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Abstract. In terms of the normal cone and the coderivative, we provide some necessary and/or
sufficient conditions of metric subregularity for (not necessarily closed) convex multifunctions in normed
spaces. As applications, we present some error bound results for (not necessarily lower semicontinuous)
convex functions on normed spaces. These results improve and extend some existing error bound
results.
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1. Introduction

In this paper we discuss metric subregularity of the generalized equation

b ∈ F (x), (GE)

where F : X → 2Y is a convex multifunction, b ∈ Y is a given point, and X, Y are normed spaces. Following
Dontchev and Rockafellar [5], we say that (GE) is metrically subregular at a ∈ F−1(b) if there exists τ ∈ (0, +∞)
such that

d(x, F−1(b)) ≤ τd(b, F (x)) for all x close to a. (1.1)

This property provides an estimate of how far a candidate x can be from the solution set of generalized
equation (GE). The metric subregularity has been already studied by many authors under various names
(cf. [1,7–9,13,16,22,24]). A classical and stronger notion is metric regularity: F is metrically regular at a for b
if there exists τ ∈ (0, +∞) such that

d(x, F−1(y)) ≤ τd(y, F (x)) for all (x, y) close to (a, b).

The metric regularity has been well studied (for the details see [6,12,17,19] and references therein).
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Let f : X → R ∪ {+∞} be a proper convex function. Let b = 0 and F (x) := [f(x), +∞) for all x ∈ dom(f)
and F (x) = ∅ for all x ∈ X \ dom(f). In this special case, (GE) reduces to the following convex inequality

f(x) ≤ 0. (CIE)

and (1.1) reduces to
d(x, S) ≤ τ [f(x)]+ for all x close to a, (1.2)

where S denotes the solution set of (CIE) and [f(x)]+ := max{f(x), 0}. Usually, (CIE) is said to have a local
error bound at a if there exists τ ∈ (0, +∞) such that (1.2) holds. Error bounds have important applications
in mathematical programming and have been extensively studied (cf. [2,3,10,11,14,15,18,20]). In particular, in
terms of the normal cone and the subdifferential, many authors established necessary and/or sufficient conditions
for error bounds. For example, Lewis and Pang [14] proved that if X = Rn, f is lower semicontinuous and
(CIE) has a local error bound at a ∈ S then N(S, a) = cl(R+∂f(a)) (see the next section for definitions and
notations). Li [15] further proved that if X = Rn and f(x) = max

1≤i≤m
fi(x) with each fi being convex and smooth

then (CIE) has a local error bound at a ∈ S if and only if there exists δ ∈ (0, +∞) such that N(S, x) = R+∂f(x)
for all x ∈ S ∩ B(a, δ), where B(a, δ) denotes the open ball with center a and radius δ. With the help of the
approximate projection theorem for a closed convex set, the authors [23] proved that if X is a Banach space and
f is lower semicontinuous then (CIE) has a local error bound at a ∈ S if and only if there exist τ, δ ∈ (0, +∞)
such that N(S, x) ∩ BX∗ ⊂ [0, τ ]∂f(x) for all x ∈ S ∩ B(a, δ), where 0∂f(x) is understood as ∂∞f(x). In
the case when X is a Hilbert space, Burke and Deng [2] proved the same result. Zheng and Ng [24] further
extended the above results to metric regularity of (GE) and proved the following result (which is useful for the
later analysis).

Theorem 1.1. Let X, Y be Banach spaces and F be a closed convex multifunction from X to Y . Let b ∈ Y ,
a ∈ F−1(b) and τ ∈ (0, +∞). Then, the following statements are equivalent.

(i) There exists δ1 > 0 such that

d(x, F−1(b)) ≤ τd(b, F (x)) ∀x ∈ B(a, δ1).

(ii) There exists δ2 > 0 such that

N(F−1(b), u) ∩ BX∗ ⊂ τD∗F (u, b)(BY ∗) ∀u ∈ F−1(b) ∩ B(a, δ2).

The study of the solution set of (CIE) associated to a non-lower-semicontinuous function f arose from
an extensive class of outer approximation methods for convex optimization (see [4] and references therein).
Recently, Hu [11] considered error bounds for (CIE) in the case when f is not necessarily lower semicontinuous.
As the main results (see [11], Thms. 3.1 and 3.2), Hu [11] proved the following theorem.

Theorem 1.2. Let X be a Banach space and S be closed. Then, the following two assertions hold.
(i) (CIE) has a local error bound at a ∈ S with coefficient τ > 0 if and only if there exists δ > 0 such that

N(S, u) ⊂ [0, +∞)∂f(u) + ∂∞f(u) and d(0, E[∂f(u)] ∩ N(S, u)) ≥ 1
τ

(1.3)

for all u ∈ bd(A) ∩ B(a, δ) (the definition of E[∂f(u)] is given after Cor. 3.6).
(ii) (CIE) has a global error bound with coefficient τ if and only if (1.3) holds for all u ∈ bd(S).

In this paper, in terms of normal cone, we establish approximate projection results for a complete convex
set and a convex cone in a normed space. Using these results, we provide some necessary and/or sufficient
conditions (in terms of the normal cone and the coderivative) for (GE) to be metrically subregular at a point
in the solution set. Our assumptions are minimal: X, Y are normed spaces and F : X → 2Y is (not necessarily
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closed) convex multifunction. As applications, we provide some error bound results for differentiable convex
inclusions in normed spaces, which extend recent results by Burke and Deng [3]. We also give some error bound
results of (CIE), applicable to proper convex (not necessarily lower semicontinuous) functions on X ; thereby we
improve and extend the above Theorem 1.2 of Hu [11].

2. Preliminaries

Throughout we assume that X and Y are normed spaces. Let BX denote the closed unit ball of X . For any
set A, we use cl(A), int(A) and bd(A) respectively denote the closure, interior and boundary of A.

For a (not necessarily closed) convex subset A of X and a ∈ A, we use T (A, a) to denote the tangent cone
of A at a in Bouligand’s sense. Thus v ∈ T (A, a) if and only if there exist a sequence {an} in A and a sequence
{tn} of positive numbers convergent to 0 such that an−a

tn
converges to v.

We denote by N(A, a) the normal cone of A at a, that is,

N(A, a) := {x∗ ∈ X∗: 〈x∗, x − a〉 ≤ 0 for all x ∈ A}· (2.1)

Clearly, N(A, a) = N(T (A, a), 0). It is easy to verify that T (A, a) = T (cl(A), a) and N(A, a) = N(cl(A), a).
Let F : X → 2Y be a multifunction; let dom(F ) and gph(F ) respectively denote the domain and graph of F ,

that is,
dom(F ) := {x ∈ X : F (x) �= ∅} and gph(F ) := {(x, y) ∈ X × Y : y ∈ F (x)}·

We say that F is convex (resp. closed) if gph(F ) is a convex (resp. closed) subset of X × Y . It is known that
F is convex if and only if

tF (x1) + (1 − t)F (x2) ⊂ F (tx1 + (1 − t)x2) ∀x1, x2 ∈ X and ∀t ∈ [0, 1].

