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Abstract. Sensitivity analysis (with respect to the regularization parameter) of the solution of a
class of regularized state constrained optimal control problems is performed. The theoretical results
are then used to establish an extrapolation-based numerical scheme for solving the regularized problem
for vanishing regularization parameter. In this context, the extrapolation technique provides excellent
initializations along the sequence of reducing regularization parameters. Finally, the favorable numer-
ical behavior of the new method is demonstrated and a comparison to classical continuation methods
is provided.
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1. Introduction

The numerical treatment of optimal control problems for partial differential equations (PDEs) with pointwise
state inequality constraints is challenging due to the measure-valuedness of the Lagrange multiplier associated
with the state constraints; see [2] for an analytical assessment. A typical instance of such a problem is given by⎧⎪⎪⎪⎨

⎪⎪⎪⎩

minimize J(u, y) := 1
2‖y − yd‖2

L2(Ω) + α
2 ‖u‖2

L2(Ω)

over (u, y) ∈ L2(Ω) × H1
0 (Ω) ∩ H2(Ω)

subject to Ay = u in Ω, y = 0 on Γ,

ya ≤ y ≤ yb a.e. in Ω.

(P )
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where Ω ⊂ R
N is a bounded and sufficiently regular domain, A is a second order elliptic partial differential

operator, and yd, α, ya, yb are given data which will be specified shortly.
In order to have a numerical technique at hand for solving (P ) with stable iteration numbers as the mesh size

of discretization is reduced, one can use an approach based on mixed control-state constraints as investigated
in [12]. In fact, in order to overcome the measure-valuedness of the Lagrange multiplier associated with the
pointwise inequality constraints in (P ) one adds εu to y in the set of pointwise inequality constraints and then
uses the result in [12] which yields an L2-property of the Lagrange multiplier associated with the modified
set of constraints. The regular multiplier therefore represents a smooth approximation of the measure-valued
quantity. Using this technique, (P ) becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

minimize J(u, y) := 1
2‖y − yd‖2

L2(Ω) + α
2 ‖u‖2

L2(Ω)

over (u, y) ∈ L2(Ω) × H1
0 (Ω)

subject to Ay = u in Ω, y = 0 on Γ,

ya ≤ εu + y ≤ yb a.e. in Ω.

(Pε)

Let (ȳε, ūε) denote the solution of (Pε). For solving (Pε) efficiently, in [4,8] a semismooth Newton method (SSN)
was proposed on a function space as well as on a discrete level. Besides the locally superlinear convergence, the
mesh-independence of SSN for ε > 0 was established.

In view of (P ) one is interested in studying the behavior of the solution algorithm as ε → 0. For the numerics
in the case of vanishing regularization parameter, however, in [4,8] it turned out to be crucial to suitably tune ε
as it tends to zero and, even more importantly, to initialize the algorithm for solving (Pε) appropriately along
the sequence. Ignoring these issues typically makes the numerical algorithm suffer from ill-conditioning which
is usually reflected by large iteration numbers and reduced numerical solution accuracy.

In this note we focus on this latter point and propose an numerical approach based on an extrapolation
technique in order to overcome the aforementioned problems. For this, we first need to study the quality of the
dependence of (ȳε, ūε) on ε. For instance, under a strict complementarity assumption we prove differentiability
of the solution to (Pε) with respect to ε. Let (ẏε, u̇ε) denote the corresponding derivative. We then establish a
system of sensitivity equations which characterize (ẏε, u̇ε) uniquely. Subsequently, the theoretical findings are
employed in our numerical approach.

The remainder of the paper is organized as follows: in the rest of this section we detail the problem under
investigation and settle the notation (Sect. 1.1), and we recall some results on (Pε) (Sect. 1.2). The subsequent
Section 2 is devoted to Lipschitz and differentiability properties of the solution to (Pε) with respect to ε > 0.
Then, in Section 3 we define our semismooth Newton-type solver based on extrapolation in ε. We end this
paper by a report on the numerical behavior including a comparison to a technique without extrapolation in
Section 4. It turns out that our new method compares favorably to classical continuation methods without
extrapolation.

1.1. General assumptions and notation

In connection with our model problem (P ), throughout this paper we assume that Ω is an open bounded
domain in R

N , N ∈ {2, 3}, with sufficiently smooth boundary Γ. The upper and lower bounds ya, yb ∈ C(Ω) on
the state variable y satisfy ya(x) < yb(x) for all x ∈ Ω and guarantee that the feasible set of (P ) is non-empty.
Moreover, the desired state yd ∈ L2(Ω) and α > 0 are assumed to be fixed. By u we denote the control variable.
The second-order elliptic partial differential operator A is defined by

Ay(x) = −
N∑

i,j=1

Di(aij(x)Djy(x)),
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where the coefficient functions aij ∈ C0,1(Ω̄) satisfy the ellipticity condition

N∑
i,j=1

aij(x)ξiξj ≥ θ‖ξ‖2
RN ∀ (ξ, x) ∈ R

N × Ω

for some constant θ > 0. Furthermore, A� stands for the associated adjoint operator. By G we denote the
solution operator G : L2(Ω) → H1

0 (Ω) ∩ H2(Ω) that assigns to every u ∈ L2(Ω) the solution y = y(u) ∈
H1

0 (Ω) ∩ H2(Ω) of the state equation

Ay = u in Ω, y = 0 on Γ.

We set S = ı0G, where ı0 denotes the compact embedding operator from H1(Ω) to L2(Ω).
Using the above notation and assumptions, the regularized problem (Pε) can be expressed as follows:

{
minimize f(u) := 1

2‖Su − yd‖2
L2(Ω) + α

2 ‖u‖2
L2(Ω) over u ∈ L2(Ω)

subject to ya ≤ (S + εI)u ≤ yb a.e. in Ω,
(Pε)

where I denotes the identity operator in L2(Ω). In [10] the name Lavrentiev regularized problem was coined
for (Pε).

