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THE SQUARES OF THE LAPLACIAN-DIRICHLET EIGENFUNCTIONS
ARE GENERICALLY LINEARLY INDEPENDENT

Yannick Privat1 and Mario Sigalotti1, 2

Abstract. The paper deals with the genericity of domain-dependent spectral properties of the
Laplacian-Dirichlet operator. In particular we prove that, generically, the squares of the eigenfunctions
form a free family. We also show that the spectrum is generically non-resonant. The results are ob-
tained by applying global perturbations of the domains and exploiting analytic perturbation properties.
The work is motivated by two applications: an existence result for the problem of maximizing the rate
of exponential decay of a damped membrane and an approximate controllability result for the bilinear
Schrödinger equation.
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1. Introduction

Genericity is a measure of how much robust and frequent a property is. It enjoys, therefore, a deep-rooted
success in control theory, where a generic behavior is, roughly speaking, the expected behavior of systems
involving physical quantities whose value can only be approximated.

A paradigmatic example of generic properties in control theory is the controllability of a finite-dimensional
linear system

ẋ = Ax+Bu, x ∈ R
n, u ∈ R

m. (1.1)
It is well known, and the proof simply follows from the Kalman criterion, that for every choice of the positive
integers n and m a generic linear system of type (1.1) is controllable. More precisely, the set of pairs (A,B) for
which (1.1) is controllable is open and dense in the product of the spaces of n × n and n ×m matrices. (See,
for instance, [26].)

When a control system involves partial differential equations, conditions guaranteeing its controllability,
observability or stabilizability can often be stated in terms of the eigenvalues or eigenspaces of some linear
operator (typically, the leading term of the evolution operator). In this paper we are mainly interested in
conditions depending on the domain on which the control system of partial differential equations is defined.
The genericity of some relevant conditions for control applications has already been considered and proved in
the general field of partial differential equations (e.g., the simplicity of the eigenvalues of the Laplacian-Dirichlet
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operator proved in [20,28] and applied in the control framework in [16]). Others, due to their technical nature,
need to be tackled by specific arguments. This has led to the development of several tools for studying the
genericity with respect to the domain of control-related properties of partial differential operators. Without
seeking exhaustiveness, let us mention the works by Lions and Zuazua [17] and Ortega and Zuazua [23] on the
Stokes system, those by Ortega and Zuazua [22,24] on the plate equation, the paper by Chitour et al. [8] on
the heat and wave equations and the recent work by Beauchard et al. [6] on the Schrödinger equation.

The scope of this paper is to prove the genericity with respect to the domain of some properties of the
Laplacian-Dirichlet operator issuing from control theory and optimization among which, in particular, the
linear independence of the squared eigenfunctions.

In doing so we propose a technique that, we believe, has a wider range of applicability, going beyond the
conditions studied here and adaptable to different operators. The difference between our approach and those
usually adopted is that we focus less on local infinitesimal variations of the domain and more on global, long-
range perturbations. In order to get genericity results from this kind of perturbations we have to rely on
analytic-dependence properties for the eigenvalues and eigenfunctions of the Laplacian-Dirichlet operator with
respect to analytic perturbations of the domain. (It should be stressed, however, that analytic perturbation
theory applies to a much larger range of operators.) The idea of proving genericity through global perturbations
is clearly not new, being intrinsically contained in analytic perturbation theory. Our work has actually been
inspired by a paper by Hillairet and Judge [14], where the authors prove, using global perturbations, the
generic simplicity of the eigenvalues of the Laplacian-Dirichlet operator on planar polygons with at least four
vertices. The argument in [14], however, relies on the existence, in the class of interest, of domains having
simple spectrum. The difficulty of extending the proof of [14] to show the generic linear independence of the
squared eigenfunctions on smooth domains is that examples of smooth domains having the desired property are
not handily available. One kind of domain on which the property can be easily checked is given by orthotopes.
However, many results on spectral stability when non-smooth domains are approximated by smooth ones are
known (see, in particular, the work by Arendt and Daners [3] where uniform stability of the eigenfunctions
is studied) and imply the existence, for every n ∈ N, of a smooth domain Rn whose first n eigenfunctions
have linearly independent squares. In order to propagate by global analytic perturbation the property satisfied
by Rn one can use, for instance, exponential flows of vector fields (even a narrow family of vector fields is
enough to generate a full orbit of domains, see [1]). One has, however, to take care of the possible crossing of
the analytically depending eigenvalues. In order to do so, one should select analytic paths along which the first
n eigenvalues are simple. This problem is related to the Arnol′d conjecture (see [4,10]) and has been solved by
Teytel in [27]. Teytel’s result, recalled in Proposition 2.2, is crucial for the proposed perturbation technique
(Thms. 2.3 and 2.4).