For a (not necessarily closed) convex multifunction F and (x, y) ∈ gph(F ), the tangent derivative DF (x, y) of F
at (x, y) is defined by

DF (x, y)(u) = {v ∈ Y : (u, v) ∈ T (gph(F ), (x, y))} ∀u ∈ X. (2.2)

Let D∗F (x, y) denote the coderivative of F at (x, y), which is defined by

D∗F (x, y)(y∗) = {x∗ ∈ X∗: (x∗,−y∗) ∈ N(gph(F ), (x, y))} ∀y∗ ∈ Y ∗. (2.3)

We will need the following results on the coderivative and normal cone.

Lemma 2.1. Let F be a convex multifunction between normed spaces X and Y . Let b ∈ Y and u ∈ F−1(b).
Then, the following statements hold.

(i) D∗F (u, b)(Y ∗) ⊂ N(F−1(b), u) and dom(D∗F (u, b)) ⊂ −N(F (u), b).
(ii) If, in addition, b ∈ int(F (u)), then

N(F−1(b), u) = N(dom(F ), u) = D∗F (u, b)(Y ∗) = D∗F (u, b)(0). (2.4)

Proof. Let y∗ ∈ Y ∗ and x∗ ∈ D∗F (u, b)(y∗). Then, by (2.1) and (2.3), one has

〈x∗, x − u〉 − 〈y∗, y − b〉 ≤ 0 ∀(x, y) ∈ gph(F ).

Noting that F−1(b) × {b} ⊂ gph(F ) and {u} × F (u) ⊂ gph(F ), it follows that

x∗ ∈ N(F−1(b), u) and y∗ ∈ −N(F (u), b).
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This shows that (i) holds. To prove (ii), assume that there exists r > 0 such that B(b, r) ⊂ F (u), and
hence N(F (u), b) ⊂ N(B(b, r), b) = {0}. This and the second inclusion of (i) imply that D∗F (u, b)(Y ∗) =
D∗F (u, b)(0). Noting also that D∗F (u, b)(0) = N(dom(F ), u) ⊂ N(F−1(b), u), to prove (2.4) we need only
show that

N(F−1(b), u) ⊂ N(dom(F ), u). (2.5)
Let u∗ ∈ N(F−1(b), u). Let x ∈ dom(F ) and take y ∈ F (x). Then, there exists t > 0 such that b + t(b − y) ∈
B(b, r) ⊂ F (u). Writing b = t

1+ty+ 1
1+t (b+t(b−y)), it follows from the convexity of F that b ∈ F

(
t

1+tx + 1
1+tu

)
,

so t
1+tx + 1

1+tu ∈ F−1(b). Therefore, 〈x∗, t
1+tx + 1

1+tu〉 ≤ 〈x∗, u〉 and so 〈x∗, x〉 ≤ 〈x∗, u〉. This shows that
x∗ ∈ N(dom(F ), u), and (2.5) is proved. The proof is completed. �

Let f : X → R ∪ {+∞} be a proper convex function. For x ∈ dom(f) := {x ∈ X : f(x) < +∞}, let ∂f(x)
denote the subdifferential of f at x, that is,

∂f(x) := {x∗ ∈ X∗: 〈x∗, z − x〉 ≤ f(z) − f(x) ∀z ∈ X}·

It is well known and easy to verify that

∂f(x) = {x∗ ∈ X∗: (x∗,−1) ∈ N(epi(f), (x, f(x)))}, (2.6)

where epi(f) := {(x, t) ∈ X × R : f(x) ≤ t} is the epigraph of f . The singular subdifferential of f at x is
defined as

∂∞f(x) := {x∗ ∈ X∗: (x∗, 0) ∈ N(epi(f), (x, f(x)))}· (2.7)
Let δA denote the indicator function of a set A, that is, δA(x) = 0 for x ∈ A and δA(x) = +∞ otherwise. Then
∂δA(x) = N(A, x) for all x ∈ A.

The following known result (cf. [21], Thm. 2.8.3) is useful for us.

Proposition 2.2. Let f1, f2 : X → R∪{+∞} be proper convex functions and x0 ∈ dom(f1)∩dom(f2). Suppose
that either f1 or f2 is continuous at x0. Then

∂(f1 + f2)(x0) = ∂f1(x0) + ∂f2(x0).

We will need the following lemmas, which supplement the approximate projection theorem on a Banach space
(see [25], Thm. 3.1).

Lemma 2.3. Let A be a nonempty, complete, and convex subset of X. Then, for any β ∈ (0, 1) and any
x ∈ X\A there exist z ∈ bd(A) and z∗ ∈ N(A, z) with ‖z∗‖ = 1 such that

β‖x − z‖ < d(x, A) and β‖x − z‖ < 〈z∗, x − z〉·

Proof. Let x ∈ X \A and define φ(u) := ‖u− x‖ for all u ∈ A. Take a sequence {εn} in (0, 1) convergent to 0.
Since A is complete, it follows from the Ekeland variational principle that there exists zn ∈ A such that

φ(zn) ≤ φ(u) + εn‖u − zn‖ ∀u ∈ A. (2.8)

This means that
‖zn − x‖ ≤ ‖u − x‖ + εn‖u − zn‖ + δA(u) ∀u ∈ X.

Hence 0 ∈ ∂(‖ · −x‖ + εn‖ · −zn‖ + δA)(zn). Noting that ∂εn‖ · −zn‖(zn) = εnBX∗ and ∂δA(zn) = N(A, zn), it
follows from Proposition 2.2 that 0 ∈ ∂‖ · −x‖(zn) + εnBX∗ + N(A, zn). Since zn �= x, it is known and easy to
verify that

∂‖ · −x‖(zn) = {x∗ ∈ X∗: ‖x∗‖ = 1 and 〈x∗, zn − x〉 = ‖zn − x‖}·
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Hence there exist x∗
n, z∗n ∈ X∗ such that

‖x∗
n‖ = 1, 〈x∗

n, zn − x〉 = ‖zn − x‖, z∗n ∈ N(A, zn) and ‖x∗
n + z∗n‖ ≤ εn.

This implies that
(1 − εn)‖zn − x‖ ≤ 〈z∗n, x − zn〉 ≤ ‖z∗n‖‖zn − x‖

and z∗n �= 0 and so zn ∈ bd(A). Let z̃∗n := z∗
n

‖z∗
n‖ . Then

(1 − εn)‖zn − x‖
‖z∗n‖

≤ 〈z̃∗n, x − zn〉 ≤ ‖zn − x‖.

