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MAGNETIC VORTICES FOR A GINZBURG-LANDAU TYPE ENERGY
WITH DISCONTINUOUS CONSTRAINT

Ayman Kachmar1, 2

Abstract. This paper is devoted to an analysis of vortex-nucleation for a Ginzburg-Landau functional
with discontinuous constraint. This functional has been proposed as a model for vortex-pinning, and
usually accounts for the energy resulting from the interface of two superconductors. The critical applied
magnetic field for vortex nucleation is estimated in the London singular limit, and as a by-product,
results concerning vortex-pinning and boundary conditions on the interface are obtained.
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1. Introduction and main results

It is widely accepted among the physics community that spatial inhomogeneities, impurities or point defects
in a superconducting sample provide pinning sites for vortices, preventing thus their motion and the resul-
tant induced resistivity, see [9,10] and the references therein. A similar behavior has also been observed in
superconducting samples subject to non-constant temperatures, see [26].

In the framework of the Ginzburg-Landau theory, it is proposed to model the energy of an inhomogeneous
superconducting sample by means of the following functional (see [10,27])

Gε,H(ψ,A) =
∫

Ω

(
|(∇− iA)ψ|2 +

1
2ε2

(p(x) − |ψ|2)2 + |curlA−H |2
)

dx. (1.1)

Here, Ω ⊂ R
2 is the 2-D cross section of the superconducting sample, assumed to occupy a cylinder of infinite

height. The complex-valued function ψ ∈ H1(Ω; C) is called the ‘order parameter’, whose modulus |ψ|2 measures
the density of the superconducting electron Cooper pairs (hence ψ ≡ 0 corresponds to a normal state), and the
real vector field A = (A1, A2) is called the ‘magnetic potential’, such that the induced magnetic field in the
sample corresponds to curlA.

The functional (1.1) depends on several parameters: 1
ε = κ is a characteristic of the superconducting sample

(a temperature independent quantity), H ≥ 0 is the intensity of the applied magnetic field (assumed constant
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and parallel to the axis of the superconducting sample), p(x) is a positive function modeling the impurities
in the sample, whose values are temperature dependent. The positive sign of the function p means that the
temperature remains below the critical temperature of the superconducting sample.

It is standard, starting from a minimizing sequence, to prove existence of minimizers of the functional (1.1)
in the space H1(Ω; C) × H1(Ω; R2), see e.g. [15]. A minimizer (ψ,A) of (1.1) is a weak solution of the G-L
equations: ⎧⎪⎪⎨⎪⎪⎩

−(∇− iA)2ψ =
1
ε2

(p(x) − |ψ|2)ψ, in Ω,

∇⊥ curlA =
(
iψ, (∇− iA)ψ

)
in Ω,

n(x) · (∇− iA)ψ = 0, curlA = H on ∂Ω,

(1.2)

where n(x) is the unite outward normal vector of ∂Ω.
It has been conjectured that for a minimizing configuration (ψ,A) of (1.1), the vortices (zeros of ψ) should

be pinned near the minimal points of the function p (or near the critical points if p is smooth), see [9,27]. Many
authors have addressed this question in the regime of extreme type II superconducting materials, ε → 0. For
instance, Aftalion et al. [1] analyze the situation when p is periodic and smooth, André et al. [5] analyze the
situation when p is smooth and having a finite number of isolated zeros, and Alama and Bronsard [3] allow p
to have negative values in some normal regions of the sample. A similar functional arises also in the setting of
Bose-Einstein condensates, see [2]. We would also like to mention the interesting work of Sigal and Ting [32],
who prove existence and uniqueness of solutions with pinned vortices for the Ginzburg-Landau equation (1.2)
in R2 when H = 0 and the potential p is in a suitable class.

In this paper, the function p is a step function. We take Ω = D(0, 1) the unit disc in R2, and

p(x) =
{

1 if |x| ≤ R,
a if R < |x| < 1, (1.3)

where a ∈ R+ \ {1} and 0 < R < 1 are given constants.
Putting

S1 = D(0, R), S2 = D(0, 1) \D(0, R), (1.4)

then the above choice of p has two physical interpretations:

• S1 and S2 correspond to two superconducting samples with different critical temperatures.
• The superconducting sample Ω is subject to two different temperatures in the regions S1 and S2, which

may happen by cold or heat working S2.

Lassoued-Mironescu analyze the functional (1.1) without magnetic field (i.e. A = 0 and H = 0) and with p
as given in (1.3), by assuming that minimizers satisfy a Dirichlet boundary condition, ψ = g on ∂Ω, with g
valued in S1 and has degree d > 0, much in the same spirit of Béthuel et al. [8]. When a > 1 and ε → 0, they
obtain that minimizers have d vortices, strictly localized in S1, and whose positions are determined by a finite
dimensional problem (a renormalized energy).

In this paper, minimization of the functional (1.1) will take place in the space

H = H1(Ω; C) ×H1(Ω; R2).

Thus we do not assume a priori boundary conditions for admissible configurations, but minimizers satisfy
natural boundary conditions. We study nucleation of vortices as the applied magnetic field varies, and we obtain
that their behavior is strongly dependent on the parameter a, leading in some situations (small values of a) to
a pinning phenomenon.
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We summarize in the next theorem some of the main results we have obtained concerning the case of small
values of a.

Theorem 1.1. There exists a constant a0 ∈ ]0, 1[, and for each a ∈ ]0, a0[, there exist positive constants λ∗,
λ#, ε0 and a function ]0, ε0[ 	 ε 
→ kε ∈ R+, 0 < lim inf

ε→0
kε ≤ lim sup

ε→0
kε < ∞, such that, if (ψε,H , Aε,H) is a

minimizer of (1.1), then:

(1) If H < kε| ln ε| − λ∗ ln | ln ε|, then |ψε,H | ≥
√
a

2
in Ω.

(2) If H = kε| ln ε| + λ ln | ln ε| and λ ≥ −λ∗, then there exists a finite family of balls (B(ai(ε), ri(ε)))i∈I
with the following properties:
(a)

∑
i∈I

ri(ε) < | ln ε|−10.

(b) |ψε,H | ≥
√
a

2
in Ω \

⋃
i∈I

B(ai(ε), ri(ε)).

(c) Letting di be the degree of ψε,H/|ψε,H | on ∂B(ai(ε), ri(ε)) if B(ai, ri) ⊂ Ω and 0 otherwise, then
we have

sup
i∈I

|di|>0

|R − |ai(ε)| | → 0 as ε→ 0.

(d) If λ > λ# there exist positive constants c and C independent of ε such that

c ln | ln ε| ≤
∑
i

|di| ≤ C ln | ln ε| ∀ε ∈ ]0, ε0].

Theorem 1.1 exhibits a completely different regime for the nucleation of vortices when compared with the
usual G-L functional defined in a simply connected domain [29], and the result is qualitatively much more in
the direction of a circular annulus superconductor/condensate (cf. [2,3]). In particular, Theorem 1.1 states
that vortices are localized near the less-superconducting regions of the sample (i.e. S2): This is the pinning
phenomenon predicted in the physics literature, see e.g. [9].

In light of Theorem 1.1, let us define, as in [29], the vorticity measure (see Prop. 4.1 for a more canonical
definition),

μ (ψε,H , Aε,H) =
∑
i

diδai . (1.5)

Theorem 1.1 shows that in the regime (d), we have (up to the extraction of a subsequence)

μ (ψε,H , Aε,H)
ln | ln ε| → μ∗ as ε→ 0,

where μ∗ is a measure supported in the circle ∂D(0, R). We conjecture that μ∗ is indeed a constant times the
Lebesgue measure.

When a > 1, we obtain a completely different behavior, which is that of [29]. As in Theorem 1.1, we get
kε > 0, and a sequence of ‘critical fields’

Hc,n(ε) = kε (| ln ε| + (n− 1) ln | ln ε|) , (n ≥ 1),

such that, if Hn < H < Hn+1, then for a minimizer (ψε, Aε) of (1.1), ψε has exactly n vortices {xi(ε)}ni=1, each
of degree 1, and there positions are determined by minimizing a finite dimensional problem, i.e. a renormalized
energy (see Sect. 6.3).
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Boundary conditions

In addition to the pinning phenomenon, we obtain as a by-product some interpretation concerning the
boundary condition on the S1-S2 interface. The precise result is the following.

Theorem 1.2. There exists a function R+ \ {1} 	 a 
→ γ(a) ∈ R \ {0} such that, if (ψε,H , Aε,H) is a minimizer
of (1.1) satisfying |ψε,H | > 0 in Ω, then the following limit holds:

lim
ε→0

∥∥∥∥εn(x) · (∇− iAε,H)ψε,H
ψε,H

+ γ(a)
∥∥∥∥
L2(∂D(0,R))

= 0, (1.6)

where n(x) =
x

|x| for all x ∈ R2 \ {0}, is the outward unit normal vector.