Let us conclude this introduction by describing the motivating applications of the properties that we consider.
The generic linear independence of the squared eigenfunctions has been conjectured in dimension two by Hébrard
and Henrot in [11], where the authors consider the problem of stabilizing with the largest possible decay rate
a membrane fixed at its boundary using a damping acting on a portion of the membrane of fixed area. The
existence and uniqueness of the solution for this problem can be deduced from the linear independence of the
squared eigenfunctions of the Laplacian-Dirichlet operator on the domain filled by the membrane. (See Sect. 3
for more details.)

It should be noticed that whether such linear independence is not only generic but rather always true is still an
open question. A negative result by Mahar and Willner [18] on the squared eigenfunctions of a Sturm-Liouville
operator justify a cautious stance toward a conjecture saying that the linear independence should always hold
true.

Linear independence of the squared eigenfunctions appears quite naturally also in the study of the controlla-
bility of the bilinear Schrödinger equation. In this context, indeed, non-resonance conditions on the spectrum
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of the uncontrolled Schrödinger operator are often required (see, for instance, [7]). Since the kth eigenvalue λεk
of −Δ + εV : H2(Ω) ∩H1

0 (Ω) → L2(Ω) is analytic with respect to ε and satisfies

d
dε

∣∣∣∣
ε=0

λεk =
∫

Ω

V (x)φk(x)2dx

where (φn)n∈N is a complete system of eigenfunctions of −Δ (see [2]), then the linear independence of the family
(φ2
n)n∈N clearly plays a role in the study of the size of the family of potentials V for which the spectrum has

some prescribed property.
Another application discussed in Section 3 corresponds to the case where the uncontrolled Schrödinger

operator is defined by a potential well, i.e., V = 0 and Ω is free. We show in this case that, generically with
respect to Ω, no nontrivial linear combination with rational coefficients of the eigenvalues of −Δ annihilates. We
deduce from this fact and the results in [7] a generic approximate controllability property for the Schrödinger
equation.

Properties about the non-annihilation of linear combinations of eigenvalues play a role also in other domains.
Let us mention, for instance, the recent work by Zuazua on switching systems in infinite dimension [29], where
the condition that the sums of two different pairs of eigenvalues of the Laplacian-Dirichlet operator are different
is used to prove null-controllability of the heat equation using switching controls.

The paper is organized as follows: in Section 2 we introduce some definitions and notations and we prove the
main abstract results of the paper (Thms. 2.3 and 2.4). We conclude the section by deducing from the abstract
results some specific generic conditions; in particular, we obtain the generic linear independence of the squared
eigenfunctions of the Laplacian-Dirichlet operator. In Section 3 we propose two applications of these generic
properties to the stabilization of vibrating membranes and to the controllability of the Schrödinger equation.

2. Generic properties by global perturbations

2.1. Notations and abstract genericity result

Throughout the paper, d denotes an integer larger than or equal to two and N the set of positive integer
numbers, while N0 = {0} ∪ N.

Given a Lipschitz domain Ω ⊂ Rd, we denote by (λΩ
n )n∈N the nondecreasing sequence of eigenvalues of the

Laplacian-Dirichlet operator
−Δ : H2(Ω) ∩H1

0 (Ω) → L2(Ω)
counted according to their multiplicity. As it is well known, it is always possible to choose an orthonormal
basis of L2(Ω) made of eigenfunctions of the Laplacian-Dirichlet operator. In the sequel any such choice will
be denoted by (φΩ

n )n∈N with φΩ
n corresponding to the eigenvalue λΩ

n . We will identify φΩ
n with its extension to

zero outside Ω.
We define the class of domains Σm as the set of open subsets of R

d with Cm boundary. By Dm we denote the
subset of Σm of Cm topological balls, i.e., those open subsets Ω of Rd such that there exists a Cm-diffeomorphism
of Rd transforming the unit ball in Ω. Similarly, we define D0,1 as the orbit of the unit ball by bi-Lipschitz
homeomorphisms of Rd.

It is well known that Σm and Dm, endowed with the Cm topology inherited from that of Cm-diffeomorphisms,
are complete metric spaces (see [19]). In particular, they are Baire spaces.

Let us recall that, given a Baire space X , a residual set (i.e. the intersection of countably many open and
dense subsets) is dense in X . A boolean function P : X → {0, 1} is said to be generic in X if there exists a
residual set Y such that every x in Y satisfies property P , that is, P(x) = 1.

