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A FINITE DIMENSIONAL LINEAR PROGRAMMING APPROXIMATION
OF MATHER’S VARIATIONAL PROBLEM

Luca Granieri1

Abstract. We provide an approximation of Mather variational problem by finite dimensional mini-
mization problems in the framework of Γ-convergence. By a linear programming interpretation as done
in [9] we state a duality theorem for the Mather problem, as well a finite dimensional approximation
for the dual problem.
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1. Introduction

Mather variational principle, introduced by Mather in [18,19], is an important tool in Lagrangian dynamic.
In recent years, several authors have studied this topic in connections with various fields such as weak Kam
Theory [5,8,10,11], Monge-Kantorovich mass transportation and geometric measure theory [3,4,6,13,14]. In
this paper we discuss a finite dimensional approximation of Mather variational problem on the flat torus T

N ,
following a linear programming interpretation of Mather’s variational principle outlined in [9].

1.1. Mather’s problem

We will consider a compact Riemannian manifold (M, g) without boundary and a Lagrangian L : TM → R

which satisfies the following properties:
(1) L is regular (at least C2);
(2) L(x, ·) is superlinear in the fiber uniformly on x ∈ M ;
(3) L(x, ·) is strictly convex in the fiber for all x ∈ M .

The regularity requirement on L is crucial to consider regular solutions of the Hamilton-Jacobi equation (see
Sect. 3.1).

A measure μ ∈ M(TM) is said to be closed if for all exact forms ω it results∫
TM

〈ω(x), v〉dμ = 0. (1.1)
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According to this definition we set

Mc = {μ ∈ M(TM) | μ is closed, with compact support, μ ∈ P(TM)} ,

where P(TM) stands for probability measures, i.e. μ ≥ 0 and μ(TM) = 1. To each measure μ ∈ Mc we can
associate the homology class of μ which we will denote by [μ] ∈ H1(M, R) (by duality with H1). Indeed, μ acts
in a natural way on the set of the closed 1-forms on M by

ω �→
∫

TM

〈ω(x), v〉dμ (1.2)

and thanks to condition (1.1) this action passes to the quotient by the exact forms.
Once we fix an homology class [h], Mather’s variational problem amounts to:

min
Mc

{∫
TM

L(x, v)dμ | [μ] = [h]
}
· (1.3)

We also define the action of μ by

A(μ) :=
∫

TM

L(x, v)dμ.

A remarkable property of problem (1.3) is the following: we minimize an action functional which depends
on L on measures which are merely closed. However, it turns out that the minimal measures are also invariant
for the flow associated to the Lagrangian L, see for example [3,5,11,17].

Consider the N -dimensional flat torus T
N . In this case it is known that the homology H1(TN , R) and the

cohomology H1(TN , R) are N -dimensional vector spaces. Moreover, the cohomology on T
N is generated by

the classes [dx1], [dx2], . . . , [dxN ]. In other words, for every closed 1-forms ω on T
N there exists P ∈ R

N and
f ∈ C1(TN ) such that ω = P + df . For details we refer for instance to [15]. Fixed Q ∈ R

N , denoted by Mc the
space of measures having compact support, in this setting Mather’s problem can be formulated as follows:

Minimize
{A(μ) | μ ∈ Mc(TN × R

N)
}

under the following constraints:

(1) μ ∈ P(TN × R
N );

(2) ∀f ∈ C1(TN ) :
∫

TN×RN 〈df, v〉 dμ = 0;
(3)

∫
TN×RN v dμ = Q.

Observe that the second constraint in the above list correspond to the closeness of μ while the third one is
equivalent to fix the homology class [μ]. Therefore, Mather’s problem corresponds to minimize the functional P

defined as
μ ∈ Mc(TN × R

N ) �→ P(μ) = A(μ) + IK(μ), (1.4)

where IK is the indicator function of the set K of measures which satisfy the above constraints.

1.2. Linear programming problems

A finite dimensional linear programming problem is a minimizing problem of the following form⎧⎨
⎩

min 〈c, x〉
x ≥ 0
Ax = b,

(1.5)
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for c ∈ R
N , b ∈ R

M and A a N × M matrix. Here we write x ≥ 0 to mean xi ≥ 0 for every i = 1, . . . , N . We
can associate to problem (1.5) a dual problem in the following canonical way{

max 〈b, y〉
Aty ≤ c,

(1.6)

where At denotes the transpose matrix of A. Observe that in the dual problem (1.6) we do not ask for positive
solutions. Denoting respectively by K, H the set of constraints of problem (1.5) and (1.6) one has

∀x ∈ K, ∀y ∈ H : 〈b, y〉 ≤ 〈c, x〉·

Therefore, if we denote by P the minimum value of problem (1.5) and by D the maximum value of problem (1.6)
we have the following comparison

D ≤ P . (1.7)
We have the equality sign in the above inequality if the following complementary slackness condition holds.

Lemma 1.1 (slackness condition). Let x0 ∈ K and y0 ∈ H such that

〈b, y0〉 = 〈c, x0〉· (1.8)

Then x0 is a solution of problem (1.5), while y0 is a solution of problem (1.6). Moreover it results P = D.