Noting that εn → 0, ‖z∗n‖ → 1 and ‖zn − x‖ → d(x, A) > 0 (by (2.8)), it follows from β ∈ (0, 1) that
β‖zn − x‖ ≤ min{〈z̃∗n, x − zn〉, d(x, A)} for all n large enough. The proof is completed. �
Lemma 2.4. Let C be a convex cone in X and x ∈ X with d(x, C) > 0. Then there exists x∗ ∈ N(C, 0) such
that ‖x∗‖ = 1 and 〈x∗, x〉 = d(x, C).

Proof. By the separation theorem (cf. [21], Thm. 1.1.3) and the fact that B(x, d(x, C)) ∩ C = ∅, there exists
x∗ ∈ X∗ with ‖x∗‖ = 1 such that

inf{〈x∗, u〉: u ∈ B(x, d(x, C))} = sup{〈x∗, u〉: u ∈ C}·

Since C is a cone, it follows that

〈x∗, x〉 − d(x, C) = sup{〈x∗, u〉: u ∈ C} = 0.

This means that x∗ ∈ N(C, 0) and 〈x∗, x〉 = d(x, C). The proof is completed. �

3. The main results

Let F : X → 2Y be a convex multifunction and let b be a given point in Y . Let X̃ and Ỹ denote the
completions of X and Y , respectively. Let F̃ : X̃ → 2Ỹ be defined by gph(F̃ ) = clX̃×Ỹ (gph(F )), the closure
of gph(F ) in the product space X̃ × Ỹ . Let u ∈ X and r > 0. For clarity, we use notations BX(u, r) :=
{x ∈ X : ‖x − u‖ < r} and BX̃(x, r) := {x ∈ X̃ : ‖x − u‖ < r} in the following lemma.

Lemma 3.1. Let u ∈ F−1(b) and suppose that there exist τ, r ∈ (0, +∞) such that

d(x, F−1(b)) ≤ τd(b, F (x)) ∀x ∈ BX(u, r). (3.1)

Then
F̃−1(b) ∩ BX̃(u, r) = clX̃(F−1(b)) ∩ BX̃(u, r) (3.2)

and
d(x, F̃−1(b)) ≤ τd(b, F̃ (x)) ∀x ∈ BX̃

(
u,

r

2

)
· (3.3)

Proof. Let x ∈ BX̃(u, r) and y ∈ F̃ (x). Then there exist a sequence {xn} in BX(u, r) and a sequence {yn} in Y
such that xn → x, yn → y and yn ∈ F (xn) for each n. It follows from (3.1) that

d(xn, F−1(b)) ≤ τ‖b − yn‖ for all n.

Letting n → ∞, one has d(x, F−1(b)) ≤ τ‖b − y‖. Hence,

d(x, F−1(b)) ≤ τd(b, F̃ (x)) for any x ∈ BX̃(u, r). (3.4)
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It is now easy to verify that F̃−1(b)∩BX̃(u, r) ⊂ clX̃(F−1(b))∩BX̃(u, r). Since the converse inclusion is evident
(by the definition of F̃ ), (3.2) is shown. Hence, d(x, F̃−1(b)) = d(x, F−1(b)) for all x ∈ BX̃(u, r

2 ). This and (3.4)
imply that (3.3) holds. The proof is completed. �

Remark 3.1. By Lemma 3.1, the metric subregularity of F implies the metric subregularity of F̃ . But, the
inverse implication is not necessarily true. Indeed, let X = Y = R, and let F (x) = (0, +∞) for all x ∈ R\{0}
and F (0) = [0, +∞). Then, F is convex and F̃ (x) = [0, +∞) for all x ∈ R. Note that F−1(0) = {0},
F̃−1(0) = R and d(0, F (x)) = d(0, F̃ (x)) = 0 for all x ∈ R. Thus, F̃ is metrically subregular at 0 for 0 but F
is not metrically subregular at 0 for 0. Hence, one can obtain necessity conditions of the metric subregularity
for F in terms of the results of the metric subregularity for the closed multifunction F̃ between two Banach
spaces, but one cannot establish sufficient conditions in this line.

The following Theorems 3.2 and 3.3 extend the implications (i) ⇒ (ii) and (ii) ⇒ (i) in Theorem 1.1,
respectively; here X, Y are not necessarily Banach spaces and F is not necessarily closed. For convenient, let
S0 := {u ∈ F−1(b): b �∈ int(F (u))}.
Theorem 3.2. Let a ∈ F−1(b) and suppose that there exist τ, δ ∈ (0, +∞) such that

d(x, F−1(b)) ≤ τd(b, F (x)) ∀x ∈ B(a, δ). (3.5)

Then
N(F−1(b), u) ∩ BX∗ ⊂ τD∗F (u, b)(BY ∗) ∀u ∈ F−1(b) ∩ B(a, δ), (3.6)

equivalently
N(F−1(b), u) ∩ BX∗ ⊂ τD∗F (u, b)(BY ∗) ∀u ∈ bd(F−1(b)) ∩ S0 ∩ B(a, δ). (3.7)

Proof. Let u ∈ F−1(b) ∩ B(a, δ) and r := δ − ‖u − a‖. Then, it follows from (3.5) that (3.1) holds. Then, by
Lemma 3.1, (3.2) and (3.3) hold. It follows from Theorem 1.1 that

N(F̃−1(b), u) ∩ BX̃∗ ⊂ τD∗F̃ (u, b)(BỸ ∗) and N(F̃−1(b), u) = N(clX̃(F−1(b)), u).

Noting that X∗ = X̃∗, Y ∗ = Ỹ ∗,

N(gph(F̃ ), (u, b)) = N(gph(F ), (u, b)) and N(clX̃(F−1(b)), u) = N(F−1(b), u),

it follows that (3.6) holds. Clearly, (3.6) implies (3.7). It remains to show that (3.7) implies (3.6). Noting that
N(F−1(b), u) = {0} for any u ∈ int(F−1(b)), it suffices to show that

N(F−1(b), u) ∩ BX∗ ⊂ τD∗F (u, b)(BY ∗) ∀u ∈ bd(F−1(b))\S0. (3.8)

Let u ∈ bd(F−1(b))\S0. Then, b ∈ int(F (u)). This and Lemma 2.1(ii) imply that N(F−1(b), u) = D∗F (u, b)(0) =
τD∗F (u, b)(BY ∗). Hence, (3.8) holds. The proof is completed. �

Next we provide sufficient conditions for F to be metrically subregular at a for b.