Furthermore, the function γ satisfies: (1) γ(a) > 0 if a < 1; (2) γ(a) < 0 if a > 1.

Thus, below the first critical field HC1 , minimizers approximately satisfy a Robin-type boundary condition
on the S1-boundary:

n(x) · (∇− iAε,H)ψε,H +
γ(a)
ε
ψε,H(1 + o(1)) = 0 on ∂S1. (1.7)

This is a boundary condition of the type predicted by de Gennes (γ(a) being called the de Gennes parameter),
see [11]. When a > 1, γ(a) < 0, hence we justify the modeling of Fink and Joiner [13], who use a negative
‘de Gennes parameter’ to model a superconductor surrounded by another superconductor with a higher critical
temperature. They claim also that this is the setting when cold working the surface of superconducting samples
(see [16,26] for more recent reviews of this topic).

The result of Theorem 1.2 also justifies the analysis we carried out in [17,19,20] for problems involving
boundary conditions of the type (1.7), and complements results in this direction obtained in [18,22].

Preliminary versions of Theorems 1.1 and 1.2 were announced without proofs in [21]. In [6], the case of
general domains and the regime of applied magnetic fields comparable with | ln ε| are also treated.

Main points of the proofs

Let us briefly describe the main points of the proofs of Theorems 1.1 and 1.2, and thus explain what stands
behind their statements.

The starting point is the analysis of minimizers of (1.1) when H = 0. In this case, (1.1) has, up to a gauge
transformation, a unique minimizer (uε, 0) where uε is a positive real-valued function. The asymptotic profile
of uε as ε→ 0 is obtained in Theorem 2.4, which proves Theorem 1.2 when H = 0 with a stronger convergence
in L∞ norm.

When H > 0, let (ψ,A) be a minimizer of (1.1). Inspired by Lassoued and Mironescu [23], we introduce a
normalized density3

ϕ =
ψ

uε
·

Then |ϕ| ≤ 1 and we are led to the analysis of the following functional (see Lem. 2.7)

Fε,H(ϕ,A) =
∫

Ω

(
u2
ε|(∇− iA)ϕ|2 +

1
2ε2

u4
ε(1 − |ϕ|2)2 + |curlA−H |2

)
dx, (1.8)

using tools from Sandier and Serfaty [29].

3Notice that ϕ and ψ have the same vortices.
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When we take ϕ = 1 in (1.8) and we minimize the resulting functional over A ∈ H1(Ω; R2), we get that the
minimizer is H

u2
ε
∇⊥hε, where hε : Ω −→ ]0, 1[ is the solution of the equation:

− div
(

1
u2
ε

∇hε
)

+ hε = 0 in Ω, hε = 1 on ∂Ω. (1.9)

The constant kε appearing in Theorem 1.1 is defined by

kε =
1
2

(
max
x∈Ω

1 − hε(x)
u2
ε(x)

)−1

· (1.10)

Thanks to our choice of the domain Ω and the step function p(x) in (1.3), we show that the function hε(x) is
radially symmetric and strictly increasing with respect to |x| (see Lem. 3.1). This permits to show that

0 < lim inf
ε→0

kε ≤ lim sup
ε→0

kε < +∞.

Roughly speaking, the analysis of Sandier and Serfaty (cf. [29]) says that near the first critical magnetic field,

the vortices of a minimizer of4 (1.8) are localized as ε→ 0 near the set Λε =
{
x ∈ Ω:

1 − hε(x)
u2
ε(x)

=
1
2
k−1
ε

}
. We

localize the set Λε by means of a fine semi-classical analysis. We obtain when a is sufficiently small that the
set Λε consists of a circle ∂B(0, Rε), where Rε ∈ ]R, 1[ has the following asymptotic behavior (see Thm. 3.4):

ε� Rε −R � εα as ε→ 0, (α ∈ ]0, 1[ is given).

Let us mention that when a > 1, we prove that the set Λε consists of a single point, Λε = {0}, and for this
reason, minimizers of (1.1) exhibit the same behavior as the one present in [29], i.e. near the first critical
magnetic field, a minimizer has a finite number of vortices localized near the center of the disc and whose exact
positions are determined by a finite dimensional problem (a renormalized energy).

The rest of the proof is devoted to the construction of matching lower and upper bounds. Using the detailed
asymptotic behavior of hε as ε → 0, we may adapt essentially the same construction of vortex-balls provided
by Sandier and Serfaty [29]. For the upper bound, the situation is a bit more delicate, since the function uε has
a boundary layer behavior and we construct a test configuration with vortices localized near the circle C(0, R).
The challenge is to prove that such a configuration carries the right amount of energy. Technically, one does
that via a Green’s potential Gε which we were not able to give a good control of it, see Lemma 5.2. To overcome
this difficulty, we seek vortices situated on the circle γ = C(0, R+ ln | ln ε|

| ln ε| ), where a nice L1 bound can be shown
to hold for Gε(x, x) on γ. Then, using a specific result stated and proved in Lemma 5.5, the aforementioned
L1 bound provides us with a family of well separated points (ai) serving as the centers of vortices for the test
configuration and for which Gε(ai, ai) satisfies a nice bound for all i, see Lemma 5.4. The proof then goes
essentially as [2,29].

Outline of the paper

Section 2 is devoted to a preliminary analysis of the variational problem (1.1). In particular, a detailed
analysis is given for the case without magnetic field H = 0.

Section 3 is devoted to an analysis of equation (1.9).
Section 4 is devoted to derive a lower bound of the minimizing energy, involving the construction of vortex-

balls.
Section 5 is devoted to establish an upper bound of the minimizing energy, that is involved with a careful

analysis of a Green’s potential.

4These are also the vortices of a minimizer of (1.1).
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Finally, Section 6 is devoted to the proofs of Theorems 1.1 and 1.2, through the matching of the lower and
upper bounds obtained in Sections 4 and 5 respectively.

A remark on the notation

The letters C, C̃,M, etc., will denote positive constants independent of ε. For n ∈ N and X ⊂ Rn, |X |
denotes the Lebesgue measure of X . B(x, r) denotes the open ball in Rn of radius r and center x. (·, ·) denotes
the scalar product in C when identified with R

2. For two positive functions a(ε) and b(ε), we write a(ε) � b(ε)

as ε→ 0 to mean that lim
ε→0

a(ε)
b(ε)

= 0.

2. Preliminary analysis of minimizers

2.1. The case without applied magnetic field

This section is devoted to an analysis for minimizers of (1.1) when the applied magnetic field H = 0. We
follow closely similar results obtained in [18].

We keep the notation introduced in Section 1. Upon taking A = 0 and H = 0 in (1.1), one is led to introduce
the functional

Gε(u) :=
∫

Ω

(
|∇u|2 +

1
2ε2

(p(x) − u2)2
)

dx, (2.1)

defined for functions in H1(Ω; R).
We introduce

C0(ε) = inf
u∈H1(Ω;R)

Gε(u). (2.2)

The next theorem is an analogue of Theorem 1.1 in [18].

Theorem 2.1. Given a ∈ R+ \ {1}, there exists ε0 such that for all ε ∈ ]0, ε0[, the functional (2.1) admits in
H1(Ω; R) a minimizer uε ∈ C2(S1) ∪ C2(S2) such that

min(1,
√
a ) < uε < max(1,

√
a ) in Ω.

Furthermore, with our choice of the domains Ω, S1 and S2 in (1.4), the function uε is radial.
If H = 0, minimizers of (1.1) are gauge equivalent to the state (uε, 0).

The asymptotic behaviour of the function uε when ε → 0 is based on the understanding of the following
canonical equation: {−Δu = (1 − u2)u in R × R−, −Δu = (a− u2)u in R × R+,

∂x2u(·, 0−) = ∂x2u(·, 0+), u(·, 0−) = u(·, 0+) on R.
(2.3)

When a �= 1, it is easy to verify that (2.3) has the following solution

R
2 	 (x1, x2) 
→ U(x2), (2.4)

where the function U(x2) is defined by

U(x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
β1(a) exp(−√

2 x2) − 1
β1(a) exp(−√

2 x2) + 1
, if x2 ∈ R−,

√
a
β2(a) exp(

√
2/ax2) − 1

β2(a) exp(
√

2/ax2) + 1
, if x2 ∈ R+.

(2.5)
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The constants β1(a) and β2(a) are given explicitly:

β1(a) =
α(1 + α

√
a)

α−√
a

, β2(a) = −α2β1(a), α =
1 +

√
a−√2(1 + a)
1 −√

a
· (2.6)

Furthermore, we have the following properties:{ ∀a ∈ ]0, 1[, β1(a) > 1 and β2(a) < −1,
∀a ∈ ]1,∞[, β1(a) < −1 and β2(a) > 1, (2.7)

and

U ′(0) = γ(a)U(0), γ(a) = α
aα3 +

√
aα2 + aα+

√
a

α3 + (4 −√
a)α2 − 3

√
aα+ a

· (2.8)

As in [18], Theorem 1.5, we get that the solution given by (2.4) is unique in a certain class of functions.

