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STABILIZATION OF THE KAWAHARA EQUATION
WITH LOCALIZED DAMPING

CARLOS F. VASCONCELLOS! AND PATRICIA N. DA Siiva'l

Abstract. We study the stabilization of global solutions of the Kawahara (K) equation in a bounded
interval, under the effect of a localized damping mechanism. The Kawahara equation is a model for
small amplitude long waves. Using multiplier techniques and compactness arguments we prove the
exponential decay of the solutions of the (K) model. The proof requires of a unique continuation
theorem and the smoothing effect of the (K) equation on the real line, which are proved in this work.
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1. INTRODUCTION

We consider the Kawahara (K) system in a bounded interval (0, L) under the presence of a localized damping

Ut + Uggr + NMzzzze + Uz + a(x)u =0 in (07 L) X (0’ +OO)
u(0,t) =u(L,t) =0 for allt >0
Uug(0,t) = uyp(L,t) =0 for allt > 0 (K)

Uz (L,t) =0 for allt >0
u(z,0) = ug in (0, L).

Here a = a(x) is a non-negative function belonging to L°°(0, L) and moreover, in most of the paper we will
assume that a(x) > ag > 0 a.e. in an open, non-empty subset w of (0, L), where the damping is acting effectively.
The constant 7 is a negative real number. The above system, in absence of damping (i.e. a = 0), describes the
one-dimensional evolution of small amplitude long waves in several problems arising in fluid dynamics.
In this model the conservative dispersive effect is represented by the term (uzgz + NUzrezs). The Kawahara
equation is given by
Ut + Uy + QUgre + BUgzzze = 0 (1.1)
where a and [ are constants representing the effect of dispersion. This equation is a model for plasma
wave, capillarity-gravity water waves and other dispersive phenomena when the cubic KdV-type is weak.
Kawahara [10] pointed out that it happens when the coefficient of the third order derivative in the KdV equation
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becomes very small or even zero. It is necessary to take account of the higher order effect of dispersion in order
to balance the nonlinear effect. Kakutani and Ono [9] showed that for a critical value of angle between the
magneto-acoustic wave in a cold collision-free plasma and the external magnetic field, the third order derivative
term in the KdV equation vanishes and may be replaced by the fifth order derivative term. Following this idea,
Kawahara [10] studied a generalized nonlinear dispersive equation which has a form of the KdV equation with
an additional fifth order derivative term. This equation has also been obtained by Hasimoto [8] for the shallow
wave near critical values of surface tension. More precisely, in this work Hasimoto found these critical values
when the Bond number is near one third.

While analyzing the evolution of solutions of the water wave-problem, Schneider and Wayne [23] also showed
that the coefficient of the third order dispersive term in nondimensionalized statements of the KdV equation
vanishes when the Bond number is equal to one third. The Bond number is proportional to the strength of the
surface tension and in the KdV equation it is related to the leading order dispersive effects in the water-waves
problem. With its disappearance, the resulting equation is just Burger’s equation whose solutions typically form
shocks in finite time. Thus, if we wish to model interesting behavior in the water-wave problem it is necessary
to include higher order terms. That is, it is necessary to consider the Kawahara equation. In any case, the
inclusion of the fifth order derivative term takes in account the comparative magnitude of the coefficients of the
third and fifth power terms in the linearized dispersion relation.

Berloff and Howard [2] presented the Kawahara equation as the purely dispersive form of the following
nonlinear partial differential equation

Ut + U Uy + QUgzy + DlUger + Clzzos + AUgzras = 0.

The above equation describes the evolution of long waves in various problems in fluid dynamics. The Kawahara
equation corresponds to the choice a = ¢ = 0 and r = 1 and describes water waves with surface tension. Bridges
and Derks [5] present the Kawahara equation — or fifth-order KdV-type equation — as a particular case of the
general form

0
%f(u,um,um) (1.2)

where u(z,t) is a scalar real valued function, o and 3 # 0 are real parameters and f(u, Uz, tz,) is some smooth

function. The form (1.1) occurs most often in applications and corresponds to the choice of f in (1.2) with form
f(uaumaua:a:) = —u?
As noted by Kawahara [10], we may assume without loss of generality that 5 < 0 in (1.1). In fact, if we

introduce the following simple transformations

Ut + QUzzy + 6“9393939393 =

u— —u, x——xr and t—t

we can obtain an equation of the form of equation (1.1) in which « and § are replaced, respectively, by —«
and —/f.

For further considerations see also, for example, Topper and Kawahara [24].

