
ε (δui

ε − δui+1
ε ) =

τ

ε
ρi+1

ετ δui
ε + ρi+1

ετ (δui
ε − δui+1

ε ).

On the other hand, again form (6.2) we have that

n−1∑
i=1

(ρi
ετ − ρi+1

ετ )(ξi
ε − f i, vi) =

n−1∑
i=1

τ

ε
ρi+1

ε (ξi
ε − f i, vi).

Hence, the minimizer (u0
ε, . . . , u

n
ε ) of Iετ in Kτ (u0ε) fulfills the discrete Euler equation (see (3.1))

−εδu
i+1
ε − δui

ε

τ
+ δui

ε + ξi
ε = f i for i = 1, . . . , n− 1, (6.6a)

u0
ε = u0ε, (6.6b)

δun
ε = 0, (6.6c)

ξi
ε ∈ ∂φ(ui

ε) for i = 1, . . . , n− 1. (6.6d)

6.2. Key estimate at the discrete level

Our next aim is to reproduce at the discrete level the key estimate (4.1). Note that the regularity in time
in (4.2) is not needed here as integration by parts is here replaced by summation.

Let us fix with no loss of generality ξ0ε = (∂φ(u0ε))◦. For the sake of notational simplicity, we let vi
ε = δui+1

ε

for i = 1, . . . , n− 1. The Euler equation (6.6a) ensures that

n−1∑
i=1

τ
∣∣−εδvi

ε + δui
ε + ξi

ε

∣∣2 =
n−1∑
i=1

τ |f i|2

and we shall now proceed to the proof of separate bounds on the three terms in the left-hand side above. In
particular, we have that

n−1∑
i=1

τ
(
ε2|δvi

ε|2+|δui
ε|2+|ξi

ε|2
)

=
n−1∑
i=1

τ | − εδvi
ε+δui

ε+ξ
i
ε|2+2ε

n−1∑
i=1

τ(δvi
ε, δu

i
ε)−2

n−1∑
i=1

τ(δui
ε, ξ

i
ε)+2ε

n−1∑
i=1

τ(δvi
ε, ξ

i
ε)

=
n−1∑
i=1

τ |f i|2 + 2ε
n−1∑
i=1

τ(δvi
ε, δu

i
ε) − 2

n−1∑
i=1

τ(δui
ε, ξ

i
ε) + 2ε

n−1∑
i=1

τ(δvi
ε, ξ

i
ε). (6.7)

We now aim at controlling the last three terms in the above right-hand side. We have that

2ε
n−1∑
i=1

τ(δvi
ε, δu

i
ε) = −ε|δu1

ε|2 − ε

n−1∑
i=1

|vi
ε − vi−1

ε |. (6.8)
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Moreover, by exploiting λ-convexity, one computes that

−2
n−1∑
i=1

τ(δui
ε, ξ

i
ε) = 2

n−1∑
i=1

(ui−1
ε − ui

ε, ξ
i
ε) ≤ 2

n−1∑
i=1

(
ψ(ui−1

ε ) − ψ(ui
ε) −

λ

2
|ui

ε|2 +
λ

2
|ui−1

ε |2 − λ

2
|ui

ε − ui−1
ε |2

)

= 2φ(u0ε) − 2φ(un−1
ε ) − λ

n−1∑
i=1

|ui
ε − ui−1

ε |2 = 2φ(u0ε) − 2φ(un−1
ε ) − λτ

n−1∑
i=1

τ |δui
ε|2. (6.9)

Finally, again λ-convexity ensures that

2ε
n−1∑
i=1

τ(δvi
ε, ξ

i
ε) = −2ε(δu1

ε, ξ
1
ε ) − 2ε

n−1∑
i=2

τ(δui
ε, δξ

i
ε) ≤ −2ε(δu1

ε, ξ
0
ε) − 2λε

n−1∑
i=1

τ |δui
ε|2. (6.10)

Now, taking into account (6.8)–(6.9), estimate (6.7) becomes

1
2

n−1∑
i=1

τ
(
ε2|δvi

ε|2 +
(
1 + λ(2ε+ τ)