1.2. Standard results

For every ε > 0 standard arguments guarantee the existence of a unique solution of (Pε). Throughout the
paper we denote this solution by ūε with associated state ȳε. As in [10], first order optimality of (ȳε, ūε) can be
characterized as follows:

Theorem 1.1 (first-order optimal conditions for (Pε)). The pair (ȳε, ūε) is optimal for (Pε) if and only if there
exist an adjoint state pε ∈ H1

0 (Ω) ∩ H2(Ω) and Lagrange multipliers μa
ε , μb

ε ∈ L2(Ω) such that

Aȳε = ūε in Ω, ȳε = 0 on Γ, (1.1)

A�pε = ȳε − yd + μb
ε − μa

ε in Ω, pε = 0 on Γ, (1.2)

pε + αūε − ε(μa
ε − μb

ε) = 0, (1.3)

εūε + ȳε ≥ ya, μa
ε ≥ 0, (μa

ε , εūε + ȳε − ya)L2(Ω) = 0, (1.4)

εūε + ȳε ≤ yb, μb
ε ≥ 0, (μb

ε, εūε + ȳε − yb)L2(Ω) = 0. (1.5)

Using the maximum operator, the complementarity system (1.4)–(1.5) can be equivalently expressed as

μa
ε = max

(
0, μa

ε − μb
ε + γ(ya − εūε − ȳε)

)
, (1.6)

μb
ε = max

(
0, μb

ε − μa
ε + γ(εūε + ȳε − yb)

)
, (1.7)
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with an arbitrarily fixed γ > 0, cf. [5,13]. Note that γ acts as a weight between the inequality constraints for
the primal variable and the corresponding dual variables or Lagrange multipliers. For the choice γ := α/ε2

in (1.6)–(1.7) and using (1.3), a short computation yields

μa
ε = max

(
0,

1
ε
pε +

α

ε2
(ya − ȳε)

)
, (1.8)

μb
ε = max

(
0,−1

ε
pε +

α

ε2
(ȳε − yb)

)
. (1.9)

This latter system will be useful in our subsequent analysis.
Finally, we mention that in [11], Theorem 3.3, the strong convergence in L2(Ω) of ūε to ū, the optimal control

of (P ), is proven. From the results in [9], Lemma 2.4, the weak* convergence in C(Ω̄)∗ as ε → 0 of μa
ε and

μb
ε to μ̄a and μ̄b, the multipliers associated with the pointwise state constraints at the solution of (P ), can be

inferred. Further, in [4] the Hölder continuity (with exponent 1
2 ) of ūε with respect to ε > 0 is established.

2. Regularity of solutions to (Pε)

As pointed out in the introduction, one of our main goals is to establish Lipschitz continuity and differen-
tiability of the mapping ε 
→ ȳε. For this purpose, the transformation of (Pε) into an associated minimization
problem with pure control constraints will be useful.

We start our investigation by considering the operator (εI + S). It is well known that the linear operator
S = ı0G : L2(Ω) → L2(Ω) is positive-definite. For this reason, the equation

(εI + S)z = 0

admits only the trivial solution z = 0. Thus, by the Fredholm alternative, the compactness property of S ensures
the existence of the inverse operator (εI + S)−1. Setting (εI + S)−1v = u, or equivalently u = 1

ε (v − ı0y(u))
in (Pε), we transform (Pε) into the following optimal control problem with (pointwise) box constraints imposed
on the new control variable v:{

minimize fε(v) := 1
2‖Sεv − yd‖2

L2(Ω) + α
2ε2 ‖v − Sεv‖2

L2(Ω) over v ∈ L2(Ω)

subject to ya ≤ v ≤ yb a.e. in Ω.
(P v

ε )

Here we use Sε = ı0Gε, where the operator Gε assigns to each v ∈ L2(Ω) the solution yε(v) = yε ∈ H1
0 (Ω)∩H2(Ω)

of the following elliptic equation:

Ayε +
1
ε
yε =

1
ε
v in Ω, yε = 0 on Γ. (Eε)

Notice that the underlying ideas of converting (Pε) into (P v
ε ) and considering the state equation in the form (Eε)

were originally introduced in [10,11]. In what follows, we denote the unique solution of (P v
ε ) by v̄ε with associated

optimal state ȳε. Obviously, (P v
ε ) and (Pε) are equivalent, i.e., v̄ε solves (P v

ε ) if and only if ūε = (εI + S)−1v̄ε

is the optimal solution of (Pε). We use the auxiliary problem (P v
ε ) in the following analysis.

The first derivative of fε at v in an arbitrary direction s ∈ L2(Ω) is given by

f ′
ε(v)s =

(
Sεv − yd +

α

ε2
(Sεv − v), Sεs

)
L2(Ω)

+
α

ε2
(v − Sεv, s)L2(Ω).

By standard arguments, this can be equivalently expressed as

f ′
ε(v) = qε(v) − α

ε2
yε(v) +

α

ε2
v, (2.1)
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where the adjoint state qε = qε(v) ∈ H1
0 (Ω)∩H2(Ω) is defined as the solution of the following adjoint equation:

A�qε +
1
ε
qε =

1
ε

(
yε(v) − yd +

α

ε2
(yε(v) − v)

)
in Ω, qε = 0 on Γ. (2.2)

2.1. Lipschitz continuity

Next we establish a Lipschitz property of yε and various other quantities. Since one might by interested
in (Pε) independently of (P ), we reduce the regularity requirements on, e.g., Ω, as we do not assume to have
H2(Ω)-regularity of the states and adjoints pertinent to (Pε). We only consider a Lipschitz-domain Ω ⊂ R

N

with N ∈ {2, 3} which is sufficient to obtain H1(Ω) ∩ C(Ω)-regularity of the solutions to the adjoint and state
equations (see the elliptic regularity results in [1]).

In what follows, let D = (εl, εu) ⊂ R++ with 0 < εl < εu.

Lemma 2.1. There exists a positive real number cs(εl) such that

‖yε1(v) − yε2(v)‖H1
0 (Ω)∩C(Ω) ≤ cs(εl)‖v‖L2(Ω)|ε1 − ε2|

for all v ∈ L2(Ω) and εi ∈ D, i = 1, 2.

Proof. We note that standard elliptic regularity estimates yield a constant c > 0 independent of ε and v such
that

‖yε(v)‖H1
0 (Ω)∩C(Ω) ≤ c‖1

ε
v‖L2(Ω) (2.3)

for all v ∈ L2(Ω) and ε ∈ D. Now, let εi ∈ D, i = 1, 2, and v ∈ L2(Ω). By definition, for i = 1, 2 the states
yεi(v) = yεi satisfy

Ayεi +
1
εi

yεi =
1
εi

v in Ω, yεi = 0 on Γ.

From this we infer

A(yε1 − yε2) +
1
ε1

(yε1 − yε2) =
(

1
ε1

− 1
ε2

)
(v − yε2) in Ω, yε1 − yε2 = 0 on Γ,

and hence due to (2.3)

‖yε1(v) − yε2(v)‖H1
0 (Ω)∩C(Ω) ≤

∣∣∣ 1
ε1

− 1
ε2

∣∣∣ c ‖v − yε2(v)‖L2(Ω)

≤ |ε1 − ε2| c

εl
2
(‖v‖L2(Ω) + ‖yε2(v)‖L2(Ω))

≤ |ε1 − ε2| c

ε2l

(
1 +

c

εl

)
‖v‖L2(Ω).