Nonlinear dispersive problems have been object of intensive research (see, for instance, the classical paper
of Benjamin et al. [1], Biagioni and Linares [3], Bona and Chen [4], Menzala et al. [15], Rosier [19], and
references therein). Recently global stabilization of the generalized KAV system has been obtained by Rosier
and Zhang [20]. Linares and Pazoto [12] studied the stabilization of the generalized KdV system with critical
exponents. Unique continuation and decay for the Korteweg-De Vries equation with localized damping have
been studied by Pazoto [16].

For controllability problems involving dispersive systems, we can consider the work of Russel and Zhang [21]
about KdV system and the paper by Linares and Ortega [11], where the Benjamin-Ono equation has been
analyzed.

In Doronin and Larkin [7], using semi-discretization method, the existence and uniqueness of a regular solution
for the Kawahara system were proved when the initial data belongs to H®(0,1). Its relation to a KdV-solution
was also established. Moreover the exponential decay of the energy for small initial data it was shown.



104 C.F. VASCONCELLOS AND P.N. DA SILVA

In this paper, following from close the works by Menzala et al. [15] and Rosier [19] on the KdV equation, we
study the problem of the decay of the energy for the (K) system as t — +o0, in the presence of the localized
damping term a(z)u.

We denote by ||f|| the L?(0, L)-norm of the function f.

The total energy associated with the (K) system is defined by

L
1
B0 =5 [ a0 de = 5lluto)]
0
Using the above boundary conditions we prove that

L
4B e (0,0)2 7/ a(@)|u(z, t)|? dz < 0, V¢ > 0.
dat 2 0
So, E(t) is a nonincreasing function of time. This paper is devoted to analyze the following questions: Does the
energy E(t) — 0 as t — 4007 Is it possible to find a rate of decay of the energy?

We observe that, according to the above energy dissipation law, even when a = 0, E(t) is a nonincreasing
function.

The linearized problem, in which the term wu, is missing and the damping a = 0, was analyzed by
Vasconcellos and da Silva [25,26]. It has been proved that the linear semigroup decays exponentially for all
values of the length of the space-interval L and of n < 0.

In [25] this result was proved by excluding a countable set of critical lengths L but later on in [26] it was
shown that the same holds for all L, unlike the case of the KdV in which there is effectively a countable set of
lengths for which the energy of the corresponding linear system does not decay (see [15,19]).

In this work we study the nonlinear (K) system.

In Section 2 we consider the initial data belonging to L?(0, L) then, using semigroup theory and multipliers
techniques we prove the existence and uniqueness of global solutions for the (K) system in C([0, +o0); L?(0, L))N
L2,.(0, +o0; H3(0, L)).

The Section 3 is devoted to study the stabilization of the (K) system. Firstly, as a consequence of exponential
decay of the energy associated to the linear equation, we prove the exponential decay of the small amplitude
solutions of the nonlinear problem for all lengths L, even in absence of the damping a.

Then, we address to the problem of decay for large solutions. In this case we need to consider the extra
damping a = a(x) with the following assumptions: « it is a non-negative function belonging to L>°(0, L) and
moreover that a(z) > ap > 0 a.e. in an open, non-empty subset w of (0,L), where the damping is acting
effectively.

We argue using multipliers techniques and compactness arguments to handle the extra terms that the non-
linearity produces. We prove that all solutions of (K) decay exponentially as t — +o0o0 with a decay rate, which
is uniform in bounded sets of L?(0, L).

In our proof, we need a consequence of a theorem due to Saut and Scheurer [22] which show that the unique
continuation principle for Kawahara system holds and moreover it is important to consider the smoothing effect
of the (K) equation on the real line (see Sect. 4).

In Section 4, inspired by an argument developed in Pazoto [16] for KAV problem, which was used before for
linear, time invariant wave and plate equations respectively by Rauch and Taylor [18] and Zuazua [27], we prove
a gain of regularity for solutions of the problem (K) with u.,(0,¢) = 0 that vanish on a subset w contained
in (0, L).

Finally, in Section 5, we do some remarks about the Kawahara system.

Before we present our results, it is convenient to comment on the absence of the spatial derivative term wu,
in the Kawahara problem (K).
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When we working on the whole real line, the linear transport term wu, can be scaled out by a change of
variables.

Although the term u, makes a physical sense in bounded domains, however in the proof of the results pre-
sented in this work, this term plays no essential role, even in presence of a damping. For further considerations,
see Section 5 (Final remarks).