)|δui
ε|2 + |ξi

ε|2
)

+
ε

2
|δu1

ε|2 +
ε

2

n−1∑
i=1

|vi
ε − vi−1

ε | + φ(un−1
ε )

≤ 1
2

n−1∑
i=1

τ |f i|2 − ε(δu1
ε, ξ

0
ε) + φ(u0ε). (6.11)

In particular, as soon as λ−(2ε+ τ) ≤ 1/2 (see (4.4)), we recall (2.9)–(2.10) and conclude that

ε2
n−1∑
i=1

τ
∣∣δvi

ε

∣∣2 +
n∑

i=1

τ |δui
ε|2 +

n−1∑
i=1

τ |ξi
ε|2 ≤ c, (6.12)

where c depends on ‖f‖L2(0,T ;H), |u0|, and c0.
We now aim at reproducing estimate (4.6). Let for brevity zi

ε = δui
ε = vi−1

ε . Estimate (6.12) yields that
both zετ and εv′ετ are bounded in L2(0, T − τ ;H) independently of ε and τ . Let us now handle the difference
zετ − vετ as follows:

‖zετ − vετ‖2
L2(0,T−τ ;H) =

n−1∑
i=1

∫ iτ

(i−1)τ

|zi
ε − (αi(t)zi+1

ε + (1 − αi(t))zi
ε)|2dt (6.13)

=
n−1∑
i=1

(∫ iτ

(i−1)τ

(αi(t))2dt

)
|zi+1

ε − zi
ε|2 =

τ2

3

n−1∑
i=1

τ

∣∣∣∣zi+1
ε − zi

ε

τ

∣∣∣∣
2

=
τ2

3

n−1∑
i=1

τ |δvi|2 =
τ2

3
‖v′ετ‖2

L2(0,T−τ ;H).

In particular, we have that

‖vετ‖L2(0,T−τ ;H) ≤ ‖zετ‖L2(0,T−τ ;H) +
τ√
3
‖v′ετ‖L2(0,T−τ ;H) ≤ c

(
1 +

τ

ε

)
·
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Hence, we find

‖vετ‖C0([0,T−τ ];H) ≤ c‖vετ‖1/2
L2(0,T−τ ;H)‖vετ‖1/2

H1(0,T−τ ;H) ≤ c
(
1 +

τ

ε

)1/2
((

1 +
τ

ε

)2

+
1
ε2

)1/4

≤ c

(
1 +

τ1/2

ε1/2

)(
1 +

τ1/2

ε1/2
+

1
ε1/2

)
≤ c

(
1 +

1
ε1/2

+
τ1/2

ε

)
· (6.14)

This bound is the discrete counterpart to (4.6) (recall (2.9)).

6.3. Proof of Theorem 6.2

This argument is nothing but the discrete analog of the proof of Theorem 1.1. Let (u0, u1, . . . , un) solve the
implicit Euler scheme (2.11) and (u0

ε, u
1
ε, . . . , u

n
ε ) minimize Iετ locally in Kτ (u0ε). Test (2.11) by wi

ε = ui − ui
ε

getting

(δui, wi
ε) + φ(ui) +

λ

2
|wi

ε| ≤ φ(ui
ε) + (f i, wi

ε) for i = 1, . . . , n− 1.

Test now (6.6a) by −wi
ε and obtain that

− ε

τ
(δui+1

ε − δui
ε,−wi

ε) + (δui
ε,−wi

ε) + φ(ui
ε) +

λ

2
|wi

ε| ≤ φ(ui) − (f i, wi
ε)

for i = 1, . . . , n− 1. (6.15)

Take the sum of the last two inequalities, multiply it by τ , and sum for i = 1, . . . ,m ≤ n− 1 getting

ε

m∑
i=1

(δui+1
ε − δui

ε, w
i
ε) +

m∑
i=1

τ(δwi
ε, w

i
ε) + λ

m∑
i=1

τ |wi
ε|2 ≤ 0. (6.16)

We easily handle the first term above by computing

ε
m∑

i=1

(δui+1
ε − δui

ε, w
i
ε) = −ε

m∑
i=1

τ(δui
ε, δw

i
ε) + ε(δum+1

ε , wm
ε ) − ε(δu1

ε, w
0
ε).