Theorem 3.3. Let A be a complete and convex subset of F−1(b) and a ∈ A. Suppose that there exist τ, δ ∈
(0, +∞) such that

N(A, u) ∩ BX∗ ⊂ τD∗F (u, b)(BY ∗) ∀u ∈ bd(A) ∩ B(a, δ). (3.9)

Then

d(x, A) ≤ τd(b, F (x)) ∀x ∈ B

(
a,

δ

2

)
, (3.10)

and in particular F is metrically subregular at a for b.
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Proof. The last assertion follows trivially from (3.10). To prove (3.10), let x ∈ B(a, δ
2 )\A. Then, d(x, A) ≤

‖x− a‖ < δ
2 . Let β ∈ (2d(x,A)

δ , 1). Then, by Lemma 2.3 there exist u ∈ bd(A) and x∗ ∈ N(A, u) with ‖x∗‖ = 1
such that β‖x − u‖ ≤ d(x, A) and

β‖x − u‖ ≤ 〈x∗, x − u〉· (3.11)

Thus, ‖x− u‖ < δ
2 and so ‖u− a‖ ≤ ‖u− x‖+ ‖x− a‖ < δ. By (3.9) it follows that there exists y∗ ∈ BY ∗ such

that x∗ ∈ τD∗F (u, b)(y∗). Hence,

〈x∗, x − u〉 ≤ τ〈y∗, y − b〉 ≤ τ‖y − b‖ ∀y ∈ F (x).

This and (3.11) imply that β‖x − u‖ ≤ τd(b, F (x)). Since u ∈ A we then have βd(x, A) ≤ τd(b, F (x)). Letting
β → 1−, one sees that (3.10) holds. The proof is completed. �

In view of Theorem 3.3, we have the following global result.

Corollary 3.4. Let A be a nonempty, complete, and convex subset of F−1(b) and τ be a positive constant.
Suppose that

N(A, u) ∩ BX∗ ⊂ τD∗F (u, b)(BY ∗) ∀u ∈ bd(A).

Then

d(x, A) ≤ τd(b, F (x)) ∀x ∈ X.

Proof. Let x ∈ X and take a ∈ bd(A). Let δ := 2‖x− a‖+ 1. Then, x ∈ B(a, δ
2 ) and, by the assumption, (3.9)

holds. It follows from Theorem 3.3 that d(x, A) ≤ τd(b, F (x)). The proof is completed. �

Without the completeness of A, we have the following result.

Theorem 3.5. Let A be a convex subset of F−1(b) and a ∈ A. Suppose that there exist δ > 0 and a convex
cone C in X such that

A ∩ B(a, δ) = (a + C) ∩ B(a, δ). (3.12)

Further suppose that there exists τ ∈ (0, +∞) such that

N(A, a) ∩ BX∗ ⊂ τD∗F (a, b)(BY ∗). (3.13)

Then (3.10) holds.

Proof. By (3.12), we have

N(A, a) = N(a + C, a) = N(C, 0). (3.14)

Let x ∈ B(a, δ
2 ) be such that d(x, A) > 0. Then,

d(x, A) ≤ ‖x − a‖ <
δ

2
and d(x, X \ B(a, δ)) ≥ δ

2
·

Hence

d(x, A) = d(x, A ∩ B(a, δ)) and d(x, a + C) = d(x, (a + C) ∩ B(a, δ)).

It follows from (3.12) that 0 < d(x, A) = d(x, a+C) = d(x−a, C). By this and (3.14), one can apply Lemma 2.4
to find x∗ ∈ N(A, a) with ‖x∗‖ = 1 such that 〈x∗, x − a〉 = d(x, A). By (3.13), there exists y∗ ∈ BY ∗ such that
x∗ ∈ D∗F (a, b)(τy∗). Then, for all y ∈ F (x), 〈x∗, x − a〉 + 〈−τy∗, y − b〉 ≤ 0, and hence d(x, A) ≤ τ‖y − b‖.
Therefore d(x, A) ≤ τd(b, F (x)) and (3.10) is shown. �
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Corollary 3.6. Let C be a convex cone in X and a ∈ F−1(b). Suppose that there exist τ, δ ∈ (0, +∞) such
that (a + C) ∩ B(a, δ) ⊂ F−1(b) and

N(C, 0) ∩ BX∗ ⊂ τD∗F (a, b)(BY ∗).

Then

d(x, F−1(b)) ≤ τd(b, F (x)) ∀x ∈ B

(
a,

δ

2

)
· (3.15)

Proof. Let A := (a + C) ∩ F−1(b). Clearly (3.15) holds if (3.10) holds. Thus, by the second inclusion as-
sumption and Theorem 3.5, we need only show that N(A, a) = N(C, 0). But this is evident by the fact that
A∩B(a, δ) = (a+C)∩B(a, δ) and N(a+C, a) = N(C, 0) (thanks to the first inclusion assumption). The proof
is completed. �

The following result shows that, for any u ∈ A, the inclusion relation given in (3.9) can be described
equivalently in many useful ways. To do this, we need the following notion. For a subset C of X , let

E[C] := {z ∈ cl([0, 1]C): tz �∈ cl([0, 1]C) ∀t > 1}

(which was introduced in [23]). In [10,11], E[C] is called the end set of C. Hu [11] shown (cf. [11], Lem. 1.1)
that if C is closed and convex then

E(C) = {z ∈ C: tz �∈ C ∀t > 1}· (3.16)

We use ΣY ∗ to denote the unit sphere of Y ∗.

Proposition 3.7. Let A be a convex subset of F−1(b) and u ∈ A. Let τ be a positive constant. Then the
following statements are equivalent.

(i) N(A, u) ∩ BX∗ ⊂ τD∗F (u, b)(BY ∗).
(ii) N(A, u) ⊂ D∗F (u, b)(Y ∗) and d(0, E[D∗F (u, b)(ΣY ∗)]) ≥ 1

τ ·
(iii) N(A, u) = D∗F (u, b)(Y ∗) and d(0, E[D∗F (u, b)(ΣY ∗)]) ≥ 1

τ ·
(iv) d(h, T (A, u)) ≤ τd(0, DF (u, b)(h)) for all h ∈ X.

Proof. The given assumption implies that N(F−1(b), u) ⊂ N(A, u), and it follows from Lemma 2.1 that

D∗F (u, b)(Y ∗) ⊂ N(A, u). (3.17)

Hence, (ii) ⇔ (iii) holds.

(i) ⇒ (ii). Clearly, (i) implies that N(A, u) ⊂ D∗F (u, b)(Y ∗). Let z∗ be an arbitrary point in
E[D∗F (u, b)(ΣY ∗))]. Then there exist tn ∈ (0, 1], y∗

n ∈ ΣY ∗ and x∗
n ∈ D∗F (u, b)(y∗

n) such that tnx∗
n → z∗. We

claim that
z∗ �∈ D∗F (u, b)(0). (3.18)

If this is not the case, then z∗
tn

∈ D∗F (u, b)(0) and so x∗
n + 1

tn
z∗ ∈ D∗F (u, b)(y∗

n); hence

tn

(
x∗

n +
1
tn

z∗
)

−→ 2z∗ ∈ cl([0, 1]D∗F (u, b)(ΣY ∗)),

contradicting z∗ ∈ E[D∗F (u, b)(ΣY ∗)]. Since BY ∗ is compact with respect to the weak∗ topology w∗, without

loss of generality we assume that tny∗
n

w∗→ y∗ for some y∗ ∈ Y ∗ (passing to a generalized subsequence if necessary).
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Hence, (tnx∗
n,−tny∗

n) w∗−→ (z∗,−y∗). Since gph(D∗F (a, b)) is weakly∗ closed, it follows that z∗ ∈ D∗F (u, b)(y∗).
This and (3.17) imply that z∗ ∈ N(A, u). By (i) and (3.18), one has

z∗

τ‖z∗‖ ∈ D∗F (u, b)(BY ∗ \{0}) ⊂ [0, 1]D∗F (u, b)(ΣY ∗).

