
ESAIM: COCV 16 (2010) 1040–1052 ESAIM: Control, Optimisation and Calculus of Variations

DOI: 10.1051/cocv/2009032 www.esaim-cocv.org
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Abstract. In this paper we consider the initial boundary value problem of a parabolic-elliptic system
for image inpainting, and establish the existence and uniqueness of weak solutions to the system in
dimension two.
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1. Introduction

Image inpainting is the processing of restoring regions of missing information in digital images by using the
information surrounding these regions. In the past few years, several different approaches have been proposed to
tackle this complicated image processing task. One of these approaches is based on nonlinear evolution partial
differential equations. The basic idea for this approach is to do a smooth propagation of the information in the
region surrounding the inpainting area and interpolating level curves in a proper way [1–3,12]. In the pioneering
work of Bertalmio et al. [2], they proposed the so called BSCB model

It = ∇⊥I · ∇�I (1.1)

for image inpainting, where I is the image intensity function, ∇⊥ denotes perpendicular gradient (−∂y, ∂x).
Actually (1.1) is a transport equation of the third-order that convects image Laplacian (�I) along isophote
direction (∇⊥I).

In the subsequent work [3], a connection between the isophote direction of the image and the Navier-Stokes
equation was observed and a parabolic-elliptic system was introduced to fill in the inpainting domain. The
system is given by {

wt + ∇⊥I · ∇w = ν�w,
�I = w,

(1.2)

where ν > 0 is the viscosity coefficient. In the model (1.2), the image intensity I is considered as a ‘stream
function’ for a 2-D incompressible flow. The Laplace of the image intensity �I plays the role of vorticity
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of the fluid, and it is transported into the damaged region along the isophote direction (∇⊥I). Furthermore,
the authors in [3] proposed to solve an anisotropic diffusion equation for w in (1.2) instead of the isotropic
diffusion, which is more suitable to avoid blurring of edge in the course of inpainting. It has the form:{

wt + ∇⊥I · ∇w = ν div[g(|∇w|)∇w],
�I = w.

(1.3)

However, the first equation for w in the system (1.3) is known to be ill-posed [3,4] for a wide class of function g.
A different approach to image inpainting was proposed by Chan and Shen. Their work [5,6] is to minimize

the TV-norm of the reconstructed images to fill in the missing data. In the later work [7,8], energy involving the
curvature of the level curves is used and this is in some sense to guarantee that the level curves are connected
in a smooth fashion. The equations derived from such models are highly nonlinear and of higher order.

Recently, in [14] Tai et al. proposed a two-step method to do digital image inpainting based on some geo-
metrical considerations. In the first step, they tried to propagate the isotropic directions into the inpainting
domain. Once the isotropic directions were constructed, an image was restored to fit the constructed directions
in the second step. By solving the corresponding energy minimization problem in each step, they obtained a
nonlinear system of PDEs.

We would like to refer [14] to the reader for further details about boundary conditions on some special
situations in image inpainting. Suppose that Ω is the inpainting domain, the homogeneous Dirichlet boundary
condition and the homogeneous Neumann boundary condition mean that the information surrounding the
domain Ω can not be propagated into Ω through ∂Ω.

Because of high nonlinearity and higher order of the equations involved, there is few theory analysis about
these inpainting models. In [10], we considered the viscous BSCB equation

It + ν�2I = ∇⊥I · ∇�I (1.4)

and got the existence and uniqueness of global smooth solutions of (1.4) for ν > 0. We also studied the vanishing
viscous limits for (1.2) and obtained the existence and uniqueness of classical solutions of (1.2) for ν = 0. The
problems we discussed in [10] were on 2-D tours, which enable us to get the results as ν → 0 in (1.2).

As a subsequent work, in this paper we consider the regularized anisotropic diffusion for w in (1.3) on a 2-D
bounded domain and study the following system{

wt + ∇⊥I · ∇w = ν div[g(|∇Gσ ∗ w|)∇w],
�I = w.

