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CONTROLLABILITY OF 3D INCOMPRESSIBLE EULER EQUATIONS
BY A FINITE-DIMENSIONAL EXTERNAL FORCE

Hayk Nersisyan1

Abstract. In this paper, we study the control system associated with the incompressible 3D Euler
system. We show that the velocity field and pressure of the fluid are exactly controllable in projections
by the same finite-dimensional control. Moreover, the velocity is approximately controllable. We also
prove that 3D Euler system is not exactly controllable by a finite-dimensional external force.
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1. Introduction

Let us consider the controlled incompressible 3D Euler system:

u̇+ 〈u,∇〉u+ ∇p = h+ η, div u = 0, (1.1)

u(0, x) = u0(x) (1.2)

where u = (u1, u2, u3) and p are unknown velocity field and pressure of the fluid, h is a given function, u0 is an
initial condition, η is the control taking values in a finite-dimensional space E, and

〈u,∇〉v =
3∑

i=1

ui(t, x)
∂

∂xi
v.

We assume that space variable x = (x1, x2, x3) belongs to the 3D torus T
3 = R

3/2πZ
3.

The question of global well-posedness of 3D Euler system continues to be one of the most challenging problems
of fluid mechanics. However, the local existence of solutions is well known (e.g., see [15,16]). Moreover, Beale
et al. [3] proved that under the condition

∫ T

0

‖ rotu(t)‖L∞dt <∞

the smooth solution exists up to time T .

Keywords and phrases. Controllability, 3D incompressible Euler equations, Agrachev-Sarychev method.
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In this paper, we show that for an appropriate choice of E, the problem is exactly controllable in projections,
i.e., for any finite-dimensional subspaces F,G ⊂ Hk and for any û ∈ F, p̂ ∈ G there is an E-valued control η
such that problem (1.1), (1.2) has a solution (u, p) on [0, T ] whose projection onto F ×G coincides with (û, p̂)
at time T . We also prove that the velocity u is approximately controllable, i.e., u(T ) is arbitrarily close to û.
From equation (1.1) it follows that the pressure can be expressed in terms of the velocity, so we can not expect
to control approximately the pressure and the velocity simultaneously. The proofs of these results are based on
a development of some ideas from [1,2,12,13].

Let us mention some earlier results on the controllability of the Euler and Navier–Stokes systems. The exact
controllability of Euler and Navier–Stokes systems with control supported by a given domain was studied by
Coron [5], Fursikov and Imanuvilov [8], Glass [9], and Fernández-Cara et al. [7]. Agrachev and Sarychev [1,2]
were first to study controllability properties of some PDE’s of fluid dynamics by finite-dimensional external force.
They proved the controllability of 2D Navier–Stokes and 2D Euler equations. Rodrigues [11] used Agrachev–
Sarychev method to prove controllability of 2D Navier–Stokes equation on the rectangle with Lions boundary
condition. Later Shirikyan [13] generalized this method to the case of not well-posed equations. In particular,
the controllability of 3D Navier–Stokes equation is proved.

Notice that the above papers concern the problem of controllability of the velocity. In this paper, we first
develop the ideas of these works to get the controllability of the velocity of 3D Euler system. One of the
main difficulties comes from the fact that the resolving operator of the system is not Lipschitz continues in the
phase space. We next deduce the controllability of the pressure from that of the velocity with the help of an
appropriate correction of the control function.

We also treat the question of exact controllability of 3D Euler equation. In [14], Shirikyan shows that the
set of attainability AT (u0) of 2D Euler equation from initial data u0 ∈ Cs at time T > 0 cannot contain a ball
of Cs. We show that the ideas of [14] can be generalized to prove that the set A(u0) = ∪TAT (u0) also does not
contain a ball in 3D case. In particular, 3D Euler equation is not exactly controllable.

The paper is organized as follows. In Section 2, we give a perturbative result for 3D Euler system. In
Sections 3 and 4, we formulate the main results of this paper, which are proved in Sections 5 and 6. Section 7
is devoted to the problem of exact controllability.

Notation. We set

H =

{
u ∈ L2 : div u = 0,

∫
T3
u(x)dx = 0

}
·

Let us denote by Π the orthogonal projection onto H in L2. Let Hk be the space of vector functions u =
(u1, u2, u3) with components in the Sobolev space of order k, and let ‖ · ‖k be the corresponding norm. Define
Hk

σ := Hk∩H . The Stokes operator is denoted by L := −ΠΔ, D(L) = H2
σ. For any vector n = (n1, n2, n3) ∈ R

3

we denote |n| := |n1| + |n2| + |n3|.
Let JT := [0, T ] and X be a Banach space endowed with the norm ‖ · ‖X . For 1 ≤ p < ∞ let Lp(JT , X) be

the space of measurable functions u : JT → X such that

‖u‖Lp(JT ,X) :=
(∫ T

0

‖u‖p
X ds

) 1
p

<∞.

The space of continuous functions u : JT → X is denoted by C(JT , X).

2. Perturbative result on solvability of the 3D Euler system

Let us consider the Cauchy problem for Euler system on the 3D torus:

u̇+ 〈u,∇〉u+ ∇p = f(t), div u = 0, (2.1)

u(0, x) = u0(x). (2.2)
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System (2.1), (2.2) is equivalent to the problem (see [15], Chap. 17)

v̇ +B(v) = Πf(t),

v(0, x) = Πu0(x),

where v = Πu, B(a, b) = Π{〈a,∇〉b} and B(a) = B(a, a). We shall need the following standard estimates for
the bilinear form B:

‖B(a, b)‖k ≤ C‖a‖k‖b‖k+1 for k ≥ 2, (2.3)

|(B(a, b), Lkb)| ≤ C‖a‖k‖b‖2
k for k ≥ 3, (2.4)

for any a ∈ Hk
σ and b ∈ Hk+1

σ (see [4]).
Let us consider the problem

u̇+B(u + ζ) = f(t), (2.5)

u(0, x) = u0(x). (2.6)

Theorem 2.1. Let T > 0 and k ≥ 4. Suppose that for some functions v0 ∈ Hk
σ , ξ ∈ L2(JT , H

k+1
σ ) and

g ∈ L1(JT , H
k
σ) problem (2.5), (2.6) with u0 = v0, ζ = ξ and f = g has a solution v ∈ C(JT , H

k
σ). Then there

are positive constants δ and C depending only on the quantity

‖v‖C(JT ,Hk) + ‖ξ‖L2(JT ,Hk)

such that the following statements hold.