Theorem 2.2. Let a ∈ R+ \ {1}. Equation (2.3) admits, in the class of functions C = {u ∈ H2
loc(R

2) ∩
L∞(R2): u ≥ 0 in R2}, a unique non-trivial solution given by (2.4).

Proof. Since the proof is very close to that of [18], Theorem 1.5, we sketch only the main steps.
By adjusting the proof of [18], Lemma 4.2, we obtain that if u �≡ 0 solves (2.3), then 0 < u < 1 in R2. This

permits us, when following step by step the proof of [18], Lemma 4.3 and [24], Lemma 5.3, to get a positive
constant C ∈ ]0, 1[ such that for any solution u of (2.3) in C, we have

inf
x∈R2

u(x) > C. (2.9)

Also, we prove in [18], Lemma 4.4 that, for u ∈ C a solution of (2.3),

lim
x2→−∞

(
sup
x1∈R

(1 − u(x1, x2))
)

= 0, lim
x2→+∞

(
sup
x1∈R

(
√
a− u(x1, x2))

)
= 0. (2.10)

Now, let u1, u2 ∈ C be solutions of (2.3). We introduce

λ∗ = sup{λ ∈ [0, 1[: u2(x) > λu1(x)}· (2.11)

Then, by (2.9), λ∗ > 0. We claim that λ∗ = 1. Once this is shown to hold, Theorem 2.2 is proved.
We argue by contradiction: If λ∗ < 1, then

inf
x∈R2

w(x) = 0, (2.12)

where w(x) = u2(x) − λ∗u1(x). Now, let (xn) =
(
(x1
n, x

2
n)
)

be a minimizing sequence:

lim
n→+∞w(xn) = 0.

Since the maximum principle yields that w(x) > 0 for all x, the sequence (xn) should be unbounded, hence
we assume that limn→+∞ |xn| = +∞. Also, by (2.10), (x2

n) should be bounded, hence we assume that
limn→+∞ x2

n = b.
Now, the functions unj (x1, x2) = uj(x1 + xn1 , x2), j = 1, 2, solve (2.3) in C, and up to extraction of a

subsequence, they converge locally to functions ũj ∈ C2
loc(R × R±; R), j = 1, 2. Now, ũ1, ũ2 solve (2.3)

in C, ũ2 ≥ λ∗ũ1 and ũ2(0, b) = λ∗ũ1(0, b). On the other hand, the strong maximum principle insures that
ũ2(x) > λ∗ũ1(x) for all x ∈ R

2, hence we have a contradiction. �
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Remark 2.3. It is known (see the remark p. 163 in [24]) that when a = 1, the trivial solution U ≡ 1 is the
unique positive and bounded solution of equation (2.3).

By a blow-up argument, Theorem 2.2 permits us to obtain the asymptotic behaviour of the minimizer uε
of (2.1).

Theorem 2.4. Let a ∈ R+ \ {1} and uε be the positive minimizer of (2.1) introduced in Theorem 2.1. Then,
the following asymptotics hold as ε→ 0:

lim
ε→0

∥∥∥∥uε(x) − U

( |x| −R

ε

)∥∥∥∥
L∞(Ω)

= 0, (2.13)

∀C > 0, lim
ε→0

ε

∥∥∥∥uε(x) − U

( |x| −R

ε

)∥∥∥∥
W 1,∞({x∈R2:|R−|x||≤Cε})

= 0, (2.14)

where U is the function introduced in (2.5).

In particular, Theorem 2.4 provides a stronger version of Theorem 1.2 when H = 0.

Proof of Theorem 2.4. Let (r, θ) be polar coordinates, 0 < r < 1, −π ≤ θ < π, and set

t = r −R, s = Rθ.

Given s0 ∈ [−Rπ,Rπ[, we define the rescaled function,

ũε(s, t) = uε

(
(R + εt)eiε(s−s0)/R

)
,

R− 1
ε

< t <
1 −R

ε
, −πR

ε
< s− s0 < π

R

ε
·

The equation of ũε becomes:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δε ũε = (1 − ũ2

ε)ũε,
R−1
ε < t < 0, |s− s0| < πRε ,

−Δε ũε = (a− ũ2
ε)ũε, 0 < t < 1−R

ε , |s− s0| < πRε ,

∂ũε
∂t

(·, 0−) =
∂ũε
∂t

(·, 0+), ũε(·, 0−) = ũ(·, 0+),

where

Δε =
(

1 − ε
t

R

)−2

∂2
s + ∂2

t −
ε

(R− εt)
∂t.

Now, by elliptic estimates, the function ũε converges to a function u in W 2,∞
loc (R2). Furthermore, u solves (2.3)

in C, and by [18], Lemma 5.2, there exist constants k0, c0 > 0 such that u(0, k0) > c0. Thus, we conclude by
Theorem 2.2 that u(s, t) = U(t), where U is given in (2.4), and therefore, by coming back to the initial scale,

∀C > 0, ∀k ∈ {0, 1, 2}, lim
ε→0

εk
∥∥∥∥uε(s, t) − U

(
t

ε

)∥∥∥∥
Wk,∞({|s−s0|≤Cε, |t|≤Cε})

= 0. (2.15)

To prove (2.13), let xε = (R+ t(xε))ei s(xε)/R ∈ Ω such that∣∣∣∣uε(xε) − U

( |xε| −R

ε

)∣∣∣∣ = ∥∥∥∥uε(x) − U

( |x| −R

ε

)∥∥∥∥
L∞(Ω)

·

If |R − |xε| |/ε is bounded, then (2.13) becomes a consequence of (2.15) upon taking s0 = s(xε). Otherwise, if

lim
ε→0

R − |xε|
ε

= ±∞, we get again by a blow-up argument that uε(xε) → 1 if the limit is +∞, and uε(xε) → √
a

if the limit is −∞. This establishes (2.13) in this case.
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The asymptotic limit (2.14) is also a simple consequence of (2.15). We take yε = (R + t(yε))ei s(yε)/R such
that ∥∥∥∥∇(uε(x) − U

( |x| −R

ε

))∥∥∥∥
L∞(|R−|x||≤Cε})

=
∣∣∣∣∇(uε(yε) − U

( |yε| −R

ε

))∣∣∣∣ ·
Then we apply (2.15) with s0 = s(yε). �

We state also some estimates, taken from [18], Proposition 5.1, that describe the decay of uε away from the
boundary of S1.

Lemma 2.5. Let k ∈ N. There exist positive constants ε0, δ and C such that, for all ε ∈ ]0, ε0],∥∥∥∥(1 − uε) exp
(
δ|R − |x| |

ε

)∥∥∥∥
Hk(S1)

+
∥∥∥∥(√a− uε) exp

(
δ|R− |x| |

ε

)∥∥∥∥
Hk(S2)

≤ C

εk
· (2.16)

Another property that we need is the monotonicity of the function uε (recall that, in the setting of Thm. 2.4,
uε is radial).

Lemma 2.6. With the choice of Ω, S1 and S2 as in (1.4), the function uε is increasing if a > 1 and decreasing
if a < 1.

Proof. We only prove the result of the lemma when a < 1.

Step 1. u′ε(R) �= 0.
Notice that uε is positive and satisfies the equations:

−u′′ε −
1
r
u′ε =

1
ε2

(1 − u2
ε)uε in ]0, R[ (2.17)

−u′′ε −
1
r
u′ε =

1
ε2

(a− u2
ε)uε in ]R, 1[ (2.18)

u′ε(0) = 0, u′ε(1) = 0. (2.19)

Therefore, if u′ε(R) = 0, then
uε ≡ 1 in S1, uε ≡

√
a in S2.

This is impossible since the function uε is in H1(Ω).

Step 2. The function uε is decreasing in [0, R].
Recall that, by Theorem 2.1,

√
a < uε < 1 in Ω. It is then easy to verify from equations (2.17) and (2.19)

that u′′ε (0) > 0. Let us denote by ũε the even extension of uε in ] − R, 0[. Then it is easy to verify that
(i) ũε ∈ C2([−R,R]); (ii) if r0 ∈ ] − R,R[ is a critical point of ũε, then ũ′′ε (r0) < 0. This shows that every
critical point of ũε is a local maximum. Consequently, ũε should have a unique critical point in ] − R,R[ and
ũ′ε should change its sign only at this critical point. Since ũ′ε(0) = 0 and ũ′′ε (0) < 0, we deduce that ũ′ε < 0
in ]0, R[. Therefore, uε is decreasing in [0, R].