(1.5)

Here

Gσ(x) =
1

4πσ
exp

(
− x2

4σ

)
(1.6)

is the Gauss kernel, the thresholding function g is a non-increasing smooth function on [0,∞] satisfying the
following:

• g(0) = 1, g(s) > 0;
• lims→∞ dn

dsn g(s) = 0 for each integer n ≥ 0.
(1.7)

An typical example used in applications is

g(s) =
1

1 + ( s
K )2

, (1.8)

where K > 0 is a subjective parameter.
The introducing of the regularized problem (1.5) is based on the idea of Catte et al. [4]. They pointed out

in [4] that the Perona-Malik equation [13]

It = div[g(|∇I|)∇I]. (1.9)
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was ill-posed due to the backward diffusion introduced in the regions where the value of |∇I| is large for g
in (1.8). To make equation (1.9) well posed, they convolved I with a standard mollifier inside the function g to
obtain the following regularized equation

It = div[g(|∇Gσ ∗ I|)∇I]. (1.10)

In [4] the existence and uniqueness of weak solutions to equation (1.10) were proved by the fixed point method.
Some numerical examples were also given to indicate that the regularized model (1.10) could remove the noise
effectively as the original Perona-Malik equation (1.9) during the course of image denoising.

Following the idea of [4], we discuss the regularized problem (1.5) of (1.3). Although in [3] Bertalmio et al.
pointed out that the system (1.5) would be well-posed, they had not proved this fact. In this paper, we establish
the existence and uniqueness of weak solutions for the system (1.5).

Observing the system (1.5), we find that the first equation in (1.5) is not a uniformly parabolic equation
for w. It is the main difficulty in the proof of existence of weak solutions. Our method is to approximate the
non-uniformly parabolic problem by a uniformly parabolic one. For the approximation problem, the Galerkin
approximation method is employed to get the existence of weak solutions. Since the lower order term ∇⊥I ·∇w
has some special structure, which enables us to obtain the uniform estimates of wε in the approximate equations.

This paper is organized as follows. In Section 2 we present the initial boundary value problem of (1.5) and
state the main theorem. In Section 3, we prove the existence of weak solutions to the systems (1.5) with a strictly
positive diffusion. This result is used in Section 4 to establish the approximate solutions to the non-strictly
positive case. In Section 4 we derive some uniform estimates for the approximate solutions which enable us to
pass to the limit in the approximate system to get the existence of a weak solution as stated in Theorem 2.1.

2. Preliminaries

Suppose that f : Q → R is a damaged image defined on a rectangle domain Q ⊂ R
2 and Ω ⊂⊂ Q is the

domain where the data is missing. T is a positive number. We consider the initial boundary value problem
for (I, w): ⎧⎪⎪⎨

⎪⎪⎩
wt + ∇⊥I · ∇w = ν div[g(|∇Gσ ∗ w|)∇w], in ΩT := Ω × (0, T ),
�I = w, in ΩT ,
w = �f, I = f, on Γ := ∂Ω × (0, T ),
I(x, 0) = I0(x), w(x, 0) = w0(x) in Ω.

(2.1)

In (2.1) the boundary conditions ensure that filling in the information on Ω is based on the photometric
information on ∂Ω.

By defining v := w −�f , u := I − f , problem (2.1) can be transformed into the form as follows:

⎧⎪⎪⎨
⎪⎪⎩

vt + ∇⊥(u + f) · ∇(v + �f) = ν div[g(|∇Gσ ∗ (v + �f)|)∇(v + �f)], in ΩT ,
�u = v, in ΩT ,
v = 0, u = 0, on Γ,
u(x, 0) = u0(x), v(x, 0) = v0(x), in Ω,

(2.2)

where u0 = I0−f , v0 = w0−�f . Throughout this paper, we study problem (2.2) for (u, v) with zero-boundary
value conditions.

In the following, we state our main theorem.

Theorem 2.1. Let Ω be a bounded domain of R
2 with C2 boundary. Suppose that u0 ∈ H1

0 (Ω) ∩ W 2,∞(Ω),
f ∈ H3(Ω)∩W 2,∞(Ω) with �f ∈ L∞(∂Ω), and v0 = �u0, then the initial boundary value problem (2.2) admits
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a unique pair of weak solutions (u, v) such that

(a) u ∈ C([0, T ]; H1
0 (Ω) ∩ H2(Ω)) ∩ L∞(0, T ; C1,α(Ω̄)) (0 < α < 1),

(b) v ∈ L2(0, T ; H1
0 (Ω)) ∩ C([0, T ]; L2(Ω)) ∩ L∞(ΩT ),

(c) vt ∈ L2(0, T ; H−1(Ω)),

which satisfies

∫
Ω

vtϕ +
∫

Ω

(u + f)∇⊥(v + �f)∇ϕ + ν

∫
Ω

g(|∇Gσ ∗ (v + �f)|)∇(v + �f)∇ϕ = 0 (2.3)

and ∫
Ω

∇u∇ϕ +
∫

Ω

vϕ = 0 (2.4)

for any ϕ ∈ H1
0 (Ω) and a.e. t ∈ [0, T ].