(i) If u0 ∈ Hk
σ , ζ ∈ L2(JT , H

k+1
σ ) and f ∈ L1(JT , H

k
σ) satisfy the inequalities

‖v0 − u0‖k−1 < δ, ‖ζ − ξ‖L2(JT ,Hk) < δ, ‖f − g‖L1(JT ,Hk−1) < δ, (2.7)

then problem (2.5), (2.6) has a unique solution u ∈ C(JT , H
k
σ).

(ii) Let
R : Hk

σ × L2(JT , H
k+1
σ ) × L1(JT , H

k
σ) → C(JT , H

k
σ)

be the operator that takes each triple (u0, ζ, f) satisfying (2.7) to the solution u of (2.5), (2.6). Then

‖R(u0, ζ, f) −R(v0, ξ, g)‖C(JT ,Hk−1) ≤ C
(‖v0 − u0‖k−1 + ‖ζ − ξ‖L2(JT ,Hk) + ‖f − g‖L1(JT ,Hk−1)

)
.

(iii) Let ζ ∈ C(JT , H
k) and f ∈ C(JT , H

k−1), and let Rt be the restriction of R to the time t. Then R· is
Lipschitz-continuous in time, i.e.,

‖Rt(u0, ζ, f) −Rs(u0, ζ, f)‖k−1 ≤M |t− s|,

where M depends on ‖R(u0, ζ, f)‖C(JT ,Hk), ‖ζ‖C(JT ,Hk) and ‖f‖C(JT ,Hk−1).

Proof. We seek a solution of (2.5), (2.6) in the form u = v+w. Substituting this into (2.5), (2.6) and performing
some transformations, we obtain the following problem for w:

ẇ +B(w + η, v + ξ) + B(v + ξ, w + η) +B(w + η) = q(t, x), (2.8)

w(0, x) = w0(x), (2.9)
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where w0 = u0 − v0, η = ζ − ξ and q = f − g. By bilinearity of B, (2.8) is equivalent to the equation

ẇ +B(w) + B̃(w, η) + B̃(w, v) + B̃(w, ξ) = q(t, x) − (B(η) + B̃(v, η) + B̃(ξ, η)), (2.10)

where B̃(u, v) = B(u, v) +B(v, u). It follows from (2.7) that we can choose δ > 0 such that the right-hand side
of (2.10) and initial data w0 are small in L1(JT , H

k−1
σ ) and Hk−1

σ , respectively. Hence, by the standard theorem
of existence (see [15,16]), system (2.10), (2.9) has a unique solution w ∈ C(JT , H

k−1
σ ). From the embedding

H2
σ ↪→ L∞ we deduce that

sup
t∈[0,T ]

‖ rotu(t, ·)‖L∞ <∞. (2.11)

In view of u0 ∈ Hk
σ , ζ ∈ L2(JT , H

k+1
σ ), f ∈ L1(JT , H

k
σ) and (2.11), the Beale–Kato–Majda theorem (see [3])

implies u ∈ C(JT , H
k
σ).

To prove (ii), let us get an a priori estimate for w. Multiplying (2.10) by Lk−1w and using (2.3), (2.4), we
obtain

1
2

d
dt

‖w‖2
k−1 ≤ C

(
‖w‖3

k−1 + ‖w‖2
k−1

(‖η‖k + ‖v‖k + ‖ξ‖k

)
+ ‖w‖k−1

(‖q‖k−1 + ‖η‖k(‖η‖k−1 + ‖v‖k + ‖ξ‖k)
))
. (2.12)

Integrating (2.12), we obtain for any t ∈ JT

‖w(t)‖2
k−1 ≤ C‖w‖C(Jt,Hk−1)

[∫ t

0

(
‖w‖2

k−1 + ‖w‖k−1

(‖η‖k + ‖v‖k + ‖ξ‖k

))
ds+A

]
, (2.13)

where A = ‖w0‖k−1 +
∫ T

0

[‖q‖k−1 + ‖η‖k(‖η‖k−1 + ‖v‖k + ‖ξ‖k)
]
ds. This implies that for any τ ∈ Jt we can

estimate ‖w(τ)‖2
k−1 by the right hand side of (2.13). Thus, we get

‖w‖2
C(Jt,Hk−1) ≤ C‖w‖C(Jt,Hk−1)

[ ∫ t

0

(
‖w‖2

k−1 + ‖w‖k−1

(‖η‖k + ‖v‖k + ‖ξ‖k

))
ds+ A

]
. (2.14)

Dividing (2.14) by ‖w‖C(Jt,Hk−1), we get

‖w(t)‖k−1 ≤ ‖w‖C(Jt,Hk−1)

≤ C

[ ∫ t

0

(
‖w‖2

k−1 + ‖w‖k−1

(‖η‖k + ‖v‖k + ‖ξ‖k

))
ds+A

]
.

The Gronwall inequality implies

‖w(t)‖k−1 ≤ A1 + C1

∫ t

0

‖w(s, ·)‖2
k−1ds,

where A1 = C1A and C1 is a constant depending on ‖v‖C(JT ,Hk) + ‖ξ‖L2(JT ,Hk). Another application of
Gronwall inequality gives that

‖w(t)‖k−1 ≤ A1

1 − C1A1t
≤ 2A1 for any t ≤ 1

2C1A1
· (2.15)
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We can choose δ > 0 such that 1
2C1A1

≥ T . From the definition of A1 and (2.15) we deduce that

‖w‖C(JT ,Hk−1) ≤ C(‖w0‖Hk−1 + ‖η‖L2(JT ,Hk) + ‖q‖L1(JT ,Hk−1)). (2.16)

Statement (ii) is a straightforward consequence of (2.16).
Let us prove (iii). Integrating (2.5) over (s, t) and using (2.3), we get

‖u(t) − u(s)‖k−1 ≤
∫ t

s

‖f(τ) −B(u(τ) + ζ(τ))‖k−1dτ ≤M |t− s|.