A sequence of open domains (Ωn)n∈N is said to compactly converge to a domain Ω if for every compact set
K ⊆ Ω ∪ Ω

c
, there exists nK ∈ N such that for all n ≥ nK , K ⊆ Ωn ∪ Ωn

c
.

In the sequel of the paper, we make use several times of the following result, whose proof can be found in [3],
Theorem 7.3.
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Proposition 2.1. Let n ∈ N and fix a Lipschitz domain Ω ⊂ Rd such that λΩ
1 , . . . , λ

Ω
n are simple. Let Ωk be a

sequence of Lipschitz domains compactly converging to Ω and such that ∪k∈NΩk is bounded. Then λΩk

j → λΩ
j

and, therefore, λΩk

j is simple for every j = 1, . . . , n, for k large enough. Moreover, up to a sign in the choice of
φΩk

j , φΩk

j → φΩ
j in L∞(Rd), as k goes to infinity, for j = 1, . . . , n.

Another result playing a crucial role in our argument is the following theorem, due to Teytel (see [27],
Thm. 6.4).

Proposition 2.2. Let m > 2 and Ω0, Ω1 be two simply connected domains of Rd that are Cm-differentiably iso-
topic to the unit d-dimensional ball. Then there exists an analytic curve [0, 1] 	 t 
→ Qt of Cm-diffeomorphisms
such that Q0 is equal to the identity, Q1(Ω0) = Ω1 and every domain Ωt = Qt(Ω0) has simple spectrum for t in
the open interval (0, 1).

Teytel deduces the proposition stated above from a more general result, namely [27], Theorem B, that
guarantees the existence of an analytic path of simple-spectrum operators among any elements of a family of
operators satisfying a strong Arnold hypothesis on theirs eigenvectors (see also [4,10]). For this reason we expect
that our method could be adapted to other situations.

We are ready to prove the following theorem on generic properties among topological balls.

Theorem 2.3. Let Fn : Rn(n+1) −→ R, n ∈ N, be a sequence of analytic functions. For every n ∈ N, we say
that a Lipschitz domain Ω satisfies property Pn if λΩ

1 , . . . , λ
Ω
n are simple and if there exist n points x1, . . . , xn

in Ω and a choice φΩ
1 , . . . , φ

Ω
n of the first n eigenfunctions of the Laplacian-Dirichlet operator on Ω such that

Fn(φΩ
1 (x1), . . . , φΩ

n (x1), . . . , φΩ
1 (xn), . . . , φΩ

n (xn), λΩ
1 , . . . , λ

Ω
n ) �= 0. (2.1)

Assume that, for every n ∈ N, there exists Rn ∈ D0,1 satisfying property Pn. Then, for every m ∈ N ∪ {+∞},
a generic Ω ∈ Dm satisfies Pn for every n ∈ N.

Proof. Fix m ∈ N ∪ {+∞}. Define, for every n ∈ N, the set of domains

An = {Ω ∈ Dm | Ω satisfies Pn}·

We shall fix n ∈ N and prove that each An is open and dense in Dm.
Let us first prove that An is open. Fix Ω ∈ An, a choice of eigenfunctions φΩ

1 , . . . , φ
Ω
n and n points

x1, . . . , xn ∈ Ω such that (2.1) holds true. Suppose by contradiction that there exists a sequence (Ωk)k∈N

in Dm \ An that converges to Ω. Notice that the convergence in Dm implies compact convergence in the sense
recalled above. Proposition 2.1 thus implies that, for a choice of φΩk

j , j = 1, . . . , n, one has

lim
k→+∞

Fn(φΩk
1 (x1), . . . , φΩk

n (xn), λΩk
1 , . . . , λΩk

n ) = Fn(φΩ
1 (x1), . . . , φΩ

n (xn), λΩ
1 , . . . , λ

Ω
n ) �= 0.

This contradicts the assumption that Ωk /∈ An for every k ∈ N.
We prove now the density of An. Notice that, without loss of generality, m > 2. Fix Ω ∈ Dm. Let Rn

be as in the statement of the theorem, that is, Rn ∈ D0,1 and satisfies property Pn. Notice that Rn can be
approximated by a sequence of domains in Dm in the sense of the compact convergence. Therefore, by applying
the same argument as above, we deduce that there exists R̃n ∈ Dm satisfying Pn. Choose φR̃n

j , j = 1, . . . , n,
and x1, . . . , xn ∈ R̃n such that

Fn(φR̃n
1 (x1), . . . , φR̃n

n (xn), λR̃n
1 , . . . , λR̃n

n ) �= 0.