Hence, ‖z∗‖ ≥ 1
τ (because z∗ ∈ E[D∗F (u, b)(ΣY ∗)]). This shows that (i) ⇒ (ii) holds.

(ii) ⇒ (i). Let x∗ ∈ N(A, u) ∩ BX∗ . It is clear that x∗ ∈ τD∗F (u, b)(BY ∗) if x∗ ∈ D∗F (u, b)(0). We can
therefore assume that x∗ �∈ D∗F (u, b)(0). Then the inclusion of (ii) implies that x∗ ∈ D∗F (u, b)(Y ∗\{0}). Let

λ := sup{t > 0: tx∗ ∈ cl([0, 1]D∗F (u, b)(ΣY ∗))}·

Then, 0 < λ < +∞ (because the graph of D∗F (u, b) is closed). We claim that λ ≥ 1
τ . Indeed, by the

definition of λ, one has λx∗ ∈ cl([0, 1]D∗F (u, b)(ΣY ∗)) and tx∗ �∈ cl([0, 1]D∗F (u, b)(ΣY ∗)) for all t > λ. Thus,
λx∗ ∈ E[D∗F (u, b)(ΣY ∗)]. It follows from the inequality of (ii) that 1

τ ≤ ‖λx∗‖ ≤ λ. This implies that

1
τ

x∗ ∈ cl([0, 1]D∗F (u, b)(ΣY ∗)). (3.19)

Since N(gph(F ), (u, b)) is weak∗ closed and BY ∗ is weak∗ compact, D∗F (u, b)(BY ∗) is weak∗ closed (by (2.3)).
Hence cl([0, 1]D∗F (u, b)(ΣY ∗)) ⊂ D∗F (u, b)(BY ∗). It follows from (3.19) that x∗ ∈ τD∗F (u, b)(BY ∗). This
shows that (ii) ⇒ (i) holds.

(iv) ⇒ (i). Note by the definitions that

T (A, u) ⊂ T (F−1(b), u) ⊂ (DF (u, b))−1(0). (3.20)

Thus, since T (A, u) is closed, (iv) implies that T (A, u) = (DF (u, b))−1(0) and that

d(h, (DF (u, b))−1(0)) ≤ τd(0, DF (u, b)(h)) ∀h ∈ X.

It follows from Theorem 3.2 (applied to DF (u, b) and (0, 0) respectively in place of F and (a, b)) that

N(DF (u, b)−1(0), 0) ∩ BX∗ ⊂ τD∗(DF (u, b))(0, 0)(BY ∗).

This means that (i) holds because

N(A, u) = N(T (A, u), 0) = N(DF (u, b)−1(0), 0) (3.21)

and
D∗F (u, b) = D∗(DF (u, b))(0, 0). (3.22)

(i) ⇒ (iv). By (3.21) and (3.22), (i) means that

N(T (A, u), 0) ∩ BX∗ ⊂ τD∗(DF (u, b))(0, 0)(BY ∗).

Thus, with an arbitrary δ > 0 and the help of (3.20), one can apply Theorem 3.5 to T (A, u), DF (u, b) and
(0, 0) in place of C, F and (a, b), and we conclude that

d(h, T (A, u)) ≤ τd(0, DF (u, b)(h)) ∀h ∈ B

(
0,

δ

2

)
·

Since δ > 0 is arbitrary, (iv) is seen to hold. The proof is completed. �
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In view of Theorems 3.2 and 3.3 and Proposition 3.7, we have the following characterizations of the metric
subregularity of F at a for b.

Corollary 3.8. Let τ be a positive constant and a ∈ F−1(b). Consider the following statements.
(i) F is metrically subregular at a for b with coefficient τ .
(ii) There exists δ ∈ (0, +∞) such that (3.6) holds.
(iii) There exists δ ∈ (0, +∞) such that (3.7) holds.
(iv) There exists δ ∈ (0, +∞) such that N(F−1(b), u) = D∗F (u, b)(Y ∗) and

d(0, E[D∗F (u, b)(ΣY ∗)]) ≥ 1
τ

(3.23)

for any u ∈ F−1(b) ∩ B(a, δ).
(v) There exists δ ∈ (0, +∞) such that N(F−1(b), u) ⊂ D∗F (u, b)(Y ∗) and (3.23) hold for any u ∈

bd(F−1(b)) ∩ S0 ∩ B(a, δ).
(vi) There exist τ, δ ∈ (0, +∞) such that d(h, T (F−1(b), u)) ≤ τd(0, DF (u, b)(h)) for any u ∈ bd(F−1(b))∩

S0 ∩ B(a, δ) and any h ∈ X.
Then (i) ⇒ (ii) ⇔ (iii) ⇔(iv) ⇔ (v) ⇔ (vi). If F−1(b) is complete then (i)–(vi) are mutually equivalent.

4. Application to error bound for convex inequalities

Recall that X is a normed space, f is a proper (not necessarily lower semicontinuous) convex function on X
and that S is the solution set of the corresponding convex inequality (CIE). Let

F (x) = [f(x), +∞) ∀x ∈ X. (4.1)

Then,
S = F−1(0), [f(x)]+ = d(0, F (x)) ∀x ∈ X, (4.2)

and gph(F ) = epi(f). Hence, by the definition of the coderivative, (2.6) and (2.7), it is easy to verify that for
any u ∈ dom(f),

dom(D∗F (u, α)) =
{

R+, if α = f(u)
{0}, if α > f(u)

and

D∗F (u, α)(t) =
{

t∂f(u), if α = f(u) and t ∈ R+

∂∞f(u), if α > f(u) and t = 0

where 0∂f(u) is understood as ∂∞f(u); hence

D∗F (u, α)(BR) =
{

[0, 1]∂f(u), if α = f(u)
∂∞f(u), if α > f(u) (4.3)

and

D∗F (u, α)(ΣR) =
{

∂f(u), if α = f(u)
∅, if α > f(u). (4.4)

By (4.2), it is clear that (CIE) has a local error bound at a ∈ S if and only if F is metrically subregular at a
for 0. In view of this equivalence and the main results established in Section 3, we can provide some local error
bound results for (CIE).