Hence, (6.16) entails that

ε

m∑
i=1

τ |δwi
ε|2 +

1
2
|wm

ε |2 ≤ 1
2
|w0

ε |2 + λ−
m∑

i=1

τ |wi
ε|2 + ε

m∑
i=1

τ(δui, δwi
ε) − ε(δum+1

ε , wm
ε ) + ε(δu1

ε, w
0
ε).

In particular, by letting 4λ−τ < 1, as u′τ is bounded in L2(0, T ;H) independently of τ , we have proved by the
discrete Gronwall lemma that

|wm
ε |2 ≤ c

(
ε+ ε2|δum+1

ετ |2 + ε2|δu1
ε|2
)

for some constant c > 0 depending also on λ− but independent of ε and τ . Recall now the bound (6.14) and
obtain that

|wm
ε |2 ≤ c

(
ε+ ε2

(
1 + ε−1/2 +

τ1/2

ε

)2
)

≤ c(ε+ τ).

Hence, we have checked that maxi=1,...,n−1 |wi
ε| ≤ c(ε + τ). In fact, this bound can be extended to i = n as

wn
ε = wn−1

ε . In particular, we have proved that wετ → 0 in C([0, T ];H) as ε + τ → 0. Finally, the strong
convergence uετ → u in C([0, T ];H) follows from Lemma 2.2.
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More specifically, in case φ is lower semicontinuous and f ≡ 0, by exploiting the error control in (2.13)–(2.14),
we have proved the joint convergence rates

‖u− uετ‖C([0,T ];H) ≤ c
(
ε+ τ

)1/2
.

Note that, in this case, the sub-optimality of the rate τ1/2 is already expected for the Euler scheme (recall (2.13)).
Namely, the present functional approach is not deteriorating convergence with respect to the time-step size. Let
us mention that the above joint convergence result can be specialized for establishing quantitative convergence
in interpolation spaces and allowing for less-regular initial data in the spirit of Sections 5.1 and 5.2.

6.4. Limit τ → 0 for ε > 0: convergence to the Euler equation

By letting λ ≥ 0 and ε > 0 be fixed and passing to the limit in the time-step τ we can prove the following.

Theorem 6.3 (τ → 0 for ε > 0). Let λ ≥ 0 and (u0
ε, . . . , u

n
ε ), (ξ1ε , . . . , ξ

n−1
ε ) solve (6.6). Then, there exists

non-relabeled subsequences such that uετ → uε weakly in H1(0, T ;H) and ξετ → ξ weakly in L2(0, T ;H) where
(uε, ξε) solves (3.1).

Sketch of the proof. Let (ui
ε, ξ

i
ε) ∈ HN+1 ×HN−1 solve (6.6) and define vi

ε = δui+1
ε for i = 1, . . . , n − 1. Our

first aim is to pass to the limit in the discrete equations (6.6a), (6.6c)–(6.6d) written in the compact form

−εv′ετ + u′ετ + ξετ = fετ a.e. in (0, T − τ), (6.17a)

vετ (T − τ) = 0, (6.17b)

ξετ ∈ ∂φ(uετ ) a.e. in (0, T − τ). (6.17c)

Owing to estimates (6.12)–(6.13) we find a pair (uε, ξε) such that, by extracting not relabeled subsequences
(and possibly considering standard projections for t > T − τ),

uετ → uε weakly in H1(0, T ;H), vετ → u′ε weakly in H1(0, T ;H), ξετ → ξε weakly in L2(0, T ;H).

