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RELAXATION OF AN OPTIMAL DESIGN PROBLEM
IN FRACTURE MECHANIC: THE ANTI-PLANE CASE*

ARNAUD MUNCH! AND PABLO PEDREGAL?Z?

Abstract. In the framework of the linear fracture theory, a commonly-used tool to describe the
smooth evolution of a crack embedded in a bounded domain 2 is the so-called energy release rate
defined as the variation of the mechanical energy with respect to the crack dimension. Precisely, the
well-known Griffith’s criterion postulates the evolution of the crack if this rate reaches a critical value.
In this work, in the anti-plane scalar case, we consider the shape design problem which consists in
optimizing the distribution of two materials with different conductivities in € in order to reduce this
rate. Since this kind of problem is usually ill-posed, we first derive a relaxation by using the classical
non-convex variational method. The computation of the quasi-convex envelope of the cost is performed
by using div-curl Young measures, leads to an explicit relaxed formulation of the original problem, and
exhibits fine microstructure in the form of first order laminates. Finally, numerical simulations suggest
that the optimal distribution permits to reduce significantly the value of the energy release rate.
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1. INTRODUCTION — PROBLEM STATEMENT

We consider a simply connected domain €2 defined by € = o\~ where Qg is a smooth bounded domain of R?
(referred to the orthogonal frame (O;eq, e2)) and « a cut of extremity the point F', occupied by two constituent
media with constant isotropic conductivity a and 3, respectively, such that 0 < a < § < oo (see Fig. 1). The
overall conductivity in € is denoted by ax, defined by

ax,(x) = aX,(x) + 01 — X,(x)), x=(r1,22) €N (1.1)
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I'y:Vu-v=g

FO:u=u0

FIGURE 1. Illustration of problem (P): optimization of the location of w support of the
a-material in the crack domain €.

where X, denotes the characteristic function of any domain w strictly included in Q (more precisely, w is
contained in a fixed compact subset K CC ). We introduce I'y and I'y as two non-empty disjoint parts of 9
so that Ty Ny =0 and T'y Ny = (). For any ug € H/?(T'y) and g € L?(T,), we then consider (in a weak sense)
the scalar solution u of the following problem

—div(ax, (z)Vu) =0 Q,
U = Ug Ty C 09, (1.2)
BVu-v=g r, cof

where v designates the outward unit normal to 2. The perfect transmission conditions are supposed to hold
on dw between the phase o and 3, i.e. [u]lps = 0 ([]p. denotes the jump across dw) and aVu't - v} +
BVu~ -v; = 0. The weak solution enjoys the regularity u € H'(2) (see [15]). Finally, we associate with u the
finite energy

E(u,vy) = l/ an(m)|Vu|2d:cf/ gudo. (1.3)

2 Ja r,

As it is well-known, the previous system is a simplified scalar version of an elastic structure S occupying the
domain €2, with vanishing displacement on I'y, submitted to a normal load g on I'y, and containing a crack ~.
This situation is also labeled as the anti-plane case of a linearized elasticity situation. Our motivation in this
work is to optimize the distribution of the two materials o and 3 along the structure .S in order to prevent, or at
least reduce, the growth of the crack point F'. In this respect, in the framework of Fracture Mechanics (we refer
to [3,18]), a well-known and still widely used growth criterion is due to Griffith [14]. This criterion is related to
the so-called energy release, a thermo-dynamical strength named 7 (defined as minus the infinitesimal variation
of the energy E with respect to variations of F'), and which may be expressed mathematically in term of surface
integrals as follows

T¢(u,Xw):/glaxw(m)(A¢(m)Vu,Vu)dx (1.4)

provided the function % be chosen in a suitable subset of (W1°°(2,R))2. A, is for all z € Q a real 2 x 2 matrix,
not necessarily positive definite, and (,) denotes the scalar product in R? (see Sect. 2). The Griffith’s criterion
postulates the growth of the point F' if Ty (u, &,,) reaches a critical positive value experimentally determined.
We point out that this criterion, associated with E and recently revisited in [13], is global in contrast with
stress criteria such as Von Misses and Tresca criteria. The rate 7y, which may be seen as a global measure of
the singularity of u at the crack tip F', is a non-negative but not positive definite function of u.

In order to reduce the growth of F' due to the load g, we therefore consider in this work from a mathematical
point of view, the following problem

(P): XWIEI-IX‘fL,‘D Ty (u, X,) (1.5)
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where, for any L € (0,1) and a suitable compact set D included in Q such that F € D,
XL,D = {X S LOO(Q, {O7 1}), HXHLl(Q) = L|Q|, X =0in D} (16)

and where v is the solution of (1.2). (P) is a so-called nonlinear optimal design problem associated with a
functional which depends quadratically on the gradient of u, solution of a partial differential equation. The
relation ||X||z1(q) = L|| expresses that the amount of material o to be distributed on Q is fixed and equal
to L|2| whereas the relation X = 0 in D expresses that the material in D containing the point F have the
characteristic 8. This constraint on the class of characteristic functions will be motivated in Section 2.

To our knowledge, very few works have investigated the control of the crack growth in this context. We
mention two preliminaries notes by Destuynder [8,9]. In [8], the author considers the dynamic wave equation
posed on a 2D cracked domain and defines a growth criterion based on the stress intensity factors. A formulation
for the derivative of this criterion is given with respect to a control defined on the boundary of the domain. The
reference [9] considers a stationary loaded structure with a crack, and suggests a computational method for a
control law which restricts the crack evolution (we refer to [10] for some numerical treatments). In the more
recent work [16], an active control strategy is addressed which consists in minimizing the rate 7y, with respect
to the support and amplitude of an additional boundary load. Following this idea, we also mention the note [28]
which study the possibility to annihilate the singularity in a cracked domain using additional (singular) boundary
loads. Problem (P) is conceptually different and may be qualified as passive control, assuming that the cracked
structure is built once for all. On the mathematical viewpoint, this problem is a prototype of ill-posed problem
in the sense that the infimum may not be reached in the class of characteristic functions: minimizing sequences
oscillate in finer and finer scales. The study of (P) then consists in finding a well-posed relaxation for which
there exists an optimal solution. This can be done by mainly two approaches: the Homogenization method (we
refer to [1,34]) and the classical non-convex variational method (we refer to [5,31] and references therein). The
well-known application in conductivity is the minimization of the compliance for which the matrix A, is simply
the identity. The non diagonal and space dependent case provided by the energy release rate 7, seems original
in this context and requires several new developments. In this work, following some previous works [24-26],
we address the relaxation of (P) through the variational method using the class of div-curl Young measures
used and analyzed in this context in [33]. The analysis amounts to computing the quasi-convex envelope of the
cost Ty

In the spirit of the dynamic material notion introduced recently by Lurie in [19] where material characteristics
may vary in time along a spatial domain, the design may be thought of as a dynamical, feed-back control, so that
at each position of the growing crack tip F', the optimal distribution is adjusted to minimize the energy release
rate. This work presents one step in that process and may lead to the optimal design {w;}ie(4o,t,), assuming
that F evolves on the segment [F'(to), F(t1)] C Q during a time interval [to, 1] (this latter being related to the
amplitude of the load g).

