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UPPER BOUNDS FOR A CLASS OF ENERGIES CONTAINING
A NON-LOCAL TERM

ARKADY POLIAKOVSKY!

Abstract. In this paper we construct upper bounds for families of functionals of the form
2 1 1 5 2
Eo¢)i= | (eIVoP +-W(g))da+ < | [VHpPde
Q 3 g JrN

where AH, = div{xqu}. Particular cases of such functionals arise in Micromagnetics. We also use
our technique to construct upper bounds for functionals that appear in a variational formulation of the
method of vanishing viscosity for conservation laws.
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1. INTRODUCTION

Consider the energy functional defined for every € > 0 by
2, 1 1 7 2
E.($) = (g|v¢| + —W(¢))dx += [ |VHpg | de. (1.1)
Q 9 g JrN

Here W : RF — R satisfying W > 0 and F : RF — RN are given functions, ¢ : @ ¢ RY — M c RF and,
given u : Q — RN H, : RY — R is defined by

AH, = div{xqu} in the sense of distributions in RY,

_ (1.2)
VH, € L2RN ,R*N),

where xq is the characteristic function of €. One of the fields where functionals of type (1.1) are relevant
is Micromagnetics (see [1,3,10,11] and other). The full 3-dimensional model of ferromagnetic materials deals
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with an energy functional, which, up to a rescaling, has the form
2 1 1 g2
E.(m):=¢ | |[Vm|*de+ — [ W(m)dz + - |VH,,|"dz, (1.3)
Q e Ja € JRrs

where € C R3 is a bounded domain, m : Q — S? stands for the magnetization, §. > 0 is a material parameter
and H,, : R® — R is defined, as before, by

AH,, =div{xom} in R3
_ (1.4)
VH,, € L*(R3,R3).

The first term in (1.3) is usually called exchange energy while the second is called the anisotropy energy and
the third is called demagnetization energy. One can consider the infinite cylindrical domain 2 = G x R and
configurations which don’t depend on the last coordinate. These reduce the original model to a 2-dimensional
one, where the energy, up to rescaling, has the form

1 1 _
E.(m) ;:g/ |vm|2d:c+—/ W(m)dx—i——/ (Y Hy 2da, (1.5)
G o Ja € JRr2

where G C R? is a bounded domain, m = (mi,ma,m3) : G — 52 stands for the magnetization, m’ =
(m1,mz) € R? denotes the first two components of m, d. > 0 and H,,, : R? — R is defined, as before, by

AH,, = div{xegm'} in R?
~ (1.6)
VH, € L*(R?,R?).

Note that in the case . = € (i.e. the anisotropy and the demagnetization energies have the same order as ¢ — 0)
the energy-functionals in (1.3) and (1.5) are special cases of the energy in (1.1).

The asymptotic behavior of the energies E. for ¢ — 0 can be understood by studying the the I'-limit of E..
It is well known that if ¥y = lim._ ., where 1. are minimizers of E. then 1y will be a minimizer of the
I-limit functional. Usually, in order to prove that E. I'-converges to E one has to prove two bounds.

* A lower bound, namely a functional E(¢) such that for every family {¢.}.>0, satisfying ¢. — ¢ as
e — 0%, we have lim__ o+ E.(¢.) > E(¢).
** An upper bound, namely a functional E(¢) such that for every ¢ there exists a family {1, }.0, satisfying
Ve — pase — 0%, and mE~>0Jr Ee(¢e) < E(¢)
**% If this can be done with E(¢) = E(¢) := E(¢), then E(¢) will be the I-limit of E.(¢).
It is clear that if E,(¢) and E,(¢) are two lower bounds then max{E;, F5}(¢) is also a lower bound. Therefore,
there exists the sharp (maximal) lower bound which we call T-lim E.. The same holds for upper bounds
i.e. there exists the sharp (minimal) upper bound which we call T-lim E.. Clearly only the sharp lower and
upper bounds can be equal to the I'-limit.
The treatment of lower and upper bounds is often based on completely different techniques. We focus here
on upper bounds and generalize our results in [7,8]. In [8] we constructed the upper bound for the general
singular perturbation functional without the non-local term having the form

B.(6) = [ (Vo + 2W(e))da.

in the case where ¢ : Q — R* is free (in this case our bound was sharp) and in the case of additional restriction
¢ = Vv where v :  — R!. In [7] we obtained the sharp upper bound for the simplest energy with a non-local
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term which is a particular case of (1.1). This energy is the so-called Riviere-Serfaty functional (see [10,11] for
the motivation and the proof of the lower bound) and has the form

1 _
E.(m) = E/ |Vm|*dz + —/ |VH,,|*dz,
Ie] € Jr2

where G C R?, m : G — S! and H,, : R? — R is defined, as before, by

AH,, =div{xgm} in R?,
VH,, € L*(R% R?).

In this work, using the technique developed in [6-8], we construct the upper bound as ¢ | 0 for the general energy
of the form (1.1) under certain conditions on M for functions ¢ € BV N L*°. This is included in Theorems 3.1
and 3.2. As a corollary of Theorem 3.2 in Section 4 we derive an upper bound for the functionals in (1.3) and
(1.5) with §. = € (see Thm. 4.1, which treats a slightly more general situation). In Proposition 3.3 we show
that in the case of scalar-valued functions (i.e. in the case M = R) the functional we get as upper bound is
also a lower bound (and consequently the I'-limit). One can ask whether we get the sharp upper bound in the
general case. As it was mentioned in [8], at least in some cases our method does not give the sharp bound.
This happens because our method is based on convolutions. It is clear that for function which depends only on
one variable, convolution with standard smoothing kernels gives an approximating sequence which also depends
on one variable. Although in our method the mollifying kernels are slightly different, for a function which
depends only on one variable the convolution still gives asymptotically one-dimensional profiles. As it is known
in Micromagnetics there are examples where the optimal profiles are not one-dimensional (see for example [1,4]).
In [1] the authors found a functional which is always a lower bound and in particular cases an upper bound
as ¢ — 0 for the energy in (1.5) with W(m) = m3 in the regime 6. < e. The optimal configurations, they
obtain, are in some cases two-dimensional, the so called “cross-tie walls”. In this paper we treat the different
situation §. ~ ¢ and for this situation it is unknown whether one-dimensional interfaces are optimal, in other
words, optimality of the upper bound obtained here is not known.

In Section 5, using the technique developed in the previous sections we construct the upper bound for the
functional related to the variational study of symmetric Conservation Laws defined for every € > 0 by

r 1
I (u) ;:/0 /RN {5|Vl.u|2 + EW“'V“F} dadt + /RN |u(x, T)|?dz, (1.7)

where V,, is defined by

A,V = Oru+ div, F(u).

For the motivation of the study of this functional see [9]. The main result of Section 5 is Theorem 5.1.

2. PRELIMINARIES

Throughout this paper we call domain an open set in RY. In this section we assume that Q is a do-
main in RY with Lipschitz boundary. We begin by introducing some notation. For a matrix valued function
F(z) = {F;j(z)} : RN — R¥¥ we denote by div F' the R%valued vector field defined by div F := (I1,...,14)
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N
where [; = ?TJJ For every v € SNV ~! (the unit sphere in RY) and R > 0 we denote
j=1
Bh(z,v)={yeRY : |y—2| <R, (y—2) v >0}, (2.1)
Bp(z,wv)={yeRY :|ly—z| <R, (y—z) v <0}, (2.2)
Hiv(m,y):{yeRN;(yfgg)~y>0}, (23)
HYN(z,v)={y e RN : (y —z)-v < 0}, (2.4)
and
H,={yeRY :y v =0} (2.5)

Definition 2.1. Consider a function f € BV (€, R™) and a point = € .
(i) We say that x is a point of approzimate continuity of f if there exists z € R™ such that

JB, @ |T(W) —2ldy

lim =0

p—0~+ LN (BP(CL'))

In this case z is called an approximate limit of f at x and we denote z by f (x). The set of points of approximate
continuity of f is denoted by Gy.
(ii) We say that x is an approzimate jump point of f if there exist a,b € R™ and v € S™V~1 such that a # b and

e [F) —aldy S 1) — bldy
1 = 1 =

p:(r)l+ LN (B,(x)) =0 pﬂr& LN (B, (x))

(2.6)

The triple (a,b,v), uniquely determined by (2.6) up to a permutation of (a,b) and a change of sign of v, is
denoted by (f*(z), f~(z),vs(z)). We shall call v¢(z) the approzimate jump vector and we shall sometimes
write simply v(z) if the reference to the function f is clear. The set of approximate jump points is denoted
by Js. A choice of v(z) for every x € J; (which is unique up to sign) determines an orientation of Jy. At a
point of approximate continuity z, we shall use the convention f*(z) = f~(z) = f(z).

We refer to [2] for the results on BV-functions that we shall use in the sequel.