2. EXISTENCE AND UNIQUENESS

In this section we study the global existence and uniqueness of the solutions of the following problem

Ut + Ugzx + Ngrras + vy + alx)u =0 in (0,L) x (0,+00)
u(0,t) =u(L,t) =0 forallt >0
Uz (0,t) = uy(L,t) =0 for allt >0 (2.1)

Ugz (L, t) =0 for allt >0

u(z,0) = ug in (0, L),

where a = a(x) is a non-negative function belonging to L>(0, L), satisfying a(xz) > ag > 0 a.e. in an open,
non-empty subset w of (0, L) and 7 is a negative real number.

Theorem 2.1. If ug belongs to L?(0,L) and n < 0, then, problem (2.1) has a unique solution u belonging to
C([0, +00); L*(0, L)) N L§, (0, +00; HF (0, L)).

loc

Proof. Using boundary conditions, we observe that the total energy associated to system
1 2
Bt) = Sllu@)ll

satisfies the energy dissipation law

L
4B (0, 8)2 7/ a(@)u(z, t)|?dz < 0, Vt > 0. (2.2)
a2 o
Consequently, it is sufficient to prove local (in time) existence and uniqueness. Global existence will then follow
from (2.2).

Let A denote the closed linear operator Av = —v"’ — nv"”"”" defined on the dense domain D(A) C L%(0, L),
where D(A) = {v € H?(0,L) : v(0) = v(L) = v'(0) = v'(L) = v"(L) = 0}.

On the other hand, we see that the adjoint operator A*, is defined by A*w = w" + nw'"”’, where w belongs
to D(A*) = {w € H*(0,L) : w(0) = w(L) = w'(0) = w'(L) = w”(0) = 0}.

Using integration by parts we show that A and A* are dissipative operators. Therefore, from classical results
in semigroup theory (Pazy [17], Cor. 4.4, Chap. 1), we know that A generates a strongly continuous semigroup
of contractions in L?(0, L).

Let {S(t)}+>0 be the semigroup of contractions generated by A, then according to [25] (Thm. 1.1), we know
that the semigroup of contractions {S(¢)}+>0 satisfies the following properties:

I1S()uol| < |uoll,  Vt>0,  Yuge L*0,L). (2.3)

1S (-)uoll L2 (0,712 0,)) < Clluoll; VI >0,  Vug € L*(0,L). (2.4)

Now, Theorem 2.1 follows from the following lemmas.



106 C.F. VASCONCELLOS AND P.N. DA SILVA

Lemma 2.1. (1) If u belongs to L?(0,T; H3(0,L)) then uu, belongs to L*(0,T; H}(0,L)) and the map Y :
U — UUg 18 continuous in the corresponding topologies.

(2) For f € LY0,T;HE0,L)) the function defined by wv(-,t) fo (t — s)f(-,s)ds belongs to
X7 = C([0,T); L*(0, L)) N L*(0,T; H3(0, L)) and the linear map & : f — v 8 contmuous

Proof. Since u € L2(0,T;HZ(0,L)), we have u, € L?*(0,T;H}(0,L)) and hence, by classical results in one
dimensional Sobolev spaces, uu,(-,t) belongs to Hg (0, L), for all t € (0,7T) and moreover (utiz), = (uz)? +utlzy.
So, using Sobolev embedding theorem, we have H}(0, L) — L*(0, L) and

T
[ 1)l < € [ Dy 25)

To show the continuity of the map Y, we apply the triangular inequality and Hoélder’s inequality to obtain

[T (w) = Y(w)|[L10,m;m2 0,0)) < CUlullL20,m5m2(0,L)) + [0l L2 (0,732 (0,0)) 1w — W[ 20,712 0,1)) -

This shows that T is locally Lipschitz.
To prove item (2), we observe that v is a mild solution of the following problem:

Ut + Ugga + NVzzzzr = f
v(0,t) = v(L,t) =0
Um(oat) = Uz(Lat) =0

Uz (L, 1) =0

v(x,0) = 0.