The paper is organized as follows. In Section 2, we recall the expression of the energy release rate in terms of a
surface integral and some important properties, and then focus on two relevant choices for the matrix Aq(x): the
diagonal, and the non diagonal cases (Rem. 2.1). Then in Section 3, by using the variational approach and Young
measures, we determine a full relaxation (RP) of the original problem (P). The analysis is divided into three
steps: (i) an equivalent variational reformulation (V P) of (P) (Sect. 3.2); (ii) the computation of a sub-relaxation
of (VP) derived from the expression of the poly-convex envelope of Ty, (Sect. 3.3); (iii) the determination of at
least one (div-curl) Young measure for which the lower bound is actually attained. We obtain that both the
diagonal and non diagonal cases exhibit first-order laminates (Sect. 3.4). Then, in Section 3.5 by introducing an
additional field, we transform the explicit but non standard relaxation (RP) into a new equivalent formulation
(RP) where u appears as a solution of a nonlinear elliptic equation in divergence form (see Eq. (3.75)). This
final step then permits to address the numerical approximation and discuss some experiments in Section 4.
Some remarks and perspectives conclude this work (Sect. 5).
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2. OVERVIEW ABOUT THE ENERGY RELEASE RATE

In this section, we recall the definition of the energy release rate and its expression in terms of a surface
integral. We use the notation v ; for dv/0x;, i = 1,2, as well as the convention of summation of repeated
indices.

We assume that, in the neighborhood of F', the crack + is rectilinear and (without loss of generalities) oriented
along e;. The energy release rate, designated by 7, is formally defined as minus the variation of the elastic
energy F with respect to an infinitesimal extension of the crack:

E@", " - FE

, eR} 2.1
n—0 Iy — A 1= 21)

where u" denotes the solution of (1.2) corresponding to the configuration \y"7 obtained after an infinitesimal
extension of the point F (in the direction e;) parameterized by 7, assuming u® = u and 4° = 7. |y —~/| denotes
the extension length.

The limit 7, finite and non negative, may be rigorously expressed in terms of u only. We introduce a velocity
field ¥ = (¢1,12) € W = {tp € (WL>(Q,R))?, ¢ v =0o0n 90, ¢ = 0 on Iy}, where v designates the unit
outward normal to . Let n € R%} and the transformation 7”7 : * — x 4 ni(x), so that F"(F) = F" and
F(y) =~"; we first recall the following definition (see [3,18]).

Definition 2.1 (Mathematical definition of the energy release rate). Let u be the solution of (1.2). The
derivative of the functional —E(u, ) with respect to a variation of v (more precisely of F') in the direction
is defined as the Fréchet derivative in W at 0 of the application n — —E(u, (Id + n)(7)), i.e.

OE(u,7)
Oy

— E(u,(Id+n9)(y)) = —E(u,v) —n -~ +o(n). (2.2)

In the sequel, we denote this derivative by 7y (u, A.,).

The procedure to obtain the explicit expression of 7y, is technical but by now well-known (see [11,22,23]).
Moreover, since the problem is self-adjoint, the derivative may be expressed only in terms of u as follows.

Lemma 2.1. The first derivative of —E with respect to v in the direction ¥ = (¢1,12) € W is given by
1
Ty (u, X,) = / ax,(x)Vu- (V¢ - Vu)dz — 5/ ax, (x)|Vul>div(y)dz (2.3)
Q Q

where u is the solution of (1.2).

Remark that the load g does not occur explicitly in (2.3) since we have assumed for simplicity that
I'y Nsupp ¥ = 0. Introducing the 2 x 2 matrix A (x) for all € Q as follows:

Vap — sdivip)ls = Vo — TVl

1 < P11 — Y22 2012 >
2 2121 Yoo — P11 )’

Ay ()
(2.4)

the energy release rate takes the form (1.4).

Moreover, since 7y, is a shape derivative (with respect to F'), 7y, should depend on the function ¥ € W
only in a neighborhood of the crack tip F'. This invariance is true for all ¥» € W in the homogeneous case for
which @ = ; in our situation, this invariance remains true if the material is homogeneous on the support of
the function ), localized around F. We therefore impose that supp(v)) € D, where D is the set appearing in
the definition of the admissible class Xz p (see (1.6)). We then take

Y eWp ={¢p € W, supp(y) C D}- (2.5)



RELAXATION OF AN OPTIMAL DESIGN PROBLEM IN FRACTURE MECHANIC: THE ANTI-PLANE CASE 723

This material assumption then permits to link the derivative 7y, which is a mathematical quantity defined
on 2, to the thermo-dynamic strength 7 (locally defined on F).

Lemma 2.2 ((local) energy release rate). Let C(F,r) be the circle of center F and radius r > 0, Ve = (Ve,1,Ve,2)
its outward normal and

1
T (u, &,) = 5/0(1:' )an(m)u,ju,jkac,kdU/c(F )an(m)u,ju,kl/Jch,de,

where u is solution of (1.2). The thermo-dynamic strength T is linked to Ty as follows:

Ty (u, X,) = 1ir%’]}(u,)(w) (W-v)irp=T(u,X,) Y(F) -vp, Vi€ Wp, (2.6)

T —
where vp = (Vp1,vE2) = (£1,0) denotes the orientation of the crack «y at the point F.
It follows from (2.6) that the energy release rate 7y, is related to the strength 7 by
T (u, X)) =Ty (u, X,), Vip € Wp such that Y(F) - vep = £91(F) = 1. (2.7)

As a summary, if the conductivity is constant equal to § in D, and if the function v, which permits to define
the virtual crack extension of F', belongs to Wp and satisfies 11 (F') = %1, then the energy release rate 7 may
be related to the mathematical quantity 7.

Remark 2.1.
e Since the crack is oriented along the axis eq, a natural choice is 1 = (11,0) with 121 = 0 on 9Q. In
that case, Ay is simply
Lfain 2412
Ay == ' K . 2.8
LD ( 0 —vi1 (28)

Moreover, since only the derivative of ¢ is involved in 7y, defined by (2.3), it is more accurate from
a numerical point of view to consider a function ¢ which is constant in a neighborhood of F. This
permits to obtain the strength 7 with the relation (2.3) only as a function of the solution u far away
from F where it is singular [11]. A simple choice is given by the radial function

1 (x) = ¢(dist(z, F))vpy, Yo e (2.9)

defining the function ¢ € C*(RT;[0,1]) as follows:

1 r<ry
—19)%(3r; —rg — 2
)= T T s, 2.10)
1 — 172
0 r>ry

with 0 < 71 < r9 so that supp(y;) C D. Note that this situation, described in Figure 2, leads, for some
x € Q, to a non-diagonal and non-positive definite matrix Ay ().

e Let us denote (zp1,zp2) the coordinates of F, Q. = {x € Q,|z1 — zp1| < €} and 90 = {x €
0, |x1 — x| < e}. If there exists an € > 0 for which v; = 0 on 99, and 9T’y N IQ = 0, then one may
construct an admissible function 7 independent of zo. It suffices to take 11 (z1, 22) = {(21)