Consider a function ® = (p1,¢2,...,94) € BV(Q,R%). By [2], Proposition 3.21, we may extend ® to
a function ® € BV(RM R?) such that ® = @ a.e. in Q and |D®||(992) = 0 (the proof also works in the
case of an unbounded domain). From the proof of Proposition 3.21 in [2] it follows that if ® € BV (Q,R%) N
L>°(Q, R?) then its extension ® is also in BV (RN, RY)NL>® (RN, R?). Consider also a matrix valued function = €
(C? N Lip N L=®)(RY x RN R™4) such that there exists a compact set K CC RY with the property that

supp= C K x RY. For every £ > 0 define a function ¥_(z) : RV — R! by

N 9

U () ;:ELN/R =(y_°””,x) ~<f>(y)dy:/]RNE(z,:c)~<f>(:c+sz)dz, Vo € RY. (2.7)

We recall the following statement from [8] (Prop. 3.2).
Proposition 2.1. Let W € CY(R! x R%,R) be such that

VoW (a,b) =0 whenever W(a,b) = 0. (2.8)
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Consider ® € BV N L>(Q,R?Y) and u € BV N L>®(Q,R?) satisfying

W({ /RN =(z,2) dz} - ®(x), u(x)) =0 forae z€Q,

where = € C?(RYN x RN R™4) N Lip N L, and such that there exists a compact set K CC RN with suppZ C
K xRY, as above. Let U (z) be as in (2.7). Then,

0 +o00
lim 1I/V(\IIE(:C),u(ac))d:n:/J {/ W(F(t,m),u+(x))dt+/0 W(F(t,m),u_(x))dt}dHN_l(m), (2.9)

=0 Jo € —o0

where
t +oo
I(t,x) = (/ P(s,x) ds) - @7 (z) + (/ P(s,x)ds) -0t (2), (2.10)

—00 t
with

Pta)= [ Ew(a) +y.2) 41V (y), (211)

Hy ()

v(z) is the jump vector of ® and it is assumed that the orientation of J, coincides with the orientation of
JoHN " a.e. on J, N Jsp.

Remark 2.1. In Proposition 3.2 in [8] we considered a bounded domain, but the same proof works when we
drop this assumption.

Definition 2.2. Given f € L>®(R",R¥) with compact support we define its Newtonian potential

1 .
Jan soInlz—ylfly)dy if N =2,

AT ) (@) =

Here ¢y := (27N)HN1*1(SN*1)' Then it is well known that
_ 2
/ V2 (A1) ()| dae = / ()2 da. (2.12)
RN RN

So, by continuity, we can consider the linear operator V2(A~!) : L2(RY,R¥) — L*(RN, RF*N*N) gatisfying
(2.12) and A(ATLf) = f.

Definition 2.3. Given a domain Q C RY let V(4 () be the class of all functions 7(z, z) € C®(RY xRN, R¥*4)n
Lip N L™, such that there exists a compact set K CC RY, with the property that suppn C K x RY and
supp V.n(z,z) C K x K and such that

/ n(z,x)dz =1 Vax e Q. (2.13)
RN

Here I is the identity matrix. We also denote V := V().
Let U9 (Q) be the class of all functions I(z,z) € C(RY x Q,R*?) such that

/ I(2,2)dz =0 VzeRY. (2.14)
RN

Here O is the null matrix. We also denote U := U,
We will write V(@ or YD if the reference to the domain is clear.
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In [8] (Lem. 5.1) we proved the following statement. This approximation result generalize Claim 3 of
Lemma 3.4 from [6] and was an essential tool in the optimizing the upper bound in [8].

Lemma 2.1. Let ju be a positive finite Borel measure on Q and let vo(z) : @ — RY be a Borel measurable
function with |vo| = 1. Let Wl(d) denote the set of the functions p(t,z) : R x Q — R¥X4 satisfying the following
conditions:

(i) p is Borel measurable and bounded;
(i7) there exists M > 0 such that p(t,z) =0 for every |t| > M and any x € Q;
(iii) [pp(t,x)dt =1, Vo e Q.

Then for every p(t,x) € Wl(d) there exists a sequence of functions {n,} C V¥ (see Def. 2.3), such that the
sequence of functions {pn(t,x)} defined on R x Q by

pult ) = /H M (tvo(2) + v, 2)AHY L (y),

vo(z)

has the following properties:

(1) there exists Cy such that |p,(t,x)| < Co for every n, every x € Q and every t € R;
(i7) there exists M > 0 such that p,(t,x) =0 for every |t| > M, every x € Q and all n;

(401) limp—oo [ [p [Pn(t, ) — p(t, )| dt dpu(z) = 0.
By the same method we can prove the following approximation result.

Lemma 2.2. Let ju be a positive finite Borel measure on Q and let vo(z) : @ — RY be a Borel measurable
function with |vg| = 1. Let Wél’d) denote the set of the functions q(t,z) : R x Q — R™¥? satisfying the following
conditions:

(1) q is Borel measurable and bounded;
(79) there exists M > 0 such that q(t,z) = 0 for every [t| > M and every x € §;
(iii) [pq(t,z)dt =0, Vo € Q.

Then for every q(t,z) € Wél’d) there erists a sequence of functions {l,} C ULD (see Def. 2.3), such that the
sequence of functions {q,(t,z)} defined on R x Q by

gu(t, ) = /H L(tro(x) + y,2)AHN 1 (y),

vo(z)

has the following properties:
(1) there exists Cy such that |g,(t, )| < Cy for every n, every x € Q and every t € R;
(i7) there exists M > 0 such that q,(t,x) = 0 for every |t| > M, every x € Q and all n;
(401) limp—oo [ [p lan(t,2) — q(t,z)|dtdpu(z) = 0.

Let ¢ € BV(Q,RY) and n € V¥ (Q). As before, by [2], Proposition 3.21, we extend ¢ to a function
@ € BV(RY,R?) such that ¢ = ¢ a.e. in Q and || D@||(952) = 0 (again, if ¢ is bounded, then the extension may
be chosen bounded). For every ¢ > 0 define a function 1. € C'(RY,R%) by

be(@) = iN/ 2(L="x) ) dy = / 0z ) - plo + ) dz. (2.15)

Then, by Lemma 3.1 in [8], we have

/Q ‘wg(m) - cp(:c)‘ dz = O(e) as € — 0. (2.16)
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Due to [8] (Thm. 4.1), we have the following statement.

Theorem 2.1. Let Q C RY be a Lipschitz domain and let H € C1(R¥*N xRIxRY, R) be such that H(a,b,c) > 0.
Consider u € BV (Q,R7) N L™ and ¢ € BV (2, RY) N L> satisfying

H(O, o(z), u(z)) =0 for a.e. z € Q.

For any n € VD let 4. be defined by (2.15). Then,

L a1 (0 - o @) ovaten) o)

Jo —00

lim %H(vae, Pe, u) dz = /

+ /000 H(p(t,x) (T (@) — ¢ () @ v(x),7(t, 2) ,u_(ac))dt}dHN_l(x), (2.17)

where
o= ([ ;p<s,x>ds) @+ ([Crsnas) o) (218)
with
pta) = [ (o) +pa) 4 ) (2.19)

v(xz)

and it is assumed that the orientation of J,, coincides with the orientation of J, HN= ae. on J,N Jo.

Remark 2.2. Again, in Theorem 4.1 in [8] we considered a bounded domain, but the same proof works for the
general case.

3. FIRST ESTIMATES

Throughout this section we assume that € is a domain in RY with Lipschitz boundary.
Let | € U(R) (see Def. 2.3). Consider r(z,z) := A7(z,z). Thenr € C*(RN xRM R) with suppr € RNV x K,
where K CC ). Moreover, since fRN l(z,2)dz = 0, for every k = 0,1,2... we have the estimates

Ck
| < W7
%
Ck
| S |Z|N+1 +1’

Vir(z,z)

VE(VEr(z,2))
where Cj > 0 does not depend on z and x.
The following lemma can be proved almost by the same method as Lemmas 3.1 and 3.2 in [7].

Lemma 3.1. Let p = (p1,92) € BV(Q,R?) N L>® and ly,lz € U(). For every k = 1,2 and every e > 0
consider the function ¢y, € CH(RY,R) by

V() == ELN /RN U1 (y ; :E,:c) or(y)dy = /RN le(z,2)pr(x + €2) dz, (3.2)
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where @y, is the extension of @i to RN by 0. Then for every 1 < i,j < N we have

lim 1V( 0 (A_lgolﬁ)) -V(i(A_1¢2,5)>dx

e—0 Jpy € \Ox; 0z
- [ ot - oot - m{ [ ([Tt ) (w [ q2<s,->ds)dt}dHN1, (33)
" ak(t, x) = /H Li(tv (@) +y,2) AN (y), (3.4)

v(x)
and v(z) = (n1(z),...,vNn(x)) is the jump vector of .
As a corollary of Lemma 3.1 we have the following lemma.