Since, for s € (0,1),
1S =) fC oIl < (s s)ll

it follows from Lebesgue’s theorem that v belongs to C([0,T]; L?(0, L)) and moreover

o, H</Hf lds < 1fllorormony V€ 0,7, (2.6)

On the other hand, integrating by parts in

T AL T AL
/ / 20Vt + Vagr + Mzgzrs) dodt = / / v fdzdt
o Jo o Jo
we get

1 /L 3 (T L 5 (T L T L
= / zlv(z, T)|* de + = / / |vg (2, t)|* dadt —n= / / Ve (2, )| dadt = / / x(vf)(x,t) dadt.
2.Jo 2Jo Jo 2Jo Jo o Jo

Hence, using (2.6),

3 T L 5 T L
5/0 /0 [oa (@ ) dardt — ”5/0 /0 |02 (2, ) dzdt < L|| fll 210,311 0,00 V]l oo, 71:22(0.2)

< L||f||%1(O,T;Hé(O,L))' (2.7)

So, combining (2.6) and (2.7) we complete the proof of part (2) and the lemma holds as well. O
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Lemma 2.2. The map ¥ : X7 — Xp defined by

U(u) = S(t)uo + /0 S(t — s)uug(s)ds (2.8)

is continuous. Moreover there exist T > 0 and R > 0 such that:
W is a contraction from Br to Br, where Bgr is a ball of Xrp.
Proof. The continuity of ¥ follows by (2.3), (2.4) and Lemma 2.1.
On the other hand, by Lemma 2.1 part (2) there exists C7 > 0 such that:

W (u) = ¥()|[x, < Crlluu, — UUa:||L1(0,T;Hg(0,L))~
So, applying triangular inequality and Holder’s inequality, we have
10 (w) = ¥ (0)||x, <V2C1[Ju—=vl|z200.05w 10,2 [l 220073812 0,
+ V2C|[v]| L2 0 7w 0.0y) |1 — l[z2 0,112 0,L)) (2.9)
where, W1>°(0, L) = {w € L>(0,L) : w" € L>=(0,L)}.
Now, using Gagliardo-Niremberg inequality, it follows by (2.9) that there exists Cy > 0 such that:
W (u) = ¥ )|[xr < CoTH{||ullx, + [[vllxs Hu = vl[x,- (2.10)

So, (2.10) shows that ¥ is a contraction in the ball Br of X if
20,T5R < 1. (2.11)

We will complete the proof of lemma showing that, for a suitable choice of R and T satisfying the above
inequality, the map ¥ sends Bp into itself.
Indeed, by (2.3), (2.4) and (2.10) we have

1
1% ()l xr < Clluol| + CoT[[ull%, - (2.12)

We consider C' = max{C, Cy} and we then take R = 2C/||ug||. Therefore, in order to guarantee that the right
side of (2.12) is less than R and that (2.11) holds, we choose T' > 0 such that

4TTH ||uo|| < 1.

So, we conclude the proof of Lemma 2.2 O

In order to prove Theorem 2.1, we observe that, using the variation of constants formula, system (2.1) may
be written in the integral form (2.8).

Now, by Lemma 2.2 and Banach Fixed Point theorem we show the local existence and uniqueness of the
solutions of (2.1), which completes the proof of the Theorem 2.1. O

3. EXPONENTIAL DECAY FOR KAWAHARA SYSTEM

This section is devoted to analyze the exponential decay for (K) system.

In Section 3.1, we study the case when the initial data is sufficiently small. We prove that, in this case, the
system (K) decays exponentially even in absence of damping a.

Section 3.2 is addressed to prove a general result of exponential decay for (K) system and the gain of regularity
of the solutions u.
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3.1. Exponential decay of small amplitude solutions

In this section we show the exponential decay of the energy associated with system (2.1), when the initial
data ug € L%(0, L) is sufficiently small and the damping a = 0.
Before proving the main result of this section, we need the following technical proposition:

Proposition 3.1. If u is the solution of system (2.1) with initial data ug belonging to L?(0, L), then for T > 0,
there exists a positive constant Co = Co(T, L,n) such that:

||U||%2(0,T;Hg(0,L)) < O fuol |* + [Juol[*]- (3.1)
Proof. Multiplying the equation in (2.1) by zu and integrating in (0,7") x (0, L), we have
T L
/ / WU + U TU + Ngppre U+ Tu Uy + a(x)zu? dedt = 0.
o Jo

Integration by parts and boundary conditions of (2.1) give us

1 (f , 3 (T (L , 5 (T (L ,
= zlu(z, T)|* dz + = |ty (z, t)|* dedt — n= |ttge (2, t) |7 dadt
2 Jo 2Jo Jo 2Jo Jo
T L 1 L 1 (T (L
+/ / :Ea(:c)|u(:c,t)|2 dadt < —/ :43|u(:43,0)|2 dm+—/ / |u(:c,t)|3d:cdt. (3.2)
o Jo 2 Jo 3Jo Jo

Now, by (2.2) and Sobolev embedding theorem we obtain:

1 T L C ,
5/0 /O |U($,t)|3 daxdt < gﬁHUOH ||u||L2(O,T;Hg(O,L))' (33)

So, replacing (3.3) in (3.2) and taking into account that a(xz) > 0 and n < 0, we obtain

5 (1 [F 2 L 2, C 2
—n5 [taa (2, 1) dadt < Zuol|” + VT uolPllull 20,7 130,1))-
o Jo

Therefore,

Jul < 2L g 4+ 2 g
L2(0,T;HZ(0,L)) = —10n 0 22572 0

which concludes the proof. O
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Now, we are ready to prove the main theorem of this subsection.

