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EQUIVALENCE OF CONTROL SYSTEMS WITH LINEAR SYSTEMS
ON LIE GROUPS AND HOMOGENEOUS SPACES

Philippe Jouan1

Abstract. The aim of this paper is to prove that a control affine system on a manifold is equivalent
by diffeomorphism to a linear system on a Lie group or a homogeneous space if and only if the vector
fields of the system are complete and generate a finite dimensional Lie algebra.
A vector field on a connected Lie group is linear if its flow is a one parameter group of automorphisms.
An affine vector field is obtained by adding a left invariant one. Its projection on a homogeneous space,
whenever it exists, is still called affine.
Affine vector fields on homogeneous spaces can be characterized by their Lie brackets with the projec-
tions of right invariant vector fields.
A linear system on a homogeneous space is a system whose drift part is affine and whose controlled
part is invariant.
The main result is based on a general theorem on finite dimensional algebras generated by complete
vector fields, closely related to a theorem of Palais, and which has its own interest. The present proof
makes use of geometric control theory arguments.
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1. Introduction

The main purpose of this paper is to characterize the class of control systems

ṗ = f(p) +
m∑

j=1

ujgj(p) (1.1)

which are globally diffeomorphic to a linear system on a Lie group or a homogeneous space. They turn out to
be the systems whose vector fields are complete and generate a finite dimensional Lie algebra.

We say that a vector field on a connected Lie group is linear if its flow is a one parameter group of automor-
phisms. Linear vector fields on Lie groups are nothing else than the so-called infinitesimal automorphisms in
the Lie group literature (see for instance [3]). They were first considered in a control theory context by Markus,
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on matrix Lie groups (see [9]), and then in the general case by Ayala and Tirao (see [2]). They are the natural
extension to Lie groups of the linear fields on vector spaces and, for this reason, are still called linear.

There is another way, of course equivalent, to define linear vector fields on a connected Lie group G. Let us
denote by g its Lie algebra, that is the set of right invariant vector fields. Then a vector field X is linear if and
only if

∀Y ∈ g [X , Y ] ∈ g (1.2)

and moreover satisfies X (e) = 0, where e stands for the identity of G. In case where X satisfies condition (1.2)
but not X (e) = 0 it will be said affine (it is in that case equal to the sum of a linear vector field and a left
invariant one). This second definition was introduced in [2] for affine vector fields (on Lie groups). Its interest
is twofold. On the one hand it does not require the knowledge of the flow of X . On the other one it can be
extended to homogeneous spaces.

An affine vector field on a homogeneous space G/H is the projection, if it exists, of an affine vector field
on G. Theorem 4.1 provides a characterization of affine vector fields on homogeneous spaces in terms of Lie
brackets with the invariant ones, similar to (1.2).

A system defined on a homogeneous space,

ẋ = F (x) +
m∑

j=1

ujYj(x), (1.3)

is called linear if the field F is affine and the Yj ’s invariant. Linear systems on Lie groups and invariant systems
appear as particular cases of this general setting.

The extension of affine vector fields and linear systems to homogeneous spaces is motivated by the fact that
the class of systems diffeomorphic to a linear one on a Lie group is rather restrictive, while the class of systems
diffeomorphic to linear systems on homogeneous spaces is much wider. More accurately we have (Thm. 6.1,
Sect. 6):

We assume the family {f, g1, . . . , gm} to be transitive. Then system (1.1) is diffeomorphic to a linear system
on a Lie group or a homogeneous space if and only if the vector fields f, g1, . . . , gm are complete and generate
a finite dimensional Lie algebra.

In this statement, the transitivity assumption means that there is only one orbit, equal to the state space,
under the action of the system. This is not really a limitation since by the Orbit theorem (see Sect. 2) we know
that we can always consider the restriction of the system to the orbit through a given point.

The proof makes appeal to Theorem 5.1 (Sect. 5):
Let Γ be a transitive family of vector fields on a connected manifold M . If all the vector fields belonging

to Γ are complete, and if Γ generates a finite dimensional Lie algebra L(Γ), then M is diffeomorphic to a
homogeneous space G/H, where G is a simply connected Lie group whose Lie algebra is isomorphic to L(Γ).
The tangent mapping of this diffeomorphism induces an isomorphism from L(Γ) onto the Lie algebra of invariant
vector fields on G/H, and all the vector fields belonging to L(Γ) are complete.

Theorem 5.1 is very closely related to a theorem of Palais ([10], Thm. III, p. 95), but the new proof given
here uses control theory ideas like transitivity, rank condition, normal accessibility, Sussmann’s Orbit Theorem.
An important consequence of Theorem 5.1 is that the families of vector fields under consideration are Lie
determined.

Thus linear systems on Lie groups and homogeneous spaces appear as models for a wide class of systems, and
will certainly play an important role in studying topics such as controllability, stabilization, optimal control and
observability. Some results about controllability and observability of linear systems on Lie groups are already
known, see [1,2,4,6].

The paper is organized as follows.
In Section 2 the definitions and facts from control theory used in the sequel are recalled.
In Section 3 the various definitions of linear and affine vector fields on Lie groups are stated, and their

equivalence proved (see Thm. 3.1), as well as their properties, in particular their completeness which is one
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of the main ingredients used herein. Some of the proofs can be found in the literature (for instance [2–4]) and
are in that case quoted, but to the author’s knowledge, Theorem 3.1 is nowhere completely proved.

In Section 4 affine vector fields on homogeneous spaces are introduced, and characterized by their Lie brackets
with the projections of right invariant vector fields (Thm. 4.1).

Section 5 is devoted to the previously mentioned Theorem 5.1, and to a corollary (see Cor. 5.1) where the
transitivity assumption is relaxed.

The main result, Theorem 6.1, is stated and proved in Section 6, which is ended by Corollary 6.1 where
systems diffeomorphic to a linear system on a simply connected Lie group are characterized.

Section 7 begins by some examples of linear vector fields. Then we consider a well known system and show
that it is equivalent to a linear one on a homogeneous space of the group Heisenberg. The equivalence is
computed.