This completes the proof of Theorem 2.1. �

3. Controllability of the velocity

Let us consider the controlled Euler system:

u̇+B(u) = h(t) + η(t), (3.1)

u(0, x) = u0(x), (3.2)

where h ∈ C∞([0,∞), Hk+2
σ ) and u0 ∈ Hk

σ are given functions, and η is the control taking values in a finite-
dimensional subspace E ⊂ Hk+2

σ . We denote by Θ(h, u0) the set of functions η ∈ L1(JT , H
k
σ) for which (3.1),

(3.2) has a unique solution in C(JT , H
k
σ). By Theorem 2.1, Θ(h, u0) is an open subset of L1(JT , H

k
σ). To simplify

the notation, we write R(·, 0, ·) = R(·, ·). Let us recall the definition of controllability. Suppose X ⊂ L1(JT , H
k
σ)

is an arbitrary vector space.

Definition 3.1. Equation (3.1) with η ∈ X is said to be controllable at time T if for any ε > 0, for any
finite-dimensional subspace F ⊂ Hk

σ , for any projection PF : Hk
σ → Hk

σ onto F and for any functions u0 ∈ Hk
σ ,

û ∈ Hk
σ there is a control η ∈ Θ(h, u0) ∩X such that

PFRT (u0, η) = PF û,

‖RT (u0, η) − û‖k < ε.

Let us recall some notation introduced in [1,2,12]. For any finite-dimensional subspace E ⊂ Hk+2
σ , we denote

by F(E) the largest vector space F ⊂ Hk+2
σ such that for any η1 ∈ F there are vectors η, ζ1, . . . , ζn ∈ E and

positive constants α1, . . . , αn satisfying the relation

η1 = η −
n∑

i=1

αiB(ζi). (3.3)

The space F(E) is well defined. Indeed, as E is a finite-dimensional subspace and B is a bilinear operator, then
F(E) is contained in a finite-dimensional space. It is easy to see that if subspaces G1 and G2 satisfy (3.3), then
so does G1 +G2. Thus, F(E) is well defined. Obviously, E ⊂ F(E). We define Ek by the rule

E0 = E, En = F(En−1) for n ≥ 1, E∞ =
∞⋃

n=1

En.

The following theorem is the main result of this section.

Theorem 3.2. Let h ∈ C∞([0,∞), Hk+2
σ ). If E ⊂ Hk+2

σ is a finite-dimensional subspace such that E∞ is dense
in Hk

σ , then equation (3.1) with η ∈ C∞(JT , E) is controllable at any time T .
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Example 3.3. Let us introduce the functions

cm(x) = l(m) cos〈m,x〉, sm(x) = l(m) sin〈m,x〉, (3.4)

where m ∈ Z
3 and

{l(m), l(−m)} is an orthonormal basis in m⊥ := {x ∈ R
3, 〈x,m〉 = 0}· (3.5)

It is shown in [12] that if
E = span{cm, sm, |m| ≤ 3},

then E∞ is dense in Hk
σ . We emphasize for what follows that the space E does not depend on the choice of the

basis {l(m), l(−m)}.
The proof of Theorem 3.2 is based on the uniform approximate controllability of the Euler system.

Definition 3.4. Equation (3.1) with η ∈ X is said to be uniformly approximately controllable at time T if for
any ε > 0, any u0 ∈ Hk

σ and any compact set K ⊂ Hk
σ there is a continuous function Ψ : K → Θ(h, u0) ∩X

such that

sup
û∈K

‖RT (u0,Ψ(û)) − û‖k < ε, (3.6)

where Θ(h, u0) ∩X is endowed with the norm of L1(JT , H
k).

The following lemma shows that to prove uniform approximate controllability of equation (3.1) it suffices to
consider the case in which the target set K ⊂ Hk

σ consists of sufficiently smooth functions.

Lemma 3.5. Suppose that for compact subset K ⊂ Hk+1
σ there is a continuous function Ψ : K → Θ(h, u0)∩X

such that (3.6) holds. Then equation (3.1) with η ∈ X is uniformly approximately controllable at time T .

Proof. For any compact set K ⊂ Hk
σ there is a small constant δ > 0 such that

sup
û∈K

‖e−δLû− û‖k <
ε

2
·

As K1 := e−δLK is compact in Hk+1
σ , by assumption, there is a continuous mapping Ψ : K1 → Θ(h, u0) ∩

C∞(JT , X) such that
sup

û∈K1

‖RT (u0,Ψ(û)) − û‖k <
ε

2
·

Therefore the continuous mapping Φ : K → Θ(h, u0) ∩X, û→ Ψ(e−δLû) satisfies the inequality

sup
û∈K

‖RT (u0,Φ(û)) − û‖k < ε. �

The following lemma shows that the uniform approximate controllability is stronger than controllability.

Lemma 3.6. If equation (3.1) with η ∈ X is uniformly approximately controllable at time T , then it is also
controllable.

Proof. Suppose F ⊂ Hk
σ is a finite-dimensional subspace and PF is a projection onto F , u0 ∈ Hk

σ and û ∈ F .
Let BF (R) be the closed ball in F of radius R centred at origin with R > Mε, where M is the norm of PF

and ε > 0 is an arbitrary constant. Since BF (R) is a compact subset of Hk
σ , there is a continuous mapping

Ψ : BF (R) → Θ(h, u0) ∩X such that

sup
û∈BF (R)

‖RT (u0,Ψ(û)) − û‖k < ε. (3.7)
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Therefore the continuous mapping Φ : BF (R) → F, û→ PFRT (u0,Ψ(û)) satisfies the inequality

sup
û∈BF (R)

‖Φ(û) − û‖k < Mε.

Fixing v ∈ BF (R−Mε) and applying the Brouwer theorem to the mapping u→ v+u−Φ(u) : BF (R) → BF (R),
we get

BF (R −Mε) ⊂ Φ(BF (R)). (3.8)

Let û ∈ F . By (3.8), for sufficiently large R there is a function u1 ∈ BF (R) such that

PFRT (u0,Ψ(u1)) = û. (3.9)

Using (3.7) and (3.9), we obtain

‖RT (u0,Ψ(u1)) − û‖k ≤ ‖RT (u0,Ψ(u1)) − u1‖k + ‖u1 − PFRT (u0,Ψ(u1))‖k < ε+Mε.