Proposition 4.1. Let a ∈ S and suppose that there exist τ, δ ∈ (0, +∞) such that

d(x, S) ≤ τ [f(x)]+ ∀x ∈ B(a, δ). (4.5)
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Then
N(S, u) ∩ BX∗ ⊂ [0, τ ]∂f(u) (4.6)

for all u ∈ S ∩ B(a, δ).

Proof. Let F be as in (4.1) and b = 0. Then, (4.5) means (3.5). It follows from Theorem 3.2 that (3.6) holds.
It follows from (4.3) that (4.6) holds. This completes the proof. �

Proposition 4.2. Let A be a complete convex subset of S with a ∈ A and A0 := {u ∈ bd(A): f(u) = 0}.
Suppose that there exist τ, δ ∈ (0, +∞) such that

N(A, u) = ∂∞f(u) ∀u ∈ (bd(A) \ A0) ∩ B(a, δ) (4.7)

and
N(A, u) ∩ BX∗ ⊂ [0, τ ]∂f(u) ∀u ∈ A0 ∩ B(a, δ). (4.8)

Then

d(x, A) ≤ τ [f(x)]+ ∀x ∈ B

(
a,

δ

2

)
· (4.9)

Consequently, (CIE) has a local error bound at a.

Proof. Let F be as in (4.1) and b = 0. Then, by (4.3), it is clear that (4.7) and (4.8) imply (3.9). It follows
from Theorem 3.3 that (3.10) holds. This means that (4.9) holds (by the second equality of (4.2)). �

Lemma 4.3. Let u ∈ S. Then

E[∂f(u)] ∩ N(S, u) =
{ ∅ f(u) < 0

E[∂f(u)] f(u) = 0.

Proof. Without loss of generality, we assume that ∂f(u) �= ∅. Since ∂f(u) is a closed convex set, (3.16) implies
that

E[∂f(u)] = {x∗ ∈ ∂f(u): tx∗ �∈ ∂f(u) for all t > 1}· (4.10)
In the case when f(u) = 0, one has ∂f(u) ⊂ N(S, u); this and (4.10) imply that E[∂f(u)]∩N(S, u) = E[∂f(u)].
Next assume that f(u) < 0. Then, by Lemma 2.1 (with F being as in (4.1) and b = 0), one has N(S, u) =
∂∞f(u). Since ∂f(u) = ∂f(u)+∂∞f(u) = ∂f(u)+R+∂∞f(u), it follows from (4.10) that E[∂f(u)]∩∂∞f(u) = ∅,
and so E[∂f(u)] ∩ N(S, u) = ∅. The proof is completed. �

By Lemma 4.3 and (4.4), it is clear that

E(D∗F (u, 0)(ΣR)) = E(∂f(u)) ∩ N(S, u) ∀u ∈ S. (4.11)

By this and (4.3), one can see that the following result is a special case of Corollary 3.8.

Proposition 4.4. Let τ be a positive constant. Suppose that the solution set S is complete and a ∈ S. Then
the following statements are equivalent.

(i) (CIE) has a local error bound at a with coefficient τ .
(ii) There exists δ ∈ (0, +∞) such that (4.6) holds for all u ∈ bd(S) ∩ B(a, δ).
(iii) There exists δ ∈ (0, +∞) such that (4.6) holds for any u ∈ bd(S) ∩ B(a, δ) with f(u) = 0.
(iv) There exists δ ∈ (0, +∞) such that

N(S, u) ⊂ [0, +∞)∂f(u) and d(0, E[∂f(u)] ∩ N(S, u)) ≥ 1
τ

(4.12)

for any u ∈ bd(S) ∩ B(a, δ).
(v) There exists δ ∈ (0, +∞) such that (4.12) holds for any u ∈ bd(S) ∩ B(a, δ) with f(u) = 0.
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(vi) There exists δ ∈ (0, +∞) such that for any u ∈ bd(S) ∩ B(a, δ) with f(u) = 0

d(h, T (S, u)) ≤ τ [d+f(u)(h)]+ ∀h ∈ X, (4.13)

where d+f(u)(h) := lim
t→0+

f(u+th)−f(u)
t ·

Because possibly different constants δ are involved in preceding proposition, the following proposition con-
cerning global error bounds is not a direct consequence of Proposition 4.4 but can be easily deduced by virtue
of Theorem 3.2, Corollary 3.4 and Proposition 3.7.

Proposition 4.5. Let τ be a positive constant and suppose that S is complete. Then, the following assertions
are equivalent.

(i) d(x, S) ≤ τ [f(x)]+ for all x ∈ X.
(ii) (4.6) holds for all u ∈ S.
(iii) (4.6) holds for all u ∈ bd(S) with f(u) = 0.
(iv) (4.12) holds for all u ∈ bd(S).
(v) (4.12) holds for all u ∈ bd(S) with f(u) = 0.
(vi) (4.13) holds for all u ∈ bd(S) with f(u) = 0.

Remark. Thus purely based on considering only these boundary points u (of the solution set S) with f(u) = 0
one can determine whether (CIE) has an error bound or not. Further, since

[0, +∞)∂f(u) = [0, +∞)∂f(u) + ∂∞f(u) ∀u ∈ S,

we see that (i) ⇔ (iv) of Proposition 4.4 is an extension of (i) in Hu’s Theorem 1.2 while (i) ⇔ (iv) of
Proposition 4.5 extends (ii) in Theorem 1.2.

5. Application to error bounds for differentiable convex inclusion

Let X, Y be normed spaces, h : X → Y be a mapping and let C be a nonempty subset of Y . Consider the
following inclusion

h(x) ∈ C. (5.1)

Let Σ := {x ∈ X : h(x) ∈ C}. We say that (5.1) has a local error bound at x̄ ∈ Σ if there exist τ ∈ (0, +∞)
and a neighborhood U of x̄ such that

d(x, Σ) ≤ τd(h(x), C) ∀x ∈ U. (5.2)

We say that (5.1) has a global error bound if (5.2) holds for some τ ∈ (0, +∞) and U = X .
Recall that a mapping h : X → Y is Gateaux differentiable at x̄ ∈ X if there exists a bounded linear operator

h′(x̄) : X → Y , which is called the Gateaux derivative of h at x̄, such that

lim
t→0+

h(x̄ + td) − h(x̄)
t

= h′(x̄)(d) ∀d ∈ X.

Recently, as one of main results (see [3], Thm. 2), Burke and Deng [3] proved that the following theorem
(C∞ denotes the recession cone of a closed convex set as usual).
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Theorem 5.1. Let x̄ ∈ Σ and suppose that the following assumptions are satisfied.
(A1) X is a Hilbert space.
(A2) h is Gateaux differentiable at every point of Σ.
(A3) The set C is a closed convex set and the function x �→ d(h(x), C) is lower semicontinuous on X.
(A4) h(tx1 + (1 − t)x2) − (th(x1) + (1 − t)h(x2)) ∈ C∞ ∀(x1, x2, t) ∈ X × X × [0, 1].

