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Abstract. A corrected version of [P. Grabowski and F.M. Callier, ESAIM: COCV 12 (2006) 169–197],
Theorem 4.1, p. 186, and Example, is given.
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1. Introduction

The authors are deeply indebted to Hartmut Logemann, Department of Mathematics, University of Bath,
UK for pointing out a counterexample, repeated below, showing that the statement of [2], Theorem 4.1, p. 186,
is wrong.

With the notation of [2] all assumptions of that theorem are met for

H = R, A = −1 = A−1, h = −1( ⇐⇒ c#x = x), d = 1, δ = 1, e =
8
3
, q =

16
3
,

however the system (3.1) has exactly two solutions (H,G) = (− 8
3 , 0), (H,G) = (− 2

3 , 2) and none of them is
such that H ≥ 0. This counterexample demonstrates that the assumptions of [2], Theorem 4.1, p. 186, are not
enough to ensure non-negativity of H.

The aim of this note is to correct the result by adding reasonable and non-restrictive assumptions which can
be verified without solving (3.1) explicitly.

2. Corrigendum of [2], Theorem 4.1 (i), p. 186

Theorem 2.1. Let assumptions (H1)–(H5) hold. Moreover assume that:
(H6) The operator A : (D(A) ⊂ H) −→ H is such that the semigroup generated by A−1 is AS.
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Then:
(i) The system (3.1) has a solution (H,G), H ∈ L(H), H = H∗ ≥ 0, provided that if q > 0 then, in addition,

the assumption (A3) holds and

1
1 + μ0ĝ

∈ H∞(C+) for μ0 :=
k1 + k2

2
, (2.1)

G ∈ H, where in particular: G is the solution of the realization equation (4.4), where φ is the spectral
factor of the Popov function π (given by (4.2)) such that φ(0) =

√
δ, and both φ and 1/φ are in H∞(C+).

Remark 2.1. It should be emphasized that if q ≤ 0 the statement of [2], Theorem 4.1(i), p. 186, is fully correct,
i.e., the assertion holds without (A3) and (2.1). The claim [2], Theorem 4.1(ii), p. 186, does not require any
correction.

Proof. The whole reasoning of the existing proof remains correct after removing: the sentence starting from
the words: “The symbol of the Toeplitz operator . . . ”, the footnote on p. 186 and after dropping the inequality
H ≥ 0 in the sentence just following (4.17). Having this done, we may correct the proof as follows. Since X is
a solution of (4.15) given by (4.10) it is clear that

H = −X = ψ∗ [
(qF − eI)R−1(qF − eI)∗ − qI

]
ψ ≥ 0 (2.2)

if q ≤ 0, whence the claim of the remark above is met.
Now, consider the case q > 0 (=⇒ μ0 
= 0) where, in addition (A3) (i.e., d is an admissible factor control

vector) and (2.1) hold. Observe that
1 − μ0 c#d︸︷︷︸

=−ĝ(0)


= 0,

for if not, by (4.2), we would have π(0) = δ =
(
1 − k1

µ0

)(
1 − k2

µ0

)
= −

(
k2−k1
k1+k2

)2

< 0, which contradicts (4.3).
Since the LHS of (2.2) satisfies the Riccati equation

(A−1)∗H + HA−1 +
[

1√
δ
(−Hd+ eh)

]
︸ ︷︷ ︸

=−G

[
1√
δ
(−Hd+ eh)

]∗
− qhh∗ = 0 (2.3)

then, adding
μ0

1 − μ0c#d
hd∗H+

μ0

1 − μ0c#d
Hdh∗ to both sides of (2.3), we conclude that H satisfies the Lyapunov

operator equation[
A−1 +

μ0

1 − μ0c#d
dh∗

]∗
H + H

[
A−1 +

μ0

1 − μ0c#d
dh∗

]
= −(G − q1h)(G − q1h)∗ − q0hh

∗

with

q1 :=
μ0

√
δ

1 − μ0c#d
, q0 =

(k2 − k1)2

4(1 − μ0c#d)2
> 0,

or equivalently,

〈A0x,Hx〉H + 〈Hx,A0x〉H = − [(G − q1h)∗A0x]
2 − q0 [h∗A0x]

2 ∀x ∈ D(A0), (2.4)

where
A0x := A(x − μ0dc

#x), D(A0) =
{
x ∈ D(d∗): x− μ0dc

#x ∈ D(A)
} ·
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This is because A−1
0 = A−1 +

μ0

1 − μ0c#d
dh∗ ∈ L(H). The operator A0 arises by applying negative linear

feedback u = −μ0y to {
ẋ = A(x+ ud)

y = c#x

}
(2.5)

and it corresponds to the Lur’e control system of [2], Figure 1.1, p. 170, with f(y) = μ0y. Since c# is admissible
and ĝ ∈ H∞(C+), for L2(0,∞)-controls the output is given by

y = Px0 + Fu

where P and F stand for the extended observability map and the extended input-output operator, both associ-
ated with (2.5). Thus, for the closed-loop system, by the Paley-Wiener theory, one has