Since ε > 0 was arbitrary, this completes the proof. �

Lemma 3.6 implies that Theorem 3.2 is an immediate consequence of the following result, which will be
proved in Sections 5 and 6.

Theorem 3.7. Let h ∈ C∞([0,∞), Hk+2
σ ). If E ⊂ Hk+2

σ is a finite-dimensional subspace such that E∞ is dense
in Hk

σ , then equation (3.1) with η ∈ C∞(JT , E) is uniformly approximately controllable at any time T .

4. Controllability of finite-dimensional projections of the velocity
and pressure

In this section, we are interested in controllability properties of pressure in Euler system. We consider the
problem (1.1), (1.2). If u ∈ C(JT , H

k) is a solution of (3.1), (3.2), then (u, p) will be the solution of (1.1), (1.2),
where

p = Δ−1

⎛
⎝div h−

3∑
i,j=1

∂jui∂iuj

⎞
⎠. (4.1)

Here the function p is defined up to the an additive constant and Δ−1 is the inverse of Δ : Hk
σ →: Hk−2

σ . In
what follows we normalize p by the condition that its mean value on T

3 is zero. Denote by (R(u0, η),P(u0, η))
the solution of (1.1), (1.2) and by (Rt(u0, η),Pt(u0, η)) its restriction to the time t. Equation (4.1) implies
that (1.1), (1.2) is not approximately controllable, so we will be interested in exact controllability in projections.

Definition 4.1. Equation (1.1) with η ∈ X is said to be exactly controllable in projections at time T if for
any finite-dimensional subspaces F ⊂ Hk

σ , G ⊂ Hk and for any functions u0 ∈ Hk
σ , û ∈ F and p̂ ∈ G there is a

control η ∈ Θ(h, u0) ∩X such that

PFRT (u0, η) = û,

PGPT (u0, η) = p̂.

Theorem 4.2. If E ⊂ Hk+2
σ is a finite-dimensional subspace such that E∞ is dense in Hk

σ , then equation (1.1)
with η ∈ C∞(JT , E) is exactly controllable in projections at any time T > 0.
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Proof. To simplify the proof, we shall assume that h = 0. The proof remains literally the same in the case
h �= 0. An argument similar to that used in the proof of Lemma 3.6 shows that it suffices to establish the
following property: for any compact set K ⊂ Hk

σ ×Hk and for any constant ε > 0 there is a continuous function
Ψ : K → Θ(h, u0) ∩X such that

sup
(û,p̂)∈K

‖RT (u0,Ψ(û, p̂)) − û‖k < ε,

sup
(û,p̂)∈K

‖PGPT (u0,Ψ(û, p̂)) − p̂‖k < ε.

We introduce the spaces

Fm : = span{cn, sn, |n| ≤ m, n ∈ Z
3
∗},

Gm : = span{sin〈n, x〉, cos〈n, x〉, |n| ≤ m, n ∈ Z
3
∗},

where the functions cn, sn are defined in (3.4), (3.5). By an approximation argument, it suffices to construct Ψ
for any compact set K ⊂ Fm ×Gm. For an integer m ≥ 1, we introduce the symmetric quadratic form

A(u, v) = −PGmΔ−1
3∑

i,j=1

∂jui∂ivj

and set A(u) = A(u, u). Clearly, we have the following inequality

‖A(u) −A(v)‖k ≤ C‖u− v‖k, (4.2)

where u, v ∈ Hk
σ and C is constant depending on ‖u‖k + ‖v‖k. Equation (4.1) implies

PGmPt(u0, η) = A(Rt(u0, η)). (4.3)

We admit for the moment the following lemma.

Lemma 4.3. For any û ∈ Fm and p̂ ∈ Gm there is v ∈ F⊥
m ∩Hk

σ such that

p̂ = A(û+ v), (4.4)

where F⊥
m is the orthogonal complement of Fm in the space H. Moreover, the mapping (û, p̂) → v is continuous

from Fm ×Gm to F⊥
m , where Fm, Gm and F⊥

m are endowed with the norm of Hk.

By Theorem 3.7, there is a continuous mapping Ψ such that

sup
(û,p̂)∈K

‖RT (u0,Ψ(û, p̂)) − (û + v)‖k < ε,

where v satisfies (4.4). From (4.2), (4.3) and (4.4), we have

sup
(û,p̂)∈K

‖PGmPT (u0,Ψ(û, p̂)) − p̂‖k ≤ sup
(û,p̂)∈K

‖A(RT (u0,Ψ(û, p̂))) − A(û+ v)‖k

≤ C sup
(û,p̂)∈K

‖RT (u0,Ψ(û, p̂)) − (û+ v)‖k.

This completes the proof of Theorem 4.2. �
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Proof of Lemma 4.3. It is easy to see that (4.4) is equivalent to

A(v) + 2A(û, v) = p̂−A(û) =:
∑

|n|≤m

(Cn sin〈n, x〉 +Dn cos〈n, x〉). (4.5)

For all n ∈ Z
3
∗, |n| ≤ m let us take {k1

n}, {k2
n}, {k3

n} and {k4
n} in Z

3
∗ such that |ki

n| > 2m and

(a) k2
n − k1

n = k4
n − k3

n = n;
(b) min{|ki

n + kj
n|, |ki

n ± kj
r |, |k3

n − kd
n|, |k4

n − kd
n|} > m;

(c) k1
n and k3

n are not parallel to k2
n and k4

n, respectively,

for all i, j = 1, 2, 3, 4, d = 1, 2, |r| < m and n �= r. This choice is possible. Indeed, let φ : Z
3∗ → N∗ be an

injection and let

k1
n = 8φ(n)m(n), k3

n = (8φ(n) + 4)m(n),

k2
n = 8φ(n)m(n) + n, k4

n = (8φ(n) + 4)m(n) + n, (4.6)

where m(n) ∈ Z
3∗ is not parallel to n and |m(n)| = m. It is easy to see that {kj

n} satisfy (a)–(c). We seek v in
the form

v =
∑

|n|≤m

(Ck1
n
sk1

n
+Dk2

n
ck2

n
+ Ck3

n
sk3

n
+ Ck4

n
sk4

n
).