Note that ∇⊥(u+f) ·∇(v+�f) = −div[(u+f)∇⊥(v+�f)]. Therefore, (2.3) in Theorem 2.1 is well defined.
In the following we list some lemmas that will be used in the later sections.

Lemma 2.2 ([11]). Let E0, E and E1 be reflexive Banach spaces such that E0 ⊂ E ⊂ E1. Suppose that
the imbedding E0 → E is compact and the imbedding E → E1 is continuous. If {uk} is a bounded sequence
in L2(0, T ; E0) and {duk

dt } is a bounded sequence in L2(0, T ; E1), then there exists a subsequence of uk which
converges strongly both in L2(0, T ; E) and in C([0, T ]; E1).

Lemma 2.3 ([9]). Suppose that u ∈ L2(0, T ; H1
0 (Ω)), with ut ∈ L2(0, T ; H−1(Ω)). Then u ∈ C([0, T ]; L2(Ω)).

Furthermore, the following estimate

‖u‖C([0,T ];L2(Ω)) ≤ C
(
‖u‖L2(0,T ;H1

0 (Ω)) + ‖ut‖L2(0,T ;H−1(Ω))

)

holds.

Lemma 2.4. Suppose that Ω ⊂ R
2 is a bounded domain and u ∈ L2(Ω), then

‖∇Gσ ∗ u‖L∞(Ω) ≤ C1‖u‖L2(Ω). (2.5)

Furthermore, if ‖u‖
L2(Ω)

and ‖v‖
L2(Ω)

are bounded, then

‖g(|∇Gσ ∗ u|) − g(|∇Gσ ∗ v|)‖L∞(Ω) ≤ C2‖u − v‖L2(Ω). (2.6)

Here C1 = C1(σ), C2 = C2(σ, ‖u‖
L2(Ω)

, ‖v‖
L2(Ω)

).

Proof. By the definition of convolution, for any x ∈ Ω, we have

∇Gσ ∗ u(x) =
∫

Ω

∇xGσ(x − y)u(y) dy.
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Using (1.6), we deduce

|∇Gσ ∗ u(x)| ≤ 1
8πσ2

∫
Ω

exp
(
− (x − y)2

4σ

)∣∣x − y
∣∣ |u(y)| dy

≤ 1
8πσ2

‖u‖L2(Ω)

(∫
R2

exp
(
− |x − y|2

2σ

)
|x − y|2 dy

) 1
2

≤C(σ)‖u‖L2(Ω)

(∫
R2

exp(−|z|2)|z|2 dz

) 1
2

≤C1‖u‖L2(Ω).

Therefore, (2.5) holds.
On the other hand, since g is smooth on [0,∞], we get

∣∣g(|∇Gσ ∗ u|) − g(|∇Gσ ∗ v|)∣∣ =
∣∣∣∣
∫ 1

0

g′(s|∇Gσ ∗ u| + (1 − s)|∇Gσ ∗ v|)(|∇Gσ ∗ u| − |∇Gσ ∗ v|) ds

∣∣∣∣
≤∥∥g′(s|∇Gσ ∗ u| + (1 − s)|∇Gσ ∗ v|)∥∥

L∞(Ω)
‖∇Gσ ∗ (u − v)‖L∞(Ω)

≤C(σ, |Ω|, ‖u‖
L2(Ω)

, ‖v‖
L2(Ω)

)‖u − v‖L2(Ω).

Therefore, (2.6) holds. �

3. Existence theorems for strictly positive diffusion

In this section we consider the following initial boundary value problem with the strictly positive diffusion:⎧⎪⎪⎨
⎪⎪⎩

vt + ∇⊥(u + f) · ∇(v + �f) = ν div[ḡ(|∇Gσ ∗ (v + �f)|)∇(v + �f)], in ΩT ,
�u = v, in ΩT ,
v = 0, u = 0, on Γ,
u(x, 0) = u0(x), v(x, 0) = v0(x), in Ω,

(3.1)

where we assume that ḡ satisfies:

(i) ḡ is a non-increasing smooth function on [0,∞] and ḡ(0) = 1;
(ii) There exists a constant A > 0 such that A ≤ ḡ(s) ≤ 1 for all s ∈ R.