Step 3. The function uε is decreasing in [R, 1].
Notice that from equation (2.18), any critical point r0 ∈ ]R, 1[ of uε is a local minimum. Thanks to

Steps 1 and 2, we have also that u′ε(R) < 0 and u′′ε (R) > 0.
Let us define the following function

fε(r) =

⎧⎪⎪⎨⎪⎪⎩
u′′ε (R)

2
(r −R)2 + u′ε(R) (r −R) + uε(R), if 0 < r < R,

uε(r), if R ≤ r ≤ 1,
fε(2 − r), if 1 < r ≤ 2.
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It is clear that fε ∈ C2([0, 2]) and that it satisfies the following properties: (i) r0 = 1 is a local minimum of fε;
(ii) if r0 ∈ ]0, 2[ is a critical point of fε, then r0 is a local minimum. This proves that r0 = 1 is the only critical
point of fε in [0, 2], and f ′

ε has a constant sign in [0, 1[. Since u′ε(R) < 0, we deduce that u′ε < 0 in ]R, 1[, hence
the function uε is decreasing. �

Finally, we mention without proof that the energy C0(ε) (cf. (2.2)) has the order of ε−1, and we refer to the
methods in [18], Section 6, which permit to obtain the leading order asymptotic expansion

C0(ε) =
c1(a)
ε

+ c2(a,R) + o(1), (ε→ 0),

where c1(a) and c2(a,R) are positive explicit constants.

2.2. The case with magnetic field

This section is devoted to a preliminary analysis of the minimizers of (1.1) when H �= 0. The main point
that we shall show is how to extract the singular term C0(ε) (cf. (2.2)) from the energy of a minimizer.

Notice that the existence of minimizers is standard starting from a minimizing sequence (cf. e.g. [14]). A
standard choice of gauge permits one to assume that the magnetic potential satisfies

divA = 0 in Ω, n · A = 0 on ∂Ω, (2.20)

where n is the outward unit normal vector of ∂Ω.
With this choice of gauge, one is able to prove (since the boundaries of Ω and S1 are smooth) that a minimizer

(ψ,A) is in C1(Ω; C) × C1(Ω; R2). One has also the following regularity (cf. [18], Appendix A),

ψ ∈ C2(S1; C) ∪ C2(S2; C), A ∈ C2(S1; R2) ∪ C2(S2; R2).

The next lemma is inspired from the work of Lassoued and Mironescu (cf. [23]).

Lemma 2.7. Let (ψ,A) be a minimizer of (1.1). Then 0 ≤ |ψ| ≤ uε in Ω, where uε is the positive minimizer
of (2.1).

Moreover, putting ϕ = ψ
uε

, then the energy functional (1.1) splits in the form:

Gε,H(ψ,A) = C0(ε) + Fε,H(ϕ,A), (2.21)

where C0(ε) has been introduced in (2.2) and the new functional Fε,H is defined by:

Fε,H(ϕ,A) =
∫

Ω

(
u2
ε|(∇− iA)ϕ|2 +

1
2ε2

u4
ε(1 − |ϕ|2)2 + |curlA−H |2

)
dx. (2.22)

Proof. The equality (2.21) results from a direct but some how long calculation, which permits to deduce in
particular that ϕ is a solution of the equation

−(∇− iA)u2
ε(∇− iA)ϕ =

u4
ε

ε2
(1 − |ϕ|2)2ϕ.

Proof of |ψ| ≤ uε. It is sufficient to prove that |ϕ| ≤ 1. We shall invoke an energy argument which we take
from [12].

Let us introduce the set
Ω+ = {x ∈ Ω: |ϕ(x)| > 1},
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together with the functions (defined in Ω+):

f =
ϕ

|ϕ| , ϕ̃ = [ |ϕ| − 1]+f.

Then, it results from a direct calculation together with the weak-formulation of the equation satisfied by ϕ that

0 =
∫

Ω+

(
|∇|ϕ| |2 + (|ϕ| − 1)|ϕ| |(∇− iA)f |2 +

1
2ε2
(
1 + |ϕ|)(1 − |ϕ|)2|ϕ|)u2

ε

)
u2
ε dx.

Therefore, this yields that Ω+ has measure 0. �

The estimate of the next lemma is very useful for exhibiting a vortex-less regime for minimizers of (1.1). It
is due to Béthuel and Rivière [7], but a proof may be found also in [29], Corollary 3.1 (see also [22], Lem. 3.6).

Lemma 2.8. Let (ψ,A) be a minimizer of (1.1). There exist constants C > 0 and ε0 ∈ ]0, 1] such that, if the
applied magnetic field satisfies H � 1

ε , then we have

|(∇− iA)ψ| ≤ C

ε
, ∀ε ∈ ]0, ε0].

Now, Lemma 2.8 permits to conclude the following result.

Lemma 2.9. Assume that (ψ,A) is a minimizer of (1.1) and let ϕ = ψ
uε

. There exists a constant μ0 > 0 such
that if

1
ε2

∫
Ω

(1 − |ϕ|2)2 dx ≤ μ0,

then |ϕ| ≥ 1
2 in Ω.

Proof. Lemma 2.8 and the diamagnetic inequality together yield that

|∇|ψ| | ≤ |(∇− iA)ψ| ≤ C

ε
, in Ω.

Now, since

|∇uε| ≤ C

ε
we deduce that

|∇|ϕ| | ≤ C

ε
in Ω.

Thus, the result of the lemma becomes a consequence of [8], Theorem III.3. �

3. Analysis of the Meissner state

Let us recall the definition of uε and C0(ε) in Theorem 2.1 and (2.2) respectively. This section is devoted to
the analysis of the following variational problem (3.1):

M0(ε,H) = min
A∈H1(Ω;R2)

Gε,H(uε, A). (3.1)

Since the function uε is real-valued, one gets, for any vector field A, the following decomposition:

Gε,H(uε, A) = C0(ε) +
∫

Ω

(|Auε|2 + |curlA−H |2) dx.
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Putting further

A = H A,

J0(ε) = inf
A∈H1(Ω;R2)

[∫
Ω

(|Auε|2 + |curlA− 1|2) dx
]
, (3.2)

we get that

M0(ε,H) = inf
A∈H1(Ω;R2)

Gε,H(uε, A) = C0(ε) +H2J0(ε),

and we are reduced to the analysis of the variational problem (3.2).
Starting from a minimizing sequence (cf. [29]), it is standard to prove that a minimizer Aε of (3.2) exists

and satisfies the Coulomb gauge condition:

divAε = 0 in Ω, n · Aε = 0 on ∂Ω,

where n is the unit outward normal vector of the boundary of Ω.
Notice also that Aε satisfies the Euler-Lagrange equations:

∇⊥curlAε = u2
εAε in Ω, curlAε = 1 on ∂Ω. (3.3)

Here ∇⊥ = (−∂x2 , ∂x1) is the Hodge gradient.
Putting hε = curlAε, we get from the first equation in (3.3) that Aε = 1

u2
ε
∇⊥hε. We get also that hε satisfies

the equation:

− div
(

1
u2
ε

∇hε
)

+ hε = 0 in Ω, hε = 1 on ∂Ω. (3.4)

Lemma 3.1. The function hε satisfies 0 < hε < 1 in Ω, and it is the only function solving (3.4).
Moreover, given R′ ∈ ]0, R[, there exists a constant c0 ∈ ]0, 1[, and for each a ∈ R+ \ {1}, there exists a

positive constant ε0 < 1 such that,

c0 ≤ |hε(x) − 1| < 1, ∀x ∈ D(0, R′), ∀a ∈ R+ \ {1}, ∀ε ∈ ]0, ε0]. (3.5)

Proof. The property that 0 < hε < 1 and the uniqueness of hε are direct applications of the Strong Maximum
Principle.

Let us now prove (3.5). Let us take a set K ⊂ S1 (independent of ε). Due to the asymptotic behaviour of uε
(it remains exponentially close to 1 in K, see Lem. 2.5), it results from (3.4) that hε is bounded in the C2-norm
of K. Thus, one can extract a subsequence of hε, still denoted by hε, that converges to a function h ∈ C2(K).
The function h satisfies the limiting equation,

−Δh+ h = 0 in K.

By the Strong Maximum Principle, 0 < h < 1 in K. Let h0 be the solution of the equation

−Δh0 + h0 = 0 in K, h0 = 1 on ∂K.

Then, by the Strong Maximum Principle, 0 < h ≤ h0 < 1 in K. This achieves the proof of the lemma. �
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Lemma 3.2. With the assumption (1.4), the function hε is radial, i.e. hε(x) = h̃ε(|x|), with h̃ε being an
increasing function.