0 1 Srla

2 P
T1—T1 2x1+1r1—37r2
( )751_7.2 Ly <@y <

((x1) = 1 rog <ayp <, (2.11)

2 P
(I17T4) (2I1+T473T3)
T4—73

0 T > T4,

r3 < xp <1y,
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FIGURE 2. Choice of a radial function 91 (x) leading to a non diagonal matrix A,.

with

T =TF1 — §7 o =XTp1 — ; r3=1IpF1+ %’ Ty =2Ip1 + % (2.12)
In this case, ¥1,2 = 0 and the matrix A, defined in (2.8) is simply diagonal for all & € 2. However, this
choice, described in Figure 3, forces the material to be constant in the whole vertical strip D = {x € Q,
|z1 — 21| < ra} which is more restrictive than the previous situation.

e One may also construct, for any domain, a function 1 = (¢1,%2) such that P12 = 12.1. In this
more general case, the matrix Ay defined by (2.4) is symmetric. It suffices to take ¢ given by (2.10)
and o (z1,22) = foxl Y1,2(s,2)ds. Since 9y is radial, Y12 = 0 on Iy, = {(z1,22) € Q21 = Tp1}.
Therefore, 12 = 0 on T';,., and the virtual extension F" = F + ni(F') remains on I, for all n > 0
small.

e From the definition, u = 0 implies 7y (u, X,) = 0. The converse is not true, as a consequence of the
non-positive definiteness of the matrix A;.

3. RELAXATION OF (P)

Problem (P), which involves a functional depending on the gradient Vu, typically lacks optimal solution
which means that the infimum may only be achieved by a sequence of more and more intricate subset w,, of 2
(see for instance [27,34]). The goal of this section is to perform a relaxation of problem (P). It consists in looking
for another minimization problem (RP) for which there does exist an optimal solution, this minimum has the
same value of the infimum of (P), and more importantly, the optimal solution of the relaxed problem encodes
the information about (some) minimizing sequence for the original problem. Following the procedure described
in [33], a relaxed problem may be obtained by using Young measures generated by sequence of pairs {G,,, H,},
associated with the design X, admissible for (P), for which we have the information that the divergence
of the first component vanishes while the second component is a gradient. Such class of Young measures, the
so-called div-curl Young measures, has been explicitly introduced and studied in [33].

3.1. Some properties of the class of div-curl Young measures

As already indicated, all of the material in this section is taken from [33]. It is included in this section for
the convenience of the reader.
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FIGURE 3. Choice of a function ¢1 (z) = ¢1(z1)Xq, leading to a diagonal matrix A,, assuming
the existence of a domain €.

Suppose that (A, )n>0) is a minimizing sequence for (P) and let w, be its corresponding sequence of
solutions. Consider the two sequences of vectors

Gn(x) = (aX,, + (1 —X,,))Vup(x), Hy(x)= Vu,(x). (3.1)

Since both sequences are uniformly bounded in (L?(2))?, we may associate with (a subsequence of) the pair
(Gn, Hp,) a family of parameterized measures v = {v, }.cq. Since the pair satisfies divG,, = 0 and curlH,, =0
weakly in 2, the measure v is called a div-curl Young measure. More precisely, we have the following definition.

Definition 3.1. A family of probability measures v = {v, }, ., is called a (L?-) div-curl Young measure if there
exists a sequence of pairs of vector fields G, in L?(Q;R™), and u,, in H*(£2;R™), such that
divG, — 0in H Y R™),  {|Gnl*}.{|Vun|?} are equiintegrable in Q,

and the Young measure associated with {(G,,, Vu,)} is v.

Notice how the equi-integrability ingredient comes directly from standard properties for elliptic equations.
As a consequence of the div-curl lemma, such class of measures enjoys the following commutation property:

[ oadnon = [ pan) [ aaPoy (3.2)
R2 xR2 R2 R2

where ug(gi), 1 = 1,2, are the marginal on the two components, respectively.
In our situation, since G, comes from the state equation, each individual v, is supported in the union of the
two linear manifolds
Ay ={(\p) eR*xR*:p=9A}, y=a,8 (3.3)

so that supp(v,;) C Ay U Ag. Because of this fact on the support, the measure v, may be decomposed as

Vp = $(X)Vg,a + (1 —s(x))vs g (34)
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with supp(vz4) C A, and s(z) € [0,1], the weak—x limit in L>°(£2) of a subsequence of X,,,. The meaning of
the manifolds A, v = «, 3, and, in particular, of the dummy variables (p, ), follows from the fact that the
measure v, gives the limiting probability distribution as n goes to infinity of the values of (G,,, H,) near the
point . Then, by the fundamental property of Young measures (see [30], Thm. 6.2), we may represent the limit
of the cost associated with X, through the measure v. Let us use the notation : to indicate full contraction of
the scalar product of two matrices, so that for instance the relation (A Vu, Vu) = Ay : (VuVuT) holds where
VuT denotes the transpose of the vector Vu. Then, the limit of the cost is

Jim Ty ) = [ [as@)Aw(w): [ TG00 + 50 - st Ag(@): [

5 AATdVS%,(A)} dz  (3.5)

where VQ(L-}Z,, v = a, 3, designates the projection of v, , onto the first copy of R%. Therefore, with each minimizing

sequence of (P), we associate an optimal div-curl Young measure. In this sense, optimizing with respect to X,,,
is equivalent to optimizing with respect to v.

In this process (in the relaxed formulation), the following characterization of this class of Young measures is
used in a fundamental way.

Lemma 3.1. A parameterized measure v = {v,}zeq is a div-curl Young measure if and only if:

e For a.e. x € 2, each individual v, is a homogeneous, div-curl Young measure by itself;
e For the first-moment of v, as a function of x, we have

div (/ pdufl.l)(p)) =0, curl ( )\duf)()\)) =0 in Q. (3.6)
R? R?

Finally, the following result refers to a specific, general way of constructing explicitly some div-curl Young
measures. This is the analogue of laminates for gradient Young measures.

Lemma 3.2. Suppose that p;, \i, i = 1,2, are four vectors in R? such that
(p2 = p1) - (A2 = A1) = 0. (3.7)

Then the probability measure
= t(s(ﬂl,/\l) + (1 - t)(s(pz,/\z) (3.8)
is a div-curl Young measure for all t € [0, 1].