Lemma 3.2. Let ¢ € BV(Q,RY) NL® and | € UND (see Def. 2.3). For every ¢ > 0 and every x € RY
consider the function 1. € C*(RN,RY) defined by

1 -
Ve (x) == E_N/RN Z(y . ,x) - @(y)dy = /RN l(z,z) ¢(x+ez)dz,
where @ is some bounded BV extension of ¢ to RN. Then we have

1 2
lim [ 2|V (div(A7'0))| de

e—0 Jpn €
- /z </+: ‘ /;OO {a(s,x) - (¢F(2) — ¢~ ()} - v(z)ds

alt,z) = /H (tw(z) + y,2) dHY (), (3.6)
v(z)

2dt> dHN(z), (3.5)

where

and v(z) is the jump vector of .

Next let ¢ € BV (2, R%) N L>=. As before, we may extend ¢ to a function ¢ € BV (RY R%) N L> satisfying
® = ¢ ae. in Q and ||Dg||(02) = 0. If ¢ is bounded then we consider its extension bounded too. Consider
n € V@, For any € > 0 define a function ¢, (z) : RN — R by

Ye(x) == ELN/]RN n(y;x,x> - @(y)dy = /RN n(z,x)- @z +ez)dz, Vo eRY, (3.7)

Proposition 3.1. Let F € C* (R4, RY) and let p € BV(,RY) N L>® and u := F(y), satisfying divu = 0 in Q
as a distribution and u-n =0 on 9Q (n is the unit normal to Q). Consider .(x) defined by (3.7). Then,

i f %‘V(div {Afl(xQF(z/;E)) }) ‘Qdm _T.(0)
o 2
:/’ </oo (POt2) = Flo @) - ()| dt>dHN1(x)
(3.8)
where t N
v(t x) = (/_oop(s,x)ds) o () + (/t p(s, ) ds) ot (@), 39)
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with
pt)= [ i) ) dH ), (3.10)
Hy ()
and xq 18 the characteristic function of Q.

Proof. Without loss of generality we may assume that F(0) = 0. Since (vt —u™) - v = 0, the r.h.s. in (3.8)
does not depend on the orientation of J, and therefore we may assume that v(x) is Borel measurable.

Together with 7 € V@ we consider a second kernel 7 € V() and set @ := F(). Then u € BV(RN,RVN)NL>,
satisfying 4 = u a.e. in © and, by Volpert’s chain rule, |[Da|[(0€2) = 0. Then consider

Bt z) = /H n(tw(x) +y,2) A (y). (3.11)
v(x)

For any € > 0 define a function u.(z) : RY — RY by

uJ@;:§%A;ﬁ(y;m¢Q-a@ym:iéNﬁgﬂng¢@+fz»d@ Vo € RV, (3.12)

Denote (¢1(2),...,9a(x)) := ¢(x). Define
Dy:={z € Jy: |py () — 91 (2)| 2 |} () — 0 (2)] Vj}-
Then by induction define
Dyi={x € J,\UZID, ¢ gt (@) - gr @) > | (@) — 0 (2)] ¥} for every 1 <k <d.

Then J, = U;lzl Dj, D; are Borel measurable and disjoint. Moreover, |<pj(:£) —p; (@) > ﬁ|<pJr () — ¢ (2)]
for every x € D;. Next define Q := (Ql, .. .,QN) Rx J, — RN by

where (¢, z) is defined by (3.9) and I'(¢, x) is given by

t

L(t,z) = (/_

ThendeﬁneS::{Sij}(lgiSN,1§j§d):R><J¢—>RNdey

ﬁ(s,x)ds) CF(p~(x) + (/t+oo ﬁ(s,x)ds) F (ot (2)). (3.14)

oo

__Qilty) iy
Sii(t,x) =< of (v) — ¢ (2) for every x € Dy, (1 <k < d). (3.15)
0 it £k
Next define ¢ : R x Q — RV by
dS(t,x)
glt,z) =4 dt TE Jp, (3.16)
0 zeQ\J,.

Then ¢(¢, ) is Borel measurable, ¢ is bounded on R x 2, there exists M > 0 such that suppgq C [-M, M] x Q
and [, q(t,z)dt =0, Yz € Q. Moreover

+oo
(] ats0)ds) - (%@ = @) = Qt.z) = Pla(t.2) ~T(t.2). (317)
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Next fix any Borel measurable vector field vo(z) : @ — SN~1 such that vo(z) = v(z) for any z € J,. Then
by Lemma 2.2, there exists a sequence of functions I, € U@ (see Def. 2.3), such that the sequence of
functions {g,} defined on R x Q by

gn(t,7) = /H a(tvo(a) + y,2)dHY (),

vo(z)

has the following properties:

there exists C such that ||g, ||~ < Cy for all n, (3.18)
there exists M > 0 such that ¢, (¢,2) =0 for |t| > M, and every = € Q, (3.19)
lim //an (t,z) — q(t,z)| dtd||Dep||(z) = (3.20)
n—oo
In particular,
lim / / loT (= (@)] - lgn(t, ) — q(t, )| dt dHN ' (z) = 0. (3.21)
n—oo

For every positive integer n and for every ¢ > 0 consider the function ¢, . € C HRYN,RYN) given by

One(T) = ELN /RN ln(y ; x,x) ~@(y)dy = /RN ln(z,2) ¢(x +ez)dz. (3.22)

We will use the following inequality, valid for any f(z), g(x), \(z) € L?(RN | RP),

[ r@ae = [ g

Therefore, since @, () =0 for z ¢ Q and since div (xqu) = 0 as a distribution, we obtain,

1/2
<17 == A+ W) - (2 [ Ir@Pas 2 [ la@Pas) 2

2
‘d:c

i ‘Vdiv A=Y (xo(z)F (e (x))) ‘de - /RN ‘Vdiv A (o (2)

< Q(HVdiv A7 (xa(F(e) = pne —ue) )| |+ || Vdiv A_I(XQUE)HLz)

) 1/2
dx

= 2<HVdiV AT (XQ (F () = ¢ne = %)) HL2 + || Vdiv A (xq(ue — @) HL2)

) 1/2
dm) . (3.24)

x (/ \VdivAfl(XQF(ws))fdw/ ‘VdivA*1(¢n,E)
RN RN

X (/RN ‘Vdiv ATt (XQ (F(ipe) — F(@)))‘deJr /RN ‘Vdiv A ()

But since for every f € L?2(RY,RY) we have

/ \v(divAflf)fdng(?/ \V2A*1f|2dx:K§/ |f[*d,
RN RN RN
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where K > 0 is some constant, by (3.24), we obtain

2
dx

2
% / |Vdiv A~ (xaF (1)) dx{ / [Vdiv A~ (n.c)
RN ]RN

1 , 1/2 1 1/2
< 2K, (g/ ‘F(we) — Pne —ua‘ dx) + (g/ [te —u|2dx)
Q Q

1/2
X (%/Q|F(1/)E)F(so)\2dx+é/w [V (div A~ (pne)) |2dm) . (3.25)

Therefore,

1 oA 1 oA

E/ ‘deA 1(XQF(wE))‘2dZIU(SD)‘ < |Z,(p) — E/ ‘deA 1(90”’6)‘2(193
RN RN

1 ) 1/2 1 1/2
+ 2K0 <— / ‘F(”(/Jg) — Pne — UE| dl’) + <_ / |u€ — U|2(‘L’L'>
€ Jo € Ja

1/2
x <%/Q|F(we)_F(‘p)‘2dx+1/N IV (div A~ (pn.c)) |2d:c> . (3.26)

€ JRr

where 7, is defined by (3.8). By Proposition 2.1, we obtain,

1
lim —

2
5H05/§2|F(w5)7¢"’57u6‘ dz =D,

= [ rewa - ([ nsnas) - (o 0 - @) - 1en)

» —o00

th}dHNl(x), (3.27)

where y(¢, z) and I'(t, ) are defined by (3.9), and (3.14) respectively. By Proposition 2.1, we also infer,

o1
lim —
e—0 ¢

AL

@

/Q lue —ul?dz = T(7) = /J {/O IT(t,z) — u*(x)fdt + /O+OO IT(t,z) — u(x)‘2dt}dHN1(m)

(/t ﬁ(S,.)ds) ) dt+/0+°° ‘(/jmp(sw)ds) St —u)

— 00

2

2
dt}dHNl, (3.28)

and

ti 2 [ [F(ve) - Flo) do = My
Q

e—0 ¢
_ 0 B . 9 +oo N B - ) . i
.7/] {/ |F(v(t,z)) — F(¢"(2))] dt+/0 |F(v(t,2)) — F(¢™ ()] dt}dH (z). (3.29)