We now apply Proposition 2.2 with Ω0 = R̃n and Ω1 = Ω. We deduce that, for m > 2, there exists an
analytic curve [0, 1] 	 t 
→ Qt of Cm-diffeomorphisms such that Q0 is equal to the identity, Q1(R̃n) = Ω
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and every domain Ωt = Qt(R̃n) ∈ Dm has simple spectrum for t in the open interval (0, 1). Due to stan-
dard analytic perturbation theory (see [15]), λΩt

k are analytic functions of t and there exists a choice of φΩt

j ,
j = 1, . . . , n, t ∈ [0, 1], such that φΩt

j ◦Qt varies analytically with respect to t in Cm(R̃n). In particular,

t 
→ Fn(φΩt
1 (Qt(x1)), . . . , φΩt

n (Qt(xn)), λΩt
1 , . . . , λΩt

n )

is an analytic real-valued function. Since its value at t = 0 is different from zero, then it annihilates only for
finitely many t ∈ [0, 1].

Hence, as required, Ω can be approximated arbitrarily well in Dm by an element of An. �

Let us turn our attention to domains that are not necessarily topological balls. The point where this topolog-
ical assumption plays a fundamental role in the proof above is in the application of Proposition 2.2 guaranteeing
that smooth topological balls can be deformed one into another through an analytic path preserving the strict
order of the eigenvalues. In order to extend the genericity result to domains in Σm, we impose a more restric-
tive assumption on the family of analytic test functions Fn. Roughly speaking, we ask it to be invariant by
reordering of the eigenvalues.

Theorem 2.4. Let Fn : Rn(n+1) −→ R, n ∈ N, be a sequence of analytic functions. For every n ∈ N define
Jn as the subset of Nn made of all n-uples of pairwise distinct positive integer numbers. Given j = (j1, . . . , jn)
in Jn, we say that a Lipschitz domain Ω satisfies property P̂j if λΩ

j1
, . . . , λΩ

jn
are simple and if there exist n points

x1, . . . , xn in Ω and a choice φΩ
1 , . . . , φ

Ω
‖j‖∞ of the first ‖j‖∞ eigenfunctions of the Laplacian-Dirichlet operator

on Ω such that
Fn(φΩ

j1 (x1), . . . , φΩ
jn(x1), . . . , φΩ

j1(xn), . . . , φΩ
jn(xn), λΩ

j1 , . . . , λ
Ω
jn) �= 0. (2.2)

Assume that, for every n ∈ N and j ∈ Jn, there exists R̂j ∈ D0,1 satisfying property P̂j. Then, for every
m ∈ N ∪ {+∞}, a generic Ω ∈ Σm satisfies P̂j for every j ∈ ∪n∈NJn.

Proof. Fix m ∈ N ∪ {+∞}. Notice that, by ordering J∞ := ∪n∈NJn, the hypotheses of the theorem are easily
transformed in a special case of those of Theorem 2.3. Therefore, a generic Ω̂ ∈ Dm satisfies P̂j for every
j ∈ J∞. Fix one such Ω̂ and notice that, in particular, the spectrum (λΩ̂

n )n∈N is simple.
Define, for every j ∈ J∞, the set

Âj = {Ω ∈ Σm | Ω satisfies P̂j}·

The openness of Âj in Σm can be proved following exactly the same argument used in the proof of Theorem 2.3
to show that each An is open in Dm.

We are left to prove that Âj is dense in Σm. Take Ω ∈ Σm. Let B be an open ball of Rd containing Ω.
By eventually shrinking B, we can assume that ∂B ∩ ∂Ω contains at least one point p. Up to a change of
coordinates, we can assume that B is centered at the origin and p = (0, . . . , 0, 1).

Consider a smooth vector field on Rd satisfying

V (x1, . . . , xd) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

x1xd
...

xd−1xd

x2
d − x2

1+...+x
2
d+1

2

⎞
⎟⎟⎟⎠ if x2

1 + . . .+ x2
d < ρ

0 if x2
1 + . . .+ x2

d > ρ+ 1

for some ρ > 1. The behavior of V in a neighborhood of the unit ball is represented in Figure 1. Notice that V
is complete, since it vanishes outside a compact set.
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Figure 1. Phase portrait of the vector field V .

By construction V is everywhere tangent to ∂B. The ball B is therefore invariant for the flow of V . Notice
that the points p and −p are the only zeros of V in B and that xd is strictly decreasing along all trajectories
of V staying in B. Therefore, p is a repulsive equilibrium for V restricted to B and −p an attractive one.

Notice that, since Ω ∈ Σm, then its boundary has finitely many components and therefore there exists a
ball B′ contained in Ω such that p ∈ ∂B′. Notice, moreover, that the differential of V at ±p is ±Id. Then, for
every x ∈ B, e−tV (x) belongs to B′ for every t larger than some tx ∈ R. We deduce that etV (B′) compactly
converges to B as t tends to infinity. Since B′ ⊂ Ω, then etV (Ω) compactly converges to B as well as t→ +∞.