Theorem 3.1 (stabilization of small amplitude solutions). Let a = 0 in the problem (2.1). Then, there
exists § > 0 such that if the initial data ug € L*(0,L) of the problem (2.1) satisfies ||uol| < J, the energy

E(t) = 3|[u(t)||?, associated to the problem, decays exponentially for all lengths L.

More precisely, there exist ¢ > 0 and p > 0 such that: E(t) < ce " E(0).
Proof. According to [25] (Thm. 2.2) and [26] (remarks) the linear semigroup {S(¢)}+>0 satisfies
S]] < e
even when a = 0.
Let T' > 0 be such that

p=S(T)lzz20,L),2200,)) < 1. (3.4)

The solution of problem (2.1) may be written in the integral form defined by (2.8). In particular, for t = T we
have

u(T) = S(T)uo + /OT S(T — s)uuy(s) ds.
Therefore, by (2.5) and (3.4), we obtain
()| < pllwoll + CllullF2 0,712 0,1 (3-5)
Replacing the inequality (3.1) in (3.5) it follows that
()| < [Juoll{ p + C5 [lluo| + [[uol*] }

where C3 = CCs.
Now, taking

1—p
Cs[lonII+||Uo|I3]<T

we see that

1+p
(D] < =5~ Iluoll
The above inequality together with semigroup property implies the exponential decays of the energy when the

initial data satisfies (3.6). O

Remark 3.1. The argument used to prove the Theorem 3.1 provides an exponential decay of the energy only
when the size of the initial data is small enough. This argument fails for large solutions, whose analysis will be
performed in the next subsection.

3.2. The exponential decay for large solutions

The aim of this subsection is to examine the locally uniform exponential decay of the energy associated to
the problem (2.1) for large solutions. We employ the method developed in [25], however, we may not apply
Holmgren’s principle since we have now a semi-linear problem. Our analysis follows the same method used
in [15]. In order to conclude we need an important result, named unique continuation principle, which we state
below.
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Unique Continuation Principle (UCP) for Kawahara system

Let w be an open, non-empty subset of (0, L).
Ifve L*(0,T; H5(0,L)) N L2(0,T; H3(0, L)) N L>=(0,T; L*(0, L)) solves

V¢ + Vpze + Mrzzez + AWV, =0 in (07 L) X (Oa T)
v(0,t) = v(L,t) =0 for allt € (0,7)
v(0,8) = vy (L, t) =0 for allt € (0,7 (3.7)

Ve (L, 1) =0 for allt € (0,7)

v=0 inwx (0,7)

with A >0 and T > 0, then necessarily v =0 in (0, L) x (0,T).
The proof of the UCP follows directly from the following result due to Saut and Scheurer [22] (Thm. 4.2).
Let O be the cylinder Q x (=T,T), Q2 open interval in R. Let L be defined by

1
L =iD;+ ai®*"' D' 4 R(z,t,D),  a#0, D= —,83
i Ox
with R(x,t,D) = Z?korj (z,t)D?. We assume that r; € L>(=T,T; L3 ().
Let u € L*(=T,T; H**1(Q)) be a solution of Lu = 0, which vanishes in some open set Oy C O. Then u

loc
vanishes in the horizontal component of Oy.

In our case, we take k = 2 and by means of a change of variables, we consider R(x,t, D) = iD? + ir(z,t)D
with r(z,t) = A\u, where u € L*(—T,T; HP, () is the solution of (3.7) in the new variables.

loc

Now, since UCP holds, we have the following result.

Theorem 3.2 (stabilization). Assume the open subset w of (0,L) is such that the (UCP) above holds. Let
a = a(z) be a non-negative function belonging to L*°(0, L) such that a(x) > a9 > 0 a.e. in w. Then, for all
R > 0, there exist ¢(R) = ¢ >0 and u(R) = p > 0 such that

B(t) < c||uo|[Pe (3.8)

for all t > 0 and any solution of (2.1) with ug € L?(0, L) and ||ug|| < R.