Setting cs(εl) := c
ε2l

(
1 + c

εl

)
yields the assertion. �

We proceed by proving the Lipschitz continuity of the adjoint states qε.

Lemma 2.2. There exists a positive real number cq(D) such that

‖qε1(v) − qε2(v)‖H1
0 (Ω)∩C(Ω) ≤ cq(D)(‖v‖L2(Ω) + 1)|ε1 − ε2|,

for all v ∈ L2(Ω) and ε1, ε2 ∈ D.
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Proof. An argument analogous to the one in the proof of Lemma 2.1 implies that there exists a constant c(D) > 0
independent of ε and v such that

‖qε(v)‖H1
0 (Ω)∩C(Ω) ≤ c(D)

(
‖v‖L2(Ω) + 1

)
(2.4)

for all ε ∈ D and v ∈ L2(Ω). Let ε1, ε2 ∈ D. By definition qε1(v) = qε1 and qε2(v) = qε2 solve, for i = 1, 2,

A�qεi +
1
εi

qεi =
1
εi

(yεi(v) − yd +
α

ε2i
(yεi(v) − v)) in Ω, qεi = 0 on Γ.

Hence, the difference qε1 − qε2 satisfies

A�(qε1 − qε2) +
1
ε1

(qε1 − qε2) = r in Ω, qε1 − qε2 = 0 on Γ,

where

r =
1
ε1

(yε1(v) − yε2(v)) +
(

1
ε1

− 1
ε2

)
(yε2(v) − yd) +

α

ε31
(yε1(v) − yε2(v))

+
(

α

ε31
− α

ε32

)
(yε2(v) − v) +

(
1
ε2

− 1
ε1

)
qε2 .

Since |ε32 − ε31| = |(ε22 + ε21 + ε2ε1)(ε2 − ε1)| ≤ 3ε2u|ε2 − ε1|, Lemma 2.1 and (2.4) yield a constant cq(D) > 0
independent of ε1, ε2 such that

‖qε1(v) − qε2(v)‖H1
0 (Ω)∩C(Ω) ≤ ‖r‖L2(Ω) ≤ cq(D)|ε1 − ε2|(‖v‖L2(Ω) + 1),

which ends the proof. �

For arguing the Lipschitz continuity of the controls, we require uniform positive definiteness of f ′′
ε , which we

establish next.

Lemma 2.3. There exists a positive real number δ(D) such that for all ε ∈ D, we have

f ′′
ε (v)s2 ≥ δ(D)‖s‖2

L2(Ω) ∀v, s ∈ L2(Ω). (2.5)

Proof. Let v ∈ L2(Ω) and ε ∈ D be arbitrarily fixed. Then, it holds by definition that fε(v) = f((S + εI)−1v).
Hence, for an arbitrary direction s ∈ L2(Ω), the chain rule implies

f ′′
ε (v)s2 = f ′′((S + εI)−1v)((S + εI)−1s)2

= (S(S + εI)−1s, S(S + εI)−1s)L2(Ω) + α((S + εI)−1s, (S + εI)−1s)L2(Ω)

≥ α((S + εI)−1s, (S + εI)−1s)L2(Ω)

= α‖(S + εI)−1s‖2
L2(Ω)

≥ α

‖S + εI‖2
L2,L2

‖s‖2
L2(Ω)

≥ α

(‖S‖L2,L2 + εu)2
‖s‖2

L2(Ω).

Defining δ(D) := α/(‖S‖L2,L2 + εu)2, the lemma is verified. �
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Theorem 2.1. The mapping v : D → L2(Ω), ε 
→ v̄ε, is Lipschitz-continuous.

Proof. Suppose that ε1, ε2 ∈ D. By definition v(ε1) = v̄ε1 and v(ε2) = v̄ε2 solve (P v
ε1) and (P v

ε2), respectively.
Hence, first order optimality yields

f ′
ε1(v̄ε1)(v − v̄ε1) ≥ 0 ∀v ∈ Vad,

f ′
ε2(v̄ε2)(v − v̄ε2) ≥ 0 ∀v ∈ Vad,

where Vad = {v ∈ L2(Ω) | ya ≤ v ≤ yb}. Since v̄ε1 and v̄ε2 are feasible, i.e., v̄ε1 , v̄ε2 ∈ Vad, the inequalities above
imply

(f ′
ε1(v̄ε1) − f ′

ε2(v̄ε2))(v̄ε2 − v̄ε1) ≥ 0, (2.6)
which is equivalent to

(f ′
ε1(v̄ε1) − f ′

ε1(v̄ε2) + f ′
ε1(v̄ε2) − f ′

ε2(v̄ε2))(v̄ε2 − v̄ε1) ≥ 0. (2.7)
Since f ′

ε1 is Fréchet-differentiable, there exists ṽ ∈ L2(Ω) such that

(f ′
ε1(v̄ε1) − f ′

ε1(v̄ε2))(v̄ε2 − v̄ε1) = −f ′′
ε1(ṽ)(v̄ε2 − v̄ε1)

2.

Then (2.7) yields
(f ′

ε1(v̄ε2) − f ′
ε2(v̄ε2))(v̄ε2 − v̄ε1) ≥ f ′′

ε1(ṽ)(v̄ε2 − v̄ε1)
2 (2.8)

and further

(‖qε1(v̄ε2) − qε2(v̄ε2)‖L2(Ω) +
α

ε21
‖yε1(v̄ε2) − yε2(v̄ε2)‖L2(Ω)+

α

ε21ε
2
2

|ε1 − ε2| · |ε1 + ε2|(‖yε2(v̄ε2)‖L2(Ω) + ‖v̄ε2‖L2(Ω))
)‖v̄ε2 − v̄ε1‖L2(Ω) ≥ f ′′

ε1(ṽ)(v̄ε2 − v̄ε1)
2,

where we used (2.1). Due to Lemmas 2.1–2.3, there exists a constant c(D) > 0 independent of ε1, ε2 such that

c(D)|ε2 − ε1|(‖v̄ε2‖L2(Ω) + 1) ≥ ‖v̄ε2 − v̄ε1‖L2(Ω). (2.9)

Notice that the operator v(·) is uniformly bounded in L∞(Ω), as v̄ε ∈ Vad for all ε ∈ R++. This together
with (2.9) proves the assertion. �

We have the following immediate corollaries establishing the Lipschitz continuity of ȳε and ūε.