Then, (5.1) has a local error bound at x̄ if and only if there exist τ, δ ∈ (0, +∞) such that

N(Σ, x) = h′(x)∗(N(C, h(x))) (5.3)

and
h′(x)∗(N(C, h(x))) ∩ BX∗ ⊂ τh′(x)∗(N(C, h(x)) ∩ BY ∗) (5.4)

for all x ∈ Σ ∩ B(x̄, δ).

Remark. Burke and Deng [3] didn’t explicitly require the lower semicontinuity assumption in (A3) but their
proof is based on [2], Theorems 2.3 and 2.5 (see [3], Thm. 2 and its proof), while the later requires the
semicontinuity assumption. Since (A4) implies that the function x �→ d(h(x), C) is convex, (A3) and (A4)
imply that the function is continuous.

The following Theorem 5.2 is due to Li [15], and can be alternatively proved via Theorem 5.1 as done by
Burke and Deng [3]. The main aim of this section is to extend the above Theorem 5.1 of Burke and Deng; also
our Proposition 5.6 is an improved and extended version of Theorem 5.2 (infinite dimensional setting and with
weaker assumptions).

Theorem 5.2. Let f1, . . . , fm : R
n → R be smooth and convex functions and f(x) = max{fi(x): i = 1, . . . , m}

for all x ∈ R
n. Then the convex inequality (CIE) associated to f has a local error bound at x̄ ∈ S if and only if

there exists a neighborhood U of x̄ such that (4.6) holds for all u ∈ S ∩ U .

For the rest of the paper, we consider inclusion (5.1) with X, Y , h, C and Σ as at the beginning of this
section. We further assume that C is convex (not necessarily closed).

Lemma 5.3. Let x̄ be a point in the solution set Σ such that h is Gateaux differentiable at x̄. Let F : X → 2Y

be defined by F (x) := h(x) − C for all x ∈ X and suppose that F is convex. Then

DF (x̄, 0)(u) = h′(x̄)(u) − T (C, h(x̄)) ∀u ∈ X, (5.5)

D∗F (x̄, 0)(y∗) =
{ {h′(x̄)∗(y∗)} y∗ ∈ N(C, h(x̄))

∅ otherwise, (5.6)

and consequently
D∗F (x̄, 0)(BY ∗) = h′(x̄)(N(C, h(x̄)) ∩ BY ∗) (5.7)

where h′(x̄)∗ denotes the conjugate operator of h′(x̄).

Proof. Let y∗ ∈ N(C, h(x̄)). Then,
〈y∗, c − h(x̄)〉 ≤ 0 ∀c ∈ C. (5.8)

We claim that
h′(x̄)∗(y∗) ∈ D∗F (x̄, 0)(y∗), (5.9)

equivalently
〈h′(x̄)∗(y∗), d〉 − 〈y∗, h(x̄ + d) − c〉 ≤ 0 ∀(d, c) ∈ X × C.

To do this, by (5.8), we need only show that

〈h′(x̄)(y∗), d〉 − 〈y∗, h(x̄ + d) − h(x̄)〉 ≤ 0 ∀d ∈ X. (5.10)
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Let t ∈ (0, 1). Then, by the convexity of F , one has

t(h(x̄ + d) − C) + (1 − t)(h(x̄) − C) ⊂ h(x̄ + td) − C.

It follows from h(x̄) ∈ C that

h(x̄ + td) − h(x̄)
t

∈ h(x̄ + d) − h(x̄) +
C − h(x̄)

t
·

This and (5.8) imply that 〈
y∗,

h(x̄ + td) − h(x̄)
t

〉
≤ 〈y∗, h(x̄ + d) − h(x̄)〉·

Letting t → 0+, one sees that (5.10) holds. Let v∗ ∈ Y ∗ and u∗ ∈ D∗F (x̄, 0)(v∗). Then, by (5.9), to prove (5.6),
it suffices to show that v∗ ∈ N(C, h(x̄)) and u∗ = (h′(x̄))∗(v∗). Note that

〈u∗, d〉 − 〈v∗, h(x̄ + d) − c〉 ≤ 0 ∀(d, c) ∈ X × C.

It follows that v∗ ∈ N(C, h(x̄)) (by letting d = 0) and

〈u∗, d〉 − 〈v∗, h(x̄ + d) − h(x̄)〉 ≤ 0 ∀d ∈ X.

Hence

〈u∗, d〉 ≤
〈

v∗,
h(x̄ + td) − h(x̄)

t

〉
∀(d, t) ∈ X × (0, +∞).

Letting t → 0+, it follows that 〈u∗, d〉 ≤ 〈v∗, h′(x̄)(d)〉 for all d ∈ X . This means that u∗ = (h′(x̄))∗(v∗). Thus,
(5.6) is shown.

Since
gph(DF (x̄, 0)) = {(x, y) : 〈x∗, x〉 + 〈y∗, y〉 ≤ 0 ∀(x∗, y∗) ∈ N(gph(F ), (x̄, 0))},

(5.6) implies that

gph(DF (x̄, 0)) = {(x, y) : 〈h′(x̄)∗(y∗), x〉 − 〈y∗, y〉 ≤ 0 ∀y∗ ∈ N(C, h(x̄))}
= {(x, y) : 〈y∗, h′(x̄)(x) − y〉 ≤ 0 ∀y∗ ∈ N(C, h(x̄))}
= {(x, y) : h′(x̄)(x) − y ∈ T (C, h(x̄))}·

This means that (5.5) holds. The proof is completed. �

By virtue of (5.7), the following theorem is immediate from Corollary 3.8 (applied to F (x) = h(x) − C and
b = 0).

Theorem 5.4. Let x̄ ∈ Σ and h be Gateaux differentiable at each point of Σ. Suppose that the multifunction
x �→ h(x) − C is convex and that Σ is complete. Then the following assertions are equivalent.

(i) (5.1) has a local error bound at x̄.
(ii) There exist τ, δ ∈ (0, +∞) such that

N(Σ, x) ∩ BX∗ ⊂ τh′(x)∗(N(C, h(x)) ∩ BY ∗) ∀x ∈ Σ ∩ B(x̄, δ). (5.11)

(iii) There exist τ, δ ∈ (0, +∞) such that (5.3) and (5.4) hold for all x ∈ Σ ∩ B(x̄, δ).
(iv) There exist τ, δ ∈ (0, +∞) such that (5.11) holds for all x ∈ Σ0 ∩ B(x̄, δ), where Σ0 := {x ∈ Σ: h(x) �∈

int(C)}.
(v) There exist τ, δ ∈ (0, +∞) such that (5.3) and (5.4) hold for all x ∈ Σ0 ∩ B(x̄, δ).
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(vi) There exist τ, δ ∈ (0, +∞) such that (5.3) holds and

d(0, E(h′(x)∗(ΣY ∗ ∩ N(C, h(x)))) ≥ 1
τ

(5.12)

for all x ∈ Σ0 ∩ B(x̄, δ).
(vii) There exist τ, δ ∈ (0, +∞) such that

d(h, T (Σ, x)) ≤ τd(h′(x)(h), T (C, h(x))) (5.13)

for all (h, x) ∈ X × (Σ0 ∩ B(x̄, δ)).