Proof. That hε is radial follows by the uniqueness of the solution of (3.4) and by the fact that uε is also radial.
The solution hε being radial, i.e.

hε(x) = h̃ε(|x|), ∀x ∈ Ω,

let us show that the function h̃ε is increasing. For simplicity of notation, we shall remove the tilde and write
hε for h̃ε. Notice that hε satisfies the differential equation:⎧⎨⎩−h′′ε (r) −

1
r
h′ε(r) + 2

u′ε(r)
uε(r)

h′ε(r) + u2
ε(r)hε(r) = 0, 0 < r < 1,

h′ε(0) = 0, hε(1) = 1.
(3.6)

Let us calculate h′′ε (0). Since h′ε(0) = 0, we have h′′ε (0) = lim
r→0

h′ε(r)
r

. Substituting in (3.6), we get that

h′′ε (0) =
1
2
u2
ε(0)hε(0) > 0. (3.7)

Let us introduce the even extension of hε, namely the function

fε(r) =
{
hε(r) (r > 0),
hε(−r) (r < 0).

Then fε satisfies the equation,

− f ′′
ε (r) − 1

|r|f
′
ε(r) + 2

ũ′ε(r)
ũε(r)

f ′
ε(r) + ũ2

ε(r) fε(r) = 0, r ∈ ] − r2, r2[\{0}, (3.8)

and it attains a local minimum at 0. We emphasize also here that ũε denotes the even extension of uε.
If r0 ∈ ] − 1, 1[ (with r0 �= 0) is a critical point of fε, then it follows from (3.8) that:

f ′′
ε (r0) = ũ2

ε(r0) fε(r0) > 0.

If r0 = 0, the conclusion f ′′
ε (0) > 0 still holds, thanks to (3.7).

Now these observations lead to the conclusion that fε attains its minimum at a unique point, and that this
point is the only critical point for fε. As we know that f ′

ε(0) = 0, we get that fε attains its minimum at 0 and
that it is increasing in [0, 1[. This achieves the proof of the lemma. �

As we shall see, the next lemma will play a distinguished role in the control of the minimizing energy of
‘vortex balls’.

Lemma 3.3. The following estimate holds∥∥∥∥ 1
u2
ε

∇hε
∥∥∥∥
L∞(Ω)

≤ 1, ∀ε ∈ ]0, 1] ∀a ∈ R+ \ {1}· (3.9)

Proof. Notice that by Lemma 3.2, hε is radial. Then the equation for hε can be written in the form:

−
(
h′ε
u2
ε

)′
(r) − 1

r

h′ε
u2
ε

(r) + hε(r) = 0, ∀r ∈ ]0, 1[.
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Integrating this equation between 0 and r ∈ ]0, 1[ and using the fact that hε is increasing, h′ε ≥ 0, we obtain:(
h′ε
u2
ε

)
(r) ≤

∫ r

0

hε(r̃) dr̃ ≤ r‖hε‖L∞([0,1]) ≤ 1,

which is the result of the lemma. �

Let us introduce the set

Λε =
{
x ∈ Ω:

1 − hε(x)
u2
ε(x)

= max
Ω

1 − hε
u2
ε

}
· (3.10)

Theorem 3.4. The following two assertions hold.

(1) If a > 1, the function
1 − hε
u2
ε

is strictly decreasing, and Λε = {0}.
(2) There exists a0 ∈ ]0, 1[ such that, for all a ∈ ]0, a0[, the set Λε is a circle ∂D(0, Rε) localized strictly

in S2 as ε→ 0 in the sense that given α ∈ ]0, 1[, we have,

ε� Rε −R � εα, (ε→ 0). (3.11)

Moreover, there exists a positive constant C > 0 such that

|∇uε(x)| ≤ C, ∀x ∈ S2 \D(0, Rε). (3.12)

Proof. The proof of the first assertion is straightforward: When a > 1, the functions uε and hε are strictly
increasing, hence (

1 − hε
u2
ε

)′
= −uεh

′
ε + 2(1 − hε)u′ε

u3
ε

< 0.

The proof of the second assertion of the corollary is more delicate. We present it in five steps.

Step. 1. Proof of ε� Rε −R.
Choose xε ∈ Λε and let rε = |xε|. Then rε ∈ [0, 1[. Thanks to Lemmas 3.1–3.3, we have:

lim inf
ε→0

1 − hε(rε)
u2
ε(rε)

≥ c0, lim sup
ε→0

rε < 1. (3.13)

Since rε is a critical point of the function 1−hε

u2
ε

, we have

u′ε(rε) =
uε(rε)h′ε(rε)
2(1 − hε(rε))

· (3.14)

Then, by Lemma 3.3, |u′ε(rε)| ≤ C for an explicit constant C > 0. By Theorem 2.4, we should have

|R− rε| � ε as ε→ 0.

Assume by contradiction that rε < R. Then Theorem 2.4 yields that lim
ε→0

uε(rε) = 1.

Let α ∈ ]0, 1[ and choose r′ ∈ ]0, R[ such that

|hε(R+ εα) − hε(r′)| ≤ 1
2
|1 − hε(r′)|.

This choice of r′ is always possible, thanks to Lemmas 3.1 and 3.3.
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Now, notice that, as ε→ 0,

1 − hε(R+ εα)
u2
ε(R+ εα)

≥ 1
2
|1 − hε(r′)|
u2
ε(R+ εα)

≥ c0
2 u2

ε(R + εα)
(c0 ∈ ]0, 1[ given in Lem. 3.1)

=
c0
2a

(1 + o(1)) (by Thm. 2.4). (3.15)

On the other hand, by the definition of rε,

1 − hε(R + εα)
u2
ε(R+ εα)

≤ 1 − hε(rε)
u2
ε(rε)

,

and since lim
ε→0

uε(rε) = 1, we get

1 − hε(R + εα)
u2
ε(R+ εα)

≤ 1 + o(1) as ε→ 0.

Therefore, by choosing a ∈ ]0, c02 [, (3.15) leads to a contradiction. By putting

Rε = min
x∈Λε

|x|,

we get the desired statement: ε� Rε −R as ε→ 0.

Step 2. Proof of Rε −R � 1.
Assume that there exists R1 ∈ ]R, 1[ such that, up to extraction of a subsequence, Rε → R1 as ε → 0. Let

δ = 1
2 min(|R−R1|, 1). We may assume, by extracting a subsequence, that hε(R1 − δ) → c∗ for some constant

c∗ ∈ ]0, 1[. Then, by standard elliptic estimates, there exists a function h∗ ∈ C2
(
D(0, 1) \D(0, R1 − δ)

)
such

that, upon the extraction of a subsequence, we have,

hε → h∗ in C2
(
D(0, 1) \D(0, R1 − δ)

)
,

and h∗ is a radial function and the unique solution of the equation{−Δh∗ + a h∗ = 0 in D(0, 1) \D(0, R1 − δ),
h∗ = c∗ on ∂D(0, R1 − δ), h∗ = 1 on ∂D(0, 1).

A simple application of the maximum principle yields that c∗ < h∗ < 1 in D(0, 1) \ D(0, R1 − δ). Therefore,
there exists a constant M > 0 such that

h∗(R1 − δ) < h∗(R1) −M.

Consequently, when ε is sufficiently small, we get the lower bound:

1 − hε(R1 − δ)
u2
ε(R1 − δ)

>
1 − hε(R1)
u2
ε(R1)

+
M

2
,

and the same estimate holds when we replace R1 by Rε and M
2 by M

4 . This contradicts the definition of Rε,
proving thus the desired property: Rε −R � 1 as ε→ 0.
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Step 3. Finer localization: Proof of Rε −R � εα.
Assume that there exists α ∈ ]0, 1[ such that, up to the extraction of a subsequence, Rε > R+ εα.
Let α′ ∈ ]α, 1[ and set δε = Rε −R− εα

′
. Notice that

δε ≥ εα

2
when ε is small enough.

Thanks to (3.14) and Lemma 2.5, h′ε(Rε) is exponentially small as ε → 0. Thus, from the equations satisfied
by hε, we may assume that up to the extraction of a subsequence,

h′′ε (Rε) → λ0 as ε→ 0, λ0 > 0.

Now, applying Taylor’s formula to the function hε, we get

hε(Rε − δε) = hε(Rε) + λ0δ
2
ε + o(δ2ε) as ε→ 0.

Consequently, thanks again to Lemma 2.5, we deduce that

1 − hε(Rε − δε)
u2
ε(Rε − δε)

=
1 − hε(Rε)
u2
ε(Rε)

− λ0δ
2
ε + o(δ2ε)

<
1 − hε(Rε)
u2
ε(Rε)

− λ0

2
δ2ε .

Since the function [0, 1] 	 r 
→ 1−hε(r)
u2

ε(r) achieves its maximum on Rε, we get a contradiction. Therefore, we have
proved the desired localization for Rε: Given α ∈ ]0, 1[, Rε −R � εα as ε→ 0.