3.2. Variational reformulation

We now proceed to the analysis of problem (P) in a similar fashion as in [33]. We first put (P) in an
equivalent variational setting. We introduce the two functions

ady(x) : T it (p,A) € A,

Wz, p,\) =< BAg(z) : AT if (p,A) € Ag, (3.9)
+ 00 else,
and
1 it (p,A\) € Aqg,
Vip,A\)=4¢ 0 it (p,A\) € Ag, (3.10)
+ 00 else,

and point out that W and V are not continuous with respect to (p, A). Then we check that (P) is equivalent to
the following new problem

(VP): glqliLW(m,G(m),Vu(m))dm (3.11)
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subject to
G e L*(%R?), we HY(R),
divG =0in H*(Q), G(x)=pVu(z)inD
u=uponly, [Vu-v=gonly CIN(yUTy), (3.12)
/ V(G(x), Vu(z))dz = L|Q|.
Q

This equivalent formulation suffers from the same troubles as the initial problem, so that it is in need of
relaxation. The crucial step is the computation of the constrained quasi-convexification CQW of the density W
leading to a relaxation (RP) of (VP) (and thus of (P)):

(RP): sr,rgg/ﬂCQW(x,s(a:),G(m),Vu(a:))dx (3.13)

for s € L*°(Q,[0,1]) satisfying s = 0 in D U 01, and subject to (3.12), but replacing the integral constraint
involving V' by [, s(x) dz = L|Q|. In the sequel, we note

se€SLp = {S € L=(9,]0,1]), ||SHL1(Q) =L|Q,s=0inDU 89} (3.14)
The constrained quasi-convex density CQW is computed by solving the problem in measures:

CQW (z, s(x), G(x), Vu(x)) :irl}f{as(a:)Ad,(m): M (\) + B(1 = s(@)) Ay() : /]R 2 MTdy;{g(A)}

R2

(3.15)
for any measure v subject to
v=A{vy}eecq, Vs=8@)ga+ (1—5@))gg, suppVe~) A,
v is div-curl Young measure (satisfying (3.2)), (3.16)
G(x) = / pdvg (A, p), div G =0weakly in Q, Vu(z)= Advg (A, p).
R? R2

At this point, the direct computation of CQW is not possible due to the lack of information on the class of
div-curl Young measures. The method is therefore as follows. In a first step, we perform the minimization by
retaining just the relevant property expressed in the commutation (3.2), so that we regard feasible measures v
as Young measures which satisfy this commutation property, but are not necessarily a div-curl Young measure.
This provides a lower-bound of CQW. Then, we study whether the optimal measure obtained in this class
satisfies the sufficient condition provided by Lemma 3.2 for a Young measure to be a div-curl Young measure.

3.3. Computation of a lower bound of CQW

To proceed further with the analysis of this relaxed formulation, we regard & € 2 as a parameter and put
vy =v, G(x) = p, Vu = A, and s(x) = s.

Let us take v a Young measure which is supported in the set A = A, U Ag where A, = {(p,q) € R? x R?;
p = g}, a linear manifold in R? x R%2. We can decompose v = st + (1 — s)vg where v, is a probability measure
(most likely not a div-curl Young measure itself) supported in A,.

Concerning the first moment of v, we may write

00 = [ =s [ m.onae)+ -5 [ @500 0) (317)
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where z/gl) is the projection of v, onto the first copy of R? of the product R? x R2. By introducing

r = [ pal) (3.18)
]RQ

we have A = sy + (1 — $)Ag, p = sady + (1 — s)BAg, and then

o -
s(6—a) (1—=5)(8—a)

Moreover, the commutation with the inner product yields the relation

Ao =

(BA—p), As= (p— ). (3.19)

Ap= /AqudV(p,Q) = as /QPTPdVS)(P) +6(1—s) /2prdVél)(p)- (3.20)
R R

We now use the commutation (3.2). Introduce

X, = /2ppTdV§1)(p)7 y=a,0 (3.21)
R
a convex combination of symmetric rank-one matrices. It is well-known that
Xy >0 y=a,p (3.22)

in the usual sense of symmetric matrices, i.e. that X, — )\,Y)\g is semi-definite positive. The relation (3.2)
becomes
Mp=X-p=asTr(X,)+B(1—s)Tr(Xp) (3.23)

where Tr designates the trace operator for square matrices. Similarly, the cost may be written in term of the
variable X, as follows:

saAy : Xa+ (1 —5)0Ay : Xg=salr(ApXa) + (1 —5)8Tr(Ayp Xp) (3.24)

from the relation Ay : Xy = Tr(AyX,), v = a, 5. Consequently, in secking a lower bound of the constrained
quasi-convex envelope, we are led to consider the mathematical programming problem

Xmi)r% C(Xa,Xp) = asTr(ApXa) + (1 — s)Tr(AypXs) (3.25)
a3
subject to the constraints

MNp=X-p=asTr(Xs)+ 81— s)Tr(Xg), Xy>AAL (3.26)

We first realize that the set of vectors (), p) for which the constraints yield a non-empty set, are precisely those
for which

asTr(AaAl) + B(1 = s)Tr(AgAg) < A-p (3.27)
i.e. if

Br=X-p—as\|> = B(1—5) s> >0 (3.28)
using that Tr(ApT) = X - p. This inequality, related to the state equation in (1.2), is the usual one obtained, for
instance, in the so-called compliance problem (see [32]). Notice that by using (3.19), B; may be factorized as fol-
lows: By = —s(1—35)(Ag—Aa)-(BAg—aXs). We now solve the mathematical programming problem (3.25)—(3.26)
in the diagonal and non-diagonal cases, respectively, highlighted in Remark 2.1.
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3.3.1. Case Ay, diagonal
We first focus on the diagonal situation A = diag(t1,1, —t1,1), for which the cost is simply

C(Xa X5) = 511 @5(Xa 1 = Xo) + 51 = )X~ Xoo)) (3.29)

under the constraints
sa(Xa1 + Xa22) + (1 = 95)B(Xp 11 + Xp22) = A p,

Xoni+ Xy > X+ X2, =07 y=0a,08 (3.30)
(Xy11 = A2 ) (Xy 02— A2 5) > (Xy 12 — Ayad2).

Let us first consider the point @ of Q for which ¢y 1 (x) > 0. Using the first constraint, we write that saX, 22 +
(1—-5)BXg22 =X p—saXai11+ (1 —5)3Xg11, so that the cost simply becomes

1
C(Xa, Xﬁ) = 1[)1’1 (SO[Xa,ll —+ (]. — S)ﬂXﬁJl) — 51[)1’1>\ cp. (331)
The minimum is then reached for X, 11 = max(A2 |, |\ |> — X, 22) since X, 11 > A2,. By using that
Xy22 2> )\372, the maximum is )\371. Consequently,
Xy = )\3,17 X202 > )‘3,27 7=, B (3.32)

The last constraint then provides the equality
Xy2 =MAy 2, Y=, 0. (3.33)

The cost is then, from (3.19),

a(Bh —p1)® | Blpr — al)? 1
X,, X5) = _ - p. 34
C( ) 1#1,1( sG—0)7 -5 -a) 5Y11A - p (3.34)
Similarly, the study of the case 11 1(x) < 0 leads to
X’y,ll Z A%,p X’y,22 = )\?27 X7,12 = )\'y,1>\'y,27 V= aQ, 67 (335>
and a cost equal to
a(Br2 —p2)® | Blp2 — als)? 1
X, X5) = — 1 . .
C( 3) wl,l( G- TU-9G-op +5viAp (3.36)