Proof. Multiplying the equation in (2.1) by (T — t)u and integrating on (0, L) x (0,7") we have

‘||“0||2—2T// (i, £)[2 dzdt — /|umOt|2dt+// (@)[ulz, £)[2 dzdt (3.9)

T L
since / / (T — t)u*u, dedt = 0.
o Jo

So, by semigroup property, it is sufficient to prove that for any 7' > 0 and R > 0, there exists a positive
constant ¢;(R,T) = ¢; such that

/ / u(z,t)]? dedt < cl{ / |tz (0, t) |2dt+/ / x)|u(z, t)? dxdt} (3.10)

for any solution u of (2.1) with ||up|| < R. Again we argue by contradiction. Suppose that (3.10) does not hold.
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Then there exists a sequence {u,} of functions in L>(0,T; L%*(0, L)) N L?(0,T; H3(0, L)) solutions of (2.1),
satisfying ||u,(+,0)|| < R and such that

T pL
n(z,t)]? dedt
lim Jo_Jo lun(@, P dv = +oo. (3.11)

" Lo 3 an)aa (0, )2 42 J [ ) un , 1)|2 ]

Let A\, = \// / |tn (2, t)|? dadt and v, (z,t) = E\ 2 . Clearly, for each n € N, the functions v,, satisfy:

(Un)t + (Un)aze + 1(Vn)zzzze + An(Vn)(Wn)e + a(x)v, =0 in (0,L) x (0,7T)
v (0,t) = vp(L,t) =0 for allt € (0,T)

(n)z(0,t) = (vn)(L,t) =0 for allt € (0,7T)

(Vn)zz(L,t) =0 for all t € (0,T),

T L
/ / vy, (2, 1) [? daedt = 1, (3.13)
0 0
lim {n/ |(Vn)2x(0, 1) |2dt+2/ / ) v (z, )2 dxdt} =0. (3.14)
n—oo 0

Using (3.9), (3.13) and (3.14) we can prove that v,(x,0) is a bounded sequence in L?(0, L). Then, by (3.1),
there exists M(L,n,T) = M > 0 such that:

(3.12)
and

lvn|lL2(0,75m2(0,2)) < M. (3.15)

Now, since {v,,} belongs to L>°(0, T'; L*(0, L))NL2(0,T; H2(0, L)) and v, (=, 0) is a bounded sequence in L2(0, L),
it follows from (3.15) and Sobolev embedding property that

v (vn)zllL2(0,2)x (0,1)) < c1l|vnllLe 0,120, L)) [[Vnll 20,7512 0,2)) £ C (3.16)

for some constant C(L,n,T) = C > 0.

So, as {\,} is a bounded sequence (because, by assumption, ||u,(z,0)|] < R), we conclude, by (3.12), (3.13),
(3.15) and (3.16), that {(v,);} is bounded in L?(0,T; H=3(0,L)).

Since the embedding H3(0, L) < L?(0, L) is compact, it follows by using classical compactness results that
vy, is relatively compact in L2((0, L) x (0,T)). By extracting subsequences we obtain

vn, — v strongly in L2((0, L) x (0,T)). (3.17)

Here, to simplify the notation, we denote the subsequence by the same index n.
By (3.13), we have

l[v]lL2(0,L)x (0,1)) = 1. (3.18)
Since a € L*°(0, L), then by (3.14) and (3.17) we deduce

0= liminf{n/ [(Vn) 2z (0, 1) |2dt+2/ / ) v (2, )2 dmdt}
n—oo 0
{ / |vmm0t|2dt+2/ / z)v(z,t)? dmdt}
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which guarantees that a(x)v =0 and so v = 0 in w x (0,7, furthermore, v,,(0,¢) = 0 in (0, 7). More precisely,
the limit v € L?(0,T; H3(0, L)) N L>°(0,T; L?(0, L)) and satisfies

Ut + Ugga + NVzzzzz + )\’UUI =0 in (07 L) X (Oa T)
v(0,t) = v(L,t) =0 for allt € (0,7)
v(0,8) = vy (L, t) =0 for allt € (0,7 (3.19)

Vg5 (0,1) = V30 (L, 1) =0 for allt € (0,T)

v(z,t) =0 (x,t) ew x (0,T)
where A = lim A, (we consider a subsequence also denoted by \,,).
We distinguish two situations:
(a) A=0

In this case, the limit v satisfies a linear problem as in [25], then by Holmgren’s Uniqueness Theorem, we
obtain v =0 in (0,7) x (0, L). This contradicts (3.18) and, consequently, (3.10) holds.