Jp — 00
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By Lemma 3.2 we obtain
i | %‘V(div (A—lcpn,s))(z)fdz - L,
+oo +oo 2
-/ < [ oo @@ - @) v dt) aHN (). (3.30)
Jo \J—oo 'Jt

Therefore, letting ¢ tend to 0 in (3.26), we obtain,

1

2 [ [vaiva (ar ) @ - 2,60
"

lim
e—0t

< [Z,(0) = Ll + 2Ko (VDo + VT@) ) /My + Lo (331)

Using (3.17), (3.21), (3.18) and (3.19) we obtain

lim D, =0, (3.32)

n—oo

and since (vt —u~)-v =0 (by divu = 0), we also infer

+oo 2
lim L, =T,(p) = / ( / (FO(t2) = Flo (@) - v(@)| dt) AaHY (@), (3.33)
Therefore, letting n tend to +oco in (3.31), we obtain,
. 1 . _ 2 —
T |- /R |Vdiv AT (xoF (12)) *da - In(so)‘ < 2Ko/T(0)\/ Mo + T, (). (3.34)

This inequality is valid for any 7 € V), where M, and Z,(¢) do not depend on 7. For every ¢ > 0 we can
always choose 75 := 7]5(2,x) = ngo)(z) I, such that 77((50) (2) € C%(RY,R), satisfying 77((50) (z) > 0, supp 7)((50) C Bs(0)
and [ ngo)(z)dz = 1. Then, as before, define pgo)(t) :Rx J, — R by

0= [ i)+ ),
v(x)
Since p¥ > 0 O 16,6 > p0 = i
ps >0, suppp;’ € [—6,0] and [7 ps’(t)dt = 1, by (3.28) we infer

T(ﬁa)S/J {/_05 2dt+/06

@

< 25/ lut —u|PdHN T < 005/ lut — u”|[dHN Y < Cod|| Dul|(Q).
Ja Je

+o0 2
(ut — u_)/ pgo)(s) ds d?f}dHN_1
¢

W =) [ s)as

Therefore, by (3.34) we obtain

— N 2
lim, g/ ‘VdivA‘l(XQF(z/JE))‘ da — T, ()| < 2KoV3+/Col[Dul[(2)\/ Mo + T, (). (3.35)
E— ]RN

For § — 0 in (3.35), gives (3.8). O

Combining Proposition 3.1 with Theorem 2.1, we infer the following proposition.
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Proposition 3.2. Let Q C RY be a Lipschitz domain and let H(a,b,c) : RN xR xR™ — R be a C* function
satisfying H(a,b,c) > 0 for every a € RN b c R? and ¢ € R™. In addition let F € C*(RY,R>N). Consider
u € BV(Q,R™)NL*>® and ¢ € BV (Q,R%) N L> satisfying div F(p) = 0 in Q as a distribution and F(p)-n =0
on IQ (n is the unit normal to 02). Moreover assume that

H(O, ¢(z), u(z)) =0 for a.e. x € Q.

For any n € VD let ). be defined by

Ye(x) == ELN /RNn(y;x,x) -@(y)dy = /RN n(z,z) - @(x +ez)dz, VYoeRY, (3.36)

where @ is some bounded BV extension of ¢ to RN, having no jump on 0Q. Then,

lim %H(swe,we, u) dx+/RNé‘v(div{A*l(XQF(ws))})fdz

e—0 Jo

—ve= [ [ (o) (0 - o) v @)

Jp — 00

+ /0°° H(p(t,x) . (<P+(IE) —p (IE)) ® V(x),’y(t, :C), u- (ﬂf))dt}dHNl(m)
+/J (/m (FOta) - Fle-@) "’(I)‘th)dHN_l(xL (3.37)

" )= ([ ; psca)ds) @)t ([ plosa)ds) () (3.39)
" p(tw):/H n(tv(z) +y,z) dHN 1 (y), (3.39)

v(x)

and it is assumed that the orientation of J, coincides with the orientation of J, HN~! a.e. on J, N J,.
@ @

Next we turn to the minimization problem of the term on the r.h.s. of (3.37), over all kernels n € V()
analogously to what was done in [6,8]. By the same method as there, we can obtain the following result.

Lemma 3.3. Let H, F, u and ¢ be as in Proposition 3.2. Let Y, (n) : V — R be defined as the r.h.s. of (3.37).
Then,

’I’]Gv(d) 'R,(O) _
TER T (2),0- () e

inf Yo (n) = Jo(¢) ::/J < inf {/0 H (=) @ w(a), r(t), ut (@) ) e
T /OOOH( —r'(t) ®V(x),r(t),u*(x))dt
[ |(Fe) - @) u(x>fdt}>dHN1(x>, (3.40)

where Rg); is defined by

RY) = {r(t) e C'(R,RY) :3L >0 s.t. r(t) =a V¢t < —L, r(t) = b Vt > L}-
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Then, using Proposition 3.2 and Lemma 3.3, exactly the same argument as in the proofs of [8], Theorems 1.1
and 1.2, gives the following result.

Theorem 3.1. Let Q C RY be a Lipschitz domain and let H, F, u and ¢ be as in Proposition 3.2. Then there
exists a family of functions {1.} C C*(RN RY), 0 < & < 1 such that

lim e (2) = p(z) in LP(Q,RY) p € [1,00),

e—0t

and

e—01 RN 3

lim </Q§H(5V1/JE, e, u) dm+/ 1\v(div{A1(><QF(¢E))})\de) = Jole),

where Jo(p) is defined by (3.40) and we assume that the orientation of J, coincides with the orientation of
Jo HN-T q.e. on J, N Jo.

We have also the following variant of Theorem 3.1 for elementary manifolds.
Theorem 3.2. Let Q C RN be a bounded Lipschitz domain and let M be a bounded d-dimensional elementary
C?-submanifold of R!, diffeomorphic to R* (1 > d). Consider H(a,b) : RN x M — R be a C'-function
satisfying H(a,b) > 0 for every a € R™N and b € M. In addition let G € C*(M,R™N). Consider o €
BV (Q,R!) satisfying p(z) € K for a.e. x € Q, where K CC M is a compact. Moreover, assume that div G(yp) =
0 in Q as a distribution, G(p)-n =0 on I (n is the unit normal to Q) and

H(O, o(x)) =0 for a.e. x € Q.
Then there exists a family of functions {1.} C C2(RN, M), 0 < ¢ < 1 such that
lim . (2) = @(z) in LP(QL,RY) Vp € [1,00),

and
lim </Q§H(5V1/)€, wg)der/RN %‘V(div{A1(XQG(¢5))})‘2M> =Zo(p)

c0t
- /J <T€R(O;Ef) {/:OH<T’(1S)®V(:E),7’(t))dt

ot (@)~ (@)
+ /Z ‘{G(T(t)) - G(gpf(x))} . V(x)‘th}>dHN1(:c), (3.41)

where
R = {r(t) €CYR,M):3L>0 st r(t)=a Vt < —L, r(t)=b Vt> L}-

Moreover, if, in addition, H(a,b) = |a|?> + W (b) for every a € RN and b € M, where W € C*(M,R), then

E%{/ﬁ(slwgﬁ + EW(we)) d“/RN %\v(div{A1(XQG(wE))})\2dw} = To()

- /@ (TE;?{ ) {/112|r’(t)|\/W(r(t)) + ‘{G(r(t)) —G(sp—)}.,,fdthHNl, (3.42)
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where
R = {r(t) € C'(-1,1, M) 7(=1) = @, r(1) = b}

Proof. Let g : M — R? be a C? diffeomorphism, i.e., one-to-one map such that F := g~ : R — M belongs
to C?(R%,R') and satisfies rank(VF) = d everywhere. Define ®(z) := g(p(z)) so that o(z) = F(®(z)).
Then ® € BV(Q,R%) and since p(z) € K for a.e. z € Q we obtain in addition ® € L>(Q,R%). Define
H(a, B) : RN x RY — R by the formula

H(a, B) := H(VF(ﬁ) -, F(ﬁ)) (3.43)

Then H € C*, H > 0 and H(O, <I>(:c)) =0 a.e. in . Applying Theorem 3.1 with H, (G o F) and ® instead of
H F and ¢ we obtain existence of the family of functions {¥.} C C?(RY,R%), 0 < € < 1 such that

lim W (z) = ®(z) in LP(Q,RY) Vp € [1, 00),

e—0t

and

e—0t 3 N €

/J@ (TGR(O)mf {/:OF(T’(t)®V(x) ,r(t))dt

o+ (x), 2~ (@)

+/°O ‘{G(F(r(t))) G(F(@(m)))}~u(x)‘2dt}>dHN1(93). (3.44)

— 00

lim </91F(swg, ) dx+/R l\v(div{A1(><QG(F(\1/€)))})\20@)

Define . (z) := F(\I/E(ac)) Then 1. € C?(RY, M). Since M is a bounded subset of R! we obtain

lim 4.(2) = p(z) in LP(QLR) Vp € [1,00),

e—0t

and by (3.44) and (3.43) we infer

A, (/Q %H(EWE, ve) dz + /RN %‘V(div {a7 (xaG(wo) }) ‘de>
B /J <,.en<o3“f { / (- SEE0) @ vi) F(r(0) )

@t (@)@~ (2)

+ [ [{eEew) - cle-@)}- v(x)}zdt}>dHN-l<x>. (3.45)

—0o0

Since F(®) = ¢, we obtain equality (3.41).
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Next assume that, in addition, H(a,b) = |a|> + W (b) for every a € R™¥ and b € M, where W € C'(M,R).
Then, using Lemma A.1 from Appendix, we infer from (3.45) that

/Jé <,_6Ri<%)f {/+°°H( %F(r(t)) ®V,F(r(t)))dt+/oo ‘{G(F(r(t))) G(g,—)}.,,fdt})dHN_l

- /J <Te7§§f@ { /_11 2‘%@‘\/‘”(%@))) + ‘{G(F(r(t))) —G(y) } .Vfdt}>dHN—1.
Since F(®) = ¢, the result follows. .