Substituting this expression of v into (4.5) and using the construction of ki
n, we obtain

∑
|n|≤m

(
A(Ck1

n
sk1

n
+Dk2

n
ck2

n
) +A(Ck3

n
sk3

n
+ Ck4

n
sk4

n
)
)

=
∑

|n|≤m

(Cn sin〈n, x〉 +Dn cos〈n, x〉).

On the other hand,

A(Ck1
n
sk1

n
+Dk2

n
ck2

n
) = Δ−1

3∑
i,j=1

li(k1
n)(k1

n)j lj(k2
n)(k2

n)iCk1
n
Dk2

n
sin〈n, x〉

= − Ck1
n
Dk2

n

n2
1 + n2

2 + n2
3

〈l(k1
n), k2

n〉〈l(k2
n), k1

n〉 sin〈n, x〉,

where lj(ki
n) and (ki

n)j are jth coordinates of l(ki
n) and ki

n, respectively. As k1
n is not parallel to k2

n, we can
choose l(k1

n) and l(k2
n) not perpendicular to k2

n and k1
n, respectively, i.e.,

〈l(k1
n), k2

n〉〈l(k2
n), k1

n〉 �= 0.

Hence, there are constants Ck1
n
, Dk2

n
continuously depending on Cn, and therefore on (û, p̂), such that

A(Ck1
n
sk1

n
+Dk2

n
ck2

n
) = Cn sin〈n, x〉·

In the same way, we can choose Ck3
n
, Ck4

n
such that

A(Ck3
n
sk3

n
+ Ck4

n
sk4

n
) = Dn cos〈n, x〉·

Thus we have (4.4). �
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5. Proof of Theorem 3.7

Let us fix a constant ε > 0, an initial point u0 ∈ Hk
σ , a compact set K ⊂ Hk

σ and a vector subspace
X ⊂ L1(JT , H

k
σ). Equation (3.1) with η ∈ X is said to be uniformly (ε, u0,K)-controllable at time T > 0 if

there is a continuous mapping
Ψ : K → Θ(h, u0) ∩X

such that

sup
û∈K

‖RT (u0,Ψ(û)) − û‖k < ε,

where Θ(h, u0) ∩X is endowed with the norm of L1(JT , H
k
σ).

Theorem 3.7 is deduced from the following result, which is established in next section.

Theorem 5.1. Let E ⊂ Hk+2
σ be a finite-dimensional subspace. If equation (3.1) with η ∈ C∞(JT ,F(E)) is

uniformly (ε, u0,K)-controllable, then it is also (ε, u0,K)-controllable with η ∈ C∞(JT , E).

Proof of Theorem 3.7. We first prove that there is an integer N ≥ 1 depending only on ε, u0 and K such that
equation (3.1) with η ∈ C(JT , EN ) is uniformly (ε, u0,K)-controllable at time T . Let us define a continuous
operator defined on JT ×K by

uμ,δ(t, û) = T−1(teμLû+ (T − t)eδLu0).

It is easy to see that uμ,δ satisfies equation (3.1) with

ημ,δ = u̇μ,δ +B(uμ,δ) − h(t).

As K is a compact set in Hk
σ , we have

sup
û∈K

‖uμ,δ(T, û) − û‖k → 0 as μ→ 0,

sup
û∈K

‖uμ,δ(0, û) − u0‖k → 0 as δ → 0.

The fact that E∞ is dense in Hk
σ implies

‖PENημ,δ − ημ,δ‖L1(JT ,Hk) → 0 as N → ∞.

By Theorem 2.1, we can chose N , μ and δ such that

sup
û∈K

‖R(u0, PENημ,δ(û)) − û‖k < ε.

We note that the mapping PEN ημ,δ(·, ·) : û → PEN ημ,δ(·, û) is continuous from K to C(JT , H
k
σ). Hence

equation (3.1) is uniformly (ε, u0,K)-controllable with η ∈ C(JT , EN ). Applying N times Theorem 5.1, we
complete the proof of Theorem 3.7. �

6. Proof of Theorem 5.1

The proof of Theorem 5.1 is inspired by ideas from [1,2,12,13]. Let us consider the following control system:

u̇+B(u+ ζ) = h+ η, (6.1)
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where η, ζ are E-valued controls. Let Θ̂(u0, h) be the set of pairs (η, ζ) ∈ L1(JT , H
k
σ)×L2(JT , H

k+1
σ ) for which

problem (6.1), (3.2) has a unique solution in C(JT , H
k
σ). Equation (6.1) with (η, ζ) ∈ X̂ ⊂ L1(JT , H

k
σ) ×

L2(JT , H
k+1
σ ) is said to be uniformly (ε, u0,K)-controllable if there is a continuous mapping

Ψ̂ : K → Θ̂(h, u0) ∩ X̂

such that

sup
û∈K

‖RT (u0, Ψ̂(û)) − û‖k < ε, (6.2)

where Θ̂(h, u0) ∩ X̂ is endowed with the norm of L1(JT , H
k
σ) × L2(JT , H

k+1
σ ).

We claim that, when proving Theorem 5.1, it suffices to assume u0 ∈ Hk+2
σ . Suppose that for any v0 ∈ Hk+2

σ

and for any continuous mapping Φ : K → Θ(h, v0) ∩C∞(JT , E1) there is a continuous mapping

Φ̂ : K → Θ(h, v0) ∩ C∞(JT , E)

such that

sup
û∈K

‖RT (v0,Φ(û)) −RT (v0, Φ̂(û))‖k <
ε

3
·

Let us show that for any u0 ∈ Hk
σ and for any continuous mapping Ψ : K → Θ(h, v0) ∩ C∞(JT , E1) there is a

continuous mapping Φ̂ : K → Θ(h, v0) ∩ C∞(JT , E) such that

sup
û∈K

‖RT (u0,Ψ(û)) −RT (u0, Ψ̂(û))‖k < ε.