Throughout the paper (in fact from Sect. 5) the vector fields under consideration are only assumed to be Ck,
k ≥ 1, because the class of differentiability does not matter. The important properties are the completeness of
the vector fields and the fact that they generate a finite dimensional Lie algebra.

On the other hand the simply connected spaces will be assumed to be connected. However this definition
of simply connectedness, that can be found for instance in [5], is not universal and will be recalled in some
statements.

2. Preliminaries

In this section some standard definitions and facts from control theory are reviewed.
Let Γ = {gi; i ∈ I} be a family of Ck vector fields on a connected Ck+1 manifold M , with k ≥ 1 (the gi’s are

not required to be complete).
Let us denote by (γi

t) the flow of gi. The orbit of Γ through a point p ∈ M is the set of points q for which
there exist vector fields gi1 , . . . , gir ∈ Γ, and real numbers t1, . . . , tr such that

γir
tr

◦ . . . ◦ γi1
t1 (p)

is defined and equal to q. Let us recall the Sussmann’s orbit theorem:

Orbit Theorem. The orbit of Γ through each point p of M is a connected immersed submanifold of M .

In the original proof of Sussmann the vector fields are assumed to be C∞ (see [11]), but a proof for Ck vector
fields, with k ≥ 1, can be found in [7].

This family of vector fields is said to be transitive if the orbit through each point p of M is equal to M , that
is if M is the only orbit of Γ.

Let V k(M) stand for the space of Ck vector fields on M . It is not a Lie algebra whenever k < +∞. But it
may happen that all the Lie brackets of elements of Γ of all finite lengths exist and are also Ck. In that case the
subspace of V k(M) spanned by these Lie brackets is a Lie algebra and we will say that the family Γ generates
a Lie algebra. This last will be denoted by L(Γ).

Let us assume that Γ generates a Lie algebra, and let us consider the rank of Γ at each point p ∈M , that is
the dimension of the subspace of TpM , the tangent space to M at p, spanned by the vectors γ(p), γ ∈ L(Γ).
The so-called rank condition asserts that the family Γ is transitive as soon as its rank is maximum, hence equal
to dimM , at each point.

To finish let us recall the definition of Lie-determined systems (see for instance [7]): the family Γ is said to be
Lie-determined if at each point p ∈M , the rank of Γ at p is equal to the dimension of the orbit of Γ through p.
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3. Linear and affine vector fields on Lie groups

Let G be a connected Lie group, and g its Lie algebra, that is the set of right invariant vector fields. The
set of analytic vector fields on G is denoted by V ω(G), and the normalizer of g in V ω(G) is by definition

N = normV ω(G)g = {F ∈ V ω(G); ∀Y ∈ g [F, Y ] ∈ g}·

Definition 3.1. A vector field F on G is said to be affine if it belongs to N .
Such a vector field F is said to be linear if it moreover verifies F (e) = 0, where e stands for the identity of G.

In other words the restriction of ad(F ) to g, also denoted by ad(F ), is a derivation of g. From the Jacobi
identity, it is clear that N is a Lie subalgebra of V ω(G), and that the mapping F �−→ ad(F ) is a Lie algebra
morphism from N into D(g), the set of derivations of g.

Proposition 3.1 (see [2]). The kernel of the mapping F �−→ ad(F ) is the set of left invariant vector fields. An
affine vector field F can be uniquely decomposed into a sum

F = X + Z

where X is linear and Z left invariant.

This proposition is no longer true whenever the group G is not connected.

Proof. Let Z be an affine vector field whose bracket with any element of g vanishes. Its flow zt commutes with
the one of any Y ∈ g. This writes

∀x ∈ G zt(exp (sY )x) = exp (sY )zt(x)

for all t, s ∈ R for which this makes sense. Fix x ∈ G. There exist Y1 . . . Yk ∈ g such that

x = exp (Y1) . . . exp (Yk),

thanks to the connectedness of G. Therefore

zt(x) = zt(exp (Y1) . . . exp (Yk)) = exp (Y1) . . . exp (Yk)zt(e) = xzt(e)

for t sufficiently small, and
Zx = d

dt |t=0
zt(x)

= d
dt |t=0

xzt(e)

= TeLx.Ze

where TeLx stands for the tangent mapping at the identity e of the left translation Lx. This proves that Z is left
invariant and, the converse being obvious, since the bracket of a left-invariant vector field with a right-invariant
one vanishes, the first part of the proposition.

For the second one let Z be the left invariant vector field defined by Ze = F (e). Then the vector field
X = F − Z is clearly linear. �

Theorem 3.1. Let X be a vector field on a connected Lie group G. The following conditions are equivalent:
(1) X is linear;
(2) the flow of X is a one parameter group of automorphisms of G;
(3) X verifies

∀x, x′ ∈ G Xxx′ = TLx.Xx′ + TRx′ .Xx. (3.1)
The second item implies that a linear vector field on a connected Lie group is complete.
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Proof. (1)⇒(3). The vector field X is linear, hence for all Y ∈ g, the Lie bracket [X , Y ] is right invariant.
Therefore we have

∀x ∈ G [X , Y ] = Rx∗[X , Y ] = [Rx∗X , Rx∗Y ] = [Rx∗X , Y ].

This proves firstly that [Rx∗X , Y ] is right invariant for all Y ∈ g, hence that the vector field Rx∗X is affine, and
secondly that ad(Rx∗X ) = ad(X ) hence following Proposition 3.1 that

Rx∗X = X + Z (3.2)

where Z is left invariant. This last is characterized by

Ze = (Rx∗X )e = TRx.Xx−1

hence for all x′ ∈ G

Zx′ = TLx′ TRx.Xx−1 = TRx TLx′.Xx−1 .

Considering (Rx∗X )x′ = TRx.Xx′x−1 , equality (3.2) evaluated at the point x′ becomes

TRx.Xx′x−1 = Xx′ + TRx TLx′.Xx−1 .

It remains to apply TRx−1 to obtain

Xx′x−1 = TRx−1.Xx′ + TLx′.Xx−1

and to replace x−1 by x to obtain equality (3.1).