The following proposition provide the lower bound for functionals depending on scalar valued functions.

Proposition 3.3. Let Q C RY be an open set and F : R — RN be o Lipschitz function. Assume that
{te}eso C HY (S, R) be such that, for a subsequence &, | 0,

lim [ &,|Vue, > + Ei‘v(div {A_I(XQF(uEn))}> ‘de < 0

n—oo JQ

LU R). Then the distribution p = div,F(u(z)As) € D(Q, x Rs, RY) belongs to M(Q xR, RY)
(i.e. it is a finite R'-valued Radon measure), where a A s := min{a, s}. Moreover,

and u., — u in L

lim | €,|Vue,
n—oo J )

2, i‘v(div {A*I(XQF(UE"))}) ‘2 dz > 2||pl|axx. (3.46)
Proof. We follow the strategy for proving lower bounds used in the paper of Riviere and Serfaty [11]. Set
H,, = div {A™ (xaF(uc)) }-
Consider § € C2°(Q x R, R!) satisfying |5| < 1 everywhere. Then we have
/ngugﬁ + %‘v(div{Afl(xQF(m))})\de > /Qd(m,us) (VoH,, - Vou.) dz. (3.47)

We then use the Co-area Formula to deduce that we have,

[ 8w (Vo Vo) o= | ( [ s (V.. -v)dHN—1<x>>ds
Q

R 0* {ue(z)<s}

= §(x,8) - (VaH,, -v)dHN 71(2) )ds
B\ Jor fuc(@)<s}

N /]R </{us(z)<5} v ((VIHHE)T 04 s)) dm) as

= /}R/Q L (z)<s} (5($, s) - ApyH,, +Vio(z,s): VxHus) dxds. (3.48)

But by the definition, we have
A Hy_(x) = div, F(uc(x)).
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Therefore, by (3.48), we obtain

/ d(z,ue) - (VoHy, - Vyue)de = / / Lty (z)<s} dive F(uc(z)) - 6(x, s) deds
Q rRJQ
+/ </ Luc(2)<sy Vab(2,8) : Vo Hy, (:L')dl‘) ds. (3.49)
R \JQ
Next we observe that

Liu. (o) <s} diva F(ue(2)) = divy F (uc(z) As).
Then, by (3.49), we infer

/ d(z,ue) - (VoHy, - Vyue)de = / / divxF(ua(x) A s) -6(x, s)dzds
Q RJQ
+/ </ Luc(z)<s} Vad(z,5) : VmHuE(:E)d:c)ds. (3.50)
R \JQ

Thus, by (3.47) and (3.50) we obtain

lim E—"|V’u5n 2+L‘V(div{A_I(XQF(UER))})‘ dz > lim {//dlvm ue, (z) A s) - 6(x, s) dads
n—oo JQ 2 26” n—oo

+/ </1{u6n(x)§s}vz§(m,s) v Huan(x)dm>d5} (3.51)
R \JQ

Since, [, |VaHy., [*dz — 0, the last term in (3.51) goes to 0. Then by (3.51) we obtain

lim %"Wugn 2+%‘v(div{Afl(XQF(uen))} de > lim / / divy F (ue, () As) - 8(x, s) deds
n—oo JO n—oo
= — lim // (e, (@) A s) : Vyd(z,s) dods = // 1 Vao(x,s)deds.  (3.52)

Since §(z,s) € CX(Q x R,RY) satisfying [§| < 1 was arbitrary, by (3.52) we deduce that the distribution
p € D(Q x R,RY) is a finite vector-valued Radon measure on 2 x R. Moreover we obtain (3.46). O

Remark 3.1. Under the conditions of Proposition 3.3, assume that in addition 2 is Lipschitz and uw € BV NL>.
Since the conditions of Proposition 3.3 imply that div (xoF'(ue)) = 0, then, by Theorem 3.1, there exists a family
of functions {v.} € C?(RM R), 0 < & < 1 such that

lim v.(z) = u(z) in LP(Q,RY) Vp € [1,00),

e—0*t

and
iy (v [ o {a are}) (o)
—of

J

u

ut

| HEE) = Py vjas e = s

where p defined in Proposition 3.3. So in this case the upper and the lower bounds coincide.
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4. AN APPLICATION

Theorem 4.1. Let Q C RY be a bounded Lipschitz domain. Consider a function W € CY(S*~1 R), which
is mot identically zero and satisfies W > 0. Let in addition F € C1(S¥=1 RN). Consider p € BV (Q,R¥)
satisfying p(z) € S¥=1 for a.e. x € Q. Moreover, assume that div F(p) = 0 in Q as a distribution, F(p)-n =0
on I (n is the unit normal to Q) and

W(p(x)) =0 forae x €.
Then there exists a family of functions {1.} C C2(RN,S¥=1), 0 < e < 1 such that

lim . (x) = @(z) in LP(Q,RY) Vp e [1,00),

e—0*t

and

EEI& { /Q <5|V1/Js|2 + éW(we)) dz + /RN %‘V(diV{Ail(XQF(Q/}E))}) ‘de}
L ( ot { [ 112'7°’<t>'¢ W(r®) +|(Fo®) - Fle7) ~ul2dt}>d”N% (1)

where
Rgi;l = {r(t) € C’l([fl, 1],Sk*1) cr(=1)=a,r(l) = b}.

Proof. Set

K:={a€eS"!: W(a) =0}
It is clear that K is a compact proper subset of S¥~1. In particular there exists ag € S*~! such that ag ¢ K.
Define M := S*71\ {ap}. Then M is a bounded (k — 1)-dimensional elementary C2-submanifold of R¥,
diffeomorphic to R¥~1. We have p(z) € K CC M for a.e. x in Q. Therefore, by Theorem 3.2 we obtain the
existence of the family of functions {.} € C?(R™, M), 0 < ¢ < 1 such that

lim . (x) = @(z) in LP(Q,RF) Vp e [1,00),

e—0t

and

lim { /Q (glvwal2 + éw(we)) do + /RN %‘v(div{Afl(XQF(lpa))}) ‘de}
:/J <,.e7§£hf {/112“”'(’5”\/”’(7“(75)) +(Fr@) = F(p)) -V|2dt}>dHN‘1. (4.2)

=

But, by density arguments, we have

inf {/11 |r’(t)|\/W(r(t)) +[(F(r(t)) — F(o~(x))) .u(x)}th}

RM
TERCY @) o @)

— inf {/_11|r'(t)|\/W(r(t))+|(F(r(t))—F(<p_(ac)))-I/(x)th},

RSkE—1
TER )o@

and the result follows. O
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5. APPLICATION TO THE VARIATIONAL FUNCTIONAL RELATED TO CONSERVATION LAWS

5.1. Some definitions and preliminaries

Definition 5.1. We denote by H} (RN, R¥) the closure of C°(RN,R¥) with respect to the norm |||¢||| :=
( Jan |Ve|?da) 2 and by H~'(RN,R¥) the space dual to H} (RN, R¥).

Remark 5.1. It is obvious that u € D'(RN,R*) belongs to H~'(RN,R¥) if and only if there exists w €
H} (RN, RF) such that

/ Vw:Védr = —(u,d) V5 e HF (RN, R).
]RN

In particular Aw = u as distributions and

Mwllf=  sup {u, 0) = [lwll]-1-
se Y (RN BH), |[]5]||<1

Definition 5.2. Let u € H—'(RY,R¥). Then we define
V(A ) := Vw, (5.1)
where w is as in Remark 5.1. It is clear that for every f € L2(RY,R¥*V) we have
V(AN (div f)) = V(div(A™'f))

where V (div(A™! f)) was defined by Definition 2.2.

Remark 5.2. It is clear that given a distribution u € D(RY ,Rlz, there exists a distribution H € D(RN RY)
such that AH = v and VH € L2(RN R>N) if and only if u € H-H(RY,R!). Moreover in the latter case we
have VH = V(A™1u).