A remarkable fact in finite dimensional linear programming is the following duality theorem:

Theorem 1.1 (strong duality). If one among the problems (1.5) and (1.6) admits a solution then also the other
problem admits a solution. Moreover, it results P = D.

As references for linear programming problems we refer for instance to [2,21]. An infinite dimensional linear
programming problem could be stated for real topological vector spaces X, Y . We assume X endowed with a
partial ordering, compatible with the linear structure, which induces a partial ordering on the dual space X∗.
Given c∗ ∈ X∗, b ∈ Y and A : X → Y a continuous linear operator, denoting by 〈, 〉 the pairing between a space
and its dual, a linear programming problem could be stated as follows⎧⎨

⎩
min 〈c∗, x〉
x ≥ 0
Ax = b.

(1.9)

Denoting by A∗ : Y ∗ → X∗ the adjoint operator of A, the dual problem of (1.9) amounts to{
max 〈y∗, b〉
A∗y∗ ≤ c∗. (1.10)

In general, in this setting a strong duality assertion like Theorem 1.1 does not hold. However, the slackness
condition remains true. Denoting by K, H the set of constraints of problem (1.9) and (1.10) respectively, we
have the following:

Theorem 1.2 (weak duality). For every x ∈ K, y∗ ∈ H it results

〈y∗, b〉 ≤ 〈c∗, x〉· (1.11)

Moreover, if for some x0 ∈ K, y∗
0 ∈ H it results

〈y∗
0 , b〉 = 〈c∗, x0〉, (1.12)

then x0 is a solution of problem (1.9), while y∗
0 is a solution of problem (1.10).
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1.3. Description of the results

In the paper [9] the authors outline a linear programming formulation of Mather problem. In a large heuristic
way they discuss some formal implications of linear programming duality to the Mather theory. Following these
guide-lines, in this paper we provide an approximation of Mather problem by finite dimensional minimization
problems. We perform this approximation in the framework of Γ-convergence. In particular, discretizing the
phase-space T

N×R
N , we find a sequence of finite dimensional linear programming problems Pn which Γ-converge

to the Mather problem. Therefore we can recover a Mather minimizing measure by solving finite dimensional
linear programming problems (see Thm. 2.2). As a consequence of recent developments of Hamilton-Jacobi and
Mather theory [5,9–11,17,19] we state a duality result for Mather problem (see Sect. 3.1). Moreover, the finite
dimensional duality provides also an approximation result for the dual problem (see Thm. 3.2).

2. Discrete approximation of Mather problem

Following Mather we restrict to consider measures with compact support. To pursue variational arguments,
one need a notion of convergence which preserves the constraints. Therefore we get the following:

Definition 2.1. Let μn, μ ∈ M(TM). We say that μn ⇀ μ if μn
∗
⇀ μ and

∫
TM

|v| dμn → ∫
TM

|v| dμ as
n → +∞.

Given a continuous function f : TM → R we say that f grows at most linearly if there exist two constant
A, B ≥ 0 such that for every (x, v) ∈ TM it results |f(x, v)| ≤ A + B|v|. For the reader convenience we state
the following (see also [17]):

Lemma 2.1. Let μn, μ ∈ Pc(TM) be probability measures having compact support. If μn ⇀ μ then

lim
n→+∞

∫
TM

f dμn =
∫

TM

f dμ

for every continuous function which grows at most linearly.

Proof. Fix a large compact set K such that supp(μ) ⊂ K and μ(∂K) = 0. Given a continuous functions f which
grows at most linearly we set ϕ(v) = A + B|v|. We evaluate

∣∣∣∣
∫

TM

f d(μ − μn)
∣∣∣∣ ≤

∣∣∣∣
∫
K

f d(μ − μn)
∣∣∣∣+
∣∣∣∣
∫
Kc

f d(μ − μn)
∣∣∣∣

≤
∣∣∣∣
∫
K

f d(μ − μn)
∣∣∣∣+
∫
Kc

|f | dμn ≤
∣∣∣∣
∫
K

f d(μ − μn)
∣∣∣∣+
∫
Kc

ϕ(v) dμn

=
∣∣∣∣
∫
K

f d(μ − μn)
∣∣∣∣+
∫

TM

ϕ(v) dμn −
∫
K

ϕ(v) dμn −
(∫

TM

ϕ(v) dμ −
∫
K

ϕ(v) dμ

)
.

Observe that in the above computation we have used the condition supp(μ) ⊂ K to infer∣∣∣∣
∫
Kc

f d(μ − μn)
∣∣∣∣ =

∣∣∣∣
∫
Kc

f dμn

∣∣∣∣ ;
∫

TM

ϕ(v) dμ −
∫
K

ϕ(v) dμ =
∫
Kc

ϕ(v) dμ = 0

respectively in the second and the third line. We can now estimate∣∣∣∣
∫

TM

f d(μ − μn)
∣∣∣∣ ≤

∣∣∣∣
∫
K

f d(μ − μn)
∣∣∣∣+
∫
K

ϕ d(μ − μn) +
∫

TM

ϕ d(μn − μ). (2.1)
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By standard properties of weak-star convergence (see for example Prop. 1.62 of [1]) we get

lim
n→+∞

∫
K

f d(μ − μn) = 0 = lim
n→+∞

∫
K

ϕ d(μ − μn).