(3)⇒(2) (see also [3]). Let us denote by ϕt the flow of X , defined on a domain of R ×G. The curve

t �−→ ϕt(x)ϕt(x′)

is defined on an open interval containing 0, and takes the value xx′ at t = 0. Moreover

d
dtϕt(x)ϕt(x′) = TLϕt(x).Xϕt(x′) + TRϕt(x′).Xϕt(x)

= Xϕt(x)ϕt(x′).

This proves that

ϕt(x)ϕt(x′) = ϕt(xx′)

as soon as the left-hand side exists. It remains to show that X is complete. To begin with, notice that
equality (3.1), evaluated at x = x′ = e, implies Xe = 0.

Let x ∈ G and t ∈ R. Since Xe vanishes, ϕt is defined on an open neighborhood Vt of e. The group G being
connected, it is generated by this neighborhood. Therefore there exist x1, . . . , xn ∈ Vt such that x = x1 . . . xn,
and

ϕt(x) = ϕt(x1 . . . xn) = ϕt(x1) . . . ϕt(xn)

is well defined. This proves that X is complete and that ϕt is an automorphism of G for all t ∈ R.

(2)⇒(1). Let (ϕt, t ∈ R) be a one parameter group of automorphisms of G, and X its infinitesimal generator.
For all right invariant vector fields Y , we have

[X , Y ]e =
d
dt |t=0

Tϕt(e)ϕ−t.Yϕt(e) =
d
dt |t=0

Teϕ−t.Ye (3.3)
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since ϕt(e) = e for all t ∈ R. Considering ϕ−t ◦Rϕt(x) = Rx ◦ ϕ−t we have at any point x:

[X , Y ]x = d
dt |t=0

Tϕt(x)ϕ−t.Yϕt(x)

= d
dt |t=0

Tϕt(x)ϕ−t TeRϕt(x).Ye

= d
dt |t=0

TeRx Teϕ−t.Ye

= TeRx.[X , Y ]e.

The vector field X is therefore affine, and consequently linear since ϕt(e) = e for all t ∈ R. �
Notations. Here and in the following the flow of a linear vector field X will be denoted by (ϕt)t∈R.

To a given linear vector field X , one can associate the derivation D of g defined by:

∀Y ∈ g DY = −[X , Y ],

that is D = −ad(X ). The minus sign in this definition comes from the formula [Ax, b] = −Ab in R
n. It also

enables to avoid a minus sign in the equality

∀Y ∈ g ∀t ∈ R ϕt(expY ) = exp(etDY ),

stated in the forthcoming Proposition 3.2.

Example: the inner derivations
Let X ∈ g be a right invariant vector field. We denote by I the diffeomorphism of G defined by x �−→ x−1.

The vector field I∗X is left invariant and equal to −Xe at e. Therefore the vector field

X = X + I∗X

is linear. Indeed X belongs to N , because for all Y ∈ g, we have [X , Y ] = [X + I∗X,Y ] = [X,Y ] ∈ g, and
satisfies moreover X (e) = 0. The derivation associated to X is inner since it is equal to −ad(X ) = −ad(X) (see
Sect. 7.1.1 for the example of linear vector fields on matrix Lie groups whose derivation is inner).

This shows also that given an inner derivation D = −ad(X), there always exists a linear vector field on G
whose associated derivation is D. This is no longer true in the general case, but holds whenever G is simply
connected. This fact is crucial in the sequel.

Theorem 3.2. The group G is assumed to be (connected and) simply connected. Let D be a derivation of its
Lie algebra g. Then there exists one and only one linear vector field on G whose associated derivation is D.

Proof. The proof is essentially contained in [3], Lemme 4, p. 250. �
Important remark. Under the assumption that the group G is connected, it was stated in Proposition 3.1
that an affine vector field F can be decomposed into F = X + Z, with X linear and Z left invariant. This
decomposition is natural because ad(X ) = ad(F ), but it may be useful to decompose F into a linear part and
a right invariant one. Since I∗Z is right invariant and Z + I∗Z linear, we can write

F = X̃ − I∗Z with X̃ = X + Z + I∗Z.

Of course ad(X̃ ) = ad(X ) + ad(I∗Z) 
= ad(X ) = ad(F ) (except if Z belongs to the center of g).
This remark will be used in Section 4.

Proposition 3.2. For all t ∈ R

Teϕt = etD

and consequently
∀Y ∈ g ∀t ∈ R ϕt(expY ) = exp(etDY ).
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Proof.
(1) Let us first prove the equality

d
dt
Teϕt.Ye = DTeϕt.Ye.

This equality has been previously stated at t = 0 (see equality (3.3) in the proof of Thm. 3.1). In
general

d
dtTeϕt.Ye = d

ds |s=0
Teϕt+s.Ye

= d
ds |s=0

Teϕs.Teϕt.Ye

= DTeϕt.Ye.

(2) From the equality proved above, the first formula of the proposition is immediate. For the second one,
remark that ϕt is a Lie group morphism. Therefore

ϕt(expY ) = exp(Teϕt.Y )
= exp(etDY ). �

To finish this section notice the following proposition:

Proposition 3.3. An affine vector field on a connected Lie group is complete.

Proof. This proposition is a consequence of the forthcoming Theorem 5.1, but it can be proved in an elementary
way. Indeed let F be an affine vector field and X + Z its decomposition into a linear vector field X and a left
invariant one Z. Let us denote by t �−→ e(t) the maximal trajectory of F through the identity e, defined on
an interval ]a, b[. One can verify, using the third characterization of linear vector fields (see Thm. 3.1), that
t �−→ ϕt(x)e(t) is the trajectory of F through the point x ∈ G, also defined on ]a, b[. Let us assume b < +∞
and let us choose x = e(b/2). Then

t �−→ ϕt− b
2

(
e

(
b

2

))
e

(
t− b

2

)

is the trajectory of F through x = e(b/2) at t = b/2. Therefore the trajectory t �−→ e(t) can be extended up
to 3b/2, a contradiction. �

4. Affine vector fields on homogeneous spaces

Let H be a closed subgroup of G. The homogeneous space G/H is the manifold of left cosets of H , and we
denote by Π the projection of G onto G/H . For each right invariant vector field Y ∈ g, the projection Π∗Y
of Y onto G/H is always well defined, and will be referred to as an invariant vector field on G/H . It is well
known that the set of such vector fields, Π∗g = {Π∗Y ; Y ∈ g}, is a Lie algebra and that Π∗ is a Lie algebra
morphism from g onto Π∗g.