Corollary 2.1. The mapping ε 
→ ȳε is Lipschitz-continuous from D to H1
0 (Ω) ∩ C(Ω).

Proof. Theorem 2.1 and Lemma 2.1 guarantee the existence of a constant c(D) > 0 independent of ε1, ε2 ∈ D
such that

‖ȳε1 − ȳε2‖H1
0 (Ω)∩C(Ω) ≤ ‖yε1(v̄ε1) − yε2(v̄ε1)‖H1

0 (Ω)∩C(Ω) + ‖yε2(v̄ε1 − v̄ε2)‖H1
0 (Ω)∩C(Ω) ≤ c(D)|ε1 − ε2|,

for all ε1, ε2 ∈ D. �
Corollary 2.2. The mapping ε 
→ ūε is Lipschitz-continuous from D to L2(Ω).

Proof. The assertion is immediate since, by construction, ūε = 1
ε (v̄ε − ȳε) for all ε > 0. �

Clearly, Corollaries 2.1 and 2.2 further imply the following result.

Corollary 2.3. The mapping ε 
→ pε is Lipschitz-continuous from D to H1
0 (Ω) ∩ C(Ω).

Proof. Utilizing (1.3) in (1.2) and exploiting the Lipschitz continuity of ūε and ȳε, respectively, yields the
assertion. �
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2.2. Parameter sensitivity

We continue our investigation by studying the mapping ε 
→ (ȳε, pε). Under a strict complementary assump-
tion, we establish the differentiability of this mapping with respect to ε. First of all, we define the following
operators:

ga : D → C(Ω), ga(ε) =
1
ε
pε − α

ε2
ȳε +

α

ε2
ya, (2.10)

gb : D → C(Ω), gb(ε) = −1
ε
pε +

α

ε2
ȳε − α

ε2
yb. (2.11)

Note that ga and gb appear in the maximum operators in (1.8)–(1.9):

⎧⎪⎪⎨
⎪⎪⎩

μa
ε

= max
(

0, 1
ε pε + α

ε2 (ya − ȳε)
)

= max(0, ga(ε)),

μb
ε = max

(
0,− 1

ε pε + α
ε2 (ȳε − yb)

)
= max(0, gb(ε)).

(2.12)

Therefore, in order to study the dependence of the Lagrange multipliers μa
ε , μb

ε on the regularization parameter ε,
we need to consider the operators ga, gb. Suppose that ε ∈ D is arbitrarily fixed. Then the Lipschitz-continuity
of the mapping ε 
→ (ūε, ȳε, pε) from D to L2(Ω)×H1

0 (Ω)×H1
0 (Ω) ensures the existence of a weak accumulation

point (u̇ε, ẏε, ṗε) ∈ L2(Ω) × H1
0 (Ω) × H1

0 (Ω) of

(
ūεn − ūε

εn − ε
,
ȳεn − ȳε

εn − ε
,
pεn − pε

εn − ε

)
(2.13)

as εn → ε ∈ D for n → ∞. Further,

1
εn − ε

(ga(εn) − ga(ε)) =
1

εn − ε

(
1
εn

pεn − α

ε2n
ȳεn +

α

ε2n
ya − 1

ε
pε +

α

ε2
ȳε − α

ε2
ya

)

=
1

εn − ε

(
1
ε
(pεn − pε) −

(
1
ε
− 1

εn

)
pεn +

(
α

ε2
− α

ε2n

)
ȳεn

− α

ε2
(ȳεn − ȳε) −

(
α

ε2
− α

ε2n

)
ya

)

=
1
ε

pεn − pε

εn − ε
− 1

εεn
pεn +

α(εn + ε)
ε2ε2n

ȳεn − α

ε2
ȳεn − ȳε

εn − ε
− α(εn + ε)

ε2ε2n
ya

has a weak accumulation

ġa(ε) =
1
ε
ṗε − 1

ε2
pε +

2α

ε3
ȳε − α

ε2
ẏε − 2α

ε3
ya

in H1
0 (Ω) as εn → ε for n → ∞. Analogously, there exists a weak accumulation point of 1

εn−ε (gb(εn) − gb(ε)),
which is given by

ġb(ε) = −1
ε
ṗε +

1
ε2

pε − 2α

ε3
ȳε +

α

ε2
ẏε +

2α

ε3
yb.

By the compact embedding H1
0 (Ω) ⊂ L2(Ω) the accumulation points ġa(ε) and ġb(ε) are strong in L2(Ω).

Without any further assumption, in general there is a need to distinguish between upper and lower accumu-
lation points depending on whether εn ↓ ε or εn ↑ ε, respectively. See [7] for a similar observation in a related
context. However, under some type of strict complementarity condition this distinction is not required as all
limits over εn-sequences yield a unique accumulation point. This motivates the following assumption.
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Assumption 2.1. We assume that the solution of (Pε) satisfies the strict complementarity condition

meas{x ∈ Ω |ga(ε)(x) = pε(x) − α
ε ȳε(x) + α

ε ya(x) = 0 a.e.} = 0,
meas{x ∈ Ω | gb(ε)(x) = −pε(x) + α

ε ȳε(x) − α
ε yb(x) = 0 a.e.} = 0.

(SC)

Notice that by (1.8)–(1.9) the Lagrange multipliers for (Pε) are given by

μa
ε = max

(
0,

1
ε
pε +

α

ε2
(ya − ȳε)

)
= g+

a (ε),

μb
ε = max

(
0,−1

ε
pε +

α

ε2
(ȳε − yb)

)
= g+

b (ε),

where g+
a = max(0, ga) and analogously for g+

b . Hence, using (1.3), the condition (SC) requires that

meas{x ∈ Ω : μa
ε (x) + γ(ya − εūε − ȳε)(x) = 0} = 0,

or equivalently, that the set where the max-operation is non-differentiable is of measure zero; analogously for
the set involving μb

ε and yb.
Next we study the behavior of

g+
a (εn) − g+

a (ε)
εn − ε

and
g+

b (εn) − g+
b (ε)

εn − ε

as εn → ε for n → ∞. For this purpose we introduce

Sa,ε := {x ∈ Ω : ga(ε)(x) > 0}

and analogously Sb,ε. By Sc
a,ε and Sc

b,ε we denote the complement of Sa,ε and Sb,ε in Ω, respectively. Recall
that Assumption 2.1 implies meas{x ∈ Ω : ga(ε)(x) = 0} = 0. For this reason, we have

measSa,ε = meas{x ∈ Ω : ga(ε)(x) > 0} = meas{x ∈ Ω : ga(ε)(x) ≥ 0}

and analogously for Sb,ε. Hence, for v ∈ L2(Ω) we infer

∫
Ω

(
g+

a (εn) − g+
a (ε)

εn − ε

)
v dx =

1
εn − ε

∫
Sc

a,ε

(g+
a (εn) − g+

a (ε))v dx

+
1

εn − ε

∫
Sa,ε

(g+
a (εn) − ga(εn))v dx +

1
εn − ε

∫
Sa,ε

(ga(εn) − ga(ε))v dx.