Moreover, since we are dealing with probability measures, μn ⇀ μ ⇒ ∫
TM

ϕ(v) dμn → ∫
TM

ϕ(v) dμ as n → +∞.
Therefore, by (2.1) the statement follows. �

To realize a discrete approximation, we will allow to a measure μ to have an atom of negative mass at the
origin. If the measure μ is not positive we consider the total variation |μ| given by |μ| = μ+ + μ−, where
μ+ and μ− denote the positive and negative parts corresponding to the Hahn decomposition of μ. Moreover,
since Mather problem deals with probability measures, by adding a constant to the Lagrangian L(x, v) we may
assume L(0, 0) = 0 without changing the minimizing problem. Therefore, throughout the rest of this paper
M = T

N and L(0, 0) = 0.

2.1. Formulation of the discrete functional Pn

Let n ≥ 1 be the discretization step. We consider the following discretization of T
N

I =
{

(i1, ..., iN ) | ih ∈
{

0,
1
n

, . . . ,
n − 2

n
,
n − 1

n

}}
·

The number of elements of I (which is nN ) will be denoted by |I|. The discretization of R
N is given by

J =
{

(j1, ..., jN ) | jh ∈
{
−n, . . . ,− 1

n
, 0,

1
n

, . . . , n

}}
·

We define the set C as the set of atomic measures μ =
∑

i,j μi,jδi,j ∈ Mc(TM) which satisfy the constraints:

⎧⎪⎪⎨
⎪⎪⎩

μi,j ≥ 0, (i, j) 
= (0, 0),∑
i,j μi,j = 1,∑
i,j jμi,j = Q,

∀i ∈ I :
∑

j

∑N
h=1 jh(μi−eh/n,j − μi,j) = 0.

(2.2)

We define the functional Pn on Mc(TM) as

Pn(μ) =
∫

TM

L(x, v) dμ + Φn(μ) + IC(μ), (2.3)

where IC(μ) is the indicator function of the set C, while

Φn(μ) = O(n)μ−
0,0 +

∑
i,|j|=n

|j|μi,j −
∑

i,|j|=n

L(i, j)μi,j , (2.4)

where |j| denotes the norm, for instance the maximum norm, of the vector j, O(n) is a strictly positive function
such that limn→+∞ O(n) = +∞ and limn→+∞

O(n)
n = 0, while μ−

i,j = max(−μi,j , 0). The introduction of
the penalization term Φn(μ) is motivated by the construction of discrete measures which approximate a given
Mather’s measure μ performed in Lemma 2.4. Indeed, to realize this approximation, a crucial step is to
consider discrete measures which satisfy all the constraints (2.2). If such discrete measures do not satisfy all the
constraints, we get a modified sequence of measures by adding suitable terms at the origin and on the points of
the discretization such that |j| = n. The term Φn, see formula (2.27) and (2.28), ensures that these changes do
not affect the approximation process.
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We observe that the constraint

∀i ∈ I :
∑

j

∑
h

jh(μi−eh/n,j − μi,j) = 0, (2.5)

where (eh)h=1,...,N denotes the canonical basis of R
N , corresponds to the closeness condition, while∑

i,j

jμi,j = Q (2.6)

is the discrete version of the momentum constraint of Mather’s measure, which is equivalent to fix the homology
class of the measure μ.

Of course, we have C 
= ∅. Indeed, setting for every (i, j) 
= (0, 0)⎧⎪⎨
⎪⎩

μi,eh
= 1

|I| max(Qh, 0),
μi,−eh

= 1
|I| max(−Qh, 0),

μi,j = 0 for j 
= ±eh,

and μ0,0 = 1 −∑N
h=1 |Qh|, it results μ =

∑
i,j μi,jδi,j ∈ C.

Lemma 2.2. For every n ≥ 1 Pn admits minimizers.

Proof. Let μk be a minimizing sequence. Since C 
= ∅, we have Pn(μk) < +∞ and we may assume that μk are
atomic measures. It follows that the sequence |μk| is uniformly bounded. Therefore, by weak-star compactness
of measures, there exists a convergent subsequence to a measure μ having compact support. Since C is a closed
convex subset of a finite dimensional simplex, it results μ ∈ C. Since the point of the discretization are fixed,
it turns out that Pn is continuous along μk. Therefore, μ is a minimum point for Pn. �

2.2. Approximation

The main result of this section is Theorem 2.2 which allow to recover a Mather minimizing measure by solving
finite dimensional minimization problems. We state the following approximation result

Theorem 2.1. Pn
Γ→ P with respect to the ⇀ convergence.

We refer to [16] for an introduction to the Γ-convergence. To simplify reading, we divide the proof of the
above theorem in two lemmas.

Lemma 2.3. Let μ ∈ Mc(TM). Then, for every sequence μn ∈ Mc(TM) we have

μn ⇀ μ ⇒ P(μ) ≤ lim inf
n→+∞ Pn(μn).