Let X be a linear vector field on G. We investigate the existence on G/H of a vector field Π-related to X .
Such a vector field exists if and only if

∀x ∈ G, ∀y ∈ H, ∀t ∈ R Π(ϕt(xy)) = Π(ϕt(x)).

But Π(ϕt(xy)) = ϕt(x)ϕt(y)H , and the preceding condition is equivalent to

∀y ∈ H, ∀t ∈ R ϕt(y) ∈ H.

Thus X is Π-related to a vector field on G/H if and only if H is invariant under the flow of X , therefore if and
only if X is tangent to H .
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In the particular case where H is a discrete subgroup of G, this amounts to the condition that X vanishes
everywhere on H , or that H is included in the set of zeroes of X .

Assume now H to be connected, and denote by h its Lie algebra. Since the elements of H are products of
exponentials the invariance of H under X writes

∀Y ∈ h, ∀t ∈ R ϕt(expY ) = exp(etDY ) ∈ H.

This is equivalent to ∀Y ∈ h, ∀t ∈ R, etDY ∈ h, and finally to the invariance of h under D.

Proposition 4.1. Let H be a closed subgroup of G, G/H the homogeneous space of left cosets of H, and Π the
projection of G onto G/H.

A linear vector field X on G is Π-related to a vector field on G/H if and only if H is invariant under X .
If H is discrete, this condition holds if and only if H is included in the set of zeroes of X .
If H is connected it is equivalent to the invariance of its Lie algebra h under the derivation D associated

to X .

Under these conditions, the projection of X onto G/H will be denoted by Π∗X .
Let us now consider an affine vector field F on G. It is equal to

F = X + Y

where X is linear and Y right invariant. This decomposition (see “important remark” in Sect. 3) is chosen in
order to ensure that the projection Π∗Y of Y onto G/H is well defined. Then F is Π-related to a vector field
on G/H if and only if Π∗X exists. In that case Π∗F = Π∗X +Π∗Y will stand for the projection of F onto G/H .

Proposition 4.2. Let H be a closed subgroup of G, G/H the homogeneous space of left cosets of H, and Π the
projection of G onto G/H.

Let F be an affine vector field on G and F = X +Y its decomposition into a linear vector field X and a right
invariant one Y .

Then F is Π-related to a vector field on G/H if and only if this holds for X , hence if and only if H is
invariant under X .

The next task is to define and characterize affine vector fields on connected homogeneous spaces. In general
a homogeneous space is defined as a manifold on which a Lie group acts smoothly and transitively. For our
purpose it is more convenient to use the following equivalent definition: a (connected) homogeneous space M
is a manifold diffeomorphic to a quotient G/H , where G is a (connected) Lie group and H a closed subgroup
of G.

There are two remarks to make about the choice of the Lie group G.
(1) We can assume G to be simply connected. If not let G̃ be the universal covering of G, σ the projection

of G̃ onto G and H̃ = σ−1(H). Then G/H is diffeomorphic to G̃/H̃.
(2) We can assume that dim Π∗g = dim g. If not let k be the kernel of Π∗ and let K be the connected Lie

subgroup of G whose Lie algebra is k. The subgroup K is normal and included in H because k is an
ideal of g included in the Lie algebra h of H (it is easy to see that Y ∈ k if and only if ∀x ∈ G, ∀t ∈ R,
x−1 exp(tY )x ∈ H). Now G/K is a simply connected (because K is connected) Lie group and

G/H ∼ (G/K)/(H/K).

We can therefore restrict ourselves to homogeneous spaces G/H where G is simply connected and H is a closed
subgroup of G such that

dim Π∗g = dim g.

Notice that whenever the subgroup H is not normal then the projections of the right invariant vector fields
belonging to the Lie algebra h of H do not vanish in general. More accurately they vanish at the point H ,
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but not necessarily on G/H (see the second item in the proof of Thm. 4.1). Therefore the dimension of G/H
may be strictly less than the dimension of its Lie algebra of invariant vector fields, as shown for instance by
Examples 7.2 and 7.3.

Definition 4.1. Let G be a simply connected Lie group, and H a closed subgroup of G such that dim Π∗g =
dim g, where Π stands for the projection of G onto G/H . A vector field f on G/H is said to be affine if it is
Π-related to an affine vector field of G.

It is clear that Π∗g is invariant for the Lie bracket with any affine vector field Π∗F . Let us now state and
prove the converse statement, and thus characterize the affine vector fields on homogeneous spaces.

Theorem 4.1. Let G be a (connected and) simply connected Lie group, and H a closed subgroup of G such
that dim Π∗g = dim g, where Π stands for the projection of G onto G/H.

A vector field f on G/H is affine if and only if

∀Y ∈ g [f,Π∗Y ] ∈ Π∗g,

that is if and only if Π∗g is ad(f)-invariant.

Proof. The necessary part being clear, let us prove the converse and, for this purpose, let us begin by some
preliminary remarks.

(1) We can assume without loss of generality f(H) = 0 since we can add to f an invariant vector field Π∗Y
that verifies Π∗Y (H) = −f(H).

(2) Let us notice that a right invariant vector field Y belongs to the Lie algebra h of H if and only if
Π∗Y (H) = 0. Indeed

Y ∈ h ⇐⇒ ∀t ∈ R exp(tY ) ∈ H
⇐⇒ ∀t ∈ R exp(tY )H = H
⇐⇒ Π∗Y (H) = 0.

By assumption f induces a derivation D̃ on Π∗g, defined by D̃ = −ad(f). Since g and Π∗g are isomorphic,
we can define the derivation D on g by the equality Π∗ ◦D = D̃ ◦Π∗. Moreover G being simply connected there
exists a (unique) linear vector field X on G associated to D.