Step 4. Upper Bound for |∇uε|.
Let us prove now (3.12). We know that |u′ε(Rε)| ≤ C, for some explicit constant C > 0. On the other hand,

by Lemma 2.6, the function uε is decreasing when a < 1, hence u′ε ≤ 0 in ]R, 1]. So it is sufficient to prove that
u′ε is increasing in [R, 1]. Actually, coming back to the equation of uε, we have, thanks to Theorem 2.1,

u′′ε = −1
r
u′ε −

1
ε2

(a− u2
ε)uε > 0 in ]R, 1[,

hence we have the desired property regarding the monotonicity of u′ε. This achieves the proof of (3.12).

Step 5. The function [0, 1] 	 r 
→ 1 − hε(r)
u2
ε(r)

achieves its maximum on a unique point.

Let us prove now that Λε = ∂D(0, Rε), i.e. the radial function 1−hε

u2
ε

attains its maximum uniquely at Rε.
By Lemma 3.1, there exists a constant R∗ ∈ ]R, 1[ such that any maximum point x ∈ Λε should satisfy

R < |x| < R∗. Let rε ∈ ]Rε, R∗[ be a critical point of
1 − hε
u2
ε

. Then,

(
1 − hε
u2
ε

)′′
=

−3fε
u4
ε

,

where
fε = u′εh

′
ε −

1
r
h′ε + u2

εhε + 2(1 − hε)u′′ε .

It is sufficient to prove that fε(rε) > 0. We distinguish between two cases:

(i) lim sup
ε→0

u′′ε (rε) = ∞, or (ii) lim sup
ε→0

u′′ε (rε) <∞.
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In case (i), since u′ε is bounded in [Rε, 1[, we deduce easily that as ε→ 0,

fε(rε) > 0.

In case (ii), it is easy to verify that u′′ε is decreasing in ]Rε, 1[. Hence there exists a constant C > 0 such that,
up to the extraction of a subsequence, u′′ε (r) ≤ C in [rε, 1[.

By the mean value theorem, we deduce that

|u′ε(rε) − u′ε(rε + εα)| ≤ Cεα.

Thus, we get by Lemma 2.5 that |u′ε(rε)| � 1 as ε→ 0, and consequently, we get by (3.14) that h′ε(rε) � 1 as
ε→ 0.

Now, this yields in this case that fε(rε) > 0. Therefore, we have proved all the statements of the theorem. �
Let us introduce the function

Ω 	 x 
→ ξε(x) =
hε(x) − 1
u2
ε(x)

, (3.16)

together with
λε = max

x∈Ω
|ξε(x)|. (3.17)

Corollary 3.5. Let a0 ∈ ]0, 1[ be the constant of Theorem 3.4. For all a ∈ ]0, a0[, there exist positive constants
δ∗ and ε0 such that: { ∀x ∈ Ω s.t. | |x| −R|2 ≥ | ln ε|−1/2, ∀ε ∈ ]0, ε0],

ξε(x) ≥ −λε + δ∗| ln ε|−1/2.

Proof. We make the following claim:

∃ c0 > 0, ξε(x) ≥ −λε + c0 when |x| ≤ R− | ln ε|−1/4. (3.18)

Once we prove (3.18), we deduce the conclusion of the corollary when |x| < R− | ln ε|−1/4.
The proof of (3.18) is rather easy. First, notice that, putting rε = R − εα with α ∈ ]0, 1[, we have by

Lemma 3.3
hε(rε) ≥ hε(Rε) + O(εα).

On the other hand, Theorem 3.1 yields that the function r 
→ hε(r) − 1
u2
ε(r)

is decreasing in [0, R]. Thus, for all

r ∈ [0, R− | ln ε|−1/4], we have
hε(r) − 1
u2
ε(r)

≥ hε(rε) − 1
u2
ε(rε)

·
Therefore,

ξε(r) ≥ hε(Rε) − 1
u2
ε(rε)

+ O(εα).

Invoking Lemma 2.5, we deduce that
ξε(r) ≥ −λε + c0,

where c0 ∈ ]0,
(

1
a − 1

)
lim inf
ε→0

(1 − hε(Rε))[.

Now, let us prove the conclusion of the corollary when R+ | ln ε|−1/4 ≤ |x| ≤ 1. By Lemma 2.5, it is sufficient
to find δ > 0 and r0 > 0 such that

hε(r) ≥ hε(Rε) + δmax(|r −R|2, | ln ε|−1/2), R + | ln ε|−1/4 ≤ r ≤ R+ r0. (3.19)

To prove (3.19), we deal separately with the case whether lim inf
ε→0

h′ε(Rε) = 0 or lim inf
ε→0

h′ε(Rε) > 0.
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Proof of (3.19) when lim inf
ε→0

h′ε(Rε) = 0. In this case, there exists c0 > 0 such that, up to the extraction of a
subsequence,

h′ε(Rε) → 0, h′′ε (Rε) → c0 as ε→ 0.
Set rε = R+ εα where α ∈ ]0, 1[ is given. By Theorem 3.4, we have

h′ε(rε) → 0, h′′ε (rε) → c0 as ε→ 0.

Moreover, by Lemma 2.5 and the equation of hε, h′′′ε (r) is bounded in [rε, 1]. Therefore, applying Taylor’s
formula up to the order 2, we get a positive constant r0 ∈ ]0, 1[ such that

hε(r) = hε(rε) + h′ε(rε)(r − rε) +
1
2
h′′ε (rε)(r − rε)2 + O(|r − rε|3)

≥ hε(rε) +
c0
2

(r − rε)2 (3.20)

provided that 0 < r − rε < r0.
Thanks to Theorem 3.4, ε < Rε −R < εα. Hence by Lemma 3.3,

hε(rε) = hε(Rε) + O(εα).

Therefore, when | ln ε|−1/2 < r −Rε < r0, (3.20) is nothing but (3.19).

Proof of (3.19) when lim inf
ε→0

h′ε(Rε) > 0. We may assume in this case that h′ε(Rε) → c0 > 0 as ε → 0. By

Theorem 3.4 and the equation of hε, h′′ε (r) is bounded in [Rε, 1] independently of ε.
We apply again Taylor’s formula

hε(r) = hε(Rε) + h′ε(Rε)(r −Rε) + O(|r −Rε|2)
≥ hε(Rε) +

c0
2
|r −Rε|.

This is nothing but again (3.19). This achieves the proof of the corollary. �

4. Lower bound of the energy

4.1. Vortex-balls

In this section we construct suitable ‘vortex-balls’ providing a lower bound of the energy of minimizers
of (1.1). Recall the decomposition of the energy in Lemma 2.7, which permits us to work with the ‘reduced
energy functional’ Fε,H .

Notice that, by using
(
uε,

1
u2

ε
∇⊥hε

)
as a test configuration for the function (1.1), we deduce the upper bound:

Fε,H(ϕ,A) ≤ H2J0(ε), (4.1)

where ϕ = ψ/uε, (ψ,A) a minimizer of (1.1), and J0(ε) is introduced in (3.2),

J0(ε) =
∫

Ω

(
1
u2
ε

|∇hε|2 + |hε − 1|2
)

dx. (4.2)

We shall always work under the hypothesis that there exists a positive constant C > 0 such that the applied
magnetic field H satisfies

H ≤ C| ln ε|. (4.3)
The upper bound (4.1) provides us, as in [29], with the construction of suitable ‘vortex-balls’.
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Proposition 4.1. Let (ψ,A) be a minimizer of (1.1) and ϕ =
ψ

uε
. Then, under the hypotheses (4.3), for each

p ∈ ]1, 2[, there exist a constant C > 0 and a finite family of disjoint balls {B((ai, ri)}i∈I satisfying the following
properties:

(1) w = {x ∈ Ω: |ϕ(x)| ≤ 1 − | ln ε|−4} ⊂
⋃
i∈I

B(ai, ri).

(2)
∑
i∈I

ri ≤ C | ln ε|−10.

(3) Letting di be the degree of the function ϕ/|ϕ| restricted to ∂B(ai, ri) if B(ai, ri) ⊂ Ω and di = 0
otherwise, then we have:∫
B(ai,ri)\ω

u2
ε|(∇− iA)ϕ|2 dx+

∫
B(ai,ri)

|curlA−H |2 dx ≥ 2π|di|
(

min
B(ai,ri)

u2
ε

)
(| ln ε| − C ln | ln ε|) . (4.4)

(4)

∥∥∥∥∥2π∑
i∈I

diδai − curl
(
A+ (iϕ,∇Aϕ)

)∥∥∥∥∥
W−1,p

0 (Ω)

≤ C| ln ε|−4.

We follow the usual terminology and call the balls constructed in Proposition 4.1 ‘vortex-balls’. The proof
of Proposition 4.1 is very similar to that of [22], Proposition 5.2, and is actually a simple consequence of the
analysis of [29].

Proposition 4.1 permits us to prove the following theorem.

Theorem 4.2. Let (ψ,A) be a minimizer of (1.1) and ϕ =
ψ

uε
. Then, under the hypothesis (4.3), there exist a

constant C > 0 and a finite family of disjoint balls {B((ai, ri)}i∈I such that:

(1)
∑
i∈I

ri ≤ C| ln ε|−10.