Proof. Suppose that lim infn→+∞ Pn(μn) < +∞. Hence, we may assume that μn ∈ C. To simplify notation
we denote μn

i,j := (μn)i,j . If there are infinitely many μn
0,0 < 0, the penalization term Φn forces (μn

0,0)
− → 0

as n → +∞. Therefore, we get |μn| ∗
⇀ μ. This implies μ ≥ 0. Since (μn

0,0)− → 0 as n → +∞, it follows that
actually μ is a probability measure. Indeed, by weak-star convergence μ(TM) ≤ 1. On the other hand, fixed a
large compact set K such that supp(μ) ⊂ K, μ(∂K) = 0 and |v| ≥ 1 for every (x, v) ∈ Kc we get

0 ≤ μn(Kc) ≤
∫
Kc

|v| dμn =
∫
Kc

|v| d(μn − μ) =
∫

TM

|v| d(μn − μ) −
∫
K
|v| d(μn − μ).

Since μn ⇀ μ it results μn(Kc) → 0 as n → +∞. Therefore

μ(TM) = μ(K) ≥ lim sup
n→+∞

|μn|(K) = lim sup
n→+∞

(
1 − μn(Kc) + 2(μn

0,0)
−) = 1.
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Since μn ⇀ μ and (μn
0,0)− → 0, Lemma 2.1 still holds and then we deduce that the measure μ verifies the

momentum constraint. It remains to test the closeness constraint. If we denote Dn
hφ(x) = φ(x+eh/n)−φ(x)

1/n , by
changing variables, the constraint (2.5) for μn is equivalent to

∀φ ∈ C1(M) : n
∑

i

φ(i)
N∑

h=1

jh(μn
i−eh/n,j − μn

i,j) =
∑
i,j

N∑
h=1

jhDn
hφ(i)μn

i,j =
∫

TM

〈v, Dnφ(x)〉 dμn = 0, (2.7)

where Dnφ(x) = (Dn
1 φ(x), . . . , Dn

Nφ(x)). We evaluate

0 =
∫

TM

〈v, Dnφ(x)〉 dμn =
∫

TM

〈v, Dφ(x)〉 dμn −
∫

TM

〈v, Dφ(x) − Dnφ(x)〉 dμn

≤
∫

TM

〈v, Dφ(x)〉 dμn + ‖Dφ − Dnφ‖∞
∫

TM

|v| dμn.

Passing to the limit as n → +∞, because of Lemma 2.1, we obtain∫
TM

〈v, Dφ〉 dμ ≥ 0.

By the arbitrariness of φ it follows that μ is a closed measure. Finally, since L is superlinear, without loss of
generality we may assume that L is positive on Kc. Recalling that L(0, 0) = 0, by the weak-star convergence of
measures we obtain

P(μ) =
∫

TM

L(x, v)dμ =
∫
K

L(x, v)dμ = lim
n→+∞

∫
K

L(x, v) dμn

= lim
n→+∞

(∫
TM

L(x, v)dμn −
∫
Kc

L(x, v)dμn

+
∑

i,|j|=n

|j|μn
i,j −

∑
i,|j|=n

|j|μn
i,j + O(n)(μn

0,0)
− − O(n)(μn

0,0)
−
)

= lim
n→+∞

⎛
⎝Pn(μn) −

∫
Kc\|j|=n

L(x, v)dμn − O(n)(μn
0,0)

− −
∑

i,|j|=n

|j|μn
i,j

⎞
⎠≤ lim inf

n→+∞ Pn(μn).

�
Lemma 2.4. For every μ ∈ Mc(TM) there exists a sequence μn ∈ Mc(TM) such that μn ⇀ μ and satisfying
P(μ) = limn→+∞ Pn(μn).

Proof. We may assume that P(μ) < +∞, namely that μ satisfy the constraints of Mather problem. For
every (i, j) ∈ I × J consider disjoint squares Qi,j with center in the points (i, j) and size 1/n, in such a
way, for large n, they cover the supp(μ). We set μi,j = μ(Qi,j) and μn =

∑
i,j μi,jδi,j . We claim that∫

TM
f(x, v)dμn → ∫

TM
f(x, v)dμ as n → +∞ for every uniformly continuous function f . Indeed

∣∣∣∣
∫

TM

f(x, v)dμ −
∫

TM

f(x, v)dμn

∣∣∣∣ =

∣∣∣∣∣∣
∑
i,j

∫
Qi,j

f(x, v)dμ −
∑
i,j

f(i, j)μi,j

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i,j

∫
Qi,j

(f(x, v) − f(i, j)) dμ

∣∣∣∣∣∣ ≤
∑
i,j

∫
Qi,j

|f(x, v) − f(i, j)| dμ → 0
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as n → +∞ since f is uniformly continuous and μ is a probability measure. Therefore, it also results μn ⇀ μ.
Although μn are probability measures, in general μn does not belong to the constraints set C. Therefore, we
have to modify this construction. With respect to the closeness constraint, we look for coefficients αi,j ≥ 0 such
that the discrete measure μ′

n defined by (μ′
n)i,j = μi,j + αi,j satisfies the following conditions

∀i ∈ I :
∑

j

∑N
h=1 jh(μ′

i−eh/n,j − μ′
i,j) = 0 (2.8)

|μn − μ′
n| → 0. (2.9)

For every i ∈ I, condition (2.8) is equivalent to

∑
j

N∑
h=1

jh(αi−eh/n,j − αi,j) = ci :=
∑

j

N∑
h=1

jh(μi,j − μi−eh/n,j), (2.10)

while condition (2.9) is equivalent to ∑
i,j

αi,j → 0. (2.11)

Setting c = (ci)i∈I , z = μi,j , α = αi,j , condition (2.10) can be written as

Bα = c, (2.12)

for a suitable matrix B. We search solutions α of (2.12) supported on supp(μ), i.e. αi,j = 0 whenever |j| > R
for a suitable large R > 0. By definition of the coefficients ci, −z is a such solution of (2.12). Therefore, all the
solutions of (2.12) are of the form β − z with β ∈ ker(B). Since the vectors whose components are all equal
belong to ker(B), we can find positive solutions of (2.12). Denoting by I the vector whose components are all
equal to 1, we take α as a solution of the following minimization problem⎧⎨

⎩
min 〈α, I〉
α ≥ 0
Bα = c.