By Theorem 2.1, there is v0 ∈ Hk+2
σ such that

sup
û∈K

‖R(u0,Ψ(û)) −R(v0,Ψ(û))‖C(JT ,Hk) <
ε

3
· (6.3)

By our assumption, as v0 ∈ Hk+2
σ , there is a continuous mapping

Ψ̂ε : K → Θ(h, u0) ∩ C∞(JT , E)

such that

sup
û∈K

‖RT (v0,Ψ(û)) −RT (v0, Ψ̂ε(û))‖k <
ε

3
· (6.4)

By Theorem 2.1, we have
‖RT (v0, Ψ̂ε(û)) −RT (u0, Ψ̂ε(û))‖k ≤ C‖v0 − u0‖, (6.5)

where C is a constant not depending on ε. Choosing v0 sufficiently close to u0 and using inequalities (6.3), (6.4)
and (6.5), we get

‖RT (u0,Ψ(û)) −RT (u0, Ψ̂ε(û))‖k < ε.

From now on, we assume that u0 ∈ Hk+2
σ . In this case, Theorem 5.1 is deduced from the following two

propositions.

Proposition 6.1. Equation (3.1) with η ∈ C∞(JT , E) is uniformly (ε, u0,K)-controllable if and only if so is
equation (6.1) with (η, ζ) ∈ C∞(JT , E × E).
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Proposition 6.2. Equation (6.1) with (η, ζ) ∈ C∞(JT , E × E) is uniformly (ε, u0,K)-controllable if and only
if so is equation (3.1) with η1 ∈ C∞(JT , E1).

Proof of Proposition 6.1. We show that if (6.1) with (η, ζ) ∈ C∞(JT , E×E) is uniformly (ε, u0,K)-controllable,
then so is (3.1) with η ∈ C∞(JT , E). Let

Ψ̂ : K → Θ̂(h, u0) ∩C∞(JT , E × E), Ψ̂(û) =
(
η(t, û), ζ(t, û)

)
be such that

ε̂ := sup
û∈K

‖RT (u0, Ψ̂(û)) − û‖k < ε. (6.6)

Let us choose ζn(·, û) ∈ C∞(JT , E) such that ζn(0) = ζn(T ) = 0, the mapping ζn(·, ·) : û → ζn(·, û) from K to
C1(JT , H

k+1
σ ) is continuous and

‖ζn − ζ‖L2(JT ,Hk+1) → 0 as n→ ∞.

By Theorem 2.1, for sufficiently large n we have

sup
û∈K

‖RT (u0, ζn(û), η) −RT (u0, Ψ̂(û))‖k < ε− ε̂. (6.7)

Define Ψn(t, û) = η(t, û) − ζ̇n(t, û). It is easy to see that Ψn(·, ·) : û → Ψn(·, û) is a continuous mapping from
K to L1(JT , H

k
σ). Clearly,

R(u0, ζn(û), η) = R(u0,Ψn(û)) − ζn(û).

Using the fact that ζn(T ) = 0, (6.7) and (6.6), we derive

sup
û∈K

‖RT (u0,Ψn(û)) − û‖k < ε− ε̂+ sup
û∈K

‖RT (u0, Ψ̂(û)) − û‖k < ε,

which completes the proof of Proposition 6.1. �

Proof of Proposition 6.2. By Proposition 6.1 and the fact E ⊂ E1, if equation (6.1) is uniformly (ε, u0,K)-
controllable, then so is equation (3.1) with η ∈ C∞(JT , E1). We need to prove the converse assertion. We
assume that there is a continuous mapping

Ψ1 : K → Θ(h, u0) ∩ L1(JT , E1)

such that

ε̂ := sup
û∈K

‖RT (u0,Ψ1(û)) − û‖k < ε.

We approximate RT (u0,Ψ1(û)) by a solution u(t, û) of problem (6.1), (3.2) with some η(t, û), ζ(t, û) ∈
C∞(JT , E) such that (η(t, û), ζ(t, û)) depends continuously on û ∈ K.

Step 1. We first approximate Ψ1(û) by a family of piecewise constant controls. Let us introduce a finite set
A = {ηl

1 ∈ E1, l = 1, . . . ,m}. For any integer s, we denote by Ps(JT , A) the set of functions

η1(t) =
m∑

l=1

ϕl(t)ηl
1 for t ∈ [0, T ],
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where ϕl are non-negative functions such that
∑m

l=1 ϕl(t) = 1,

ϕl(t) =
s−1∑
r=0

cl,rIr,s(t) for t ∈ [0, T ],

and Ir,s is the indicator function of the interval [tr, tr+1) with tr = rT/s.
We define a metric in Ps(JT , A) by

dP (η1, ζ1) =
m∑

l=1

‖ϕl − ψl‖L∞(JT ), η1, ζ1 ∈ Ps(JT , A),

where {ϕl} and {ψl} are the functions corresponding to η1 and ζ1, respectively. We shall need the following
lemmas, which are proved at the end of this section.

Lemma 6.3. If equation (3.1) with η ∈ C∞(JT , E1) is uniformly (ε, u0,K)-controllable, then there is a finite
set A = {ηl

1, l = 1, . . . ,m} ⊂ E1, an integer s ≥ 1 and a mapping Ψs : K → Ps(JT , A) continuous with respect
to the metric of Ps(JT , A) such that Ψs(K) ⊂ Θ(u0, h) and

sup
û∈K

‖RT (u0,Ψs(û)) − û‖k < ε.

Lemma 6.4. Let E ⊂ Hk+2
σ be a finite-dimensional space and E1 = F(E). Then for any η1 ∈ E1 there are

vectors ζ1, . . . , ζp, η ∈ E and positive constants λ1, . . . , λp whose sum is equal to 1 such that

B(u) − η1 =
p∑

j=1

λjB(u+ ζj) − η for any u ∈ H1.

Let Ψs be the function constructed in Lemma 6.3:

Ψs(û) =
m∑

l=1

ϕl(t, û)ηl
1.

As ηl
1 ∈ E1, by Lemma 6.4, there are vectors ζl,1, . . . , ζl,p, ηl ∈ E and positive constants λl,1, . . . , λl,p whose

sum is equal to 1 such that

B(u) − ηl
1 =

p∑
j=1

λl,jB(u+ ζl,j) − ηl for any u ∈ H1. (6.8)

Let u1 = R(u0,Ψs(û)). It follows from (6.8) that u1 satisfies the equation

u̇1 +
p∑

j=1

m∑
l=1

λl,jϕl(t, û)B(u1 + ζl,j) = h(t) +
m∑

l=1

ϕl(t, û)ηl. (6.9)

We can rewrite equation (6.9) in the form

u̇1 +
q∑

i=1

ψi(t, û)B(u1 + ζi) = h(t) + η(t, û), (6.10)
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where ζi ∈ E for i = 1, . . . , q, η(t, û) =
∑m

l=1 ϕl(t, û)ηl such that

ψi(t, û) =
s−1∑
r=0

di,r(û)Ir,s(t),
q∑

i=1

di,r = 1

for some non-negative functions di,r ∈ C(K).