Remark. Using the fact that C + C∞ = C, it is easy to verify that Assumption (A4) of Theorem 5.1 implies
that the multifunction x �→ h(x)−C is convex. Hence, (i) ⇔ (iii) of Theorem 5.4 extends Theorem 5.1 of Burke
and Deng [3].

Finally we extend Theorem 5.2. For this, we need the following lemma.

Lemma 5.5. Let A be a finite subset of a normed space Y and let x ∈ E(co(A)). Then, there exists a subset A0

of A such that x ∈ co(A0) and 0 �∈ co(A0).

Proof. Let A denote the family of all faces of co(A) containing x. Since co(A) is a polyhedron of finite dimension,
A consists of finitely many polyhedra. It is easy to verify that A has the least set, say P0. Thus, there exists a
subset A0 of A such that P0 = co(A0). If A0 = {x}, the assertion trivially holds. Now suppose that A0 �= {x}.
We claim that x ∈ ri(P0), where ri(P0) denotes the relative interior of P0. Granting this, by x ∈ E(co(A)), it is
easy to verify that 0 is not in co(A0). It remains to show that x ∈ ri(P0). Indeed, if this is not the case, then
there exists a face Q of P0 such that x ∈ Q and Q ∩ ri(P0) = ∅. It follows that Q ∈ A , contradicting the fact
that P0 is the least set of A . This completes the proof. �

In the case when X = R
n, Y = R

m, C = −R
m− and h(x) = (f1(x), . . . , fm(x)) for all x ∈ X where each fi is

a smooth and convex function on X , Proposition 5.6 reduces to Theorem 5.2.

Proposition 5.6. Let Σ, x̄ and h be as in Theorem 5.4. Suppose that there exists an open neighborhood V of
h(x̄) such that

C ∩ V = {y ∈ Y : 〈y∗
i , y〉 ≤ ri, i ∈ I} ∩ V, (5.14)

where y∗
i ∈ Y ∗, ri ∈ R and I = {1, . . . , m}. Further suppose that there exists δ0 > 0 such that h(B(x̄, δ0)) ⊂ V .

Then (5.1) has a local error bound at x̄ if and only if there exists a neighborhood U of x̄ such that (5.3) holds
for all x ∈ Σ ∩ U .

Proof. Since the necessity part is immediate from (i) ⇒ (iii) of Theorem 5.4, we need only show the sufficiency
part. Suppose that there exists a neighborhood U of x̄ such that (5.3) holds for all x ∈ Σ ∩ U . Let P := {y ∈
Y : 〈y∗

i , y〉 ≤ ri, i ∈ I}, I(y) := {i ∈ I: 〈y∗
i , y〉 = ri} for each y ∈ P . Then, by (5.14),

N(C, y) = N(P, y) = R+co{y∗
i : i ∈ I(y)} ∀y ∈ V.

Take δ1 ∈ (0, δ0) such that B(x̄, δ1) ⊂ U . Then, (5.3) holds for all x ∈ Σ ∩ B(x̄, δ1) and

N(C, h(x)) = R+co{y∗
i : i ∈ I(h(x))} ∀x ∈ Σ ∩ B(x̄, δ1). (5.15)

By (vi) ⇒ (i) of Theorem 5.4, it suffices to show that there exist δ, τ ∈ (0, +∞) such that (5.12) holds for all
x ∈ Σ ∩ B(x̄, δ). To do this, we show that there exists δ ∈ (0, δ1) and η > 0 such that

η < d(0, E(co{h′(x)∗(y∗
i ): i ∈ I(h(x))})) ∀x ∈ Σ ∩ B(x̄, δ). (5.16)
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Indeed, if this is not the case, then there exist a sequence {xk} in Σ ∩ B(x̄, δ1) convergent to x̄ and a sequence
{u∗

k} in X∗ convergent to 0 such that

u∗
k ∈ E(co{h′(xk)∗(y∗

i ): i ∈ I(h(xk))}) for all k.

Since I is finite and each I(h(xk)) is a subset of I, by Lemma 5.5 we can assume that there exists a subset I0

of I such that I0 ⊂ I(h(xk)), u∗
k ∈ co{h′(xk)∗(y∗

i ): i ∈ I0} and

0 �∈ co{h′(xk)∗(y∗
i ): i ∈ I0} (5.17)

for each k (take a subsequence of {xk} if necessary). Thus, for each k there exists v∗k ∈ co{y∗
i : i ∈ I0} such that

u∗
k ∈ h′(xk)∗(v∗k). Noting (by (5.15)) that v∗k ∈ N(C, h(xk)) and by Lemma 5.3 (applied to F defined there, and

to xk in place of x̄), we conclude that u∗
k ∈ D∗F (xk, 0)(v∗k), that is,

(u∗
k,−v∗k) ∈ N(gph(F ), (xk, 0)). (5.18)

Since co{y∗
i : i ∈ I0} is compact, {v∗k} has a subsequence {v∗kj

} convergent to some v∗ ∈ co{y∗
i : i ∈ I0}. Hence,

(u∗
kj

,−v∗kj
) → (0,−v∗). It follows from (5.18) and the convexity of F that (0,−v∗) ∈ N(gph(F ), (x̄, 0)). Noting

that
〈(0,−v∗), (x̄, 0)〉 = 〈(0,−v∗), (xk, 0)〉 = 0,

it follows from the convexity of F that (0,−v∗) ∈ N(gph(F ), (xk, 0)). This and Lemma 5.3 imply that
h′(xk)∗(v∗) = 0, contradicting (5.17). Hence there exist δ ∈ (0, δ1) and η ∈ (0, +∞) such that (5.16)
holds. Let M := max{‖y∗

i ‖: i ∈ I}. Then, from (5.15) and the definition of the end set E(·), it is easy to verify
that for any x ∈ Σ ∩ B(x̄, δ),

d(0, E(co{h′(x)∗(y∗
i ): i ∈ I(h(x))})) = d(0, E(h′(x)∗(co{y∗

i : i ∈ I(h(x))})))
≤ d(0, E(h′(x)∗(MBY ∗ ∩ N(C, h(x)))))
= Md(0, E(h′(x)∗(ΣY ∗ ∩ N(C, h(x))))).

This and (5.16) imply that (5.12) holds with τ = M
η for all x ∈ Σ ∩ B(x̄, δ). This completes the proof. �
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