(2.13)

By duality we also have a solution y = (yi)i∈I of the problem{
max 〈c, y〉
Bty ≤ I.

(2.14)

We use duality to compute Bt as follows

〈Bty, x〉 = 〈y, Bx〉 =
∑

i

yi

⎛
⎝∑

j

N∑
h=1

jh(xi−eh/n,j − xi,j)

⎞
⎠ =

∑
i,j

N∑
h=1

jh(yi+eh/n
− yi)xi,j .

Therefore, the (i, j)th component of Bty is

N∑
h=1

jh(yi+eh/n
− yi).

Hence, the constraint of problem (2.14) yields

∀(i, j) ∈ I × J :
N∑

h=1

jh(yi+eh/n
− yi) ≤ 1.
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Choosing j = ±eh in the above formula we obtain

∀i ∈ I, ∀h = 1, . . . , N : |yi+eh/n
− yi| ≤ 1. (2.15)

By the slackness condition we have

∑
i,j

αi,j = 〈α, I〉 = 〈c, y〉 =
∑

i

yici =
∑

i

yi

⎛
⎝∑

j

N∑
h=1

jh(μi,j − μi−eh/n,j)

⎞
⎠

=
∑
i,j

N∑
h=1

jh(yi − yi+eh/n
)μi,j . (2.16)

In particular, the above computation shows that
∑

i ci = 0 (choose yi = constant). Therefore, by adding
a constant, we may assume that yi = 0 for some i ∈ I. We have to prove that actually

∑
i yici → 0. First,

because of (2.15), it results that the function φn(i) = yi is a Lipschitz function on the discrete grid I. Therefore,
by standard extension theorems for Lipschitz functions, we obtain a Lipschitz function φn on the whole flat
torus T

N whose Lipschitz constant grows as the discrete step n, i.e. Lip(φn) ≈ n. Therefore, the sequence
of functions ϕn = 1

nφn is equi-Lipschitz and equi-bounded. By the Ascoli-Arzelà theorem, by passing to a
subsequence, we find a Lipschitz function ϕ such that ‖ϕn − ϕ‖∞ → 0. On the other hand, since μ is a closed
measure and μn ⇀ μ, with the same notation of the proof of Lemma 2.3, for every φ ∈ C1 we get

− n
∑

i

φ(i)ci =
∑
i,j

N∑
h=1

nφ(i)jh(μi−eh/n,j − μi,j) =
∑
i,j

N∑
h=1

jhDn
hφ(i)μn

i,j =
∫

TM

〈v, Dnφ(x)〉 dμn

≤ ‖Dφ − Dnφ‖∞
∫

TM

|v|dμn +
∫

TM

〈Dφ(x), v〉 dμn → 0 (2.17)

as n → +∞. Consider the linear operator on the space (Lip(M), ‖ · ‖∞) of Lipschitz functions defined by
Ln(f) := n

∑
i f(i)ci. By the uniform boundedness principle on the space of C1 functions, taking into account

the computation (2.17), for every f ∈ C1 it results

|Ln(f)| ≤ K(‖f‖∞ + Lip(f)).

If f is a Lipschitz function, by standard approximation results (using for instance convolution kernels) we find
fn ∈ C1 such that ‖f − fn‖∞ ≤ 1/n and Lip(fn) ≤ Lip(f). Since μ ∈ Pc(TM), it follows

∑
i |ci| ≤ M . Hence

we compute

|Ln(f)| ≤ |Ln(f − fn)| + |Ln(fn)| ≤ n‖f − fn‖∞
∑

i

|ci| + K(‖f‖∞ + Lip(f)) ≤ C(f).

Applying again the Banach-Steinhaus theorem we find

n
∑

i

|ci| = ‖Ln|| ≤ C. (2.18)

If f ∈ Lip(M), for every φ ∈ C1 we have the estimate

|n
∑

i

f(i)ci| ≤ n
∑

i

|ci|‖f − φ‖∞ + |n
∑

i

φ(i)ci| ≤ C‖f − φ‖∞ + |n
∑

i

φ(i)ci|.
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Using the boundedness condition (2.18), by (2.17) and by density of C1 functions in Lip(M), for every Lipschitz
function f it results

n
∑

i

f(i)ci → 0

as n → +∞. Now we come back to the estimation of the coefficient αi,j . By (2.16) we have