Let Y ∈ h. We have

Π∗[Y,X ] = Π∗(DY ) = D̃(Π∗Y ) = [Π∗Y, f ].

But Π∗Y (H) = 0 because Y ∈ h, and by assumption f(H) = 0. Therefore [Π∗Y, f ](H) = 0, and [Y,X ] belongs
to h.

This proves that h is invariant under D. Let H0 denote the connected component of e in H . Following
Proposition 4.1, the linear vector field X is related to a vector field f̃ on G/H0 by the projection of G onto G/H0.

If H0 = H , then f̃ = f . Indeed f̃ and f verify

(i) ∀g ∈ Π∗g [f̃ , g] = [f, g]
(ii) f̃(H) = f(H) = 0,

and according to the forthcoming Lemma 4.1 this implies the equality of f̃ and f .
If H is not connected then G/H0 is a covering space of G/H , and f can be lift to a vector field f ′ on G/H0.

By the previous method we obtain f̃ = f ′. Moreover f is related to f ′ by the projection of G/H0 onto G/H ,
and therefore to X . More accurately the equality between f̃ and f ′ implies that f̃ vanishes on H/H0, because
so does f ′. Therefore the connected components of H are invariant under X , and according to Proposition 4.1,
X is Π-related to a vector field on G/H which is nothing else than f . �
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Lemma 4.1. Let (gi)i∈I be a transitive family of vector fields (see Sect. 2) on a connected manifold M , and
let f be a vector field on M that satisfies

(i) ∀i ∈ I [f, gi] = 0
(ii) ∃x0 ∈M f(x0) = 0.

Then f = 0.

Proof. Let ϕi
t denote the flow of gi. Let x ∈ M . By assumption there exist i1, . . . , ir ∈ I and t1, . . . , tr ∈ R

such that
x = ϕir

tr
◦ . . . ◦ ϕi1

t1(x0).
The flow ψt of f commutes with ϕi

t, ∀i ∈ I. Hence for all t sufficiently small

ψt(x) = ϕir
tr
◦ . . . ◦ ϕi1

t1(ψt(x0))
= ϕir

tr
◦ . . . ◦ ϕi1

t1(x0)
= x.

Therefore f(x) = 0. �
Example. The affine vector fields on the sphere Sn are described in Section 7.1.2 and this example is generalized
in Section 7.1.3.

The next proposition is obvious but useful in the sequel.

Proposition 4.3. An affine vector field on a homogeneous space is complete.

We can now state the definition of general linear systems. They are the systems

ẋ = F (x) +
m∑

j=1

ujYj(x) (4.1)

on homogeneous spaces G/H , where the field F is affine and the Yj ’s invariant. Linear systems on Lie groups,
obtained when the subgroup H is normal, and invariant systems, obtained when the vector field F is invariant,
are two particular cases of this general setting.

5. Finite dimensional algebras of vector fields

Let Γ = {gi; i ∈ I} be a family of vector fields on a connected manifold M . All the vector fields gi belonging
to Γ are assumed to be Ck, for a common k ≥ 1, and M is therefore at least Ck+1.

Recall that the family Γ is said to generate a Lie algebra if all the Lie brackets of elements of Γ of all finite
lengths exist and are also Ck, and that we define in that case the Lie algebra L(Γ) as the subspace of V k(M)
spanned by these Lie brackets.

Theorem 5.1. Let Γ be a family of Ck vector fields on a connected manifold M . If
(i) all the vector fields belonging to Γ are complete;
(ii) Γ generates a finite dimensional Lie algebra L(Γ);
(iii) the family Γ is transitive;

then M is Ck+1 diffeomorphic to a homogeneous space G/H, where G is a (connected and) simply connected
Lie Group whose Lie algebra is isomorphic to L(Γ), and H is a closed subgroup of G.

By this diffeomorphism L(Γ) is related to the Lie algebra of invariant vector fields on G/H, and Γ to a subset
of this Lie algebra.

Moreover all the vector fields belonging to L(Γ) are complete.
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Proof.
(1) Let G be a (connected and) simply connected Lie group whose Lie algebra g is isomorphic to L(Γ),

L in short, and let us denote by
L : L −→ g

this Lie algebra isomorphism.
(2) In the product M×G consider the distribution spanned by the family of vector fields {(g, L(g)); g ∈ L}.

This distribution is involutive, and its rank is constant, equal to dim(G) = dim(L). Henceforth it is
completely integrable (the proof of the Frobenius theorem for Ck vector fields on a Ck+1 manifold with
k ≥ 1 can be found for instance in [8]).

Let us fix an arbitrary point p0 in M , and let S be the leaf of the foliation through the point (p0, e)
(where e stands for the identity element of G). We denote by Π1 (resp. Π2) the projection of S onto M
(resp. onto G). We are going to prove that Π2 is a diffeomorphism.

(3) Notations. For gi ∈ Γ = {gi; i ∈ I} we denote by Yi = L(gi) the corresponding vector field on G. The
flows of gi and Yi are respectively denoted by

(t, p) �−→ γi
t(p) and (t, x) �−→ exp(tYi)x.

(4) First of all let us show that Π2 is onto. Since L is a Lie algebra isomorphism and Γ generates L, the
Lie algebra g of G is generated by the family L(Γ) = {Yi; i ∈ I}. This family is therefore transitive
on G which is connected. Let x ∈ G. There exists an integer r, indices i1, . . . , ir ∈ I and real numbers
t1, . . . , tr such that

x = exp(trYir ) . . . exp(t1Yi1).
Thanks to the completeness assumption of the elements of Γ the point

p = γir
tr

◦ . . . ◦ γi1
t1 (p0)

is well defined. Moreover the vector fields (gi, Yi) are tangent to S and the point (p, x) belongs to S.
Its projection onto G is x, and this proves the surjectivity of Π2.