Consider an analytic path t 
→ Qt of Cm-diffeomorphisms of Rd such that Q0 = Id and Q1(B) = Ω̂, whose
existence can be deduced from Proposition 2.2. Then

Ωt = Q 2 arctan t
π

◦ etV (Ω) compactly converges to Ω̂ as t→ +∞.

Moreover, t 
→ Ωt is an analytic path in Σm. Hence, there exist n analytic functions Λ1, . . . ,Λn : [0,+∞) → R

such that Λk(0) = λΩ
jk

and Λk(t) is in the spectrum of the Laplacian-Dirichlet operator on Ωt, for k = 1, . . . , n.
Moreover, there exist n functions Φ1, . . . ,Φn defined on [0,+∞) such that Φk(t) ∈ C∞(Ωt) is an eigenfunction
corresponding to Λk(t), for k = 1, . . . , n and t ∈ [0,+∞), and t 
→ Φk(t)◦Q 2 arctan t

π
◦ etV varies analytically with

respect to t in Cm(Ω). Let us write Φk(t, x) for the evaluation of Φk(t) at a point x ∈ Ωt.
We claim that each Λk(t) converges, as t→ +∞, to an eigenvalue of the Laplacian-Dirichlet operator on Ω̂.

Indeed, the compact convergence of Ωt to Ω̂ implies the strong convergence of the corresponding resolvent
operators (see, for instance, [3]). This, in turns, guarantees that |λΩt

i − λΩ̂
i | ≤ ε(t) with ε(t) independent

of i and converging to zero as t → +∞. Hence, there exists M ∈ N such that for every t ≥ 0 and every
k = 1, . . . , n there exists i ≤ M such that Λk(t) = λΩt

i . In particular, according to Proposition 2.1, there exist
(i1, . . . , in) ∈ Jn such that Λk(t) → λΩ̂

ik
as t→ +∞ for k = 1, . . . , n.

Moreover, up to a sign in the choice of φΩ̂
ik

, we can assume that Φk(t) → φΩ̂
ik

in L∞(Rd), as t → ∞, for
k = 1, . . . , n. The choice of Ω̂ guarantees that it contains x1, . . . , xn such that

Fn(φΩ̂
i1(x1), . . . , φΩ̂

in(xn), λΩ̂
i1 , . . . , λ

Ω̂
in) �= 0.
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For τ large enough x1, . . . , xn belong to Ωτ and

Fn(Φ1(τ, x1), . . . ,Φn(τ, xn),Λ1(τ), . . . ,Λn(τ)) �= 0.

Fix one such τ and define
x̄k = e−τV ◦Q−1

2 arctan τ
π

(xk)

for k = 1, . . . , n. Therefore,

t 
→ Fn(Φ1(t, Q 2 arctan t
π

◦ etV (x̄1)), . . . ,Φn(t, Q 2 arctan t
π

◦ etV (x̄n)),Λ1(t), . . . ,Λn(t))

is an analytic real-valued function which has a nonzero value for t = τ . Hence, there exists t arbitrarily small
such that

Fn(Φ1(t, Q 2 arctan t
π

◦ etV (x̄1)), . . . ,Φn(t, Q 2 arctan t
π

◦ etV (x̄n)),Λ1(t), . . . ,Λn(t)) �= 0.

Since, for t small enough, Λk(t) = λΩt

jk
, we deduce that Ω can be approximated arbitrarily well in Σm by an

element of Âj . �

2.2. Consequences of the abstract results

In this section, we present two corollaries of Theorem 2.4 showing that (i) the squares of the Laplacian-
Dirichlet eigenfunctions are generically linearly independent and (ii) the Laplacian-Dirichlet spectrum is gener-
ically non-resonant.

Recall that a finite or infinite sequence of real numbers is said to be non-resonant if every nontrivial rational
linear combination of finitely many of its elements is different from zero.

In order to verify that the squares of the Laplacian-Dirichlet eigenfunctions on a suitably chosen d-orthotope
are linearly independent, we prove the following technical result.

Lemma 2.5. Let ϕ belong to C∞([0,+∞),R), N be a positive integer and (a1, . . . , aN ) be a sequence of pairwise
distinct positive real numbers. Assume that there exist l0 ∈ N0 and l1 ∈ N such that ϕ(l0+pl1)(0) �= 0 for every
p = 0, . . . , N − 1. Then, the functions ϕ(a1·), . . . , ϕ(aN ·) are linearly independent on every right-neighborhood
of zero.