∑
i,j

αi,j =
∑

i

yici = n
∑

i

ϕn(i)ci ≤ n‖ϕ − ϕn‖∞
∑

i

|ci| + n
∑

i

ϕ(i)ci ≤ C‖ϕ − ϕn‖∞ + n
∑

i

ϕ(i)ci → 0

as n → +∞. Therefore, condition (2.11) holds. Without loss of generality, normalizing we may assume that
μ′

n(TM) = 1. At this point we need another modification to satisfy the momentum constraint. To this aim
we look for coefficients si,j ≥ 0 such that the discrete measure μ̄n defined by (μ̄n)i,j = μ′

i,j + si,j has the right
momentum. For h = 1, . . . , N , denoting by

Rh =
∑
i,j

jhμi,j (2.19)

R′
h =

∑
i,j

jhμ′
i,j (2.20)

sh =
Qh − R′

h

n|I| , (2.21)

for every (i, j) ∈ I × J , we set ⎧⎨
⎩

si,neh
= max(sh, 0)

si,−neh
= max(−sh, 0)

si,j = 0 for j 
= ±neh.
(2.22)

Therefore, the momentum of μ̄n is given by

∑
i,j

jh(μ̄n)i,j = R′
h +

∑
i,j

jhsi,j = R′
h + n|I|sh = R′

h + Qh − R′
h = Qh.

Observe that the choice of si,j does not modify the closeness constraint. Indeed, for every i ∈ I we have

∑
j

N∑
h=1

jh

(
(μ̄n)i−eh/n,j − (μ̄n)i,j

)
= ±n

∑
j=±neh

N∑
h=1

(
μ′

i−eh/n,j + sh − μ′
i,j − sh

)

+
∑

j �=±neh

N∑
h=1

jh

(
μ′

i−eh/n,j − μ′
i,j

)
=
∑

j

N∑
h=1

jh

(
μ′

i−eh/n,j − μ′
i,j

)
= 0.

Since

|Qh − Rh| =

∣∣∣∣∣∣
∑
i,j

∫
Qi,j

(vh − jh) dμ

∣∣∣∣∣∣ ≤ K

n
, (2.23)



1104 L. GRANIERI

for a constant K > 0 which depends only on the dimension N of the space, we can evaluate

∑
i,j

si,j = |I|
N∑

h=1

|sh| =
1
n

N∑
h=1

|Qh − R′
h| ≤

1
n

N∑
h=1

|Qh − Rh| + 1
n

∑
i,j

|j|αi,j

≤ NK

n2
+

1
n

∑
i,j

|j|αi,j → 0, (2.24)

∑
i,j

|j|si,j = n
∑
i,j

si,j ≤ NK

n
+
∑
i,j

|j|αi,j → 0, (2.25)

as n → +∞ because of (2.11) and since α has compact support. Moreover, we estimate

|μ̄n − μn| =
∑
i,j

|(μ̄n)i,j − μi,j | ≤
∑
i,j

αi,j +
∑
i,j

si,j .

By (2.11) and (2.24) we infer

lim
n→+∞ |μn − μ̄n| = 0. (2.26)

It remains to satisfy the probability constraint. This can be done by subtracting the mass needed at the origin,
without changing neither the momentum or the closeness constraint. More precisely, since

∑
i,j

(μ̄n)i,j =
∑
i,j

μ′
i,j +

∑
i,j

si,j = 1 +
∑
i,j

si,j ,

if we put (μ̄n)0,0 = μ′
0,0 −∑i,j si,j we also have

∑
i,j(μ̄n)i,j = 1. Condition (2.26) still holds since by (2.24)

we have added infinitesimal quantities. At this point it is easy to verify the weak-star convergence. Indeed, if
f ∈ Cc(TM) we have

∣∣∣∣
∫

TM

f(x, v)dμ −
∫

TM

f(x, v)dμ̄n

∣∣∣∣ ≤
∣∣∣∣
∫

TM

f(x, v)dμ −
∫

TM

f(x, v)dμn

∣∣∣∣+
∣∣∣∣
∫

TM

f(x, v)dμn −
∫

TM

f(x, v)dμ̄n

∣∣∣∣
≤
∣∣∣∣
∫

TM

f(x, v)dμ −
∫

TM

f(x, v)dμn

∣∣∣∣+ ‖f‖∞|μ̄n − μn| → 0.

In order to verify the convergence μ̄n ⇀ μ, we need to check the convergence of momentum. By (2.9) and (2.25)
we get ∣∣∣∣

∫
TM

|v|dμ −
∫

TM

|v|dμ̄n

∣∣∣∣ ≤
∣∣∣∣
∫

TM

|v|dμ −
∫

TM

|v|dμ′
n

∣∣∣∣+∑
i,j

|j|si,j → 0.