(I + μ0F)y = Px0 ⇐⇒ (1 + μ0ĝ)y = P̂ x0,

and, due to (2.1), the last equation has a unique solution ŷ ∈ H2(C+). Via the feedback law equation u = −μ0y
this implies that for any x0: u ∈ L2(0,∞). Now [2], Lemma 2.11, p. 177, implies that for every initial condition
x0 the first equation of (2.5) has a unique weak solution, whence, by Ball’s theorem [1], p. 371 (see also [4],
p. 259), the operator A0 generates a C0-semigroup {S0(t)}t≥0 on H which is AS.

Now, for every x0 ∈ D(A0) and each t ≥ 0, (2.4) yields

d
dt

〈S0(t)x0,HS0(t)x0〉H = − [(G − q1h)∗A0S0(t)x0]
2 − q0 [h∗A0S0(t)x0]

2 .

Integrating both sides from 0 to t and employing AS we obtain

〈x0,Hx0〉H =
∫ ∞

0

{
[(G − q1h)∗A0S0(t)x0]

2 + q0 [h∗A0S0(t)x0]
2
}

dt ≥ 0 ∀x0 ∈ D(A0).

Since D(A0) is dense in H as a C0-semigroup generator and H = H∗ ∈ L(H) we get H ≥ 0. �
Remark 2.2. The above proof may be slightly, but not essentially, modified by concluding AS of the semigroup
{etA−1

0 }t≥0 from the reciprocal system {
ẋ = A−1x+ ud

y = −h∗x

}
with the feedback law u = − μ0

1 − μ0c#d
y, with an aid of [3], Lemma 12, p. 959. This is possible if d is admissible

with respect to {etA−1}t≥0 and u ∈ L2(0,∞) for any initial condition x0 ∈ H. It is not difficult to see, using
duality between observation and control (see [2], p. 173) and the arguments which led to [2], Lemma 2.6, p. 174,
that the first condition holds iff d is admissible. Since in the frequency-domain the closed-loop output equation
reads as

ŷ(s) = −h∗ (
sI −A−1

)−1
x0 − h∗

(
sI −A−1

)−1
d

[
− μ0

1 − μ0c#d
ŷ(s)

]
=

(
UP̂x0

)
(s) +G(s)

[
− μ0

1 − μ0c#d

]
ŷ(s),

where U is the unitary operator introduced in [2], p. 174, and G is given by [2], (4.12), p. 187, then the second

condition holds if
1

1 +
μ0

1 − μ0c#d
G

∈ H∞(C+). By [2], (4.13), p. 187, the last condition is equivalent to (2.1).
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Next, our Lyapunov operator equation(
A−1

0

)∗ H + HA−1
0 = −(G − q1h)(G − q1h)∗ − q0hh

∗

allows to get directly

〈x0,Hx0〉H =
∫ ∞

0

{[
(G − q1h)∗etA−1

0 x0

]2

+ q0

[
h∗etA−1

0 x0

]2
}

dt ≥ 0 ∀x0 ∈ H.

3. Correction of [2], Example

Just before the sentence starting from the words ([2], Sect. 5.2, p. 1927): “Thus all assumptions of Theorem 4.1
are met . . . ” the following text should be inserted3.

Recall that d is an admissible factor control vector and for b ∈ (0, 1) the assumption (2.1) holds. Indeed, here

1
1 + μ0ĝ(s)

=
1

1 +
4b

a(1 + b)
ae−sr

1 + be−2sr

=
1 + be−2sr

be−2sr +
4b

(1 + b)
e−sr + 1

·

The numerator is bounded by 1 + b on C+, while for the denominator one has

be−2sr +
4b

(1 + b)
e−sr + 1 = b

(
z0 − e−sr

) (
z0 − e−sr

)
, Re z0 =

−2b
1 + b

, |z0|2 =
1
b
,

whence ∣∣∣∣be−2sr +
4b

(1 + b)
e−sr + 1

∣∣∣∣ = b
∣∣z0 − e−sr

∣∣ ∣∣z0 − e−sr
∣∣ ≥ b (|z0| − 1)2 = (1 −

√
b)2,

and consequently:
∥∥∥∥ 1

1 + μ0ĝ

∥∥∥∥
H∞(C+)

≤ 1 + b

(1 −√
b)2

<∞.
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3Since q = k1k2 < 0 for b ∈ (0, 3 − 2
√

2) and sufficiently small ν then, in fact, corrections are needed only for b ∈ [3 − 2
√

2, 1).
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