Definition 5.3. Consider T' > 0. Let V(Td) be the class of all functions 7(z, z,t) € C*(RY x RN x [0, T], RN
Lip N L™, such that there exists a compact set K CC R, with the property that suppn C K x RY x [0,T1],
supp Van(z,z,t) C K x K x [0,T] and supp 0:n(z, z,t) C K x K x [0,T] and such that

/ n(z,z,t)dz =1 Y(x,t) € RN x[0,T). (5.2)
RN

Here T is the identity matrix. We note here that for every t € [0,T] we have n(-,-,t) € V(4 (RN) (see Def. 2.3).

Definition 5.4. For every g € C2(RY | R) satisfying [;n 10(2)dz = 1 let VT(i?o be the class of all n(z, z, t) € V;d),
such that n(z,z,0) = n(z,2,T) = no(z) - I.

Definition 5.5. Let F € C1(RY, R¥N) N Lip satisfying F(0) = 0. Denote by &L the class of all v(x,t) €
BV (RN x (0,T),R%) N L>=(0,T; L*(RY,R?)) N L™ such that v(z,t) is continuous in [0,7] as a function of ¢
with the values in L> (R, R9) with respect to L>-weak* topology and satisfy

ov(z,t) + divy F (v(z,t)) =0 V(z,t) € RN x (0,T). (5.3)
Definition 5.6. For every set Y C RY x [0, 7] and every ¢ € [0, T] consider the set Y; := {x € RN : (z,t) € Y}.
Moreover for v € BV(RY x (0,T),R?) and every t € (0,T) consider v)(z) : RN — R? by v (z) = v(z,t). By
the results of Section 3.11 in [2] we obtain that for a.e. t € (0,T) we have

v (x) € BV(RY,RY),  Jy, = (Jo), (5.4)
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and there exists an orientation of .J, such that

V(t)

+ o+ — - _ (Vy(l’,t))g;
v(t) (l’) =v (1” t)? v(t) (I’) =v (1” t)? Vﬂ(f,) (I’) - |(VU($, )g,' ’ (55)
where for the vector @ = (ay,as,...,an,an+1) € RN x R we set (a), = (a1,as,...,ay) € RY. Moreover, we

also have the equality of the measures
Dyv = Dy ® L]0, T7, (v —v7) @ (1) HV LT, = ((’U?;) — V) © I//U(t)HNilLJU(t)) @ LM'[0,T]. (5.6)
5.2. The results and the proofs

Given v € & and n € V(Td) define . (z,t) : RY x [0,7] — R? and uc(z,t) : RN x [0,T] — R by

_ 1 y—x
Ue(z,t) =5 ]RNn( . ,x,t)-U(y,t)dy:/RNn(z,x,t)-v(x—i—ez,t)dz,

1 _
ue(z, 1) := o~ /. n(%,y,t) cu(y,t)dy = /N n(z,x+ez,t) - v(r +ez,t)dz. (5.7)
R R

Then we clearly have V,uc(x,t) € L.

Lemma 5.1.

lim /OT/RN avx(g;l{atue+divwF(uE)})}2dxdt

e—0
- /oT /wu» (/:o ((F(r(s,2.0) = T(s,2,0) ) v, (w)fds) dHN (@) dt (5.8)

where
v(s,x,t) = (/_SOo p(T,x,t)dT) cv7(x,t) + (/s+<><> p(T,x,t)dT) vt (z,t), (5.9)
and
(s, x,t) = (/_; p(T,x,t)dT) F(v™(z,t) + (/s+°<> p(T,x,t)dT) F(vt(z,1)), (5.10)
with
p(s,z,t) = NV, (T) +y,2,t) dHN " (y). (5.11)
Hyy ) @)

Proof. Let 6(x,t) € C(RN x (0,T),R%). Consider

1 T —
5E(m’t) ::E_N/]RNF,]T( Ey,l‘,t)'(s(y,t)dy,

where n?' is a transpose of the matrix 1. Then 6.(z,t) € C°(RY x (0,7),R?) and by (5.3) we obtain

/0 /RN v(x, t) - 0pdc(x, t) dedt + /0 /RN F(v(z,t)) : Vabe(w,t) dzdt = 0. (5.12)
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But

1 T(T—Y
//]RN @) : Vebo(e, ) dudt = //]RN vx{a_N/RN"< e ’:”’t)'fs(y,t)dy}dzdt
= N yi_x . .
i/ /]RN {EN /RNU c ,y,t) F(v(y,t)) dy} : Vx(S(x’t)dxdt

/ / Z Z {;v /]RN 857[;;2 (y ; xay;t)Fij (v(y,t)) dy}5k(:c,t) dzdt, (5.13)

1<ik<d 1<j<N

where V7 is a partial gradient of the function 7n(z, z,t) by the second argument x. On the other hand,

T T _
/ / v(x,t)~8t5€(:c,t)dzdt:/ / v(:c,t)~8t{iN/ nT<:E y,:L',t) ~5(y,t)dy}d:cdt
0 RN 0 RN 3 RN 3
T 1 y—x
—/0 /}RN {E—N/RNTI(T,W) -v(y,t)dy}ﬂté(x,t)dxdt
+/T/ i/ ) (E t) (y,£)dy b - 8(, t) dadt
0 . EN . 7] c ' Ys Yy, Y Z, T

/T/ug(x,t)-at(S(x,t)dde/T/{ELN/RN 8m<?,y,t) ~v(y,t)dy}~5(x,t)dxdt. (5.14)
0 RN 0 RN

Therefore, by (5.12), (5.13) and (5.14) we obtain

/ /MuE (@, t) - 0y0(x,t) dadt = / /]RN{EN /RN y— ,y7t) F(u(y 7t))dy}:vx5(:v,t)dxdt
/ / 1<;<d{EN /IRN <1<Z<N (a;: <ysx’y’t)ﬂj(v(y’t)))

+ 8mki(¥,y,t)vi(y,t)> dy}&c(x,t) dzdt.  (5.15)

Thus, since we have an equality in (5.15) for every § € C°(RY x (0,7, R?) we deduce

Orue(x,t) = divx{ELN /]RN n(?,y,t) - F(v(y,t)) dy}
+ELN » {Vm(%,yﬂf) L F(v(y, 1)) +8m(

,y,t) (,t)}dy, (5.16)

where we denote by V;n : F' the vector in R? with the k-th component equal to Zl<i<d Zl<j<N &j M Fyj. In
particular we obtain that dyu. € L. So all distributional derivatives of u. are in L°. Therefore, since v(-,t)
is continuous in [0, 7] with respect to L>-weak* topology, we obtain that u. € Lip(RN x [0, 7], R%).
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Next set

Vo) = o [ (P ) F(ot0) dy

9
1
\I/E(I',t) = E_N /]RN

By Proposition 3.1, for a.e. ¢ € [0,7] we obtain

(y;m,y,t) ~F(v(y,t)) dy. (5.17)

3

s [ 2192 (8 v (e ~ 01| o =t [ 29 (a2 (00) - 001 0o

i ()

where v and T are defined by (5.9) and (5.10) with p defined by (5.11). Next we have the following estimates

/}RN |ue(z,t) —ﬂa(x,t)|2dx = /RN

1 N
:52/ / / ( E zkaxkn(z,x—i—esz,t)) ~v(z +e2,t) dzds
RN [ Jo JrN

k=1
where C' is a constant which does not depend on € and ¢. By the same way,

2d3> dHN " (z), (5.18)

2

dx

/RN (n(z,x +ez,t) —n(z,z,t) -v(z +e2,t)dz

2

dr < 052/ (e, B)2dz,  (5.19)
RN

/ W (2,t) — Ue(z, )| "de < 052/
]RN

RN

|F(v(x))|?dz < O /]RN |v(z, t)|*da. (5.20)

In particular

[ 2e(a {aive ((Pue) - w0) = (Pa) - ) }) [ da
< Q/R l\F(ue) ~ F(a.)