Finally, recalling that L(0, 0) = 0, we evaluate

|P(μ) − Pn(μ̄n)| =
∣∣∣∣
∫

TM

L(x, v)dμ −
∫

TM

L(x, v) dμ̄n − Φn(μ̄n)
∣∣∣∣

≤
∣∣∣∣∣∣
∫

TM

L(x, v)dμ −
∑
i,j

L(i, j)μ′
i,j

∣∣∣∣∣∣+
∑

i,|j|=n

|j|si,j + O(n)((μ̄n)0,0)−. (2.27)
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Using (2.9), (2.24) and (2.25) it follows

|P(μ) − Pn(μ̄n)| ≤
∣∣∣∣∣∣
∫

TM

L(x, v)dμ −
∑
i,j

L(i, j)μ′
i,j

∣∣∣∣∣∣+
∑

i,|j|=n

|j|si,j + O(n)((μ̄n)0,0)−

=

∣∣∣∣∣∣
∫

TM

L(x, v)dμ −
∑
i,j

L(i, j)μ′
i,j

∣∣∣∣∣∣+
∑

i,|j|=n

|j|si,j + O(n)
∑
i,j

si,j → 0. (2.28)

�
Theorem 2.2. Let μn be minimum points of Pn. Then there exists a sequence of discrete measures μ̄n and a
Mather minimizing measure μ such that μ̄n ⇀ μ. Moreover, by passing to a subsequence, it results

P(μ) = lim
n→+∞ Pn(μn).

Proof. Let K = max{L(x, v) : (x, v) ∈ TM, ‖v‖ = 1}. Without loss of generality we may assume that
0 ≤ K ≤ 1/

√
N . By superlinearity, there exists k > 1 such that for every x ∈ M it results L(x, v) >

√
NK|v|

whenever |v| > k. For every (i, j) ∈ I × J we set⎧⎪⎪⎨
⎪⎪⎩

(μ̄n)i,eh
= (μn)i,eh

+
∑

|j|>k max(jh(μn)i,j , 0)
(μ̄n)i,−eh

= (μn)i,−eh
+
∑

|j|>k max(−jh(μn)i,j , 0)
(μ̄n)i,j = (μn)i,j for j 
= ±eh, 0 < |j| ≤ k
(μ̄n)i,j = 0 for |j| > k or |j| = 0.

(2.29)

By the above modification it results that the new discrete measures μ̄n is positive in TM and, since we may
assume μn ∈ C, they still satisfy the momentum and closeness constraints (2.6) and (2.5). We need at most
to check the probability constraint. Let M =

∑
i,j(μ̄n)i,j . If M < 1, we add the needed mass at the origin.

If M > 1 we normalize by considering the measure μ̄n/M . This normalized measure is still closed but the
momentum amounts to Q

M . Following the construction performed in the proof of Lemma 2.4, we can obtain the
right momentum by adding the quantities

sh =
Qh − Qh/M

n|I|
as done in (2.22). It remains to subtract the mass in excess, which is an infinitesimal quantity, at the origin.
Setting εn = O(n)

∑
i,j si,j , because of (2.24) it results εn → 0 as n → +∞. In any case, for every ν ∈ Mc(TM)

we get

Pn(μ̄n) ≤
∑

i,|j|≤k

L(i, j)(μn)i,j +
∑

i,|j|>k

N∑
h=1

L(i,±eh)|jh|(μn)i,j + εn

≤
∑

i,|j|≤k

L(i, j)(μn)i,j +
√

NK
∑

i,|j|>k

|j|(μn)i,j + εn < Pn(μn) + εn ≤ Pn(ν) + εn. (2.30)

Therefore, μ̄n is an εn-minimizer for Pn. Furthermore, since |μ̄n| is equibounded and the supports are contained
in a same large compact set, by passing to a convergent subsequence we have μ̄n ⇀ μ. Moreover, for every
ν ∈ Mc(TM), by Lemma 2.4 we find a sequence νn ∈ Mc(TM) such that Pn(νn) → P(ν) as n → +∞.
By (2.30) we get Pn(μ̄n) ≤ Pn(νn) + εn. Letting n → +∞, by Lemma 2.3 we infer

P(μ) ≤ lim inf
n→+∞ Pn(μ̄n) ≤ lim

n→+∞ Pn(νn) = P(ν).
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Therefore μ is a Mather minimizing measure. Moreover, again by Lemma 2.4, we find a sequence μ′
n such that

Pn(μ′
n) → P(μ) as n → +∞. Since μn are minimum points of Pn we have

lim sup
n→+∞

Pn(μn) ≤ lim
n→+∞ Pn(μ′

n) = P(μ).

On the other hand, by (2.30) we get

P(μ) ≤ lim inf
n→+∞ Pn(μ̄n) ≤ lim inf

n→+∞ Pn(μn). �

3. Linear programming interpretation

The discrete problems of minimizing Pn can be reformulate into a linear programming framework. Indeed,
splitting μ0,0 = μ+

0,0 − μ−
0,0, therefore increasing the dimension of the problem, we set

λi,j = L(i, j) |j| 
= n
λ+

0,0 = 0, λ−
0,0 = O(n)

λi,j = |j| for every |j| = n.

Therefore, minimize the functional Pn is equivalent to

minimize

⎛
⎝∑

i,j

λi,jμi,j

⎞
⎠

subject to the following constraints

μi,j , μ
+
0,0, μ

−
0,0 ≥ 0

∀i ∈ I :
∑N

h=1

∑
j jh(μi−eh/n,j − μi,j) = 0∑

i,j μi,j + μ+
0,0 − μ−

0,0 = 1∑
i,j jμi,j = Q.