Under these assumptions we have the following theorem.

Theorem 3.1. Let Ω be a bounded domain of R
2 with C2 boundary. Suppose that u0 ∈ H1

0 (Ω) ∩ H2(Ω),
f ∈ H3(Ω) and v0 = �u0, then the initial boundary value problem (3.1) admits a pair of weak solutions (u, v)
such that

(a) u ∈ C([0, T ]; H1
0 (Ω) ∩ H2(Ω));

(b) v ∈ L2(0, T ; H1
0(Ω)) ∩ C([0, T ]; L2(Ω));

(c) vt ∈ L2(0, T ; H−1(Ω)),
which satisfies∫

Ω

vtϕ +
∫

Ω

(u + f)∇⊥(v + �f)∇ϕ + ν

∫
Ω

ḡ(|∇Gσ ∗ (v + �f)|)∇(v + �f)∇ϕ = 0 (3.2)

and ∫
Ω

∇u∇ϕ +
∫

Ω

vϕ = 0 (3.3)

for any ϕ ∈ H1
0 (Ω) and almost all t ∈ [0, T ].
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We point out that u + f ∈ L∞(ΩT ) since H2(Ω) ↪→ L∞(Ω). Therefore, (3.2) in Theorem 3.1 is well defined.

Proof of Theorem 3.1. To prove the theorem, we apply the Galerkin approximation method. Let {φi}i∈N be the
eigenfunctions of the the Laplace operator with Dirichlet boundary conditions, i.e.,

−�φ = λiφi, in Ω and φi = 0 on ∂Ω.

The eigenfunctions φi are orthogonal in H1
0 (Ω) and satisfy:

(φi, φj)L2(Ω) = δij .

Now we consider the following Galerkin ansatz for (3.1)

uN (t, x) =
N∑

i=1

cN
i (t)φi(x), vN (t, x) =

N∑
i=1

dN
i (t)φi(x), (3.4)

∫
Ω

∂tv
Nφj = −ν

∫
Ω

ḡ(|∇Gσ ∗ (vN +�f)|)∇(vN +�f)∇ϕj −
∫

Ω

(uN + f)∇⊥(vN +�f)∇φj , for j = 1, . . . , N,

(3.5)∫
Ω

∇uN∇φj = −
∫

Ω

vNφj , for j = 1, . . . , N, (3.6)

and

vN (0) =
N∑

i=1

(v0, φi)L2(Ω)φi. (3.7)

This gives an initial value problem for a system of ODEs for (d1, . . . , dN ):

∂td
N
j (t) = −ν

∫
Ω

ḡ

(∣∣∇Gσ ∗
(

N∑
i=1

dN
i φi + �f

)∣∣)∇
(

N∑
i=1

dN
i φi + �f

)
∇ϕj

−
∫

Ω

(
N∑

i=1

cN
i φi + f

)
∇⊥

(
N∑

i=1

dN
i φi + �f

)
∇φj , (3.8)

λjc
N
j = −dN

j , (3.9)

dN
j (0) = (v0, φj)L2(Ω), (3.10)

where j = 1, . . . , N . Since the right-hand side in (3.8) depends continuously on d1, . . . , dN , according to the
existence theorem of ODEs the above initial value problem has a local solution.

In the following we derive a prior bound for vN to ensure that the solutions of the initial value prob-
lem (3.8)–(3.10) exist globally.

At first, we get from (3.6) that ∫
Ω

∇uN∇ϕ = −
∫

Ω

vNϕ

holds for all ϕ ∈ H1
0 (Ω). Since uN

∣∣
∂Ω

= 0 and Ω is a bounded domain with C2 boundary, the above equality
and elliptic regularity theory imply that

‖uN(t)‖H2(Ω) ≤ C‖vN (t)‖L2(Ω) for all t ∈ [0, T ], (3.11)



1046 Z. JIN AND X. YANG

where C is a constant independent of N . Multiplying (3.5) by dN
j and summing for j = 1, . . . , N , we obtain

1
2

d
dt

∫
Ω

|vN (t)|2 + ν

∫
Ω

ḡ(|Gσ ∗ ∇(vN + �f)|)∇(vN + �f)∇vN = −
∫

Ω

(uN + f)∇⊥(vN + �f)∇vN . (3.12)