(b) A>0
In this case, the limit v solves (3.19) and to prove (3.10) we need the following gain of regularity result:

Proposition 3.2. (gain of regularity for (3.19)). If v € L?(0,T; HZ(0,L)) N L*(0,T; L*(0, L)) and satisfies
problem (3.19), then v belongs to L*(0,T; H>(0, L)).

We shall prove this proposition in next section.
Then, assuming the (UCP) holding for the subset w, we have v = 0in (0,7) x (0, L) and this is a contradiction.
(I

Remark 3.2. We observe that we have used in an essential way the assumption that the initial data are in a
ball of radius R. Otherwise, in the contradiction argument, we would have to consider the case A\,, — +o0c. This
has only been done by Zuazua [28] in the context of semi-linear wave equation with localized damping under
suitable structural assumptions on the nonlinearity.

Remark 3.3. It is important to analyze the proof of Theorem 3.2 to understand the amount of damping
necessary to guarantee the exponential decay of the energy.
Going back to the proof of Theorem 3.2, we observe that the limit solution v satisfies the following conditions:

V2(0,8) =0 for allt > 0
v=0 inw x (0,T).

Then using, Proposition 3.2 and the UCP we obtain the contradiction.

So, we can observe that to obtain the above conditions we only need a very weak amount of additional
damping to stabilize the Kawahara system. In fact, we do not need a damping mechanism that dissipates the
L?-norm as a(-)u does, it is suffice to dissipate some H ~*-norm to guarantee the exponential decay of the energy
associated to Kawahara system.

It is important to note that Theorem 3.2 proves the exponential decay of the energy, associated to nonlinear
(K) system, under two important assumptions, the gain of regularity for (3.19) and the UCP. In the next section
we shall prove the gain of regularity.

4. GAIN OF REGULARITY FOR THE PROBLEM (3.19)

In this section we prove the Proposition 3.2. The arguments used here are similar to [16]. So, we only give
a sketch of the proof.
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Proof. We consider the following system:
Wt + Waze + MUzgrzs + AMow)y, =0 in (0,L) x (0,T)
w(0,t) = w(L,t) =0 for allt € (0,T)
wy(0,8) = w, (L, t) =0 for allt € (0,T) (4.1)

Wy (L, 1) =0 for allt € (0,7T)

w(zx,0) = wy
where v belongs to L2(0,T; H2(0, L))NL*(0,T; L*(0, L)) and is the solution of system (2.1) with initial data vg
belonging to L?(0,L) and A > 0.

Lemma 4.1. If wy belongs to L*(0, L) and v satisfies the above assumptions, then system (4.1) has a unique
solution w belonging to L*(0,T; HZ(0,L)) N L>(0,T; L*(0, L)).

Proof. As it was done in Theorem 2.1, let {S(t)}+>0 be the semigroup of contractions generated by the
operator A.
Using the variation of constants formula, system (4.1) may be written by:

W(w) = S(two + /O S(t— 5)(wv)s ds. (4.2)

In the same way that in Theorem 2.1, we may prove that the above map is a contraction in a ball of X1 and
then we use the Banach fixed point theorem.
Now, using multipliers techniques we prove that this solution exists globally. (I

Lemma 4.2. Asin Lemma 4.1, if w solves system (4.1) with wo in L?(0, L), then there exists a positive constant
C = C(T,||vol|L2(0,1)) such that:

T
[lwoll72(0,) < € (/O w2 (0, 8)*dt + ||w0||12qs<o,L>> : (4.3)

Proof. To prove the inequality (4.3) we combine multiplier techniques and the compactness-uniqueness argument
in similar way as we have used in Theorem 3.2. (I

Now, we are in conditions to prove Proposition 3.2.
Differentiating equation in (3.19) with respect to t and taking w = v, we obtain the following system:

Wi + Wege + NWzzzzx + )\(Uw)a: =0 in (07 L) X (07 T)
w(0,t) = w(L,t) =0 for allt € (0,7

(4.4)
wg(0,t) = wy (L, t) =0 for allt € (0,T)