Step 2. We approximate u1 by a solution of problem (6.1), (3.2). First we assume s = 1. In this case (6.10)
becomes

u̇1 +
q∑

i=1

di(û)B(u1 + ζi) = h(t) + η(û), (6.11)

where di ∈ C(K) and η ∈ C(K,E). Let ζn(t, û) = ζ(nt
T , û), where ζ(t, û) is a 1-periodic function such that

ζ(s, û) = ζj for 0 ≤ s− (d1(û) + . . .+ dj−1(û)) < dj(û), j = 1, . . . , q,

where d0(û) = 0. Equation (6.11) is equivalent to the equation

u̇1 +B(u1 + ζn(t, û)) = h(t) + η(t, û) + fn(t, û),

where

fn(t, û) = B(u1 + ζn(t, û)) −
q∑

i=1

di(û)B(u1 + ζi). (6.12)

Let us define

Kg(t) =
∫ t

0

g(s)ds.

Then vn = u1 −Kfn is a solution of the problem

v̇n +B(vn + ζn(t, û) + Kfn(t, û)) = h(t) + η(t, û),
vn = u0.

Suppose we have shown that
sup
û∈K

‖Kfn(t, û)‖C(JT ,Hk+1) → 0. (6.13)

Then vn satisfies
‖vn − u1‖C(JT ,Hk+1) → 0 as n→ ∞.

There is an integer n0 ≥ 1 such that if n ≥ n0

sup
û∈K

‖R(u0, ζn(û), η(û)) − u1(·, û)‖C(JT ,Hk) < ε− ε̂.

Then the operator
Ψ̂n : K → L1(JT , E) × L2(JT , E), û→ (η(û), ζn(û))

satisfies (6.2).
To finish the proof of Proposition 6.2 in the case s = 1, it suffices to prove (6.13). Suppose we have shown

that
‖Kfn(t, û)‖C(JT ,Hk+1) → 0 for any û ∈ K. (6.14)
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To prove (6.13), by the Arzelà–Ascoli theorem, it suffices to show that the family {û → Kfn(·, û)} is uni-
formly equicontinuous from K to C(JT , H

k+1
σ ). By (6.12), it suffices to show that so is û → ζn(û) from K to

L1(JT , H
k+2
σ ). The definition of ζn implies

‖ζn(·, û1) − ζn(·, û2)‖2
L2(JT ,Hk+2) ≤

∫ T

0

∥∥∥∥ζ
(
nt

T
, û1

)
− ζ

(
nt

T
, û2

)∥∥∥∥
2

k+2

dt

=
T

n

∫ n

0

‖ζ(t, û1) − ζ(t, û2)‖2
k+2dt ≤ C

q∑
i=1

|di(û1) − di(û2)|.

The uniform continuity of di over K gives us the required result.

Step 3. To complete the proof of Proposition 6.2 in the case s = 1, it remains to prove (6.14). If we show that
for any piecewise constant Hk+2

σ -valued function u1 on JT , the sequence {Kfn} converges to zero in the space
C(JT , H

k+1
σ ), then an approximation argument shows (6.14) for any u1 ∈ C(JT , H

k+2
σ ).

The family {Kfn} is relatively compact in the space C(JT , H
k+1
σ ) for any piecewise constant function u1.

Indeed, the set fn(t), t ∈ JT , is contained in a finite subset of Hk+1
σ not depending on n. Thus, there is a

compact set G ⊂ Hk+1
σ such that

Kfn(t) ∈ G for all t ∈ JT , n ≥ 1.
As

sup
n≥1

‖fn‖C(JT ,Hk+1) <∞,

the family {Kfn} is uniformly equicontinuous on JT . Thus, by the Arzelà–Ascoli theorem, {Kfn} is relatively
compact. Therefore convergence (6.14) will be established if we show that

Kfn(t) → 0 in Hk+1
σ for any t ∈ JT . (6.15)

To prove (6.15), we first assume that u(t) = b ∈ Hk+2
σ for all t ∈ JT . Let t = tl + τ , where tl = lT

n , l ∈ N and
τ ∈ [0, T

n ). From the definition of ζn(t) we have

∫ lT
n

0

fn(s)ds =
∫ lT

n

0

(
B(b+ ζn(t))

)
ds− lT

n

p∑
j=1

λjB(b+ ζj) = 0,

so

Kfn(t) = −τ
p∑

j=1

λjB(b + ζj) −
∫ τ

0

B(b + ζn(s))ds.

Since τ → 0 as n → ∞, we arrive at (6.15). In the same way, we can show that (6.15) holds for any piecewise
constant function u.

The case s ≥ 2 is deduced from the case s = 1 exactly in the same way as in [13], Section 3.3. �

Proof of Lemma 6.3. Let {e1, . . . , ed} be an orthonormal basis in E1 with respect to scalar product 〈·, ·〉 and
ξl(t, û) := 〈Ψ1(t, û), el〉 for l = 1, . . . , d. Let us define for M = maxl,t,û |ξl(t, û)| and m = 2d the vectors

ηl
1 = dMel for l = 1, . . . , d, ηl

1 = −dMel for l = d+ 1, . . . ,m.

We can see that the functions

ξ̃l(t, û) =
1
2d

(
1 +

ξl(t, û)
M

)
, ξ̃l+d(t, û) =

1
2d

(
1 − ξl(t, û)

M

)
for l = 1, . . . , d
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are non-negative, their sum is equal to 1, and they satisfy the relation

Ψ1(t, û) =
m∑

l=1

ξ̃l(t, û)ηl
1.