We then obtain the following partial result:
Proposition 3.1 (diagonal case). For any s € L>(Q) and (A, p) = (Vu, G) satisfying (3.12), the function

(B — p1)? B(p1 — aAr)? 1 L
m(s,\, p) = W“'( sB—a)2 | (1-s)(B— Q)Q) SlvialA o if (3.27)

+ oo else

(3.37)

is a lower bound for the constrained quasi-convexified CQW of W:

m(s, X\, p) < CQW (s, X, p). (3.38)
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3.3.2. Case Ay non-diagonal
We now assume that Ay, is of the form (2.8):

A _ (i 240
L) 0 =Y

so that the mathematical programming problem is now

( g EI; ) (3.39)

min C(Xa, X 3.40
Xqy11,X+,22,X5 12 ( @ B) ( )

with
C(Xa, Xg) = as[a(XaJl — Xa,22) + 2bXa712] + ﬁ(l — S)[(G(X@ll — Xﬁ722) + QbXB,lg)] (341)

and the constraint
sa(Xa1 + Xa22) + (1 = 95)B(Xp 11 + Xp22) = A p,

Xy + Xy > X2 + X2, =2 y=0a,08 (3.42)
(X%ll - )‘3,1)()(%22 - Ai,2) > (X%12 - )‘%1)‘%2)2-

With the change of variable Y, = X, — )\7)\3, the cost and the constraints are transformed into

min as(a(YaJl — Ya,gg) + 2bYa,12) + ﬁ(l — S)((G(Y@ll — Yﬁ722) + QbYﬁJg)) + BQ (343)
Yy 11,Y5,22,Y5 12
and
sa(Yo,11 + Ya2) + (1 —8)8(Ys,11 + Yp,22) = By, (3.44)
Y’y,ll + Y’y,22 > 07 Y'y,IIY'y,22 > Y’y2712ﬂ V= aaﬂa .
where the constants By and Bs are defined by (3.28) and
By = as (a()\i,l — )‘3,2) + 2[))\%1)\%2) + ﬁ(l — S) ((a()\%,l — )\%,2) + Qb)\g,l)\@g)), (345)

respectively. We first realize that the minimum of the linear cost is reached on the boundary of the convex sets
r, = {(Y’y,llay’y,227y’y,12) ER? Y, 11 >0, Yy 00 >0, Yy 11Y, 00 > Y»y2,12}7 Y=o, (3.46)

which implies necessarily the equality Y, 11Y, 20 = Y’Y2712' Therefore, we can introduce the new variables
Zy = (Z%H,Z%QQ)T so that Y, 11 = Z%H, Y 00 = 25722 and e, = %1 and then Z, 112,22 = €,Y, 12, Te-
ducing the problem to

min = C(Zy,ey) = as(a(Z2 11 — Z2 35) + 2beaZo 11 Z0,22)
Zy 11,2~ ,22,€~ ’ ’ (347)
+ B(L = 8)((a(Z3 11 — 25 92) + 2besZp1125,22)) + Bo

under the constraint
30‘(22,11 + 22,22) + (1 - S)ﬁ(zé,n + 25,22) = B. (3.48)
Introducing the Lagrangian L and the multiplier p

L(Zy,p) = C(Zy,€y) — p<30‘(Z§,11 + 22,22) + (1 - S)ﬁ(zé,n + Z§,22) - Bl)a (3.49)
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we arrive at the optimality conditions:

a be
Ape 2o =pZoy A, = ( " _g). (3.50)

The trivial solution is (Z, 11, Zy,22) = (0,0) leading to the value of the cost C(Z,,e,) = Ba. The other cases
lead to the resolution of a spectral problem: we obtain

T
p=—Va+b, Z, a7<bev,(a+ a2+b2)) (3.51)

and

T
p=Va2+b2 Z,=a, (bew,(a Va? +b2)) (3.52)

for any a, € R*. Now, writing that a(Z2 |, — Z2 ) +2bey Z 112,20 = Ay, Z~ - Z-, we may deduce from (3.50)
that

C(Zy,ey) =asAy e, Zo - Lo+ Bl —5)Ay.c, Zs- Zs + By

3.53
— (sl Zal? + B(1 — )| Z5P) + By (3.53)

and then conclude from the constraint (3.48) that the cost given by (3.47) is C(Z.,, ey) = pBy + Ba. Therefore,
the cost, independent of ¢, is obtained for the lowest eigenvalue (independent here of the sign of a):

min C(Z,, ey) = —v/a? + b?B1 + Bs (3.54)
for Z, = a(be, —(a + Va2 + b2))T. The constraint (3.48) then gives the relation
(asa+a3(1—s)B)(b” + (a+ Va2 +b?)?) = By. (3.55)

We then observe that the cost for this non trivial solution is lower (except in the case By = 0, i.e. the equality
in (3.27)). It is also important for the search of laminates (see Sect. 3.4) to remark that the value of the cost is
unchanged if Z, = 0 or Zg = 0. Precisely, (3.53) remains true. Finally, we check that for b = 0, we recover the
cost of the diagonal case. Consequently, the partial result is as follows:

Proposition 3.2 (non-diagonal case). For any s € L*°(Q) and (X, p) = (Vu, G) satisfying (3.12), the function

1
3|~V 00 A aslaal? - 801 = 9IASPR) + vnatasi + (1= )933.)

— 1 a(asAl o + (1= 8)BA35) + 201 2(asAa1da2 + (1 — 8)BAg1A5,2) if (3.27)

+ 00 else
(3.56)
is a lower bound for the constrained quasi-convex envelope CQW of W :

m(s, X\, p) < CQW (s, X, p). (3.57)

Ay =AM (8,0,p), v = a, B are defined by (3.19).
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3.4. (Div-curl) laminates and relaxed formulation

We now study whether or not the optimal measure may be recovered by laminates. This would imply that
the constrained quasi-convexified is reached. Except for special examples (like the compliance case, i.e. Ay = Id
— which exhibits first and second order laminates [32]), the search of explicit laminates is difficult. In the case
studied here, the situation is actually straightforward because the function m is zero out of the support of the
function 1. Let us discuss the non-diagonal case.