From the strict complementary condition (SC) and the definition of the set Sa,ε we obtain

ga(ε)(x) < 0 for a.a. x ∈ Sc
a,ε and ga(ε)(x) > 0 for a.a. x ∈ Sa,ε. (2.14)

In addition, Corollaries 2.1 and 2.3 yield

lim
n→∞ ga(εn) = ga(ε) in C(Ω). (2.15)
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The latter uniform convergence together with (2.14) results in

lim
n→∞

g+
a (εn)(x) − g+

a (ε)(x)
εn − ε

= 0 for a.a. x ∈ Sc
a,ε,

lim
n→∞

g+
a (εn)(x) − ga(εn)(x)

εn − ε
= 0 for a.a. x ∈ Sa,ε.

Hence, for n → ∞, the Lebesgue dominated convergence theorem and Assumption 2.1 yield

1
εn − ε

∫
Sc

a,ε

(g+
a (εn) − g+

a (ε))v dx → 0,

1
εn − ε

∫
Sa,ε

(g+
a (εn) − ga(εn))v dx → 0,

1
εn − ε

∫
Sa,ε

(ga(εn) − ga(ε))v dx →
∫

Ω

ġa(ε)χSa,εv dx,

where χSa,ε is the characteristic function of Sa,ε. The analogous result holds true for g+
b . These properties of

g+
a , g+

b are important for the proof of the following theorem.

Theorem 2.2. Suppose that the solution of (Pε) satisfies Assumption 2.1. Then the mappings y : D → L2(Ω),
ε 
→ ȳε, and p : D → L2(Ω), ε 
→ pε, are strongly differentiable at ε ∈ D.

Proof. Let (δu, δy, δp) be the difference of two weak accumulation points of(
ūεn − ūε

εn − ε
,
ȳεn − ȳε

εn − ε
,
pεn − pε

εn − ε

)
,

as εn → ε. By δμa and δμb we denote the difference of the associated weak accumulation points of g+
a (εn)−g+

a (ε)
εn−ε

and g+
b (εn)−g+

b (ε)

εn−ε . Due to first order optimality, (δu, δy, δp, δμa, δμb) is characterized by

Aδy = δu in Ω, δy = 0 on Γ, (2.16)

A�δp = δy + δμb − δμa in Ω, δp = 0 on Γ, (2.17)

δp + αδu + ε(δμb − δμa) = 0, (2.18)

δμa =
(

1
ε
δp − α

ε2
δy

)
χSa,ε , (2.19)

δμb =
(
− 1

ε
δp +

α

ε2
δy

)
χSb,ε

. (2.20)

Inserting equations (2.18)–(2.20) in (2.16) and (2.17) and then rearranging terms, we obtain

Aδy +
1
ε
(χSa,ε + χSb,ε

)δy =
1
α

(−I + χSa,ε + χSb,ε
)δp in Ω, δy = 0 on Γ, (2.21)

A�δp +
1
ε
(χSa,ε + χSb,ε

)δp =
(

I +
α

ε2
χSa,ε +

α

ε2
χSb,ε

)
δy in Ω, δp = 0 on Γ. (2.22)

Further, let us define the bilinear form associated with the differential operator A:

a : H1
0 (Ω) × H1

0 (Ω) → R, a(η, τ) =
∫
Ω

( N∑
i,j=1

aij(x)Diη(x)Djτ(x)
)

dx.
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In view of (2.21)–(2.22), δy, δp ∈ H1
0 (Ω) are given by the solutions of

a(δy, z) +
1
ε

(
(χ

Sa,ε
+ χ

Sb,ε
)δy, z

)
L2(Ω)

=
(

1
α

(−I + χ
Sa,ε

+ χ
Sb,ε

)δp, z

)
L2(Ω)

∀z ∈ H1
0 (Ω), (2.23)

a(z, δp) +
1
ε

(
(χ

Sa,ε
+ χ

Sb,ε
)δp, z

)
L2(Ω)

=
(

(I +
α

ε2
χ

Sa,ε
+

α

ε2
χ

Sb,ε
)δy, z

)
L2(Ω)

∀z ∈ H1
0 (Ω). (2.24)

Inserting z = δp and z = δy in (2.23) and (2.24), respectively, we find that

0 ≥
(

1
α

(−I + χ
Sa,ε

+ χ
Sb,ε

)δp, δp

)
L2(Ω)

= a(δy, δp) +
1
ε

(
(χ

Sa,ε
+ χ

Sb,ε
)δy, δp

)
L2(Ω)

= a(δy, δp) +
1
ε

(
(χ

Sa,ε
+ χ

Sb,ε
)δp, δy

)
L2(Ω)

=
((

I +
α

ε2
χ

Sa,ε
+

α

ε2
χ

Sb,ε

)
δy, δy

)
L2(Ω)

≥ 0.

From this we infer δy = δp = 0, and hence by (2.18)–(2.19) δu = δμa = δμb = 0. Thus, as εn → ε,
(

ȳεn − ȳε

εn − ε
,
pεn − pε

εn − ε

)

has a unique weak accumulation point in H1
0 (Ω) × H1

0 (Ω). By the compact-embedding of H1
0 (Ω) in L2(Ω),

( ȳεn−ȳε

εn−ε ,
pεn−pε

εn−ε ) admits a unique accumulation point in L2(Ω) × L2(Ω). Finally, since our arguments hold for
any convergent subsequences, a standard argument completes the proof. �

Remark 2.1. Based on the optimality conditions, the derivatives y′(ε) and p′(ε) satisfy the following system:

Ay′(ε) = u̇ε in Ω, y′(ε) = 0 on Γ, (2.25)

A�p′(ε) = y′(ε) + μ̇b,ε − μ̇a,ε in Ω, p′(ε) = 0 on Γ, (2.26)

p′(ε) + αu̇ε + ε(μ̇b,ε − μ̇a,ε) = 0; (2.27)

μ̇a,ε =
(

1
ε
p′(ε) − 1

ε2
pε +

2α

ε3
ȳε − α

ε2
y′(ε) − 2α

ε3
ya

)
χSa,ε ; (2.28)

μ̇b,ε =
(
− 1

ε
p′(ε) +

1
ε2

pε − 2α

ε3
ȳε +

α

ε2
y′(ε) +

2α

ε3
yb

)
χSb,ε

. (2.29)

Remark 2.2. It is also of interest to study the case where Assumption 2.1 does not hold true. In this case,
differentiability with respect to ε cannot be expected. However, the existence of weak accumulation points in
H1

0 (Ω) of, e.g., ȳεn − ȳε/(εn − ε) for εn → ε still holds true by the Lipschitz property of ȳε with respect to ε
according to Corollary 2.1. On the other hand, one can no longer expect uniqueness of these weak accumulation
points. In our numerics, the term on the right hand side of (3.8) then has to be interpreted as a difference
approximation of the directional derivative of ȳεn in direction (εn+1 − εn).