Let us define an operator Ψs : K → Ps(JT , A) with A = {ηl
1, l = 1, . . . ,m} as

Ψs(t, û) =
m∑

l=1

ξ̃l

(
rT

s
, û

)
ηl
1 for t ∈

[
rT

s
,
(r + 1)T

s

]
·

Since ξ̃l ∈ C(JT ×K) and K ⊂ Hk+2
σ is compact, we have

sup
û∈K

‖Ψ1(t, û) − Ψs(t, û)‖k+2 = sup
û∈K

∥∥∥∥∥
m∑

l=1

(
ξ̃l(t, û) − ξ̃l

(
rT

s
, û

))
ηl
1

∥∥∥∥∥
k+2

→ 0 as s→ ∞.

Thus for sufficiently large s, we have Ψs(K) ⊂ Θ(h, u0), and

sup
û∈K

‖RT (u0,Ψs(û)) −RT (u0,Ψ1(û))‖k < ε.

Hence (6.1) is uniformly (ε, u0,K)-controllable with η ∈ Ps(JT , A). �

Proof of Lemma 6.4. By the definition of F(E), for any η1 ∈ F(E) there are ξ1, . . . , ξn, η ∈ E and positive
constants α1, . . . , αn such that

η1 = η −
n∑

i=1

αiB(ξi).

Let us set p = 2n, α = α1 + . . .+ αn,

λi = λi+n =
αi

2α
, ζi = −ζi+n =

√
αξi, i = 1, . . . , n.

Then we have

B(u) − η1 =
p∑

j=1

λjB(u+ ζj) − η for any u ∈ H1
σ. �

7. Non controllability result

Let us denote by AT (u0, h, E) the set of attainability at time T from u0 ∈ Hk
σ by E-valued controls, i.e.,

AT (u0, h, E) = {û ∈ Hk
σ : û = RT (u0, η) for some η ∈ Θ(u0, h)}·

In this section, we show that the ideas of [14] can be generalized to prove that the set A(u0, h, E) = ∪T∈[0,∞)

AT (u0, h, E) does not contain a ball of Hk+γ
σ , γ < 2 in the three-dimensional case.

Let us recall the definition of Kolmogorov ε-entropy (see [10]). For any ε > 0, we denote by Nε(K) the
minimal number of sets of diameters not exceeding 2ε that are needed to cover K. The Kolmogorov ε-entropy
of K is defined as Hε(K) = lnNε(K).

Let us consider the equation
v̇ +B(v + z) = h. (7.1)
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We fix an integer k ≥ 4 and denote by Θt(h, u0) the set of functions η ∈ L1(Jt, H
k
σ) for which (7.1), (3.2) with

z(t) =
∫ t

0 η(s)ds has a unique solution v ∈ C(Jt, H
k
σ). We note that

Rt(u0, η) = v(t) + z(t),

where z(t) =
∫ t

0
η(s)ds. The following theorem is the main result of this section.

Theorem 7.1. Let k ≥ 4, u0 ∈ Hk
σ , h ∈ C([0,∞), Hk

σ) and E ⊂ Hk
σ be any finite-dimensional subspace. For

any γ ∈ [0, 2) and any ball Q ⊂ Hk+γ
σ , we have

Ac(u0, h, E) ∩Q �= ∅,

where Ac(u0, h, E) is the complement of A(u0, h, E) in the space Hk
σ .

Proof. We argue by contradiction. Suppose that A(u0, h, E) contains a closed ball Q ⊂ Hk+γ
σ . Let {tl} be a

dense sequence in [0,∞) and let

Dl,n := {(z, y) ∈W 1,1(Jtl
, Hk

σ) ∩ Θtl
(u0, h) × E : ‖z‖W 1,1(Jtl

,Hk) ≤ n, ‖y‖k ≤ n},
Bl,n := {û ∈ Hk

σ : û = Rt(u0, z, h) + y for some (z, y) ∈ Dl,n, t ∈ [0, tl]}·

It is easy to see that
⋃

l,nBl,n ⊃ A(u0, h, E). By the Baire theorem, there are integers p and m such that Bp,m

is dense in a ball Q̂ with respect to the metric of Hk+γ
σ . Let us denote by K : [0,∞)×L1([0,∞), E)×E → Hk−1

σ

the continuous operator that takes the triple (t, z, y) ∈ Jtp ×Dp,m to Rt(u0, z, h)+y. As K(Jtp ×Dp,m) ⊂ Bp,m

is closed in Hk+γ
σ ∩Bp,m, then Q̂ ⊂ Bp,m. We have from [6]

Hε(Q,L2) ∼
(

1
ε

) 3
k

, (7.2)

where Q is a ball in Hk. To obtain (7.2) for any Q ⊂ Hk
σ , we follow the ideas of [14], Proposition 2.2. Let us

denote by Σk the closure in Hk of the set of functions u = (∂2v,−∂1v, 0) ∈ Hk, where v ∈ Hk+1 is a scalar
function. Since Σk is closed subspace of Hk

σ , it suffices to prove (7.2) any ball Q ⊂ Σk. Let us introduce the set
of scalar functions

Ḣk(T3) :=
{
u ∈ Hk(T3) :

∫ 2π

0

u(x1, x
′)dx1 = 0 for any x′ ∈ T

2

}
·

As
Hk(T3) = Ḣk(T3) +̇ Hk(T2),

we get (7.2) for any ball Q ⊂ Ḣk(T3). Finally, if Π2 is the projection Π2(u1, u2, u3) → u2, then Π2Σk = Ḣk(T3).
Thus (7.2) holds for any Q ⊂ Hk

σ . Hence

Hε(Q,Hk−1) ∼
(

1
ε

)α

, (7.3)

where Q is a ball in Hk+γ
σ and α = 3

1+γ > 1. On the other hand, from [14], (3.10), it follows that

Hε

(
Jtp ×Dp,m,R × L1(J,E) × E

)
≺ 1
ε

ln
1
ε
· (7.4)
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As h ∈ C([0,∞), Hk
σ), by Theorem 2.1, the operatorK : Jtp ×Dp,m → Hk−1 is Lipschitz-continuous. Then (7.4)

implies

Hε(Bp,m, H
k−1) ≺ 1

ε
ln

1
ε
· (7.5)

Combining this with relation (7.3), we see that

Hε(Q̂,Hk−1) � ενHε(Bp,m, H
k−1),

where ν > 0, which contradicts the inclusion Q̂ ⊂ Bp,m. �
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