(5) Let us now prove that Π2 is a covering map. Since the family L(Γ) = {Yi; i ∈ I} generates the Lie
algebra g of G, the identity e is normally accessible from e (for the family {±Yi; i ∈ I}) (see [7] for the
notion of normal accessibility, in particular Cor. 1, p. 154). Let n be the dimension of G. We can find
indices i1, . . . , in ∈ I and real numbers t1, . . . , tn > 0 such that the mapping

(s1, . . . , sn) �−→ exp((tn + sn)Yin) . . . exp((t1 + s1)Yi1 )

is a local diffeomorphism at (0, . . . , 0) ∈ R
n.

Let x0 = exp(−t1Yi1 ) . . . exp(−tnYin). Then the mapping Ψ defined by

(s1, . . . , sn) �−→ exp((tn + sn)Yin) . . . exp((t1 + s1)Yi1)x0

is also a local diffeomorphism, and satisfies Ψ(0, . . . , 0) = e.
We can choose a neighbourhood of 0 in R

n sent diffeomorphically by Ψ onto an open and connected
neighbourhood V of e in G. Let us denote by Ψ̃ the similar mapping from R

n ×M into M , that is

(s1, . . . , sn; p) �−→ γin
tn+sn

◦ . . . ◦ γi1
t1+s1

◦ γi1−t1 ◦ . . . ◦ γin−tn
(p).

Let x be a given point in G, and for every p ∈M such that (p, x) ∈ S let σp be the mapping

σp : V x −→ S

y �−→ (Ψ̃(τ)(p), y)
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where τ = Ψ−1(yx−1). The neighbourhood V x of x is evenly covered by {σp(V x); p ∈ M and
(p, x) ∈ S}. Indeed it is clear that Π2 ◦ σp is the identity of V x and that the sets σp(V x) cover
Π−1

2 (V x). Let us show that they are mutually disjoint. If not we can find τ , τ ′, p, p′, such that
σp(Ψ(τ).x) = σp′(Ψ(τ ′).x). But

σp(Ψ(τ).x) = σp′(Ψ(τ ′).x) ⇐⇒ (Ψ̃(τ)(p),Ψ(τ).x) = (Ψ̃(τ ′)(p′),Ψ(τ ′).x)
=⇒ Ψ(τ).x = Ψ(τ ′).x
=⇒ τ = τ ′

=⇒ Ψ̃(τ)(p) = Ψ̃(τ)(p′)
=⇒ p = p′.

This proves that Π2 is a covering of G by S (notice that S is connected and locally connected). But G
is simply connected and Π2 is therefore a diffeomorphism. In particular, given a point x ∈ G, there is
one and only one point p ∈M for which (p, x) ∈ S.

(6) The next task is to prove that the left translations of G induce a group action on M . Let y ∈ G and
(p, x) ∈ S. There exists an unique point q ∈ M such that (q, yx) belongs to S. Let us show that q
depends only on p and y but not on a particular choice of x. Thanks again to the transitivity of the
family L(Γ), there exist an integer r, indices i1, . . . , ir ∈ I and real numbers t1, . . . , tr such that

y = exp(trYr) . . . exp(t1Y1).

Then the equality q = γir
tr

◦ . . . ◦ γi1
t1 (p) holds.

Indeed (γir
tr
◦ . . . ◦ γi1

t1 (p), exp(trYr) . . . exp(t1Y1)x) belongs to S, and γir
tr
◦ . . . ◦ γi1

t1 (p) is therefore the
only point q such that (q, exp(trYr) . . . exp(t1Y1)x) = (q, yx) belongs to S.

We will denote by ρy the diffeomorphism γir
tr

◦ . . . ◦ γi1
t1 of M . Notice that

(ρy(p), yx) = Π−1
2 ◦ Ly ◦ Π2(p, x). (5.1)

Hence the mapping
(y, p) �−→ ρy(p)

is of class Ck+1 from G×M onto M .
To finish we have ρy ◦ ρy′ = ρyy′ for all y, y′ ∈ G, according to equality (5.1).
Therefore (y, p) �−→ ρy(p) is a transitive and Ck+1 action of the Lie group G on the manifold M . Let

H be the isotropy group of p0, that is the set of points x of G such that (p0, x) belongs to S, and G/H
the manifold of left cosets of H . Then

xH ∈ G/H �−→ ρx(p0)

is a diffeomorphism from G/H onto M , denoted by Φ in the end of the proof.
(7) We are left to prove that Φ induces an isomorphism between the Lie algebra of invariant vector fields

on G/H and L. Let us denote by Π the projection of G onto G/H . Then the equality

Φ ◦ Π = Π1 ◦ Π−1
2

holds. Recall that (p0, e) ∈ S. Then ∀x ∈ G

Φ ◦ Π(x) = Φ(xH) = ρx(p0)
= Π1(ρx(p0), x)
= Π1 ◦ Π−1

2 (x).
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Let Y ∈ g. Then Φ∗(Π∗Y ) = (Π1 ◦ Π−1
2 )∗Y = L−1(Y ). This equality has two consequences. The first

one is that Γ is under Φ−1 equivalent to a set of invariant vector fields on G/H . The second one is that
all the vector fields of L(Γ) are complete, since Φ is a diffeomorphism, and they are related by Φ∗ to
complete vector field of G/H . �

Thanks to the Orbit Theorem, recalled in Section 2, we can relax the transitivity assumption, and obtain
the following corollary.

Corollary 5.1. Let Γ be a family of Ck vector fields on a connected manifold M . If

(i) all the vector fields belonging to Γ are complete;
(ii) Γ generates a finite dimensional Lie algebra L(Γ),

then all the vector fields belonging to L(Γ) are complete, and the family Γ is Lie-determined.

Proof. Let p be a point of M and let us denote by S the orbit of Γ through p. By the orbit theorem S is a
submanifold of M . Moreover every vector field belonging to Γ, hence every vector field belonging to L(Γ), is
tangent to S.