The above convergences suffice for ensuring that equations (3.1a)–(3.1c) hold. Moreover, we have

lim sup
τ→0

∫ T−τ

0

(ξετ , uετ ) ≤ lim sup
τ→0

(
− ε

∫ T−τ

0

|u′ετ |2−ε(vετ (0), u0ε)− 1
2
|uετ (T − τ)|2+

1
2
|u0ε|2 +

∫ T−τ

0

(f τ , uετ )
)

≤ −ε
∫ T

0

|u′|2 − ε(u′(0), u0ε) − 1
2
|u(T )|2 +

1
2
|u0ε|2 +

∫ T

0

(f, u) =
∫ T

0

(ξ, u), (6.18)

and the inclusion (3.1d) follows again from the classical [8], Proposition 2.5, p. 27. �

Note that the above proof can be adapted to the non-convex case λ < 0 by additionally requiring some
compactness on the sublevels of φ. Hence, the extracted sequences would fulfill the strong convergence [37],
Corollary 4, namely

uετ → uε strongly in C([0, T ];H).

This convergence suffices in order to pass to the limit in ξετ − λuετ ∈ ∂ψ(uετ ) and get that ξε − λuε ∈ ∂ψ(uε)
almost everywhere. Namely, inclusion (3.1d) holds.
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6.5. Proof of the key estimate

Let us finally come to the proof of Lemma 4.1. By reconsidering the argument of Section 6.2 and Theorem 6.3
we readily have that, given g ∈ L2(0, T ;H), the solution (uε, ηε) ∈ H2(0, T ;H)× L2(0, T ;H) of

−εu′′ε + u′ε + ηε = g a.e. in (0, T ), (6.19a)

uε(0) = u0ε, (6.19b)

u′ε(T ) = 0, (6.19c)

ηε ∈ ∂ψ(uε) a.e. in (0, T ) (6.19d)

is the limit (the component uε being unique) of a discrete problem which in turn fulfills the expected estimates.
In particular, by passing to the limit we find that there exists a positive constant c > 0 depending on |g|L2(0,T ;H),
|u0|, and c0 such that

ε‖u′′ε‖L2(0,T ;H) + ‖u′ε‖L2(0,T ;H) + ‖ηε‖L2(0,T ;H) ≤ c. (6.20)

Moreover, arguing exactly as in Section 4.1, we also have that

ε1/2 ‖u′ε‖L∞(0,T ;H) ≤ c. (6.21)

Take now uε to be the minimizer of Iε onK(u0ε). Owing to Theorem 3.1 we have that, indeed, uε solves (6.19)
(along with the associated selection ηε = ξε − λuε) with the datum g replaced by f − λuε. Hence, in order to
conclude for Lemma 4.1, what we are actually left to prove is that the norm ‖uε‖L2(0,T ;H) is uniformly bounded
in terms of data for all minimizers. This is however a standard estimation argument. Test (3.1a) by uε + αu′ε
(α ≥ 0 to be determined later) and integrate in time getting

αε

2
|u′ε(0)|2 + (ε+ α)

∫ T

0

|u′ε|2 +
1
2
|uε(T )|2 − λ−

∫ T

0

|uε|2 + αφ(uε(T ))

≤ −ε(u′ε(0), u0ε) +
∫ T

0

(f, uε + αu′ε) +
1
2
|u0ε|2 + αφ(u0ε). (6.22)

By taking α large enough (precisely, by taking α/λ− (for λ 	= 0) strictly larger than the first eigenvalue of the
one-dimensional Laplacian in (0, T ) with non-homogeneous Dirichlet and homogeneous Neumann conditions
in 0 and T , respectively) we conclude for

‖uε‖H1(0,T ;H) ≤ c

where now c > 0 depends on |f |L2(0,T ;H), |u0|, c0, and λ−.