(2) |ϕ| ≥ 1
2 on Ω \ ∪iB(ai, ri).

(3) Letting di be the degree of the function ϕ/|ϕ| restricted to ∂B(ai, ri) if B(ai, ri) ⊂ Ω and di = 0
otherwise, then we have:

Fε,H(ϕ,A) ≥ H2J0(ε) +
∫

Ω\∪iB(ai,ri)

1
u2
ε

|∇(h−H hε)|2 dx+
∫

Ω

|h−H hε|2 dx

+ 2π
∑
i∈I

[(
min

B(ai,ri)
u2
ε

)
(| ln ε| − C ln | ln ε|)

]
|di|

+ 4πH
∑
i∈I

di(hε − 1)(ai) − CH | ln ε|−4, (4.5)

where h = curlA and hε is introduced in (3.4).

The proof is essentially that of [22], Theorem 5.3.
Let us recall the definition of λε in (3.17). We put

kε =
1

2λε
=

1
2

(
max
x∈Ω

|ξε(x)|
)−1

. (4.6)
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Corollary 4.3. With the notations of Theorem 4.2, the following lower bound holds:

Fε,H(ϕ,A) ≥ H2J0(ε) +
∫

Ω\∪iB(ai,ri)

1
u2
ε

|∇(h−H hε)|2 dx+
∫

Ω

|h−H hε|2 dx

+ 2πχε(a)
∑
di>0

(| ln ε| − 2k−1
ε H − C ln | ln ε|) di

+ min(1, a)
∑
di≤0

(| ln ε| − C ln | ln ε|)|di| − CH | ln ε|−4, (4.7)

where χε(a) = min(1, a) if | ln ε| − 2k−1
ε H ≥ 0, and χε(a) = max(1, a) otherwise.

Proof. Let us assign to each ball B(ai, ri) a point a′i ∈ B(ai, ri) ∩ Ω such that

uε(a′i) = min
B(ai,ri)

uε.

Then, thanks to Lemma 3.3 and to the first point of Theorem 4.2, there exists a constant c > 0 such that

∀i, |hε(ai) − hε(a′i)| ≤ c|ai − a′i| ≤ c| ln ε|−10.

This permits us to write

∑
di>0

[(
min

B(ai,ri)
u2
ε

)
| ln ε| + 2H(hε(ai) − 1)

]
di ≥

∑
di>0

u2
ε(a

′
i)
[
| ln ε| −

(
1 − hε(a′i)
2u2

ε(a′i)

)
H − 2c| ln ε|−4H

]
di.

By definition of kε, we have
1 − hε(a′i)
2u2

ε(a′i)
≤ k−1

ε . By Theorem 2.1, min(1, a) ≤ u2
ε(a

′
i) ≤ max(1, a). Therefore, we

get ∑
di>0

[(
min

B(ai,ri)
u2
ε

)
| ln ε| + 2H(hε(ai) − 1)

]
di ≥ χε(a)

(| ln ε| − 2k−1
ε H

)
di. (4.8)

For the terms with negative degrees, we write

∑
di≤0

[(
min

B(ai,ri)
u2
ε

)
| ln ε| − 2H(hε(ai) − 1)

]
|di| ≥ min(1, a)

∑
di≤0

| ln ε| |di|. (4.9)

Substituting (4.8)–(4.9) in (4.5), we get the desired lower bound of the corollary. �

4.2. Upper bound on the total degree

Let us assume from now on that (ψ,A) is a minimizer of (1.1) and that (B(ai, ri))i is its associated family of
vortex-balls constructed in Theorem 4.2. Our aim is to give an upper bound on the total degree

∑
i |di|. The

answer will be strongly dependent on the parameter a.

Lemma 4.4. Assume that for a given constant K > 0, the magnetic field satisfies H ≤ kε| ln ε| + K ln | ln ε|.
With the notation of Theorem 4.2, the following two assertions hold.

(1) If a > 1, then there exists constants C > 0 and ε0 ∈ ]0, 1] such that,

max
|di|>0

|ai| ≤ C| ln ε|−1/4,
∑
i

|di| ≤ C, ∀ε ∈ ]0, ε0]. (4.10)
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(2) There exists a0 ∈ ]0, 1[ such that, if a ∈ ]0, a0], there exists positive constants ε0 and C such that,

max
|di|>0

|R− |ai| | ≤ C| ln ε|−1/4,
∑
i

|di| ≤ C ln | ln ε|, ∀ε ∈ ]0, ε0]. (4.11)

Since the proof of assertion (1) is very close to that of [28], Theorem 2 (with only very few technical
modifications), we omit it. We give rather the proof of the second assertion of the lemma (which is also
close to that of [28], Thm. 2).

Let us introduce:

D+ =
∑
i, di>0

|di|, D− =
∑
i, di≤0

|di|, D = D+ +D− =
∑
i

|di|, (4.12)

and
D0 =

∑
|R−|ai| |≤| ln ε|−1/4

|di|. (4.13)

We make the following two claims:

∃ C > 0, D− ≤ C D+
ln | ln ε|
| ln ε| , (4.14)

and

∃ C > 0, D −D0 ≤ C D
ln | ln ε|√| ln ε| · (4.15)

Now we show that when the claims (4.14) and (4.15) hold, then we can prove assertion (2) of Lemma 4.4.
We put Ω̃ = Ω \ ∪iB(ai, ri), where B(ai, ri) are the vortex-balls constructed in Theorem 4.2. For a given

t > 0, we denote by Ct the circle of center 0 and radius t, and by Bt the open ball of center 0 and radius t. Let
us introduce the set of positive real numbers:

E = {t ∈ ]R+ | ln ε|−1/4, 1[ : Ct ⊂ Ω̃}· (4.16)

Thanks to Theorem 4.2, the set E is non empty and has a positive measure

lim inf
ε→0

|E| > 0.

Theorem 4.2 gives |ϕ| ≥ 1 − | ln ε|−4 on Ct whenever t ∈ E. Therefore, the degree

dt = deg
(
ϕ

|ϕ| , Ct
)

is well defined whenever t ∈ E.
Writing h = curlA and ϕ = |ϕ|eiφ for an H2-function φ, the following equation holds

− 1
u2
ε

∇⊥h = |ϕ|2(∇φ−A) in Ω̃. (4.17)

Let us recall also the equation for hε,

−div
(

1
u2
ε

∇hε
)

+ hε = 0 in Ω,



566 A. KACHMAR

from which it follows, by Stoke’s formula:∫
Ct

1
u2
ε

n · ∇hε dθ =
∫
Bt

hε dx, (4.18)

where n is the unit outward normal vector of Bt, n(x) = x/|x| for all x ∈ R2 \ {0}.
On the other hand, it results from (4.17) and Stoke’s formula,∫

Ct

1
u2
ε

n · ∇h dθ =
∫
Bt

|ϕ|2 τ · (∇φ−A) dx

=
∫
Bt

τ · ∇φdx −
∫
Ct

h dx+ T (t),

where (n, τ) is a direct frame, and

T (t) =
∫
Bt

(|ϕ|2 − 1) τ · (∇φ− A) dx. (4.19)

Coming back to the definition of the degree, we deduce that∫
Ct

1
u2
ε

n · ∇h dθ = 2πdt −
∫
Bt

h dx+ T (t). (4.20)

Combining (4.18) and (4.20), we get∫
Ct

1
u2
ε

(∇h−H∇hε) · n dθ +
∫
Bt

(h−H hε) dx = 2πdt + T (t).

Applying Cauchy-Schwarz inequality on each integral and squaring, we obtain (recall that the function uε is
radial) ∫

Ct

1
u2
ε

|∇(h−H hε)|2 dθ +
t

2

∫
Bt

|h−H hε|2 dx ≥ π

3t
d2
t − C

[
T 2(t) + u−2

ε (t)
]
.

Thanks to (4.14) and (4.15), we infer from the above lower bound∫
Ct

1
u2
ε

|∇(h−H hε)|2 dθ +
t

2

∫
Bt

|h−H hε|2 dx ≥ π

4t
D2 − C

[
T 2(t) + u−2

ε (t)
]
, (4.21)

where D is the total degree introduced in (4.12).
Now, we integrate both sides of (4.21) with respect to t and we recall that inf E > R. This yields∫
Ω̃

1
u2
ε

|∇(h−H hε)|2 dx+
∫

Ω

|h−H hε|2 dx ≥
∫
E

(∫
Ct

1
u2
ε

|∇(h−H hε)|2 dθ +
t

2

∫
Bt

|h−H hε|2 dx
)

dt

≥
∫
E

( π
4t
D2 − C

[
T 2(t) + u−2

ε (t)
])

dt

≥ |E|
4
D2 − C

∫
E

(
T 2(t) + u−2

ε (t)
)

dt

≥ C̃

[
D2 −

∫
E

(
T 2(t) + u−2

ε (t)
)

dt
]
,

where C̃ > 0 is an explicit constant.