Let ΓS stand for the family of restrictions to S of the vector fields of Γ. Clearly ΓS generates a finite
dimensional Lie algebra L(ΓS), which is nothing else than the set of restrictions to S of the vector fields
of L(Γ). By definition the family ΓS is transitive on S and satisfies the assumptions of Theorem 5.1. Therefore
S is diffeomorphic to a homogeneous space G/H , where G is a simply connected Lie Group whose Lie algebra
is isomorphic to L(ΓS), and H is a closed subgroup of G. By this diffeomorphism ΓS is related to a set of
invariant vector fields, and L(ΓS) to the Lie algebra of invariant vector fields on G/H . Therefore

∀q ∈ S rank L(ΓS)(q) = dimG/H = dimS

and the family ΓS is Lie-determined. �

6. Application to control systems

Consider the control affine system

(Σ) ẋ = f(x) +
m∑

j=1

ujgj(x)

where x belongs to the n-dimensional connected manifold M and where f, g1, . . . , gm are Ck vector fields on M ,
with k ≥ 1. The control u = (u1, . . . , um) belongs to R

m.
The family Γ = {f, g1, . . . , gm} is assumed to generate a Lie algebra denoted by L.
We also denote by L0 the ideal of L generated by g1, . . . , gm. It is well known that L0 is the smallest Lie

subalgebra of L containing g1, . . . , gm and closed for the Lie bracket with f :

X ∈ L0 =⇒ [f,X ] ∈ L0.

The dimension of L0 is its dimension as a real Lie algebra, and its rank at a point p ∈ M is the dimension
of the subspace {X(p); X ∈ L0} of the tangent space TpM of M at p. In the particular case where the rank
of L0 is constant, it will be referred to as rank (L0).

It is also known that L = L0 + Rf . If the point p is a zero of f then rank (L)(p) = rank (L0)(p), and in case
where the ranks of L and L0 are constant, the existence of a zero of f implies their equality.

If L (resp. L0) is finite dimensional, then G (resp. G0) will stand for a (connected and) simply connected Lie
group whose Lie algebra is isomorphic to L (resp. L0).
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Theorem 6.1. We assume the family {f, g1, . . . , gm} to be transitive. Then system (Σ) is diffeomorphic to a
linear system on a Lie group or a homogeneous space if and only if the vector fields f, g1, . . . , gm are complete
and generate a finite dimensional Lie algebra.

More accurately, under this condition the rank of L0 is constant, equal to dim(M) or dim(M) − 1, and:
(i) if rank (L0) = dim(M), in particular if there exists one point p0 ∈ M such that f(p0) = 0, then (Σ) is

diffeomorphic to a linear system on a homogeneous space G0/H of G0;
(ii) if rank (L0) = dim(M)−1, then Σ is diffeomorphic to an invariant system on a homogeneous space G/H

of G.

Proof. Let us prove the sufficiency.
The Lie algebras L and L0 are finite dimensional and generated by complete vector fields. By Corollary 5.1

they are Lie-determined. As L is transitive, its rank is everywhere full. Moreover the rank of L0 is constant
over M , equal to dim(M) or dim(M)− 1. Indeed L0 being Lie-determined, its rank is everywhere equal to the
dimension of the zero-time orbit, which is constant, equal to dim(M) or dim(M) − 1 (see [7]).

Let us assume rank (L0) = dim(M). Then we can apply Theorem 5.1 to the family L0. The manifold M
is diffeomorphic to a homogeneous space G0/H of G0, and if we denote by Φ this diffeomorphism, the tangent
mapping Φ∗ induces a Lie algebra isomorphism between L0 and the Lie algebra of invariant vector fields
on G0/H . The vector field Φ∗f satisfies

∀g ∈ L0 [Φ∗f,Φ∗g] = Φ∗[f, g] ∈ Φ∗(L0).

Since Φ∗(L0) is equal to the Lie algebra of invariant vector fields on G0/H , and according to Theorem 4.1, the
vector field Φ∗f is affine, that is Φ∗f is the projection onto G0/H of an affine vector field F of G0. This vector
field can be chosen to be linear if and only if there is one point p0 in M such that f(p0) = 0: in the proof of
Theorem 5.1, we can choose p0 to be the projection of the identity e of G0. Clearly system (Σ) is diffeomorphic
to the linear system

ẋ = F (x) +
m∑

j=1

ujYj(x)

on G0/H , where F stands for Φ∗f , and Yj = Φ∗gj is an invariant vector field for j = 1, . . . ,m.
We assume now rank (L0) = dim(M)− 1. We apply Theorem 5.1 to L: the manifold M is diffeomorphic to

a homogeneous space G/H of G, and under this diffeomorphism L is isomorphic to the Lie algebra of invariant
vector fields on G/H . System (Σ) is obviously diffeomorphic to an invariant system on G/H . �

From Theorem 6.1 we can deduce the following corollary, stated in the C∞ case in order to ensure the
existence of L and L0:

Corollary 6.1. The manifold M is assumed to be C∞ and simply connected.
The family {f, g1, . . . , gm} is assumed to be C∞, complete and transitive, and the vector field f to vanish at

a point p0 ∈M .
Then system (Σ) is equivalent to a linear system on a Lie group if and only if

dim(L0) = dim(M).

Proof. The necessity part is obvious. Let us prove the sufficient one.
Since dim(L0) <∞, Theorem 6.1 applies, and since f vanishes at one point, we have rank (L0) = dim(M) =

dim(L0). Therefore Σ is diffeomorphic to a linear system on a homogeneous space G0/H of G0, with the previous
notations. Now the two conditions dim(L0) = dim(M) and M simply connected imply G0/H = G0. �

The assumption that M is simply connected cannot be relaxed. If not, M remains diffeomorphic to a
homogeneous space G/H , where H is discrete, but G/H is a Lie group if and only if H is normal.
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7. Examples

7.1. Examples of linear and affine vector fields

7.1.1. Inner derivations on matrix Lie groups

See [9]. Let G be a connected matrix Lie group, that is a connected Lie subgroup of Gl(n; R), for some n. For
any matrix X belonging to the tangent space TIG at the identity I, identified to g, the mapping M �−→ XM
defines a right invariant vector field. We can also associate to the inner derivation D = −ad(X) the linear
vector field X defined by

X (M) = XM −MX.

Hence in the inner derivation case, a linear system on G writes

Ṁ = XM −MX +
m∑

j=1

ujYjM

where M ∈ G, and X,Y1, . . . , Ym ∈ g.