By (3.12) and assumption (ii), we conclude

1
2

d
dt

∫
Ω

|vN (t)|2 + Aν

∫
Ω

|∇vN |2 ≤ ν

∫
Ω

|∇vN∇�f | +
∫

Ω

|f∇⊥�f∇vN | +
∫

Ω

|uN∇⊥�f∇vN |. (3.13)

By using Young’s inequality, Sobolev imbedding theorem and (3.11), we estimate the right-hand of (3.13) to get

ν

∫
Ω

|∇vN∇�f | ≤ Aν

4

∫
Ω

|∇vN |2 + C

∫
Ω

|∇�f |2, (3.14)∫
Ω

|f∇⊥�f∇vN | ≤ Aν

4

∫
Ω

|∇vN |2 + C

∫
Ω

|f∇⊥�f |2

≤ Aν

4

∫
Ω

|∇vN |2 + C‖f‖4
H3(Ω), (3.15)∫

Ω

|uN∇⊥�f∇vN | ≤ Aν

4

∫
Ω

|∇vN |2 + C

∫
Ω

|uN∇⊥�f |2

≤ Aν

4

∫
Ω

|∇vN |2 + C‖uN(t)‖2
L∞(Ω)‖f‖2

H3(Ω)

≤ Aν

4

∫
Ω

|∇vN |2 + C

∫
Ω

|vN (t)|2 dx‖f‖2
H3(Ω), (3.16)

where the last inequality of (3.16) follows from (3.11) and H2(Ω) ↪→ L∞(Ω).
Combining (3.13), (3.14), (3.15) and (3.16), we conclude

1
2

d
dt

∫
Ω

|vN (t)|2 +
Aν

4

∫
Ω

|∇vN |2 ≤ C

∫
Ω

|vN (t)|2 + C,

where C = C(‖f‖H3 , |Ω|, ν, A).
Recalling uN

∣∣
∂Ω

= 0 and integrating the above inequality from 0 to T , by using Gronwall’s inequality and
Poincaré’s inequality, we conclude

‖vN‖L∞((0,T );L2(Ω)) ≤ C, (3.17)

‖vN‖L2((0,T );H1
0 (Ω)) ≤ C, (3.18)

where C = C(‖f‖H3 , |Ω|, ν, A). (3.17) implies that (dN
1 , . . . , dN

N ) are bounded and therefore a global solution to
the initial value problem (3.8)–(3.10) exists. At the same time, (cN

1 , . . . , cN
N ) exist globally by (3.9).
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If we denote by ΠN the projection of L2(Ω) onto span{φ1, . . . , φN}, by using assumption (ii), (3.17), (3.18)
and (3.11) we get ∣∣∣∣

∫
ΩT

∂tv
Nφ

∣∣∣∣ =
∣∣∣∣
∫

ΩT

∂tv
NΠNφ

∣∣∣∣
≤

∣∣∣∣
∫

ΩT

[νḡ(|∇Gσ ∗ (vN + �f)|)∇(vN + �f)∇ΠNφ

∣∣∣∣
+
∣∣∣∣
∫

ΩT

(uN + f)∇⊥(vN + �f)∇ΠNφ

∣∣∣∣
≤ C

(∫
ΩT

|∇(vN + �f)|2
) 1

2
(∫

ΩT

|∇ΠNφ|2
) 1

2

≤ C‖∇φ‖L2(ΩT )

for all φ ∈ L2(0, T ; H1
0 (Ω)). This implies

‖∂tv
N‖L2(0,T ;H−1(Ω)) ≤ C. (3.19)

By using Lemma 2.3, (3.18) and (3.19), we have

‖vN‖C([0,T ];L2(Ω)) ≤ C. (3.20)

Using (3.18), (3.19), standard compactness results and Lemma 2.2, we obtain for a subsequence (which we still
denote by vN )

vN −→ v weakly in L2(0, T ; H1
0 (Ω)),

∂tv
N −→ vt weakly in L2(0, T ; H−1(Ω)),

vN −→ v strongly in L2(0, T ; L2(Ω)),

vN (0) −→ v0 strongly in L2(Ω).

By using the result that vN −→ v in L2(ΩT ) and using (2.5), we get

∇Gσ ∗ (vN + �f) −→ ∇Gσ ∗ (v + �f)

in L2(ΩT )2 and a.e. in ΩT
2.

It remains to show the convergence of uN . Again using (3.11), (3.20) yields that

‖uN‖C([0,T ];H2(Ω)) ≤ C.