N &

2 1 _ 12
dx + 2/ —‘\If6 -V, | dx < C’gs/ |v(:n,t)|2d:c.
]RN g ]RN

Therefore, by (5.18) we obtain

i | %‘vx (A7 {diva (F(u) - w.)}) ‘de

t [ v (A aiva (F) — w)})| do

[ (7 (o -sec) oo

2d5> dHNY(z). (5.21)
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Since for every t € [0,7] we have 0,,mki(z,z,t) € U(RY) and Oynii(z, z,t) € U(RY), by Lemma A.2 from the
Appendix and (5.16) from (5.21) we obtain

e R Y - C R LR R} K
- /(Ju)t (/_:o ‘((F(’Y(s,x,t)) — F(s,x,t))) 2 (x)fds)dHN_l(x) for a.e. t €10,7]. (5.22)
But

E Vo (dive (A7 F(u:) — P, * do <C E F(us) — V. * do < C1||Davsy ||(RY).
: 0]

N & RN €

Therefore, by (5.22), (5.6), (5.16) and the Dominated Convergence Theorem (see also Lem. A.2) we obtain (5.8).
]

Next, by Theorem 2.1, we obtain

lim 5|V1.115|2dx:/
e—0 RN

N (/+<><> |p(s,x,t) . (U+(Jc,t) — v‘(x,t))fds) dHN Y (z)

(J —o0
for a.e. t € [0,7]. (5.23)

But for any 1 < j < N we have

et -
et [ -

Therefore by the similar way as we did in (5.19)—(5.21), using (5.23) we obtain

1

B aizjn(z, x,t) + aixjn(z, x, t)} cv(z +ez,t)dz,
1

B aizjn(z, T +ez, t)} cv(x +ez,t)dz.

e—0 —o00

: _ e - 2 N-1
lim . £|Vu > de = /(Jv)t </ Ip(s,z,t) - (v (z,t) — v (2,1))] ds) dHY " (x)
for a.e. t € [0,T]. (5.24)

Moreover,
/N e|Vaue > dz < C|| Dy |(RY).
R

So, as before, using (5.24), we deduce

T T “+o0
lim/ / e|Vu > dedt = / / (/ Ip(s,z,t) - (v (z,t) — v(m,t))|2ds>dHN1(:c) dt. (5.25)
e=0Jo JrN 0 J)e \J-xo

Then, by linking (5.8) with (5.25) we can prove the following proposition.
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Proposition 5.1. Given v € EE (see Def. 5.5) and n € V(Td) (see Def. 5.3) consider u(x,t) : RNV x [0,T] — R4
as in (5.7). Then

lim /OT /RN {€|Vzu5|2 + é\vm (A {Ohue + div, F(u.) ) ‘2} dudt = H,y ()
_ /] (/No {|(,,U)x| . ‘%(s,x,t)r + |(V1)z| -‘L(fy(s,x,t),v,x,t)‘2}ds)dHN(x,t), (5.26)

— 00

where

Leyv,2,1) = ey v (@, 0) + (FG) = P~ (2.0)) - () (5.27
and where 7, and p are defined by (5.9), and (5.11) respectively.
Proof. By (5.8) and (5.25) we obtain

lim /OT /RN {glvmual2 + é\vx (A7 {0re +div, F(u2)}) \2} dzdt
- [ [ B ]+ (F s 0) - Tm0)) - @ s )ar My 529
where , T and p are defined by (5.9), (5.10) and (5.11) respectively. On the other hand, by (5.3) we deduce
(0 @ t) =@ ) + (FO* @) = Fo~(@.0) ) - o) =0 V@t e dp  (5.29)

In particular there exists ¢ > 0 independent on (z,t) such that ¢ < |(v,).(x,t)| < 1. Therefore, by (5.5), (5.6)
and (5.29) we can rewrite (5.28) in the form

lii%/ /RN {glv uel® + }v (A7 {Ovu. + div, F (g})f}dxdt
/ / (/m { \a Sx,t)r-i-ﬁ-‘L(fy(s,x,t),v,x,t)‘2}d3>dHN1($)dt

- /Jv </+°° {|(V7j)z| : ‘%(S,l‘,t)‘QJr |(V1)x| . ‘L(’Y(S,ﬂf,t),v,:n,t)‘2}d5>dHN(x,t), (5.30)

— 00

where L(vy,v,z,t) is defined by (5.27). O

Remark 5.3. For the proof of Proposition 5.1, we used the results of Section 3. We proved these results for
the case N > 2, but we can prove these results, with an even simpler proof, also for N = 1.

Next, as in [8] and as above, we can prove the following proposition.

Proposition 5.2.

1
: /
it m= [ (oo ([ 0

T,ng

})dHN(:E,t),

(5.31)

(Wo)e(r(s) —v™) + (F(r(s)) - F(v*)) (Vy)e|ds
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where VT(:JQO is defined in Definition 5.4, H,(n) is defined by (5.26) and
Rap = {r(t) e CH([~1,1,RY : r(~1) = a, r(1) = b}- (5.32)

Then, as before, by Proposition 5.1 and Proposition 5.2 we can deduce the following proposition.
Proposition 5.3. Given v € £ (see Def. 5.5) and 1o € C2(RY | R) satisfying [pn no(2)dz = 1 set wiy, o3 (@)
by Wino e (@) = = fon m0((y — 2)/2)v(y,0) dy. Then there exist a sequence of functions {ufy, - (2,t)}es0 C
L0, T; L2 (RN, R%)) N Lip(RY x [0, T],RY) N L such that ug,, .4 — v in Ny>1 LIYRN x (0,T),R%) ase — 0,
Uino e} (@, 0) = Wiy e} (),

e—0

1
_ . el
[ (i ([ e

where Ra.p is defined by (5.32) and uc(x,T) — v(z,T) in L2(RYN,RY).

T
: 1 X — . 2
lim (/o /RN {5|Vru{no,a}|2 + g‘vz (Al-l{atu{m,a} + lemF(U{n07€})})‘ }d:cdt + /RN |U{n076}(m,T)|2d:c>

(o) (r(s)—v™ )+ (F(r(s)) —F(qf)) (Vo) x

ds})dHN(x,t)—i—/RN lv(z, T)*dz,
(5.33)

Now we can prove the main theorem of this section.

Theorem 5.1. Given v € EX (see Def. 5.5) there exist a sequence of functions {u.(z,t)}eso C L?(0,T;
HYRN RY)) N L0, T; L2(RY,RY)) N L™ such that i, — v in Ny>1 LIRYN x (0,T),R%), u. is L%-strongly
continuous in [0, T] as a function of t, t.(x,0) = v(x,0),

T - 2
lim (/ / {s|vma€|2+1\vz (A;l{c‘)tﬂerdiva(ae)})‘ }dde/ |ﬂ5(:c,T)|2d:n)
=0\ Jo JrN € RN

1
_ : / )
/JU (Td%?fu {/12‘7” (S)|

where Ra.p is defined by (5.32) and (v, T) — v(z,T) in L2(RYN,RY).

(o) (r(s)—v™)+ (F(r(s)) fF(v*)) (Vo) e

N 2
ds})d?—l (:E,t)+/RN |v(x, T)|*dzx,
(5.34)

Proof. Let gy € C2(RN,R) satisfying [pn 71(2)dz = 1 and 71 > 0. For every h > 0 set na(2) := ni(z/h)/hN.
For every ¢ > 0 and h > 0 let up ¢ := ugy, oy and wpc := wyy, -}(z) be as in Proposition 5.3 corresponding
to 1. We want to modify uy . in order to satisfy the initial conditions. Let y.(x,t) € L*°(0,T; L*(RY ,R4)) N
L2(0,T; H} (RN R?)) N L™ be the solution of the heat equation

EA:EXE == atXEa
Xe(z,0) = v(z,0).

(5.35)
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It is clear that we may assume that y. is L2-strongly continuous in [0, 7] as a function of ¢t and x.(z,0) = v(z, 0).
Moreover for every 0 <t < T we have

t
2/ / €|VX5|2:/ vQ(m,O)dmf/ X2 (x, t)dz. (5.36)
0 JrN RN RN

Next let 6(t) € C*(R,[0,1]) be a cut-off function satisfying 0(t) = 0 for every ¢ > 1 and 6(t) = 1 for every
t < 1/2. For every small ¢ > 0 define i, . (z,t) € L°°(0,T; L2(RY ,R%)) N L2(0, T; HY(RN ,RY)) N L*° by

Une(z,t) = upe(z,t) + H(t(hzs)_l)(xg(x,t) - uhﬁ(x,O)) = upe(z,t) + H(t(hzs)_l)(xg(x,t) - wh,g(x)). (5.37)

Then iy, . is L2-strongly continuous in [0, 7] as a function of ¢ and @y, .(z,0) = v(x,0). Moreover, iy, (z,t) =
Up.e(z,t) whenever ¢ > he. Now we will want to prove that

he
im / {5|Vm(ﬂh¢5 —uno)|* + l‘vm (A;l{at(ah,e — up) + divy (Fin,.) — F(uhye))}> ‘2 dzdt < Ch,
e—0t Jo RN €
(5.38)

where C' > 0 is a constant which does not depend on h and . First of all by (5.37) we observe that

he
lim / €|Vl.(ah,g — uhﬁ)‘2 dzdt < lim 252h/ |wah,g($)|2 dx
0 RN RN

e—0t+ e—0t
2

he
+ Tim / 2|V, x.|* dedt = Tim Qh/ da
0 RN RN

e—0* e—0t

/ Vnn(z) @ v(x + ez)dz
RN

+ lim (/RN X?(x,O)dx—/RN Xg(x,hg)dz> =0. (5.39)

e—0t

On the other hand

he 1 ~ 2 _ he 1
Tim / —‘vz (A;l{divz (F(in.c) — F(uh,e))})‘ dadt < Cp Tm / ZJan.e — upe|? dedt
0 JRN E o JrNE

e—0t e—0t

_ he 2
< Cp lim / g(|x5(x7t)|2 + |wh.e(2)[*) dzdt < 4Coh/ v?(x,0)dz = O(h). (5.40)
0o JrN

e—0F RN
Next we have
Ou(iin.e — une) = 0{0((he) ™) (xe(w,1) — wne(2)) }

= 0(t(he) ) xe(z,t) + (hs)*lﬁ’(t(hs)*l)(xs(m,t) - whﬁs(m))