7.1.2. Affine vector fields on the sphere Sn, n ≥ 2

The sphere Sn is diffeomorphic to the homogeneous space SOn+1/SOn, where SOn is identified with the
closed subgroup

H =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0

0
... N
0

⎞
⎟⎟⎟⎟⎟⎠ ; N ∈ SOn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

of SOn+1.
On the one hand the Lie algebra son+1 is semi simple, since n+ 1 ≥ 3, so all its derivations are inner.
On the other hand the subgroup H is connected, and, following Proposition 4.1, a linear vector field X

on SOn+1 is related to a vector field on SOn+1/H if and only if its Lie algebra h is invariant under D = −ad(X ).
But X being of the form

X (M) = XM −MX, M ∈ SOn+1

for some X ∈ son+1, this condition turns out to

∀Y ∈ h [X,Y ] ∈ h

and a straightforward computation shows that it holds if and only if X ∈ h.
The flow of X is given by

ϕt(M) = etXMe−tX

and its projection onto SOn+1/H is equal to

etXMe−tXH = etXMH

since ∀t ∈ R, e−tX ∈ H . This proves that the vector fields X andX have the same projection on Sn ∼ SOn+1/H .
In conclusion the only affine vector fields on the sphere Sn are the invariant ones. They are the vector fields

defined by
f(x) = Ax, x ∈ Sn

where A ∈ son+1, that is A′ = −A.
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Remark. The group SOn+1 is not simply connected but as it is semi simple, this is not a restriction to the
application of Theorem 4.1. Indeed any derivation D is inner, hence the associated linear vector field always
exists, despite the lack of simply connectedness.

7.1.3. The general inner derivation case

The previous phenomena is due to the fact that the normalizer of h ∼ son in son+1 is itself. To see this let
us consider the general inner derivation case on a connected Lie group G.

Let D = −ad(X), with X ∈ g, be an inner derivation. Recall from Section 3 that the linear vector field
associated to D is equal to

X = X + I∗X.
Let H be a closed and connected subgroup of G. Then, following again Proposition 4.1, the linear vector field X
is related to a vector field on G/H if and only if its Lie algebra h is invariant under D = −ad(X ). But

∀Y ∈ h [Y,X ] = [Y,X ] ∈ H
⇐⇒ X ∈ normgh.

Therefore X can be projected on G/H if and only if X belongs to the normalizer of h in g.
An example of linear vector field whose derivation is not inner is given in the next section.

7.2. Example of equivalence

Consider the system in R
2

Σ =
{
ẋ = y2

ẏ = u
.

Let

f = y2 ∂

∂x
, g1 =

∂

∂y
, g2 = [g1, f ] = 2y

∂

∂x
, and g3 = [g1, g2] = 2

∂

∂x
·

Clearly the system can be written

ṗ = f(p) + ug(p) where p = (x, y).

The brackets [g1, g3], [g2, g3], [f, g2], and [f, g3] vanish, and with the notations of Section 6 we have

L = Sp{f, g1, g2, g3} and L0 = Sp{g1, g2, g3}·

All these vector fields are complete, L0 is isomorphic to the Heisenberg Lie algebra, and its rank is everywhere
full, therefore Theorem 6.1 applies: system (Σ) is equivalent to a linear system on a homogeneous space of the
Heisenberg group.

Let us compute this equivalence. The Heisenberg group is

G =

⎧⎨
⎩

⎛
⎝1 y z

0 1 x
0 0 1

⎞
⎠ ; (x, y, z) ∈ R

⎫⎬
⎭

and its Lie algebra g is spanned by the right invariant vector fields

X =

⎛
⎝0 0 0

0 0 1
0 0 0

⎞
⎠ , Y =

⎛
⎝0 1 x

0 0 0
0 0 0

⎞
⎠ , and Z =

⎛
⎝0 0 1

0 0 0
0 0 0

⎞
⎠ ,
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that can be written in the canonical coordinates

X =
∂

∂x
, Y =

∂

∂y
+ x

∂

∂z
, and Z =

∂

∂z
·

The derivation D on g should verify DX = Y and DY = DZ = 0. Let X be the unique vector field that
verifies X (I) = 0 and −ad(X ) = D, hence [X,X ] = Y and [Y,X ] = [Z,X ] = 0. Using indeterminate coefficients,
we get

X = x
∂

∂y
+

1
2
x2 ∂

∂z
·

It is easy to check that X is linear and that −ad(X ) = D. The system q̇ = X (q) + uX(q) can be written in R
3

⎧⎨
⎩

ẋ = u
ẏ = x

ż = 1
2x

2.

We are looking for a subgroup H of G for which (Σ) is equivalent to a linear system on G/H . The algebra of
vector fields of L0 that vanishes at (0, 0) is spanned by g2, thus the Lie algebra of H should be spanned by Y .

Let H be the closed, but not normal, subgroup of G

H =

⎧⎨
⎩

⎛
⎝1 y 0

0 1 0
0 0 1

⎞
⎠ ; y ∈ R

⎫⎬
⎭ ·

The projection of G onto G/H is equivalent to the projection (x, y, z) �−→ (x, z) from R
3 onto R

2, and the
linear system on G/H is therefore equivalent to

Σ′ =
{
ẋ = u
ż = 1

2x
2.

To finish, Σ′ is equivalent to (Σ) under the linear transformation of R
2, (x, z) �−→ (2z, x).

7.3. Generalization of the previous example

Let P (y) be a polynomial. Then the system in R
2

{
ẋ = P (y)
ẏ = u

satisfies the assumptions of Theorem 6.1: let

f = P (y)
∂

∂x
, g1 =

∂

∂y
, g2 = [g1, f ] = P ′(y)

∂

∂x

and, by induction:

gk+1 = [g1, gk] = P (k)(y)
∂

∂x
·

The vector field gk vanishes as soon as k > deg(P ) + 1, and so do the other brackets. Therefore

L = Sp{f, g1, . . . , gdeg(P )+1} and L0 = Sp{g1, . . . , gdeg(P )+1}·

All these vector fields are complete, the system satisfies clearly the rank condition, therefore Theorem 6.1
applies.
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