This implies:
uN −→ u weak-* in L∞(ΩT ),

uN (t) −→ u(t) weakly in H1
0 (Ω) for all t ∈ [0, T ].

With the convergence properties proved so far and using assumption (ii) on ḡ, we can pass to the limits in (3.5)
and (3.6) in a standard fashion (see Evans [9] for details) to get that (3.2) and (3.3) hold for (u, v).

The strong convergence of vN (0) → v0 in L2(Ω) and the fact that v ∈ C([0, T ]; L2(Ω)) give v(0) = v0.
In the following we prove that u(0) = u0 a.e. in Ω. Recalling that (u, v) satisfies∫

Ω

∇u∇ϕ +
∫

Ω

vϕ = 0
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for any ϕ ∈ H1
0 (Ω) and all t ∈ [0, T ]. By elliptic regularity theory we can get u ∈ C([0, T ]; H2(Ω)), since

v ∈ C([0, T ]; L2(Ω)) and Ω is a bounded domain with C2 boundary. Therefore, we obtain

�u(0) = v(0), a.e. in Ω.

We have proved that v(0) = v0 a.e. in Ω. Using the condition v0 = �u0, we get

�u(0) = �u0, a.e. in Ω.

Recalling that u(0) = u0 = 0 on ∂Ω, the above equality implies

u(0) = u0, a.e. in Ω

by the Maximum Principle of Laplace equation. �

4. Existence and uniqueness for the non-strictly positive case

In this section, we prove Theorem 2.1. Our method is to approximate the non-uniformly parabolic problem
by an uniformly parabolic one which has a strictly positive diffusion.

We introduce a strictly positive diffusion gε as

gε = g + ε. (4.1)

With this choice of gε, Theorem 3.1 gives the existence of the system:⎧⎪⎪⎨
⎪⎪⎩

vt + ∇⊥(u + f) · ∇(v + �f) = ν div[gε(|∇Gσ ∗ (v + �f)|)∇(v + �f)], in ΩT ,
�u = v, in ΩT ,
v = 0, u = 0, on Γ,
u(x, 0) = u0(x), v(x, 0) = v0(x), in Ω.

We denote the solution by (uε, vε). In the following we derive some uniform estimates of uε and vε with respect
to ε. With these estimates we can pass to the limit in the approximate system. From now on we assume
u0 ∈ H1

0 (Ω) ∩ W 2,∞(Ω), f ∈ H3(Ω) ∩ W 2,∞(Ω) with �f ∈ L∞(∂Ω). Under this assumption, we can state the
following lemma.

Lemma 4.1. The solution vε ∈ L∞(ΩT ), furthermore,

‖vε‖L∞(ΩT ) ≤ C, (4.2)

where C is independent of ε.

Proof. Since
u0 ∈ W 2,∞(Ω) and v0 = �u0,

we have v0 ∈ L∞(Ω). By (3.2) (vε, uε) satisfies∫
Ω

∂tvεϕ +
∫

Ω

(uε + f)∇⊥(vε + �f)∇ϕ + ν

∫
Ω

gε(|∇Gσ ∗ (vε + �f)|)∇(vε + �f)∇ϕ = 0 (4.3)

for any ϕ ∈ H1
0 (Ω) and almost all t ∈ [0, T ].

Set
l = max{‖�f‖L∞(∂Ω), ‖v0 + �f‖L∞(Ω)}·
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For any k > l, taking ϕ(t) = (vε +�f − k)+(t) ∈ H1
0 (Ω) as the test function in (4.3) and integrate from 0 to s,

we obtain for all s ∈ (0, T ]

∫
Ωs

∂tvε(vε + �f − k)+ +
∫

Ωs

(uε + f)∇⊥(vε + �f)∇(vε + �f − k)

+ ν

∫
Ωs

gε(|∇Gσ ∗ (vε + �f)|)∇(vε + �f)∇(vε + �f − k) = 0, (4.4)

where Ωs = Ω × (0, s).
Note that ∫

Ωs

∂tvε(vε + �f − k)+ =
∫

Ωs

∂t(vε + �f − k)+(vε + �f − k)+

=
1
2

∫
Ωs

d
dt

|(vε + �f − k)+|2

and ∫
Ωs

(uε + f)∇⊥(vε + �f)∇(vε + �f − k) =
∫

Ss

(uε + f)∇⊥(vε + �f)∇(vε + �f − k)