7. Applications

7.1. Linear parabolic PDEs

Let the bounded Lipschitz domain Ω ⊂ R
n be given and f ∈ L2(Ω× (0, T )) and u0 ∈ H2(Ω)∩H1

0 (Ω). Then,
the minimizers uε in K(u0) of the WED functionals given by

u �→
⎧⎨
⎩
∫ T

0

∫
Ω

e−t/ε

(
1
2
u2

t +
1
2ε

|∇u|2 − 1
ε
fu

)
for u ∈ L2(0, T ;H1

0 (Ω))

∞ otherwise

converge to the solution of the heat equation

ut − Δu = f a.e. in Ω × (0, T ) (7.1)
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supplemented with the initial condition and with homogeneous Dirichlet conditions (other boundary conditions
can be considered as well) in the following sense

max
t∈[0,T ]

‖u(t) − uε(t)‖L2(Ω) ≤ cε1/2, (7.2a)

‖u− uε‖Hη(0,T ;L2(Ω)) ≤ cε(1−η)/2 for all 0 < η < 1. (7.2b)

Note that, given (7.2a), convergence (7.2b) is equivalent to

(∫ T

0

∫ T

0

‖(u− uε)(t) − (u − uε)(s)‖2
L2(Ω)

|t− s|1+2η
dt ds

)1/2

≤ cε(1−η)/2 for all 0 < η < 1.

Analogous conclusions hold for more general initial data u0. Define φ to be the Dirichlet integral

φ(u) .=
1
2

∫
Ω

|∇u|2, D(φ) .= H1
0 (Ω).

We readily characterize the corresponding interpolation set Dr,2 for 0 < r < 1. Indeed, one has that [9],
Theorem 2, u0 ∈ Dr,2 iff there exists ε �→ v(ε) ∈ H2(Ω) ∩H1

0 (Ω) such that ε �→ ε1−r‖Δv(ε)‖L2(Ω) ∈ L2
∗(0, 1),

and ε �→ ε−r‖u0 − v(ε)‖L2(Ω) ∈ L2∗(0, 1). This precisely amounts to say that

u0 ∈ (L2(Ω), H2(Ω) ∩H1
0 (Ω)

)
r,2

≡

⎧⎪⎨
⎪⎩

H2r(Ω) for 0 < r < 1/4

H
1/2
0 0 (Ω) for r = 1/4

H2r
0 (Ω) for 1/4 ≤ r < 1

(7.3)

where Hs
0(Ω), 1/2 < s < 2 and H1/2

0 0 (Ω) classically denote the spaces of functions whose trivial extension to R
n

belongs to Hs(Rn) and H1/2(Rn), respectively [24] (note that Hs
0(Ω), 1/2 < s < 2 is the closure in Hs(Ω) of

the space of compactly supported smooth functions whereas H1/2
0 0 (Ω) is not).

Choose now u0 fulfilling (7.3) for some 0 < r < 1 and let ε �→ u0ε ∈ H2(Ω) ∩ H1
0 (Ω) be such that ε �→

ε1−r‖u0ε‖H2(Ω), ε �→ ε−r‖u0 − u0ε‖L2(Ω) ∈ L2
∗(0, 1). Then, the unique minimizers uε of the WED functionals

over K(u0ε) fulfill

max
t∈[0,T ]

‖u(t) − uε(t)‖L2(Ω) ≤ cεr

and quantitative convergence in Hη(0, T ;L2(Ω)) holds as well. Obvious modifications lead to the more general
linear parabolic equation ut − div(A∇u) = f where the bounded function A : Ω → R

n×n takes symmetric and
uniformly positive definite values.

Let now Ω be C1,1 or convex, u0 ∈ H2(Ω) ∩H1
0 (Ω), and u0ε be suitable approximations in the same spirit

above. Define

u �→
⎧⎨
⎩
∫ T

0

∫
Ω

e−t/ε

(
1
2
u2

t +
1
2ε

|Δu|2 − 1
ε
fu

)
for u ∈ L2(0, T ;H2(Ω) ∩H1

0 (Ω))

∞ otherwise.

The minimizers to the latter, constrained to fulfill uε(·, 0) = u0ε almost everywhere in Ω, fulfill (7.2) where u is
the solution of the biharmonic equation

ut + Δ2u = f a.e. in Ω × (0, T )
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subject to the initial condition, homogeneous Dirichlet conditions on u and homogeneous Neumann conditions
on Δu (again other boundary conditions may be considered).