3. Extrapolation-based algorithm

Next we introduce a semismooth Newton (SSN) algorithm which utilizes the theoretical results of the previous
section within an extrapolation framework. Conceptually, we exploit the differentiability property of the solution
of (Pε) in order to predict a solution of (Pε2) given an approximate solution of (Pε1) with ε1 > ε2. Hence,
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the extrapolation serves the purpose of efficient initializations of the SSN-method for solving (Pε) along a
sequence of vanishing regularization parameters.

In Section 1.2 we provide an equivalent characterization of first order optimality by using a reformulation
based on the max-function; compare (1.6)–(1.7). This reformulation is the starting point for the development of
a rapidly convergent algorithm of SSN-type. For this purpose we need a generalized derivative for “linearizing”
the max-operations in (1.6)–(1.7). Then we introduce the algorithm which, due to our choice of the generalized
derivative, has the flavor of an active set strategy utilizing both the primal and the dual variables for identifying
the active sets

Āa
ε := {x ∈ Ω : εūε(x) + ȳε(x) = ya(x)}, (3.1)

Āb
ε := {x ∈ Ω : εūε(x) + ȳε(x) = yb(x)} (3.2)

at the optimal solution of (Pε). Subsequently we rely on the following generalized derivative.

Definition 3.1. Let X , Y be Banach spaces and U be an open set in X . A mapping F : U → Y is said to be
semismooth (or Newton differentiable) in U if there exists a (possibly set-valued) mapping ∂F : U ⇒ L (X, Y )
such that

sup
V ∈∂F (x+s)

‖F (x + s) − F (x) − V s‖Y = o(‖s‖X) as ‖s‖X → 0 (3.3)

is satisfied for all x ∈ U . We call ∂F the Newton differential, and its elements V are referred to as Newton
maps.

As shown in [5], a class of Newton maps for the maximum operator M(z) = max(0, z) is given by

∂Mξ(z)(x) =

⎧⎨
⎩

1 if z(x) > 0,
0 if z(x) < 0,
ξ if z(x) = 0,

(3.4)

with arbitrarily fixed ξ ∈ R, provided that M is defined as a mapping from Lq2(Ω) to Lq1(Ω) with 1 ≤ q1 < q2;
otherwise, i.e., for q1 = q2 the mapping M is not Newton differentiable.

As pointed out earlier, the complementarity system can be equivalently expressed as

μa
ε = max(0, 1

ε pε + α
ε2 (ya − ȳε)),

μb
ε = max(0,− 1

ε pε + α
ε2 (ȳε − yb)),

(3.5)

where pε solves the adjoint equation (1.2). Further note that the equalities in (3.5) have to hold in L2(Ω),
respectively, and pε, ȳε ∈ H1

0 (Ω) ⊂ Lq(Ω) with q > 2 depending on the spatial dimension due to Sobolev
embedding results. Hence, the max-operations are understood as mappings from Lq(Ω) to L2(Ω) with 2 < q
which guarantees Newton-differentiability. Choosing ξ = 0 for the Newton maps of the maximum operators
in (3.5), we obtain the following algorithm for solving (Pε); compare also [8].

Algorithm 3.1 (semismooth Newton method).
(i) Initialization: Choose initial data p0, y0 ∈ L2(Ω) and set l = 0.
(ii) Determine the active and inactive sets:

Al
a =

{
x ∈ Ω :

1
ε
pl(x) +

α

ε2
(ya(x) − yl(x)) > 0 a.e. in Ω

}
,

Al
b =

{
x ∈ Ω : −1

ε
pl(x) +

α

ε2
(yl(x) − yb(x)) > 0 a.e. in Ω

}
,

Il = Ω\(Al
a ∪ Al

b).
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(iii) Find the solution (yl+1, pl+1, ul+1, μl+1
a , μl+1

b ) of

Ayl+1 = ul+1 in Ω,
yl+1 = 0 on Γ,

A�pl+1 = yl+1 − yd − μl+1
a + μl+1

b in Ω,
pl+1 = 0 on Γ,

αul+1 + pl+1 + ε(μl+1
b − μl+1

a ) = 0

μl+1
a = 1

ε pl+1 + α
ε2 (ya − yl+1) on Al

a, μl+1
a = 0 on Il ∪ Al

b

μl+1
b = − 1

ε pl+1 + α
ε2 (yl+1 − yb) on Al

b, μl+1
b = 0 on Il ∪ Al

a.

(iv) Stop, or set l = l + 1 and go to (ii).

Typically, we terminate the algorithm by using the stopping rule: An
a = An−1

a and An
b = An−1

b . For a local
convergence analysis of SSN-methods of this type we refer to [5].

Fast convergence of the above algorithm hinges on the quality of the initial point. For this purpose, based
on Theorem 2.2 we employ an extrapolation strategy with respect to ε. We outline our approach next. Let (εn)
be a sequence of regularization parameters given by

εn+1 = (1 − κn)εn with 0 < κn < 1. (3.6)

Here, κn is the reduction rate of the sequence (εn) of regularization parameters. By Theorem 2.2, the Taylor
expansion of y at εn+1 implies

y(εn+1) ≈ y(εn) + y′(εn)(εn+1 − εn). (3.7)

The derivative y′(εn) may be computed by solving the sensitivity equations (2.25)–(2.29). In order to save
CPU-time we propose to use backward differences in ε to approximate y′(εn):

y′(εn) ≈ y(εn) − y(εn−1)
εn − εn−1

· (3.8)

Utilizing (3.8) in (3.7), we obtain

y(εn+1) ≈ y(εn) +
εn+1 − εn

εn − εn−1
(y(εn) − y(εn−1)). (3.9)

Using (3.6), the optimal state y(εn+1) = yn+1 of (Pεn+1) is approximated by

yn+1 ≈ y0
n+1 := yn +

κn

κn−1
(1 − κn−1)(yn − yn−1). (3.10)

Similarly, the adjoint state p(εn+1) = pn+1 at εn+1 is approximated by

pn+1 ≈ p0
n+1 := pn +

κn

κn−1
(1 − κn−1)(pn − pn−1). (3.11)

In this way, we extrapolate the solutions of (Pεn) and (Pεn−1) in order to get the initial guess (y0
n+1, p

0
n+1) for

Algorithm 3.1 to solve the subsequent problem (Pεn+1). For ε0 we use y0 = p0 = 0.