=
∫

Ss

(uε + f)∇⊥(vε + �f)∇(vε + �f) = 0,

where Ss = Ωs ∩ {vε + �f > k}. Therefore, it follows from (4.4) that

1
2

∫
Ω

|(vε(s) + �f − k)+|2 + ν

∫
Ωs

gε(|∇Gσ ∗ (vε + �f)|)|∇(vε + �f − k)+|2 =
1
2

∫
Ω

|(v0 + �f − k)+|2 = 0

for a.e. s ∈ [0, T ]. The above equality yields that∫
Ω

|(vε(s) + �f − k)+|2 ≤ 0,

which implies
sup
QT

(vε + �f) ≤ k.

Let k → l, we can obtain
sup
QT

(vε + �f) ≤ l. (4.5)

By the similar discussion we get
inf
QT

(vε + �f) ≥ −l. (4.6)

Using (4.5), (4.6) and the fact that �f ∈ L∞(ΩT ), we obtain (4.2). �
Remark. Lemma 4.1 yields ‖vε + �f‖L∞(ΩT ) ≤ C. Combining (2.5), we can get

‖∇Gσ ∗ (vε + �f)‖L∞(ΩT ) ≤ C,

which implies that there exists a positive constant B independent of ε such that

gε(|∇Gσ ∗ (vε + �f)|) ≥ B, (4.7)

since g is a non-increasing smooth function on [0,∞] and satisfies (1.7).
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Proof of Theorem 2.1. Recalling that (uε, vε) satisfies∫
ΩT

∂tvεζ +
∫

ΩT

(uε + f)∇⊥(vε + �f)∇ζ = −ν

∫
ΩT

gε(|∇Gσ ∗ (vε + �f)|)∇(vε + �f)∇ζ (4.8)

for any ζ ∈ L2(0, T ; H1
0 (Ω)), and ∫

Ω

∇uε∇ϕ +
∫

Ω

vεϕ = 0 (4.9)

for any ϕ ∈ H1
0 (Ω) and almost all t ∈ [0, T ].

(4.7) shows that the approximate systems are uniform and strictly positive diffusion for vε. Therefore, taking
ζ = vε in (4.8) and ϕ = uε(t) in (4.9) respectively as the test functions, using the similar discussion as in the
proof of Theorem 3.1, we obtain

‖vε‖L2(0,T ;H1
0 (Ω)) ≤ C,

‖∂tvε‖L2(0,T ;H−1(Ω)) ≤ C,

‖vε‖C([0,T ];L2(Ω)) ≤ C,

‖uε‖C([0,T ];H2(Ω)) ≤ C.

Recalling (4.2), by using standard compactness properties and Lemma 2.2, we obtain the convergence

vε −→ v weakly in L2(0, T ; H1
0(Ω)), (4.10)

∂tvε −→ vt weakly in L2(0, T ; H−1(Ω)), (4.11)

vε −→ v strongly in L2(0, T ; L2(Ω)), (4.12)

vε −→ v weak-* in L∞(ΩT ),

uε −→ u weak-* in L∞(ΩT ), (4.13)

uε(t) −→ u(t) weakly in H1
0 (Ω) for all t ∈ [0, T ]. (4.14)

It remains to show that (u, v) fulfills (2.3)–(2.4) in Theorem 2.1. With these convergence (4.10), (4.11) and (4.13),
it is obvious that∫

ΩT

∂tvεζ +
∫

ΩT

(uε + f)∇⊥(vε + �f)∇ζ −→
∫

ΩT

∂tvζ +
∫

ΩT

(u + f)∇⊥(v + �f)∇ζ

for any ζ ∈ L2(0, T ; H1
0 (Ω)). Recalling that vε −→ v in L2(ΩT ) and using (2.5), we get

∇Gσ ∗ (vε + �f) −→ ∇Gσ ∗ (v + �f)

in L2(ΩT )2 and a.e. in ΩT
2. Note that gε −→ g uniformly, therefore,

gε(|∇Gσ ∗ (vε + �f)|) −→ g(|∇Gσ ∗ (v + �f)|) a.e in ΩT . (4.15)
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Since 0 < gε ≤ C for small ε, by using Lebesgue dominated convergence theorem, (4.15) and (4.10), we get

ν

∫
ΩT

gε(|∇Gσ ∗ (vε + �f)|)∇(vε + �f)∇ζ −→ ν

∫
ΩT

g(|∇Gσ ∗ (v + �f)|)∇(v + �f)∇ζ

for any ζ ∈ L2(0, T ; H1
0 (Ω)).