In the set D, the material 3 is imposed so that the density s is equal to zero. Therefore, the search of laminates
is meaningful only in /D. According to the computation of Section 3.3.2, the optimal second moments are of

the form
Vi —P12(11 + /YT, + U7 o)
X, = AL+ a2 b L (3.58)

—P1a(in + /Ui +¥Te)  (Pra [P 9 ,)?

leading to the cost —, “P%J + w%’QBl + By. But, on /D, the radial function v is zero so that,

X, =220

v

x e QD (3.59)

i.e. in particular
2
Xv,n:/p?dlél’“(m) = </ pidl/#"(pi)) =(\0)% i=1,.2 (3.60)
R R
(

where V’Yl’i) denotes the projection of (1) onto the ith copy of R?. From the strict convexity of the square

function, this implies that VA(YM) =0, b€

v = Gann, VST =0 e (3.61)

s(B—a) (1-s)(B—a)

Notice that this is compatible with the third equality X, 12 = A, 1AL ,. This also implies (see for instance (3.55))
the equality in (3.27), i.e. that

By =X-p—as|\|* = B(1 —s)|\s]* = 0. (3.62)
Consequently, the optimal value m(s, A, p) may be recovered by the following measure

V= 50(ara.ra) T (1= 8)0(8x5.05) (3.63)
which is a first order (div-curl) laminate since the sufficient condition (8Ag —a,) - (Ag — Aq) = 0 of Lemma 3.2
is precisely equivalent to B; = 0. We therefore may establish the following relaxation:

Theorem 3.1. The variational problem

(RP) : miré/m(s,Vu,G)dac (3.64)
s,u, Q

subject to
s € L*(£,]0,1]),s = 0 in D U 09, / s(x)dx = L|Q|,
Q

uGHl(Q), u=wugonly, pVu-v=gonTy, (3.65)

G € (L*(Q)?, divG =0 wedkly inQ, G = BVuinD

where m s defined by (3.56) is a relazation of (VP) in the sense that the minimum of (RP) exists and equals
the infimum of (V P). Moreover, the underlying Young measure associated with (RP) can be found in the form
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of a first order laminate whose direction of lamination are given explicitly in terms of the optimal solution
(u, G): the normal is orthogonal to A\g — Ay

The above formulation may be simplified by taking into account that B; = 0. Precisely, we use (3.19) to
express By = —s(1 — s)(BAg — ala)(Ag — Aa) = 0 as follows

(p=A"(HN) - (p=AT(5)A) =0 (3.66)
in terms of the harmonic and arithmetic mean of «, 8 defined by:

of

A(s) = ———— AT (s) = 1—235). 3.67
0= s N @=astp-s) (3.67)
Therefore, Theorem 3.1 is equivalent to
Theorem 3.2. The variational problem
(RP) : mircl;/ F(s,Vu,G)dx (3.68)
S, u Q

subject to
s € L>®(Q,[0,1]),s =0in DU IQ, / s(x)dx = L|Q|,
Q

ue HY(Q), u=wugonly, BVu-v=gonTy, (3.69)
G e (L*(R))?, divG =0 weakly inQ, G = FVuinD,

(G — A" (5)Vu) - (G — AT (s)Vu) = 0 in L*(Q),

where F', deduced from m, is defined

1
F(s,A\,p) = 2 |11 (asAZ 1+ (1=5)BA% 1) — 11 (asA? 5+ (1—8)BA% 5) + 201 2(@sAa,1 Xa,2 + (1 — S)W\ﬁ,l)\ﬁ,z)}

(3.70)
is a relazation of (V P) in the sense that the minimum of (RP) exists and equals the minimum of (V P).

3.5. A final transformation

The above analysis provides an explicit relaxation (ﬁ), in terms of a minimum of a new functional over
a convex set. This formulation is not standard since the state equation (1.2) under a usual divergence form
has disappeared. This state equation is incorporated in the constraints (3.69). This fact explains why a direct
numerical approximation (a priori, the nonlinear problem (ﬁ) cannot be solved analytically) of this problem
is difficult. In order to overcome somehow this point, we stress that the relation (3.66) is equivalent to

’ — (M)sz (3.71)

Therefore, by introducing the additional variable ¢(x) € R? such that [t| = 1, we may write p = G(z) for all
x €  under the form (we use that A~ (s) < AT (s) for all s € (0,1))

AF(s) + A7 (s) At AT (s) — A~ (s)

. . It = (5,2, ). (3.72)

p:

We have
AT(s) + A (s) _ 203+ 5(1 — 5)(8 — a)?

2 2(a(l —s) + Bs)

= A(s), (3.73)
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and

AT (s) = A7 (s)  s(1—9)(B—a)?
= = B(s). 3.74
2 2ol —s) 18— 2 (3.74)
The relation div G = 0 then permits to recover u as the solution of a monlinear equation under a divergence
form (having in mind that A = Vu):

div(A(s)Vu + B(s)|Vul|t) =0, in€Q,
U = ug, on Iy, (3.75)
OVu-v =g, onIy.

The study — out of the scope of this work — of this apparently non standard elliptic equation would be very
interesting. We assume here that (3.75) is well-posed. Note that the nonlinear part vanishes where s takes the
values in {0, 1} since B(0) = B(1) = 0. In such a case, (3.75) is nothing but (1.2). The relaxed problem is then
equivalent to the following one, easier to solve numerically, although nonlinear in % and non standard:

Theorem 3.3. Let F' and ¢ be defined respectively by (3.70) and (3.72). The following formulation
(RP) : mitn I(s,t) = / F(s,Vu, ¢(s,t, Vu))dx (3.76)
5 Q
subject to the constraints

s € L*($,]0,1]),s =0inD U 89,/ s(z)dx = L|Q,
Q

te LOO(QaR2)7 |t| =1, (3.77)
uw€ H'(Q), u=wuyonly, pAVu-v=gonTy,
div ¢(s,t, Vu) = 0 weakly in Q

is equivalent to the relaxation (RP). In particular, (RP) is a full well-posed relaxation of (V P).

Remark 3.1. Using the fact that the density s is identically zero on {x € Q, ¥ (x) # 0}, one may simplify a
bit more the integrand F'. Using (3.19) and (3.72), we explicitly write A, in terms of X, s and ¢:

20—-(1=s)(B-a), (1=s)(B-q)
Ao = A— Alt,
2ats(0-a) " 2atsp_ay -
Ne = s(ﬁ—a)+2a)\+ s(B— a) Al '
P 2t s(-a)" 2ot s(B-a)
and compute that
F(0.0,6(0.1,2) = 2v1 1 (¥ — M) + Btr oA o (3.79)
Since s =0 in {x € Q, ¥(x) # 0}, we deduce that (taking A = Vu)
F (s, V. 6(s, £, Vu) = L 4vn 1 (0 — u3) + B o (3.80)

which is nothing but the integrand of 7. Therefore, the relaxation of (P) is simply apparent through the
nonlinear state equation (3.75).
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4. NUMERICAL STUDY

We illustrate in this section our theoretical results by some numerical developments. We first provide some
details about the numerical resolution of the relaxed formulation (RP), and then show some numerical examples.

4.1. Numerical resolution of the relaxed problem (RP)

Since u is completely determined by s and ¢, the minimization of the cost is over s and ¢ using a first order
gradient method. We compute explicitly the first variation of I with respect to s and t in the direction Js
and dt, defined (formally) as:

I I — I
Or(s.t) gy Lt 150 o, )
0s n—0 n
and O1(s,t I(s.t +nét) — I(s,t
(5:8) gy gy L2EWO 2158 ) e (4.2)
ot n—0 n

Theorem 4.1. The first variation of I with respect to s and t in the direction s and 0t exist and are given
respectively by

W bs = / F (s, Vu, ¢(s,t,Vu)) - s da +/ (A,S(S)Vu -Vp+ B(s)|Vult - Vp) ~osdx (4.3)
O Q
and 47
Ww: / Fo(s, Vi, @(s.t, Vu) - 6t d + / B(s)|Vuldt - Vp dz (44)
Q Q

where p € Hi, (Q) = {v e H'(Q),v =0 onTo} solves the adjoint problem

Vu- Vv

/QEU(S, Vu, ¢(s,t,Vu)) - v dz + /Q (A(S)Vv -Vp + B(S)Wt . Vp) dz =0, (4.5)

for all v in Hllo (Q). As and B s denote the partial derivative of A and B with respect to s and F the partial
derivative of F' with respect to t.