Proof. We are interested in finding all the N -tuples (γ1, . . . , γN) ∈ RN such that
∑N

k=1 γkϕ(ak·) = 0 in a right-
neighborhood of zero. Differentiating this relation l0+pl1 times yields the relation

∑N
k=1 γka

l0+pl1
k ϕ(l0+pl1)(ak·) =

0. Evaluating such relation at zero for p = 0, . . . , N −1, we obtain a system of N linear equations in the N vari-
ables γ1, . . . , γN . Since (al1(i−1)

j )1≤i,j≤N is a Vandermonde matrix, the determinant δN of the N × N matrix
underlying such a system writes

δN = det
((

a
l1(i−1)
j

)
1≤i,j≤N

) N∏
k=1

al0k ϕ
(l0+kl1)(0)

=
∏

1≤i<j≤N
(al0j − al0i )

N∏
k=1

al0k ϕ
(l0+kl1)(0) �= 0.

This concludes the proof of the lemma. �

Proposition 2.6. Let (μ1, . . . , μd) be a non-resonant sequence of positive real numbers and R be the d-orthotope∏d
i=1(0, μiπ). Then, the Laplacian-Dirichlet eigenvalues of R are simple and the squares of the Laplacian-

Dirichlet eigenfunctions are linearly independent.
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Proof. Let us prove the lemma by induction on d ≥ 1.
If d = 1, then μ1 is any positive real number and the squared eigenfunctions of the Laplacian-Dirichlet

operator on R are (sin2(k/μ1))k∈N. The proposition follows then from Lemma 2.5, applied to ϕ(x) = sin2(x),
l0 = 1, l1 = 2, and ak = k/μ1.

Let now d be larger than one. For K = (k1, . . . , kd) ∈ Nd, we write K ′ = (k1, . . . , kd−1), K̄ = kd and we
denote by fK the (un-normalized) Laplacian-Dirichlet eigenfunction

fK(x1, . . . , xd) =
d∏
i=1

sin
(
kixi
μi

)
·

Clearly, fK(x1, . . . , xd) = fK′(x1, . . . , xd−1) sin(K̄xd/μd). Fix I ⊂ Nd finite and {γK | K ∈ I} ⊂ R such that∑
K∈I γKf

2
K ≡ 0 on R. Let Ī = {K̄ | K ∈ I}. Then for every (x1, . . . , xd−1) ∈ ∏d−1

i=1 (0, μiπ) and every
xd ∈ (0, μdπ) we have ∑

k∈Ī

⎛
⎝ ∑
K∈I,K̄=k

γKfK′(x1, . . . , xd−1)2

⎞
⎠ sin2

(
kxd
μd

)
= 0.

Therefore, applying again Lemma 2.5 to ϕ(x) = sin2(x), we deduce that, for every k ∈ Ī,

∑
K∈I,K̄=k

γKf
2
K′ ≡ 0 on

d−1∏
i=1

(0, μiπ).

The induction hypothesis implies that γK is equal to zero for every K such that K̄ = k. Since k is arbitrary
in Ī, the proposition is proved. �

We can now state the first corollary of Theorem 2.4.

Corollary 2.7. Let m ∈ N ∪ {∞}. Generically with respect to Ω ∈ Σm, the squares of the Laplacian-Dirichlet
eigenfunctions are linearly independent when restricted to any measurable subset of Ω of positive measure.

Proof. First notice that n functions ϕ1, . . . , ϕn defined on a domain Ω are linearly independent if and only if
there exist n points x1, . . . , xn in Ω such that

det

⎛
⎜⎝

ϕ1(x1) . . . ϕn(x1)
...

...
ϕ1(xn) . . . ϕn(xn)

⎞
⎟⎠ �= 0.

Apply Theorem 2.4 with

Fn(y1, . . . , yn(n+1)) = det

⎛
⎜⎝

y1 . . . yn
...

...
yn2−n+1 . . . yn2

⎞
⎟⎠ ,

for (y1, . . . , yn(n+1)) ∈ Rn(n+1), and R̂j = R for every j ∈ Jn, where R is the d-orthotope introduced in the
statement of Proposition 2.6.

Then for a generic Ω ∈ Σm the squares of the Laplacian-Dirichlet eigenfunctions are linearly independent
on Ω. Assume that there exists a measurable subset O ⊂ Ω of positive measure and K constants γ1, . . . , γK
such that

∑K
k=1 γkφ

Ω
k (x)2 = 0 on O. Recall now that the hypo-analyticity of the Laplacian operator implies

that each eigenfunction is analytic inside Ω. Hence γ1 = . . . = γK = 0. �
Corollary 2.7 can be used to get generic spectral properties as in [29], Section 6.3.
Another consequence of Theorem 2.4 is the following corollary.
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Corollary 2.8. Fix m ∈ N∪{∞}, k ∈ N and q = (q1, . . . , qk) ∈ Rk \ {0}. Then, for a generic Ω ∈ Σm one has

k∑
l=1

qlλ
Ω
l �= 0. (2.3)

In particular, a generic Ω ∈ Σm has non-resonant spectrum.