We may recollect the above examples (as well as a variety of other symmetric parabolic problems of order 2k)
in the following abstract setting. Let the Hilbert spaces H and V be given with the injection V ⊂ H being
dense. Moreover, let the bilinear and symmetric form a : V × V → R be coercive and continuous and define

u �→
⎧⎨
⎩
∫ T

0

e−t/ε

(
1
2
|u′|2 +

1
2ε
a(u, u) − 1

ε
(f, u)

)
for u ∈ L2(0, T ;V )

∞ otherwise.

Then, the minimizers of the above WED functionals (suitably constrained to fulfill initial conditions) converge
in H , uniformly with respect to time, to a solution of the abstract linear equation

u′ +Au = f a.e. in (0, T )

where the linear operator A : H → H is defined by (Au, v) .= a(u, v) for all v ∈ V and u ∈ D(A) .= {v ∈ V :
sup|z|=1 a(v, z) <∞}. Indeed, in the same spirit of (7.2), much more is true as we have that

max
t∈[0,T ]

‖u(t) − uε(t)‖H ≤ cε1/2, ‖u− uε‖Hη(0,T ;H) ≤ cε(1−η)/2 for all 0 < η < 1. (7.4)

7.2. Parabolic variational inequalities

Under the above assumptions, let now g ∈ H1(Ω) be given with g ≤ 0 on ∂Ω and consider the WED
functionals

u �→
⎧⎨
⎩
∫ T

0

∫
Ω

e−t/ε

(
1
2
u2

t +
1
2ε

|∇u|2 − 1
ε
fu

)
for u ∈ L2(0, T ;H1

0(Ω)) with u(·, t) ≥ g(·) a.e.

∞ otherwise.

Then, (suitably constrained) minimizers converge in C([0, T ];H) to a solution of the parabolic obstacle problem

∫
Ω

ut(u− v) +
∫

Ω

∇u · ∇(u − v) ≤
∫

Ω

f(u− v) ∀v ∈ K, a.e. in (0, T )

where the convex set K is defined by K .= {v ∈ H1
0 (Ω) : v ≥ g a.e.}. More precisely, the error estimates (7.2)

hold. Within the abstract setting introduced in the previous subsection, a variety of other constraints can be
discussed as well.

Next, let W : R → R be a λ-convex and smooth function. Then, (suitably constrained) minimizers of

u �→
⎧⎨
⎩
∫ T

0

∫
Ω

e−t/ε

(
1
2
u2

t +
1
2ε

|∇u|2 +
1
2ε
W (u) − 1

ε
fu

)
for u ∈ L2(0, T ;H1

0 (Ω))

∞ otherwise

converge in the sense of (7.2) to solutions of the reaction-diffusion equation

ut − Δu+W ′(u) = f a.e. in Ω × (0, T ).

The choice W (u) = (u2 − 1)2 corresponds to the so-called Allen-Cahn equation.
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7.3. Quasi-linear parabolic PDEs

Let F : Ω × R
n → [0,+∞) be such that:

F (x, ·) ∈ C1(Rn) for a.e. x ∈ Ω, (7.5)

F (x, ·) is convex and F (x, 0) = 0 for a.e. x ∈ Ω, (7.6)

F (·, ξ) is measurable for all ξ ∈ R
n. (7.7)

Then, we can set b .= ∇ξF : Ω×R
n → R

n. We assume that, for a given p > 1, F satisfies the growth conditions

∃c, C > 0 such that F (x, ξ) ≥ c|ξ|p − C,

|b(x, ξ)| ≤ C(1 + |ξ|p−1) for a.e. x ∈ Ω and all ξ ∈ R
n. (7.8)

Let us now consider the WED functionals

u �→
⎧⎨
⎩
∫ T

0

∫
Ω

e−t/ε

(
1
2
u2

t +
1
ε
F (·,∇u) − 1

ε
fu

)
for u ∈ L2(0, T ;L2(Ω) ∩W 1,p

0 (Ω))

∞ otherwise.

In the latter, homogeneous Dirichlet conditions are considered, other choices being possible. The present analysis
ensures that minimizers of the above functionals, suitably constrained as for initial values, converge in the sense
of (7.2) to a solution of the quasilinear equation

ut − div b(·,∇u) = f a.e. in Ω × (0, T ).