Notice that the adjoint formulation (4.5) is linear in contrast with the formulation associated with w«, which
reads as follows,

/ (A(S)Vu - Vo + B(s)|Vult - Vv) dz = / gvdo, v e H} () (4.6)
Q r,
using that s = 0 on 9 and that A(0) = 3, B(0) = 0.

Proof of Theorem 4.1. The proof is standard. We introduce the Lagrangian

L(s,t,u,p) = /QF(S, Vu, (s, t, Vu))dx + / (A(S)Vu -Vp+ B(s)|Vult - Vp> dz — / gpdo (4.7)

Q r,

and write that
dE(S7 t? u’ p)

dL(s,t,u,p) dL(s,t,u,p)
SO P se i TS )
(s, 1) ot

(55, 6t) =
(95, 01) ds at

- 6t. (4.8)

Formally, we have

df(s,t,up) oo OL(s,tup) oo <3£(s,t,u,p) du ,5S> n <8E(s,t,u,p) op ,5S>.

ds s 0s ds Op " Os (4.9)

ou " Os
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As usual, since L is linear in p and since u is the solution of (4.6), the third term is equal to zero. The solution p
is then determined in order that the second term be also equal to zero. We write (for simplicity, we write du
instead of (Qu/0s) - ds)

(PELD) 51— | oo, P 005,90 o+ |

au Q

Vu - Vou

(A(S)V(Su -Vp + B(S)7|Vu|

t- Vp) dz (4.10)

for all du € H%O (Q) leading to the linear weak formulation of p € H%O (Q). In particular, we check that Vp-v =0
on 09/Ty. The variation of £ with respect to s is then given by (4.3). Relation (4.4) is obtained in a similar
way. ]

Theorem 4.1 leads to the descent directions

ds = —F s(s, Vu, ¢(s,t, Vu)) — (A,S(S)Vu -Vp+ B (s)|Vult - Vp) in Q (4.11)
and
ot =— (Et(s, Vu, ¢(s, t, Vu)) + B(s)|Vu|Vp> in Q. (4.12)
Moreover, since |t| = 1, we introduce the variable 6§ and write ¢t = (cos(),sin(d)), in which case (4.12) is
replaced by
00 = —sin(0)(6t)1 + cos(0)(dt)2  in €. (4.13)

The volume constraint on s is taken into account through a classical and efficient way by introducing an
explicit Lagrange multiplier (we refer to [21]). The algorithm for the variable s is therefore

RONSES
{ € L>=(0, [0, 1]), (4.14)

S — s0) 1 ef, (51058, £(s)) = sk(1— 5B, k>0

where the positive value f(s*)) is introduced in order to enforce s**1) to be in [0, 1] and € a positive real small
enough. The descent algorithm for the field 6 is

00 ¢ L, R), %D =9®) L 50 k>0, (4.15)

At each step k of these two algorithms, the solution u of the nonlinear system (3.75) is solved from (4.6) by
using the Newton method:

u’ € H(Q), u® = ug on Ty,

/ (A(s(k))Vu”'|r1 Vo + B(s™) (4.16)
Q

vun-l-l VL t(k)

[Vunr| ) Vv)dx = /F gvdo, Yn >0, Vv € H%O(Q)'

g9

This formulation and the linear equation (4.5) for p are solved using continuous finite elements of order one
approximating the space H%O (©) by the following finite dimensional space:

HIl‘g,h(Q) = {Uh,vh S Co(ﬁ),vh|Q S Ql(Q), VQ € Qpn, vy, = 0on Fo} (4.17)

where 1(Q) denotes the space of polynomial functions of degree < 1 on @, the notation (Qn)n>o stands for a
regular family of quadrangulations characterized by the space step h such that Q = Ugeq, ®@. We highlight that
the corresponding stiffness matrix is identical for (4.5) and (4.16). The lips of the crack 7, assumed rectilinear,
are composed of edges of elements in @Q)p,. Besides, as proved in [12] (Thm. 4.2, p. 96), (4.17) implies the a priori
estimate Ty, — To.pn| = O(R'™7), ¥ > 0 if Ty, designates the numerical approximation of the energy release
rate Ty.
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FIGURE 4. Example of quadrangulation of the unit square with a refinement on the support
of the radial function ¢» (52 x 52 finite elements) around the point F = (1/2,1/2).

4.2. Numerical experiments

For simplicity, we consider in the sequel the domain = (0,1)? with the crack v = [0.5,1] x {a} (a € (0,1)).
Iy is divided into two parts ['gy UTlga: To1 = {0} x [0,1] = {x = (z1,22) € R%, 21 = 0,29 € [0,1]} where
up =0 and 'y o = {1} x [0.5,0.8] where ug = 0.5. There is not normal load: 'y = 0.

The examples that we describe in the sequel correspond to the non-diagonal case (2.8) which imposes the
material to be constant around F, D = {x € Q, |l — F|| < r3} (see Rem. 2.1, item (i)). In order to limit
the measure of this set, we take r3 small enough with respect to the size of the domain, precisely r3 = 0.05.
The radial function 1 = (¢1,0) is then defined by (2.9) with r1 = 0.015 and ro = 0.045 < r3. Therefore, 1,
is constant equal to vp; = —1 on {x € Q, ||z — F|| < 71} (we recall that this permits to avoid the singularity
of u on F). These small values limit the measure of D but enforces a very fine mesh where ¢; > 0 in order to
have an accurate approximation of 7y,. We therefore use a non uniform regular quadrangulation (Q)n>0 of Q
with a refinement around the crack point. For F' = (1/2,1/2), an example is given on Figure 4, corresponding
to 52 x 52 elements (and 2916 degrees of freedom). In practice, 20 x 20 elements on {x € Q, ||z — F|| < 2} are
sufficient to obtain an accurate and invariant (with respect to 71 and 7o) approximation of the energy release
rate. In the sequel, a mesh composed of 82 x 82 quadrangles will be used.