Wy (L, 1) =0 for allt € (0,T)

with wo(z) = w(z,0) = ve(x,0) = —v0 220 + NV0 zzzze + AoV € H5(0, L).
Moreover, we have wy,(0,t) = 0Oand w(zx,t) =0, (x,t) € w x (0,T).
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Now, according to Lemma 4.2 we obtain wg € L?(0,L). Then, combining Lemma 4.1 and system (3.19)
we get
vy =w € L>=(0,T; L*0,L)) N L*(0,T; H(0, L)) (4.5)
and by (3.19) we have:
NMgzawzs = —Vt — Ugzr — A0, 10 (0, L) x (0,7T). (4.6)
So, by (4.5) and (4.6), vyzsaze belongs to L2(0,T; H~1(0, L)) and therefore v,y is in L?(0,T; L?(0, L)), which
implies vy, in L2(0,T; L?(0, L)). Again, using (4.6) we can conclude that v, belongs to L?(0,T; L*(0, L)),
which proves Proposition 3.2. O

5. FINAL REMARKS

As pointed out in the introduction we present now a brief discussion about the proof of the presented results if
we add the extra term wu, to the Kawahara system (K).

(1) In the existence and uniqueness (Thm. 2.1) the same arguments apply to the new system without any
modification.

(2) In the exponential decay for small amplitude solutions data (Prop. 3.1), there is a slightly difference
in the constant Cy of inequality (3.1). In fact, due to u, term, we have to deal with ||u||12(0,7;22(0,1))
which is also bounded by ||ugl|.

(3) In the Unique Continuation Principle for Kawahara system, we only need to take R(x,t, D) = iD3 +
iD +ir(x,t)D instead of R(x,t,D) = iD? + ir(z,t)D.

(4) In the exponential decay for large solutions (Thm. 3.2)) and in the gain of regularity for problem (3.19)
(Lems. 4.1 and 4.2), the same arguments apply to the new system without any modification.

The problem of decay of solutions for Kawahara system (2.1) makes sense even in absence of the damping a,
that is, when @ = 0. In fact, according with the energy dissipation law we have:
The total energy associated with system (2.1) is defined by

1

L
B =3 [ It do = 3llulolP

Using the boundary conditions in (2.1) we obtain that

dE 1 2
7, — o lUzzx ;t < ) t .
i 2|u (0,1)] 0, vVt >0

Therefore, in this case, E(t) is a nonincreasing function.
Now, it is natural to formulate the following questions:

— Does the energy E(t) — 0 as t — +o00?
— Is it possible to find a rate of decay of the energy?

In this case, that is when a = 0, it is important to observe that Theorem 3.2 holds if the following unique

continuation principle can be proved:
If v e L?(0,T; H5(0, L)) N L2(0,T; H2(0, L)) N L>(0,T; L*(0, L)) solves

Ut + Ugga + NVzzzzz + )\’UUI =0 in (07 L) X (Oa T)
v(0,t) = v(L,t) =0 for allt € (0,7)

v(0,8) = vy (L, t) =0 for allt € (0,7

V2 (0,8) = vy (L, 1) = 0 for allt € (0,7T)

with A > 0 and T > 0, then necessarily v = 0 in (0, L) x (0,T)).
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As far as we know, the above unique continuation principle remains to be done.

Coron and Crépeau [6] studied the boundary controllability of the nonlinear KdV equation with Dirichlet
boundary condition on an interval with critical length and they proved that the nonlinear term gives the local
controllability around the origin.

On the other hand, we can consider the Kawahara system with more general nonlinearity, replacing the non
linear term wuu,, in the equation, by b(u)u,, where the real function b is a smooth function satisfying some growth
condition, as it was studied for the KdV system by Rosier and Zhang in [20]. There, the authors proved existence,
uniqueness and global stabilization for the Generalized KdV equation. Linares and Pazoto [12] analyzed the
existence and the locally uniform exponential decay of solutions of the critical generalized Korteweg-de Vries
equation in a bounded interval with a localized damping term. There the nonlinear term it is given by u*u,
and the initial data is small.

The study of the Kawahara system with more general nonlinearity, that is the existence, uniqueness and
stabilization of solutions is an open problem.

In the Kawahara system, as indicated in Remark 3.3, the damping term a(-)u may be replaced by any other
weaker damping mechanism, for instance, Bu, where B is a bounded operator in L?(0, L) such that Bu = 0
implies that v =0 in w.

In Massarolo et al. [14] has been obtained, for KdV system, the locally uniform energy decay at an exponential
rate with a very weak localized dissipation namely the H~! norm. Indeed, they considered the damping given
by the bounded linear operator B = 1,,(—A)~!, where w is a non-empty open subset of (0, L).

We believe that similar problem can be solved for Kawahara system without majors difficulties.

Acknowledgements. The authors thank E. Zuazua for his suggestions and comments.
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