Proof. Let R be a d-orthotope defined as in the statement of Proposition 2.6.
We denote by Γ the subset of ∂R defined by

Γ = {(x1, . . . , xd) ∈ ∂R | xd = μdπ}·

Consider a perturbation Rt := (Id + tV )(R) of the domain R, with t small and V a smooth vector field whose
support is compact and does not intersect ∂R \ Γ. Then, it is well known (see, e.g. [13,21,25]) that, since the
Laplacian-Dirichlet eigenvalues of R are simple, the shape derivative of λRl along V is defined as

〈dλRl , V 〉 =
d
dt
λR

t

l

∣∣∣∣
t=0

= −
∫

Γ

(
∂φRl
∂ν

)2

(V · ν)dσ,

where ν denotes the outward normal to R and dσ the (d − 1)-dimensional surface element. By hypothesis
ν = (0, . . . , 0, 1) on Γ, so that V · ν is equal to vd, the dth component of V . Notice, moreover, that

∂φRl
∂ν

= clfKl

for some nonzero constant cl ∈ R (defined up to sign) and some Kl ∈ Nd−1, where fKl
is defined as in the proof

of Proposition 2.6.
Let q = (q1, . . . , qk) ∈ Rk \ {0}, j ∈ Jk and introduce Gj : Ω 
→ ∑k

l=1 qlλ
Ω
jl

. Differentiating Gj at Ω = R
along a vector field V chosen as above yields,

〈dGj , V 〉 = −
∫

Γ

k∑
l=1

qlc
2
jlf

2
Kjl

(x1, . . . , xd−1)vd dσ.

Due to Proposition 2.6,
k∑
l=1

qlc
2
jl
f2
Kjl

|Γ

is not everywhere zero on Γ. Thus, it is possible to choose V = Vj for which 〈dGj , Vj〉 �= 0.
The conclusion follows by applying Theorem 2.4 with Fn = 1 for n �= k and Fk(y1, . . . , yk(k+1)) =

∑k
i=1 qiyk2+i

and by taking R̂j = (Id + tVj)(R) for t small enough. �

3. Applications to shape optimization and control theory

3.1. Stabilization of a damped membrane

We consider here a stabilization problem in R2 and we are interested in proving the existence and uniqueness
of solutions for a related shape optimization problem. More precisely, let us denote by Ω ⊂ R2 a domain
belonging to Dm, m ∈ N ∪ {∞}. Assume that the Laplacian-Dirichlet eigenvalues of Ω are simple.
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We consider the problem of stabilizing a membrane fixed at the boundary ∂Ω, thanks to a damping acting
only on a subdomain ω. Denote by χω the characteristic function of ω. The displacement v of the membrane,
in presence of a viscous damping of the type 2kχω, k > 0, satisfies

⎧⎪⎪⎨
⎪⎪⎩

∂2v
∂t2 − Δv + 2kχω(x)∂v∂t = 0 (t, x) ∈ (0,+∞) × Ω
v(t, x) = 0 x ∈ ∂Ω, t > 0
v(0, x) = v0(x) x ∈ Ω
∂v
∂t (0, x) = v1(x) x ∈ Ω,

(3.1)

where v0 ∈ H1
0 (Ω) and v1 ∈ L2(Ω). This system is known to be exponentially stable if ω has positive measure

and it is possible to define its exponential decay rate (which does not depend on the initial data). A natural
question consists in looking for the largest decay rate once the area of ω is fixed. Such optimization problem
is already quite difficult in the one-dimensional case (see e.g. [9]). For this reason Hébrard and Henrot in [11]
introduce a simplified version of it by considering, instead of the decay rate, the quantity

JN (ω) := inf
1≤n≤N

∫
Ω

χω(x)(φΩ
n (x))2dx, (3.2)

where N is a given positive integer and φΩ
n denotes, as in the previous sections, the nth normalized Laplacian-

Dirichlet eigenfunction.
Then, we are driven to study the following shape optimization problem

{
min JN (ω)
ω ∈ L�, (3.3)

where L� denotes the set of measurable subsets of Ω of measure l. It is convenient to identify subdomains of Ω
with their characteristic functions, so that L� is identified with