4. Numerical experiments

Our goal in this section is to demonstrate the numerical reliability of our sensitivity-based extrapolation ap-
proach. As mentioned before and based on earlier experience [10,11,13], due to the high sensitivity of (Pε) with
respect to ε and the corresponding challenge in its numerical solution for vanishing regularization parameter
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Figure 1. Computed optimal control uh (left plot) and corresponding state yh (right plot) for
ε = 10−6 and h = 1/256.

the initialization along the ε-sequence becomes an issue. It turns out that our initialization-by-extrapolation pro-
cedure achieves a significant speed up of Algorithm 3.1 compared to classical continuation strategies; compare,
e.g., Tables 2 and 3 below.

In our numerical tests we use Ω = (0, 1)× (0, 1) and A = −Δ. The discretization of the problem is based on
continuous piecewise linear finite elements on a uniform mesh, and the discrete versions of the active sets Aa

and Ab are given by {
i :

1
ε
(ph)i +

α

ε2
((ya,h)i − (yh)i) > 0

}
,{

i : −1
ε
(ph)i − α

ε2
((yb,h)i − (yh)i) > 0

}

where the vectors ph, yh, ya,h, yb,h ∈ R
Nh are the values of the corresponding mesh functions at the nodal points

of the discretization. Here, h denotes the mesh size of discretization.
The numerical computations were carried out on a PC with a 250-GHz AMD processor and a 16-gigabyte

memory.

4.1. Example 1

We choose:
yd = 2 cos(2πx1x2), yb = 0, ya = −1, α = 10−2;

see Figure 1 for the numerical solution of (Pε) with ε = 10−6 and h = 1/256.
First, in Table 1 we report on the results obtained by Algorithm 3.1 with simple initialization y0 = p0 = 0, i.e.,

without the extrapolation strategy, in the case of vanishing regularization parameter. In addition to varying ε,
we provide the iteration numbers for various mesh sizes h. We clearly detect an unstable behavior of the
algorithm with respect to ε. Observing each column of Table 1, the number of iterations increases considerably
as ε decreases. We also observe that small mesh sizes catalyze this adverse effect for small ε. On the other hand,
for large ε (ε > 10−4 in our case) we even observe a mesh-independent behavior of the algorithm. This property
was verified theoretically, also for a nonlinear case, in [8]. We point out that the results of [8] also hold true for
small ε, but in order to observe the mesh independence effect sufficiently small mesh sizes would be necessary.

Based on our numerical observations, the following reasons are responsible for the unstable behavior of
the algorithm: First, the system of linear equations involved in each iteration of the algorithm is severely
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Table 1. Number of iterations required by Algorithm 3.1 for several choices of the regulariza-
tion parameter ε and mesh sizes h.

# It. for various h
ε 1/32 1/64 1/128 1/256

10−1 4 4 4 4
10−2 7 6 7 7
10−3 14 14 15 15
10−4 26 40 42 45
10−5 32 59 109 156
10−6 32 62 133 239

Table 2. Results of the algorithm under a continuation strategy.

# It. for various h
ε 1/32 1/64 1/128 1/256

10−2 7 6 7 7
10−3 8 9 10 10
10−4 11 15 20 20
10−5 6 11 19 25
10−6 6 8 12 21

ill-conditioned for small ε. This effect becomes especially apparent on fine meshes. Secondly, the measure
structure of the Lagrange multiplier associated with the upper bound complicates the numerical computation
considerably. Figure 2 demonstrates that the structure of the multiplier becomes more and more singular as
ε → 0.

The numerical experiments in [14] indicate that a (classical) continuation strategy may accelerate the con-
vergence speed of the algorithm. Utilizing this concept, for our test problem we detect a remarkable speed-up.
The basic idea of the continuation method is merely to use the solution of the regularization problem with
a slightly larger regularization parameter as the initial data for the subsequent regularized problem (with a
smaller parameter). Table 2 provides the results for this approach. Compared to the results in Table 1, the
algorithm converges much faster. However, for the given mesh sizes we still experience the mesh-dependent
behavior for fixed parameter ε ≤ 10−4 as well as the unstable behavior with respect to decreasing ε for a fixed
mesh size.

Now, we apply our sensitivity-based extrapolation method when solving the test problem numerically. We
choose κn constant by setting (1 − κn) = 10−1 in (3.6). Thus, we obtain εn = 10−1εn−1. Initially we choose
ε0 = 10−2. We solve first (Pε1) utilizing the solution of (Pε0) as initial data. Subsequently, for all n ≥ 2,
(Pεn) is initialized by the extrapolation strategy, i.e., we utilize (3.10)–(3.11) for generating the initial data
when solving (Pεn+1). In Table 3 we report on the numerical performance under this regime. Compared to the
continuation strategy, we find that the initialization technique based on our extrapolation approach yields higher
efficiency and stability with respect to the regularization parameter as well as the mesh size of discretization.
Furthermore, observing Table 3, a rather mesh independent convergence of the algorithm is detected.

Instead of using the extrapolation strategy based on backward differences, one can also approximate the
initial data by

y(εn+1) ≈ y0(εn+1) := y(εn) + y′(εn)(εn+1 − εn),
p(εn+1) ≈ p0(εn+1) := p(εn) + p′(εn)(εn+1 − εn),
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Figure 2. Computed Lagrange multipliers associated with the upper bound: Upper left: ε =
10−2, upper right: ε = 10−3, lower left: ε = 10−4 and lower right: ε = 10−6.

Table 3. Results of the algorithm under the sensitivity-based extrapolation strategy and its stability.