We discuss the optimal distribution of the two materials with respect to the values of (o, 3) and a. Let
us first take (o, 8) = (1,2) and L = 2/5 and a = 1/2 so that F' = (1/2,1/2). The iso-value of the density
s°Pt obtained after 1000 iterations is depicted in Figure 5. The algorithm is initialized with 6(®) = 0 on Q
and s(9) = 0 on DU ON and constant elsewhere which does not privilege any location for w. The constant is
determined in order to satisfy the volume constraint. At convergence, the cost is I(s°P', t°Pt) = 2.87x 10~2. This
distribution permits to divide by three the cost from the initial guess. The evolution of the cost with respect to
the iteration is given in Figure 6-left. At each iteration, around five iterations of the Newton algorithm permit
to solve the nonlinear system (3.75) (the Newton algorithm is stopped as soon as the residual is lower than
10719). The corresponding solution is given in Figure 6-right. As expected the soft material is located around
the part of the boundary where the displacement is imposed. This has the effect to absorb partially the load
and reduce his influence on the crack zone. We also observe that the density is almost a characteristic function,
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FIGURE 5. (o, 3) = (1,2) - L=2/5; F = (1/2,1/2) — iso-value of the density s°P* on the crack
domain Q with s°P* =0 on 9.
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FIGURE 6. (o, ) = (1,2) ~ L =2/5; F = (1/2,1/2) - evolution of the relaxed cost I(s*), )
w.r.t. the iteration (left) and final solution u on € (right).

i.e. a (0,1) function. We check a posteriori that the relation (3.66) holds: we obtain

[(p = A7 (sP)A) - (p = AT (PN || 12(@) & 1.32 x 107°. (4.18)

Moreover, we obtain
o= AT (") A 20) #3183 x 1074, [[p— A7 (sP)A||12(0) = 4.21 x 1072, (4.19)
We recall that A\~ = \* for a characteristic function. We also observe that we obtain a similar cost (I(s°P*, t°P*) ~

2.84 x 1072) when the constraint s = 0 is relaxed on the boundary, unnecessary here since I, is empty. The
corresponding distribution is given in Figure 7.

As already observed in several different situations ([25] for the heat equation and [20,24,26] for the wave
equation), the results are qualitatively different when the gap 3 — « is greater. Figure 8 gives the iso-values
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FIGURE 7. (o, 8) = (1,2) — L =2/5; F = (1/2,1/2) — iso-value of the density s on the crack
domain with s free on 0f.
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FIGURE 8. (o, 3) = (1,10) - L =2/5; F = (1/2,1/2) — iso-values of the density s on the crack domain.

of the optimal density for (a, 3) = (1,10). The cost is I(s°P!, t°P) ~ 1.15 x 10~ 2. This (local) optimal density is
no more a (0, 1)-function. The soft material « is however mainly concentrated around the point F' and the part
of the boundary I'g » where u is imposed. This observation justifies the need of relaxation for this problem. In
this case, the convergence of the algorithm is slower (Fig. 9-left). Moreover, at each step, the Newton method
requires more iterations (around 8): the term B(s) in (3.75) is greater in that case so that the nonlinear term
is not negligible with respect to the linear one. Moreover, as expected, the equality (3.66) still holds

1(p = A~ (sPIN) - (p — AT (s°PY)A) | L2y =~ 1.32 x 107 (4.20)
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FIGURE 9. (a,) = (1,10) — L = 2/5; F = (1/2,1/2) — relaxed cost I(s*) ¢(*)) w.r.t. the
iteration (left) and final solution w on £ (right).
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FIGUure 10. (o, 8) = (1,10) — L = 2/5; F = (1/2,1/2) — iso-values of the components of the
vector A\g — Aq.

but not for the arithmetic nor the harmonic mean:
[p = AT (sP)N||2) & 821 x 1071, [[p— A7 (s")A[|12(q) ~ 4.09 x 107" (4.21)

If we assume a priori for instance the arithmetic mean, i.e. if we simply replace in (P) X, by s and optimize
with respect to s, then we obtain a greater cost equal to 4.39 x 10~2. The corresponding solution u on the crack
domain is depicted in Figure 9-right.

It is then necessary to associate with this optimal composite material a workable shape w, i.e. to construct
a sequence of characteristic function, say X,,u), for which 7y, (X, k) ) converges toward I(s°P*,¢°P'). A simple
approach, using a local mean argument on s, is proposed in [20] to approximate such a sequence. Further, it
would be interesting to use the information of the normal of the first-order laminate at each point given by
Ag — Ao (we refer to [29] for such analysis in the context of Homogeneisation): iso-values of the vector A\g — A,
are given in Figure 10.
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FIGuRrE 11. (o, () = (1,2) - F = (1/2,1/3) — iso-values of the density s for L = 2/5 (left) and
L =1/5 (right).

Finally, similar results are observed for different value of @ and L. For a = 1/3 corresponding to
F = (1/2,1/3), Figure 11 represents the optimal density obtained for the volume fraction L = 2/5 and L = 1/5.
For L = 2/5, we check that the cost I(s,t) ~ 1.02 x 1072 is lower in that case since the crack point is far away
from the load support I'g 2.

We also observe that the energy release rate is reduced but not arbitrarily small in spite of the important
degree of freedom contained by the shape of w. Therefore the singularities are not canceled. We suspect that
this is due to our mechanical assumption around the point F'. This also suggests, quite surprisingly, that the
optimal distribution around the crack point is not composed only of the harder material.

5. CONCLUDING REMARKS

To our knowledge, this work is the first one which attempts to minimize the energy release rate, and therefore
to control the crack growth, with respect to the conductivity coefficient. This energy release rate presents the
originality to be expressed as a scalar product in terms of a non definite positive matrix, in contrast with
usual examples such as the energy itself. This apparent difficulty in terms of relaxation is compensated by the
mechanical assumption around the crack point. Thus, the variational non-convex approach coupled with Young
measures permits to derive an explicit relaxed formulation (RP) of the optimal design problem, involving a non-
Carathéodory quasi-convexification. Moreover, the optimal measure is a first-order laminate. Following [33],
(RP) is transformed into an equivalent relaxed formulation (RP) involving an original nonlinear divergence-
form system. The numerical experiments suggest that an optimal distribution permits to reduce significantly
(with respect to an isotropic one) the cost. However, the optimal cost is not arbitrarily small so that the
singularities around the crack tip are not canceled in contrast with [16,17] where the control variable is an
additional boundary load. This phenomenon is very likely due to the condition (necessary in our context) which
imposes the conductivity to be constant around the crack tip.

This preliminary work would merit to be enriched in several directions. For instance, it is worth to replace
the conductivity system by the elastic one (and thus take into account the contact condition on the crack v as
it is done in [16,17] using [7]). For the elasticity operator, the full relaxation process is still an open problem.
However, the fact that the integrand of the cost 7, is non zero only where the material is uniform may be
helpful in the search of div-curl laminates as it is in this work. Moreover, it would be interesting to obtain an
optimal distribution independent of the normal load g € L*(I'y) and thus consider an inf-sup problem of the
type inf x SUp(g.r,) Ty. Similarly, in view of the growth of the point F', it would be interesting to minimize the
rate independently of the length of the crack, assumed straight. Alternatively, following the notion of Dynamic
Material introduced recently in [19], one may assume that the conductivity evolves with respect to the crack
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growth along €, then solve a sequence of problem (P,), and get a non cylindrical optimal distribution of the
phases o and 3. Finally, we also plan in the near future to compare the numerical results derived from this
relaxation approach with a more direct one based on level set method (we refer to [4,6,21]). In this direction,
we mention the recent work [2] in the framework of damage mechanic.
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