{
a ∈ L∞(Ω) | a(x) = 0 or 1 a.e. and

∫
Ω

a(x)dx = �

}
·

The one-dimensional problem is completely solved in [12]. In the same paper it is noticed that the proof of
existence and uniqueness of the optimum for (3.3) can be easily adapted to the two-dimensional case under the
generic hypothesis that the square of the Laplacian-Dirichlet eigenfunctions φΩ

1 , . . . , φ
Ω
N are linearly independent

(see Cor. 2.7). Indeed, first the authors prove the existence of an optimum a∗ in a relaxed class. In order to
prove that such a maximum is a characteristic function, they study the optimality conditions satisfied by a∗,
by considering perturbations of a∗ with support in Aε := {x ∈ Ω | ε ≤ a∗(x) ≤ 1− ε}, with a small ε > 0. They
can prove in this way the existence of N real numbers α1, . . . , αN such that α2

1 + . . .+ α2
N �= 0 and

N∑
k=1

αkφ
Ω
k (x)2 = constant, for almost every x ∈ Aε.

Then, because of the analyticity of the eigenfunctions and of the linear independence of their squares, Aε must
have measure zero.
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Theorem 3.1. Generically with respect to Ω ∈ Dm, the optimization problem (3.3) has a unique solution ω∗
N .

3.2. Controlled Schrödinger equation

We apply in this section Corollary 2.8 in order to prove the generic approximate controllability of a bilinear
Schrödinger equation of the type⎧⎨

⎩
i∂ψ∂t (t, x) = (−Δ + u(t)W (x))ψ(t, x), (t, x) ∈ (0,+∞) × Ω
ψ(t, x) = 0 x ∈ ∂Ω, t > 0
ψ(0, x) = ψ0(x) x ∈ Ω,

(3.4)

where Ω belongs to Σm for some m ∈ N ∪ {∞}, W ∈ L∞(Ω,R), the control u belongs to L∞([0,+∞), U) for
some fixed measurable subset U of R with nonempty interior, and ψ0 ∈ L2(Ω,C). System (3.4) admits always
a mild solution ψ ∈ C([0,+∞), L2(Ω,C)) in the sense of [5].

The control system (3.4) is said to be approximately controllable if for every ψ0, ψ1 ∈ L2(Ω,C) and every
ε > 0 there exist a control u ∈ L∞([0,+∞), U) and a positive time T such that the solution ψ of (3.4) satisfies
‖ψ(T, ·) − ψ1‖L2(Ω) < ε.

It has been proved in [7] that (3.4) is approximately controllable if the Laplacian-Dirichlet operator on Ω has
non-resonant spectrum and ∫

Ω

W (x)φΩ
k (x)φΩ

k+1(x) dx �= 0 for every k ∈ N. (3.5)

Corollary 2.8 ensures that the Laplacian-Dirichlet spectrum is generically non-resonant. On the other hand,
the unique continuation property implies that, for every k ∈ N, the product φΩ

k φ
Ω
k+1 is a nonzero function on Ω.

Therefore, for every Ω with non-resonant spectrum, {W ∈ L∞(Ω) | (3.5) holds true} is residual in L∞(Ω).
Moreover, due to the continuity of the eigenfunctions stated in Proposition 2.1, for every k ∈ N the map

(Ω,W ) 
→
∫

Ω

W (x)φΩ
k (x)φΩ

k+1(x) dx

is continuous with respect to the product topology of Σm ×L∞(Rd). As a consequence we obtain the following
result.

Proposition 3.2. Generically with respect to (Ω,W ) ∈ Σm × L∞(Rd), endowed with the product topology,
system (3.4) is approximately controllable.

Acknowledgements. We would like to thank Yacine Chitour, Antoine Henrot and Enrique Zuazua for several fruitful
discussions and advices.
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[5] J.M. Ball, J.E. Marsden and M. Slemrod, Controllability for distributed bilinear systems. SIAM J. Control Optim. 20 (1982)

575–597.
[6] K. Beauchard, Y. Chitour, D. Kateb and R. Long, Spectral controllability for 2D and 3D linear Schrödinger equations.

J. Funct. Anal. 256 (2009) 3916–3976.
[7] T. Chambrion, P. Mason, M. Sigalotti and U. Boscain, Controllability of the discrete-spectrum Schrödinger equation driven

by an external field. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 329–349.
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[12] P. Hébrard and A. Henrot, A spillover phenomenon in the optimal location of actuators. SIAM J. Control Optim. 44 (2005)

349–366 (electronic).
[13] A. Henrot and M. Pierre, Variation et optimisation de formes, Mathématiques et Applications 48. Springer-Verlag, Berlin
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