In particular, the choice F (x, ξ) .= |ξ|p/p gives rise to the so-called p-Laplacian equation, whereas the choice
F (x, ξ) .= (1 + |ξ|2)1/2 corresponds to the mean curvature flow for Cartesian surfaces (note however that the
latter does not directly fit into this theory because of a lack of lower semicontinuity).

7.4. Degenerate parabolic PDEs

Assume we are given β : R → R monotone and continuous with β(0) = 0 and superlinear growth at infinity [8].
Define j to be the only convex function such that β = j′ and j(0) = 0. We now introduce the WED functionals
on H1(0, T ;H−1(Ω)) given by

u �→
⎧⎨
⎩
∫ T

0

e−t/ε

(
1
2
‖ut‖2

H−1(Ω) +
1
ε

∫
Ω

(
j(u) − fu

))
for u ∈ L2(0, T ;L2(Ω)), j(u) ∈ L1(Ω × (0, T ))

∞ otherwise.

Qualified minimizers of the latter functional converge inH−1(Ω), uniformly in time, to a solution of the following
degenerate parabolic equation

ut − Δβ(u) = f in Ω × (0, T )

in a distributional sense, along with homogeneous Dirichlet boundary conditions for β(u). More precisely, we
have that (7.4) hold for H = H−1(Ω). In particular, the choice β(u) .= (u−1)+−u− corresponds to the classical
two-phase Stefan problem, β(u) .= |u|m−2u for m > 2 leads to the porous medium equation. The multivalued
case β(u) = ∂I[0,1] (subdifferential of the indicator function of the interval [0, 1]), related to the Hele-Shaw cell
equation, can be handled as well.



82 A MIELKE AND U. STEFANELLI

R
apide N

ot H
ig

hl
ig

ht

7.5. Evolution of microstructure in a bistable bar

In [13] Conti and Ortiz consider the WED functionals

Fε(u) .=

⎧⎨
⎩
∫ T

0

∫
Ω

e−t/ε

(
1
2
u2

t −
1
ε
fu

)
if |ux| = 1 a.e.

∞ else

suggested by a modeling of branching in martensite in a one-dimensional bar occupying the reference domain
Ω = (0, 1). The function u : Ω × (0, T ) → R represents the bar displacement, the system is constrained in the
two phases ux = 1 and ux = −1, no contribution from the interfacial energy is considered, and f stands for an
applied body force (see [22]).

For fixed ε > 0, the functional Fε fails to be lower semicontinuous with respect to the weak topology of
H1(0, T ;L2(Ω)). The argument in [13], Theorem 3.1, entails that

sc−Fε(u) =
∫ T

0

∫
Ω

e−t/ε

(
1
2
u2

t + I[−1,1](ux) − 1
ε
fu

)

where the relaxation is taken with respect to the weak topology in H1(0, T ;L2(Ω)) (note that the actual proof
in [13] is concerned with the weak topology in H1(Ω× (0, T )) instead) and I[−1,1] is the indicator function of the
interval [−1, 1]. This computation is by no means trivial as the interplay between energy and dissipation has
to be carefully taken into account. In this specific case, sc−Fε coincides with the convexification of Fε. Note
however that this is not the case in general, see [26], Section 5.1.

From this computation, Conti and Ortiz conjecture that the WED formalism can be of some use for describing
microstructure evolution. In particular, at a fixed level ε > 0, the net effect of relaxation is that of allowing
solutions u with |ux| < 1 which may therefore be interpreted as the weak limit of a fine evolving microstructure.

The analysis in [13] left open the issue of considering ε → 0, namely of extending the above interpretation
to the causal limit. We are in the position of filling this gap. Fix an initial condition (say u0 = 0 as in [13],
for simplicity) and homogeneous Dirichlet boundary conditions. Note that sc−Fε is coercive with respect to
the weak topology in H1(0, T ;L2(Ω)) on K(0) (see again [13], Thm. 3.1). Hence, at each level ε, the functional
sc−Fε admits a unique minimizer uε in K(0) (along with homogeneous Dirichlet boundary conditions) and, by
applying our results, uε converges uniformly in L2(Ω) and weakly in H1(0, T ;L2(Ω)) to a function u solving

u′ + ∂IC(u) � f a.e. in (0, T ), u(0) = 0. (7.9)

Here IC is the indicator function of the nonempty convex and closed set

C
.= {u ∈ H1

0 (Ω) : |ux| ≤ 1 a.e.}.