= 0(t(he) HeApxe(x,t) + (hs)*lﬁ’(t(hs)*l)(xe(m,t) — whye(m)). (5.41)
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Therefore, by (5.41) we obtain

— he 1 < 2 _ he 1
ngél+ . /]RN g‘vx (Az {at(“h,a - Uh,a)})‘ dzdt < C<€1i%1+/0 /]RN h2—53
~ 2 _ he 2
X ‘vz<A;1(X5(IE,t)*wh,e(x)))‘ dxdt + lim / €| Vaxe| dxdt)
RN

e—0t Jo

— 1
< C( lim —</ X?(I,O)dx—/ X?(m,hs)dx)
e—0+ 2 RN RN

+E§+ " /]RN 7223 }V 1{ Xe(z,t) —v(z,0)) — (whe(x) — U(x,O)))})fdﬂit)

<0+2C lim " /RN h2€3’v (e (2, t) — Xa(x,O)))})’dedt

e—0+
+2051—1>%1+ - h€2‘v ( 2 H{ (wp e (2) —U(m,O)))})‘de. (5.42)
But .
Vel ) — ye(2,0) = eA, < | et s)ds>. (5.43)
Therefore, ’

2

_ he . 9 _ he 1 t
Elir(% /]RN h253‘v R (CACRIES XE(JJ,O)))})‘ dadt :eli%l+ ; /]RN 72z /0 VaiXe(z,s)ds| dedt

he t he
—_— t 2 v 2
< Elirél+ ; /RN 72e (/0 |Vxxa(x,s)‘ ds) dxdt < Elirél+ ; /]RN €|V;ch| dadt

— 1
= lim —(/ X?(x,O)dx—/ X?(x,he)dac) =0. (5.44)
e—0+ 2 RN RN

Then, by (5.42) and (5.44) we obtain

L (a2 Ty [ 9 (B (Gnete) )

< C_'h/ v*(x,0)dz = O(h). (5.45)
RN

Here we deduce the last inequality in the similar way as (A.11) in Lemma A.2. So combining (5.39), (5.40)
and (5.45) we obtain (5.38). Then we obtain

T 1 ~ 2
i ([ ] {e|vx%,a|2+—\vx(A;{am,E+divxF<uh,a>})\ }dwdt+ [ Jncle )z
e—0 0 RN g RN
! N
— inf 20 (s)] - AHN (2t
/Ju <re7é?+,v {/—1 |7“ (S)‘ }) (1)

+/RN o, T)*da + on(1).  (5.46)

(o)e(r(s) —v7) + (F(r(s)) - F(zf)) (Vy)z|ds

Finally we complete the prove by taking a diagonal subsequence from {@y .}, as we did before. (I
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APPENDIX A

Lemma A.1. Let G(z) € C* (R R) satisfy G > 0 and G(a) = G(b) = 0, for some a # b in R? and let
O(z) : RY — R4 satisfy © € C' and rank(@(x)) =d for every x € R%. Then,

inf (/:O\e(g(t))-C’(t)|2+G(C(t))dt):Tei%gb (/ 2|0 (r( )] /G( dt) (A1)

CERY,

where

Rffg, = {C(t) EC'R,RY): 3L >0s.t ((t)=a Vt<—L, ((t)=b Vt> L} (A.2)

and

Rap = {r(t) € CY([-1,1),RY) : r(~1) = a, r(1) = b}. (A.3)

Proof. For any ¢ € Rl(l% define r : [-1,1] — R by

r(t) == ¢(Lt),

where L > 0 is as in (A.2). Then r € Rqp and, by the inequality a® + b? > 2ab, we have

/LL{\@(g(t)) .C’(t)|2+G(§(t))}dt2/L 210(c(t) - ()] \/G(c(t) at
:/ 210(r(t)) - (1)) /G (r

Therefore, we infer

inf (/:O |e(¢() ~C’(t)|2 +G(¢(@) dt) > rei%i,b (/ 2|0 (r( ()] /G dt> (A.4)

(0)
CE,R'a,b

Next let r(t) € Rap, such that 7/(¢) # 0 for any ¢t € [—1,1]. Define 7,,(t) € C*(R, [—1,1]) as the solution of

/ VG (r(ma(t))) 1
0 = 6l - ) T O) Ve R (A5)
7,(0) =0
Then 7, is nondecreasing on R and . lim 7,(t) = -1, , ligrn Tn(t) = 1. Moreover,
0<1—|m@)] <e /™ vieR. (A.6)

Next for any n € N define (,(t) : R — R? by

Cn(t) := T(Tn(t)).

Consider
2

+o0
Io(¢) = / e(ct) - M + G(c() dt,
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I(r) = /_1 200(r(1)) -+ (1) /G (r(t))dt.

and

Then

+oo 9
I (Galt)) = / 10(Ca(8) - L] + G (Galt))

_ / (m()*[O(r(7a () r'(Tn(t))r—i—/G(T(Tn(t)))dt (A7)
Therefore, by (A.5),
+00
(6 = [ 0] () r'<m<t>>\( G(T(Tn(t)))+%(1—|Tn(t)l)‘@(7“(7n(t)))'T’(Tn(t))‘)dt
+00
+ [ (Té(t)\@(rm(t))) P (1 ()] =~ (L= ()] O (r(ma (1)) r'(m(t))\) G(r(ra(1))dt

— 00

where we infer the last equality from (A.6). Next for m > 0 define the function (1™} () : R — R? by,

G0+ 3 (0= Galm)) = (a = Gal=m) ) o+ 5 (0= Calm) + (0= Gul=m) )
{nom} () — vt € [-m, m],
‘ © a Vt € (—oo, —m),
b Vt € (m, +00).

Using (A.6) we see easily that for every n,

lim  To(¢t™™h) = Io(¢).

m——+0oo

From (A.8), a density argument and taking also diagonal subsequence it follows that there exists a sequence
(An S RSIOL such that

lim Io(Co) = I(r).

n—-+o0o

Then,
inf Io(¢) <inf{I(r): r € Rap, r'(t) #0 Vt e [-1,1]}:
CERGY,
But by density arguments

inf {I(r): r € Rap, 7'(t) #0 Vt€[-1,1]} = ei%f I(r).
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Therefore,
inf I < inf I(r). A9
ERCERTRE (A9
This inequality, together with (A.4), gives
inf I = inf I(r). [l
nt, 1O =t 1)

The following lemma is used in Section 5.

Lemma A.2. Let ¢ € L2 (RN, R) and let [(z,z) € URY) (see Def. 2.3). For every e > 0 consider the function
e € CH(RY,R) by

ve(z) == €LN/]RN Z(y;x,y)g@(y) dy = /RN l(z,24+¢ez)p(x +ez)dz. (A.10)

Then there exists Co > 0 that depend only on ||l||re=, ||Val|| L and suppl such that
V@ o) Pds < Costel . (A1)
RN

Proof. Tt is enough to prove (A.11) for p» € C' N L%, otherwise we approximate ¢ by smooth functions. So
without loss of generality we may assume that ¢ € C*.

It is clear that there exists a compact set K CC RY, depending only on supp!, such that I(z,2) = 0 whenever
z€ RV \ K or x € RV \ K. Since we assumed ¢ € C!, by definition of ¢. we obtain

() = /RN l(z,x+ez)p(x+ez)dz = /RN (l(z,x—i—sz) olx +ez)—1(z,x) go(x)) dz

1
= s/ / z-Vy (l(z,x +etz) p(x + stz)) dzdt
o Jr¥

1
gdivz{/ /l(z,:c+stz)cp(:c+stz)zdzdt}~ (A.12)

0o JK

Therefore,

/ |V(A_1<pg)|2dx§252/ V(A‘l{div/ / l(z,x—l—zstz)(p(x—l—stz)zdzdt}) da
RN RN 0 JK
1 2
§252/ / / l(z,2 +¢etz) p(x + etz) zdzdt| da
Ry [ Jo JK
1
< 0 / / / lo(z + et2)|2dzdzdt < Coe? / lo(2)|2dz, (A.13)
0o JK JRN RN

where Cy, C1 depend only on K and ||/||,~. This completes the proof. O
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