In this problem we have h = |I|+N +1 equality constraints for k = |I||J |+1 unknowns. Denoting respectively
by μ and λ the vectors of k unknown components μi,j and λi,j , and the vector

b = (0, . . . , 0,︸ ︷︷ ︸
|I| zeros

1, Q1, . . . , QN ), (3.1)

the above problem can be written in the form⎧⎨
⎩

minimize 〈λ, μ〉
μ ≥ 0
Aμ = b

(3.2)

for a suitable h × k matrix A. As standard in linear programming, problem (3.2) admits the dual formulation{
maximize 〈y, b〉
Aty ≤ λ

(3.3)

where At is the transpose matrix of A.



A LINEAR APPROXIMATION OF MATHER’S PROBLEM 1107

3.1. The infinite dimensional dual problem

In [9] it is proposed a linear programming interpretation of Mather’s problem, while a linear programming
interpretation is a well known fact for the Monge-Kantorovich problem (see for example [7]). In particular, for
μ ∈ Mc(TM) define:

φ ∈ C1(M) �→ Lμ(φ) =
∫

TM

〈Dφ(x), v〉dμ,

and consider the continuous linear operator

A : Mc(TM) → C1(M)∗ × R × R
N

defined by

Aμ =
(

Lμ, μ(TM),
∫

TM

v dμ

)
.

If we denote by c∗, the linear functional associated to L by μ �→ ∫
TM L(x, v)dμ, fixed Q ∈ R

N and setting
(0, 1, Q) = b, Mather’s problem can be reformulated as the following infinite dimensional linear programming
problem ⎧⎨

⎩
min〈c∗, μ〉
μ ≥ 0
Aμ = b.

(3.4)

The dual formulation of problem (3.4) amounts to{
max〈y∗, b〉
A∗y∗ ≤ c∗. (3.5)

However, for infinite dimensional linear programming problems, the dual problem could not admit solutions
despite the existence of solutions of the primal one. Moreover, since the space C1(M) is not reflexive, to a
solution y∗ of the dual problem does not correspond in general a C1 function. Actually, in [9] it is shown
that there is no duality gap between the two problem and that if we have a solution y∗ of (3.5) such that
y∗ = (u, ω0, P ) ∈ C1(M) × R × R

N then u solve the Hamilton-Jacobi equation

H(x, P + dxu) = H̄(P ) on supp(πx(μ)),

where H is the Hamiltonian associated to the Lagrangian L(x, v), while H̄(P ) = −ω0, μ is a solution of (3.4)
and πx(μ) is the push-forward of μ through the projection of TM on M . Hence the dual of Mather’s problem
predict the weak KAM equation (see [5,8,10,11]). Although in this abstract framework only a weak duality
result holds, we can justify a strong duality relation for the Mather’s problem by the following considerations.
First we recall that Mather’s problem can be formulated in terms of merely closed measures. Precisely we have
the following (see [17,19]):

Theorem 3.1. For every Mather minimizing measure μ with [μ] = Q there exists P ∈ R
N such that

A(μ) + P · Q = −c(L + P ),

where −c(L + P ) = min{∫ (L + P )dν | ν ∈ Mc} is the Mañé critical value (see also [5,10,13]) corresponding to
the Lagrangian (L + P )(x, v) = L(x, v) + 〈P, v〉.

We state the following approximation theorem for the dual problem (3.5):

Theorem 3.2. Let yn be solutions of the finite dimensional linear programming problems (3.3). Then there
exists a solution y∗ of problem (3.5) such that, by passing to a subsequence,

lim
n→+∞〈yn, b〉 = 〈y∗, b〉·
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Proof. Let μn be solutions of problems (3.2). By Theorem 2.2, passing to a subsequence, we find a Mather
minimizing measure μ such that limn→+∞ Pn(μn) = P(μ). By Theorem 3.1 we find P ∈ R

N such that

A(μ) + P · Q = −c(L + P ). (3.6)

Setting w0 = −c(L + P ) and w = −P , as shown in [11] we find u ∈ C1 such that

H(x, w + Du) ≤ −w0 ⇔ w0 + v · (w + Du(x)) ≤ L(x, v).

Consider y∗ = (u, w0, w). We check that such y∗ satisfies the constraint A∗y∗ ≤ c∗ of the dual problem (3.5).
Indeed, it results

〈A∗y∗, μ〉 = 〈y∗, Aμ〉 =
∫

TM

(w0 + 〈w + Du, v〉) dμ ≤
∫

TM

L(x, v) dμ = 〈c∗, μ〉·

Taking in account (3.6), we evaluate

〈y∗, b〉 = w0 + w · Q = −c(L + P ) − P · Q = A(μ) = 〈c∗, μ〉·

By weak duality, it follows that y∗ is optimal for the dual problem (3.5). Finally, recalling the discrete approx-
imation for the primal problem and by the finite dimensional duality, we deduce a discrete approximation for
the dual problem. In fact, if yn are solutions of the finite dimensional dual problems (3.3), by passing to a
subsequence we have

lim
n→+∞〈yn, b〉 = lim

n→+∞ Pn(μn) = P(μ) = A(μ) = 〈c∗, μ〉 = 〈y∗, b〉· �

It would be interesting to investigate if also yn → y∗. This question is related to the numerical approxima-
tion of the Hamilton-Jacobi equations and to the computing of the effective Hamiltonian. For an account on
numerical results linked to these questions we refer to [12,20].

Acknowledgements. The author wishes to thank L. De Pascale and M.S. Gelli for useful discussions on the subject.
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