Therefore, letting ε → 0 in (4.8), by the arbitrary of ζ ∈ L2(0, T ; H1
0(Ω)), we obtain that (2.3) holds for

any ϕ ∈ H1
0 (Ω) and a.e. t ∈ [0, T ]. At the same time, letting ε → 0 in (4.9), using (4.12) and (4.14), we get

that (2.4) holds for any ϕ ∈ H1
0 (Ω) and a.e. t ∈ [0, T ].

The facts that u(0) = u0, v(0) = v0 and u ∈ C([0, T ]; H1
0 (Ω) ∩ H2(Ω)) follow the similar discussion as in

the proof of Theorem 3.1. Furthermore, since (u, v) satisfies (2.4) and v ∈ L∞(ΩT ), the Schauder estimates of
elliptic equations imply u ∈ L∞(0, T ; C1,α(Ω̄)) (0 < α < 1). This proves the existence of (u, v) to problem (2.2).

In the following we prove the uniqueness. Suppose that (u1, v1) and (u2, v2) are two pairs of weak solutions
to problem (2.2). By defining

βi(t) = g
(|∇Gσ ∗ vi(t)|

)
, i = 1, 2,

we have ∫
Ω

∂t(w1 − w2)ϕ +
∫

Ω

(I1∇⊥w1 − I2∇⊥w2)∇ϕ + ν

∫
Ω

(β1(t)∇w1 − β2(t)∇w2)∇ϕ = 0 (4.16)

for any ϕ ∈ H1
0 (Ω) and a.e. t ∈ [0, T ]. Here

wi = vi + �f, Ii = ui + f, i = 1, 2.

In (4.16) taking ϕ = (w1 − w2)(t) as the test function, we obtain

1
2

d
dt

∫
Ω

|(v1 − v2)(t)|2 + ν

∫
Ω

β1(t)|∇(v1 − v2)|2 = ν

∫
Ω

[(β2 − β1)(t)]∇(v2 + �f)∇(v1 − v2)

+ ν

∫
Ω

(u1 − u2)∇⊥(v2 + �f)∇(v1 − v2). (4.17)

Note that
β1(t) = g

(|∇Gσ ∗ v1(t)|
) ≥ B > 0 (4.18)

and
‖(β1 − β2)(t)‖L∞(Ω) ≤ C‖(v1 − v2)(t)‖L2(Ω) (4.19)

by (2.6). Combining (4.17), (4.18), (4.19) and using Hölder’s inequality, we obtain

1
2

d
dt

‖(v1−v2)(t)‖2
L2(Ω) +Bν‖∇(v1−v2)(t)‖2

L2(Ω) ≤ C‖∇(v2 +�f)‖L2(Ω)‖∇(v1−v2)(t)‖L2(Ω)‖(v1−v2)(t)‖L2(Ω),

(4.20)
where we used the fact that

‖(u1 − u2)(t)‖L∞(Ω) ≤ C‖(v1 − v2)(t)‖L2(Ω) (4.21)
for all t ∈ [0, T ]. Using Young’s inequality for the last term in (4.20), we get

1
2

d
dt

‖(v1 − v2)(t)‖2
L2(Ω) ≤ C‖∇(v2 + �f)‖2

L2(Ω)‖(v1 − v2)(t)‖2
L2(Ω). (4.22)

Recalling that v1(0) = v2(0) = v0 and v2 +�f ∈ L2(0, T ; H1(Ω)), by using Gronwall’s inequality, (4.22) implies

v1 = v2 a.e. in ΩT ,

which implies
u1 = u2 a.e. in ΩT

by (4.21). This completes the proof of Theorem 2.1. �
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[11] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaries. Dunod (1969).
[12] S. Masnou, Disocclusion: a variational approach using level lines. IEEE Trans. Image Process. 11 (2002) 68–76.
[13] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intell.

12 (1990) 629–639.
[14] X.C. Tai, S. Osher and R. Holm, Image inpainting using a TV-Stokes equation, in Image Processing based on partial differential

equations, X.C. Tai, K.-A. Lie, T.F. Chan and S. Osher Eds., Springer, Heidelberg (2007) 3–22.


	Introduction
	Preliminaries
	Existence theorems for strictly positive diffusion
	Existence and uniqueness for the non-strictly positive case 
	References