# It. for various h
ε 1/32 1/64 1/128 1/256

10−2 7 6 7 7
10−3 8 9 10 10
10−4 4 6 6 6
10−5 3 5 5 6
10−6 6 5 6 7

where the derivatives y′(εn) and p′(εn) are computed by solving the sensitivity equations (2.25)–(2.29); see Re-
mark 2.1. In Table 4, we provide the corresponding numerical results with the choice εn+1 = εnκ
and κ = 0.5. The performance of this technique is satisfying as well. As before we observe a stabile be-
havior with respect to the regularization parameter as well as the mesh size h. Comparing the results with
those obtained by the extrapolation strategy based on backward differences we conclude that the numerical
performances of both methods are comparable.
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Table 4. Iteration numbers for computed sensitivities y′(εn) and p′(εn) with εn+1 = 0.5εn.

# It. for various h
ε 1/16 1/32 1/64 1/128 1/256

10−2 5 7 6 7 7
10−2κ 2 3 3 4 4
10−2κ2 2 2 3 4 4
10−2κ3 2 2 3 3 3
10−2κ4 2 3 3 3 3
10−2κ5 2 2 3 2 3
10−2κ6 3 2 2 2 3
10−2κ7 3 3 3 3 3
10−2κ8 4 3 4 4 3
10−2κ9 4 6 4 3 3
10−2κ10 4 6 4 4 3

4.2. Example 2

Next we consider an example with an analytically known solution. For the optimal control, optimal state,
the bounds and the cost parameter α, we set

yopt(x1, x2) = sin(πx1) sin(πx2),

uopt(x1, x2) = −Δyopt(x1, x2) = 2π2yopt(x1, x2),
yb(x1, x2) = max(0.8x2 + 0.2, yopt(x1, x2)),
ya(x1, x2) = −3,

α = 10−3.

The adjoint state at the optimal control is given by:

popt(x1, x2) = −αuopt(x1, x2).

Furthermore, a few computations show that the multiplier for the upper bound

μb
opt(x1, x2) :=

{
10(0.8x2 + 0.2) if yopt(x1, x2) ≥ 0.8x2 + 0.2,
0 if yopt(x1, x2) ≤ 0.8x2 + 0.2

satisfies the complementarity slackness conditions for (P ). For the Lagrange multiplier associated with the
lower bound, we set μa

opt = 0. Finally, from the adjoint state equation we obtain the desired state

yd = Δpopt + yopt + μb
opt.

All these quantities are depicted in Figure 3.
For comparison, for fixed mesh size h = 1/128 in Table 5 we collect the numerical results obtained by

our algorithm without a special initialization strategy. Additionally, we report on the L2-error between the
computed numerical solution and the analytical one. Upon studying Table 5 we note that the error stabilizes
at a some level as ε tends to 0. This clearly shows that, depending on the mesh size of discretization h, there
is an ε(h) such that the error stabilizes for ε < ε(h). In order to further reduce the error a reduction of h
is necessary. A further reduction of ε (for fixed h), on the other hand, only increases the ill-conditioning due
to small regularization parameter but it does not reduce the overall error. The ill-conditioning is reflected by
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Figure 3. Example 2. Optimal control uopt (upper left), optimal state yopt (upper right),
upper bound yb (lower left) and Lagrange multiplier associated with the upper bound μb

opt

(lower right).

Table 5. Numerical performance of Algorithm 3.1 with respect to decreasing regularization parameter.

ε #it. ‖uε
h − uopt‖L2(Ω) ‖yε

h − yopt‖L2(Ω) ‖pε
h − popt‖L2(Ω) ‖μb,ε

h − μb
opt‖L2(Ω)

10−4.0 25 8.77393e–02 8.85558e–04 2.68096e–04 2.36374e–01
10−5.0 42 4.95932e–03 9.43736e–05 2.91984e–05 1.09244e–01
10−6.0 69 1.48140e–03 1.05259e–05 4.20660e–06 2.27157e–02
10−7.0 70 1.60176e–03 3.96104e–06 1.84645e–06 7.46035e–03
10−8.0 73 1.61771e–03 3.78954e–06 1.64142e–06 8.01558e–03
10−9.0 71 1.61034e–03 3.78286e–06 1.62170e–06 8.11886e–03

the increasing number of iterations until successful termination of the algorithm; see the second column from
left.

Finally we study the effect of employing our new sensitivity-based initialization by extrapolation. The
corresponding results are collected in Table 6. In the third column we find the relative CPU-time, i.e., the
ratio of the CPU-time needed when using our extrapolation scheme vs. the CPU-time corresponding to the
run reported on in Table 5. As before we observe a significant speed-up when using our initialization strategy
especially in cases of small regularization parameters. The strong improvement for ε ≤ 1.0 e–8 may be related to
the high quality of the initial points. This can be seen from the forth and fifth column of Table 6, where we show
the L2-distance of the optimal discrete state and adjoint state of the regularized problem to the corresponding
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Table 6. Speed up of Algorithm 3.1 under the extrapolation-initialization-strategy.

ε #It. CPU-ratio ‖yε
h − yext,ε

h ‖L2(Ω) ‖pε
h − pext,ε

h ‖L2(Ω)

10−7 57 0.88 4.7052e–07 1.9186e–07
10−8 5 0.09 6.9104e–09 3.8095e–09
10−9 5 0.09 7.3953e–11 4.4084e–11

Figure 4. Computed numerical solution for ε = 10−9 and h = 1/128: optimal control (upper
left), Optimal state (upper right), adjoint state (lower left) and Lagrange multiplier associated
with the upper bound (lower right).

initial data yext,ε
h and pext,ε

h when solving (Pε). In Figure 4 we provide the graphs of the numerical solution for
ε = 1.0 e–9, which is close to the analytic solution; compare Figure 3.

5. Conclusion

Studying the sensitivity of the solution of the (Lavrentiev) regularized state constrained optimal control
problem with respect to the regularization parameter is beneficial as it allows to employ highly efficient initial-
ization schemes along a sequence of vanishing regularization parameters, i.e., in the case of convergence to the
original problem. In our numerical test runs it turns out that this strategy successfully copes with the increasing
ill-conditioning of the problems as ε → 0 and as h is refined. Further, a combination with a nested iteration
concept allows to even further increase the efficiency of the algorithm such that we observe a rather mesh inde-
pendent behavior of our method when solving the state constrained optimal control problem. The sensitivity
analysis, however, is also of interest in its own right as it allows to study the quality of the dependence of the
regularized solution on the regularization parameter. Within path-following frameworks (see [6] for problems
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with low multiplier regularity, or [3] for a general account in the context of smooth Newton-based approaches),
where the path {(ūε, ȳε) : ε > 0} is induced by ε, it is at the basis of studying further properties such as, e.g.,
the length of the path and other relevant quantities.
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