In particular, the latter entails that u : [0, T ] → H1
0 (Ω) fulfills

∫ 1

0

(∫ x

0

(ut − f)
)

(p− ux) ≤ 0 ∀p ∈ L2(Ω) with |p| ≤ 1 a.e. in Ω and
∫

Ω

p = 0,

a.e. in (0, T ), u(·, 0) = 0 a.e. in Ω.

Moreover, our convergence analysis may be extended to the case of approximate minimizers of the original
unrelaxed functional Fε. In particular, as sc−Fε turns out to be the WED functional corresponding to the
convex and lower semicontinuous potential

u �→
∫

Ω

(
I[−1,1](ux) − 1

ε
fu

)
,
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we are in the position of applying Corollary 5.5 and deduce that all (qualified) sequences of approximate
minimizers of Fε converge to the unique solution of (7.9) in the sense of (7.2). An illustration of this solution
for a constant body force f is given in [13], Figure 4.

7.6. Surface roughening by island growth

A second example of relaxation in [13] concerns the WED functionals

Fε(u) .=

⎧⎨
⎩
∫ T

0

∫
Ω

e−t/ε

(
1
2
u2

t −
1
ε
fu

)
if ∇u ∈ K a.e.

∞ else

where Ω .= [0, 1]2 and
K

.= {(0,±1), (±1, 0)}.
These functionals are considered in connection with the phenomenon of island growth and coarsening during
the epitaxial growth of thin films. In particular, u : Ω → R represents the height of the thin film surface, f is a
given deposition rate, and K is the set of preferred slopes (see [31]).

For fixed ε > 0 the relaxation of Fε with respect to the weak topology of H1(0, T ;L2(Ω)) reads [13],
Theorem 4.1,

sc−Fε(u) .=
∫ T

0

∫
Ω

e−t/ε

(
1
2
u2

t + Ico K(∇u) − 1
ε
fu

)
where Ico K is the indicator function of the convex hull coK of K, namely coK .= {(x, y) ∈ R

2 : |x|+ |y| ≤ 1}.
By inspecting the specific form of sc−Fε, in [13] the macroscopic behavior of the evolving thin film in the

causal limit ε→ 0 is conjectured to corresponds to the gradient flow along with the choice

φ(u) .= −
∫

Ω

fu if ∇u ∈ coK and φ(u) .= ∞ else,

the effect of the microstructure being that of relaxing the original constraint ∇u ∈ K to the weaker ∇u ∈ coK
(in particular, solutions with ∇u ∈ int coK are interpreted as weak limits of evolving microstructures).

This fact is confirmed by our convergence result. Indeed, the functionals sc−Fε are (convex and) lower
semicontinuous. Hence, they admit unique minimizers uε in K(0) (the initial condition 0 is chosen for simplicity
and reference with [13]) and the sequence uε converges uniformly in L2(Ω) to the unique gradient flow

u′ + ∂IM (u) � f a.e. in (0, T ), u(0) = 0 (7.10)

where M .= {v ∈ H1
0 (Ω) : ∇v ∈ coK}.

Convergence also holds for approximate minimizers of the original unrelaxed functional Fε. Indeed, as the
relaxation sc−Fε is the WED functional related to the convex and lower semicontinuous potential

u �→
∫

Ω

(
Ico K(∇u) − 1

ε
fu

)
,

Corollary 5.4 ensures that all (qualified) sequences of approximate minimizers of Fε converge to the unique
solution of (7.10) in the sense of (7.2). The reader is referred to [13], Figure 5, for an illustration of a thin film
evolution developing island growth under a constant deposition rate.
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