G-L FUNCTIONAL WITH DISCONTINUOUS CONSTRAINT 567

Since u2
ε > a when a < 1 (see Thm. 2.1), it is clear that

∫
E u

−2
ε dt ≤ a−1|E| ≤ C. Let us estimate the integral

of T 2(t). Notice that∫
E

T 2(t) dt ≤
∫

Ω̃

(1 − |ϕ|2)|(∇− iA)ϕ|2 dx ≤ | ln ε|−4

∫
Ω

|(∇− iA)ϕ|2 dx� 1

where we have used Theorem 4.2 and the constraint on the applied magnetic field H = O(| ln ε|).
Therefore, we conclude finally that, for a possibly larger explicit constant C̃ > 0,∫

Ω̃

1
u2
ε

|∇(h−H hε)|2 dx+
∫

Ω

|h−H hε|2 dx ≥ C̃(D2 − 1). (4.22)

We substitute (4.14), (4.15) and (4.22) in (4.5) to obtain:

Fε,H(ϕ,A) ≥ H2J0(ε) + C̃(D2 − 1) − C ln | ln ε|D. (4.23)

Matching this lower bound with the upper bound (4.1), we deduce that

D2 ≤ C′ ln | ln ε|D,

which permits us to deduce the statement concerning the total degree in the second assertion of Lemma 4.4.
Substituting the bound of D in (4.14) and (4.15), we deduce that

D− = 0, D0 = D,

thus proving that all the vortices have positive degrees together with the first statement in the assertion (2) of
Lemma 4.4.

We have only to prove claims (4.14) and (4.15). Claim (4.14) is a direct consequence of Theorem 4.2.
Claim (4.15) is a consequence of Lemma 3.5.

5. Upper bound of the energy

5.1. Main result

In this section, we assume that the magnetic field satisfies

H = kε| ln ε| + λ ln | ln ε|, (λ ∈ R), (5.1)

where kε is introduced in (4.6).
The aim of this section is to establish the following upper bound for the energy Fε,H(ϕ,A), where the

functional Fε,H is introduced in (2.7). Let us recall the constant a0 ∈ ]0, 1[ introduced in Theorem 3.4.

Proposition 5.1. Let (ψ,A) be a minimizer of (1.1) and ϕ =
ψ

uε
. Assume that a ∈ ]0, a0[. There exist

constants C∗ > 0, ε0 > 0 such that, when the applied magnetic field H satisfies (5.1), the following upper bound
of the energy holds,

Fε(ϕ,A) ≤ H2J0(ε) + (C∗ − λ)(ln | ln ε|)2, ∀ε ∈ ]0, ε0].

The proof of Proposition 5.1 is by constructing a suitable test configuration having vortices and by computing
its energy. The estimate of the energy of the test configuration relies on a careful analysis of a Green’s potential.
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5.2. Analysis of a Green’s potential

This section is devoted to an analysis of a Green’s kernel, i.e. a fundamental solution of the differential

operator −div
(

1
u2
ε(x)

∇
)

+ 1. The existence and the properties of this function, taken from [1,33], are given

in the next lemma.

Lemma 5.2. For every y ∈ Ω and ε ∈ ]0, 1], there exists a symmetric function Ω×Ω 	 (x, y) 
→ Gε(x, y) ∈ R+

such that: ⎧⎨⎩−div
(

1
u2
ε(x)

∇xGε(x, y)
)

+Gε(x, y) = δy(x) in D′(Ω),

Gε(x, y)
∣∣
x∈∂Ω

= 0.
(5.2)

Moreover, Gε satisfies the following properties:
(1) There exists a constant C > 0 such that

Gε(x, y) ≤ C (| ln |x− y| | + 1) , ∀(x, y) ∈ Ω × Ω \ Δ, ∀ε ∈ ]0, 1],

where Δ denotes the diagonal in R2.

(2) The function vε : Ω × Ω 	 (x, y) 
→ Gε(x, y) +
u2
ε(x)
2π

ln |x− y| is in the class C1(Ω × Ω; R).

(3) Given q ∈ [1, 2[, there exists a constant C > 0 such that

‖vε(·, y)‖W 1,q(Ω) ≤ C, ∀y ∈ Ω, ∀ε ∈ ]0, 1].

(4) For any compact set K ⊂ Ω, there exist constants C > 0 and ε0 > 0 such that, ∀ε ∈ ]0, ε0],∣∣∣∣Gε(x, y) +
u2
ε(x)
2π

ln |x− y|
∣∣∣∣ ≤ C ‖∇uε(x)‖L∞(K) , ∀x ∈ K, ∀y ∈ Ω.

Corollary 5.3. Assume that a ∈ ]0, a0[ and R′ ∈ ]R, 1[. There exist constants C > 0, α ∈ ]0, 1[ and ε0 > 0
such that, for all ε ∈ ]0, ε0[ and 2(Rε −R) < η(ε) < 1, we have

‖vε(·, y)‖C0,α(D(0,R′)\D(0,R+η(ε))) ≤
C

η(ε)2
, ∀y ∈ Ω.

Here

vε(x, y) = Gε(x, y) +
u2
ε(x)
2π

ln |x− y|.

Proof. Let χ ∈ C∞
0 (R; R) be a cut-off function such that

0 ≤ χ ≤ 1 in R, χ ≡ 1 in [1,∞[, χ ≡ 0 in
]
−∞,

1
2

[
·

Set

χη(x) = χ

( |x|
η

)
, ṽε(x) = χη(x) vε(x), ∀x ∈ D(0, 1).

The function ṽε satisfies the equation

−div
(

1
u2
ε

∇xṽε

)
+ ṽε(x, y) = χη fε(x, y) + wε(x, y),
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where

fε(x, y) =
u2
ε(y)

πu3
ε(x)

∇uε(x) · ∇x ln |x− y| − u2
ε(y)
2π

ln |x− y|,
and

wε(x, y) =
∇xvε(x, y) · ∇χη(x)

u2
ε(x)

− 2
vε(x, y)
u3
ε(x)

∇uε(x) · ∇χη(x) +
vε(x, y)
u2
ε(x)

Δχη(x).

Let us notice also that it results from Theorems 2.1 and 3.4

‖∇uε‖L∞(D(0,1)\D(0,R+η)) ≤ C, uε ≥
√
a in D(0, 1).

Thanks to the above properties of the function uε, we deduce that for a given q ∈ [1, 2[, there exists a constant
C > 0 such that

‖χη fε(·, y)‖Lq(D(0,1)) ≤ C, ∀y ∈ Ω, ∀ε ∈ ]0, 1].
On the other hand, for a given q ∈ [1, 2[, it is known that the function vε(·, y) is bounded in W 1,q(Ω) (see
Lem. 5.2). Thus, we get the following estimate for the functions ṽε and wε:

‖ṽε(·, y)‖W 1,q(D(0,1)) ≤ C, ‖wε(·, y)‖Lq(D(0,1)) ≤ C

η2
, ∀y ∈ D(0, 1), ∀ε ∈ ]0, 1].

Let R′ ∈ ]R, 1[. Thanks to the equation of ṽε, Theorem 2 of [25] implies that there exist p > 2 and p′ < 2 such
that

‖∇ṽε(·, y)‖Lp(D(0,R′)) ≤ C
(
‖∇ṽε(·, y)‖Lp′(D(0,1)) + ‖wε(·, y) + χηfε(·, y)‖W−1,p(D(0,1))

)
. (5.3)

We may choose q ∈ ]1, 2[ such that Lq is embedded in W−1,p and p′ < q. Thus, the above estimate reads as:

‖∇ṽε(·, y)‖Lp(D(0,R′)) ≤ C

η2
, ∀y ∈ D(0, 1).

Since ṽε is bounded uniformly in W 1,q(Ω) (see Lem. 5.2), we get by Poincaré’s inequality:

‖ṽε(·, y)‖W 1,p(D(0,R′)) ≤ C

η2
, ∀y ∈ D(0, 1).

Since p > 2, the Sobolev embedding theorem yields the bound

‖ṽε(·, y)‖C0,α(D(0,R′)) ≤ C

η2
, ∀y ∈ D(0, 1),

for some α ∈ ]0, 1[. This estimate is nothing but the result of the corollary once we remember the definition of
the function ṽε. �

The next lemma provides us with points enjoying useful properties. These points will serve to be the centers
of the vortices of the test configuration that we shall construct in the next section.

Lemma 5.4. There exist constants K > 0, c ∈ ]0, 1[, and for each ε ∈ ]0, 1[ and n(ε) ∈ N ∩ [1, c2 ε
−1[, there

exist points (ai)
n(ε)
i=1 ⊂ ∂D(0, rε) and δ(ε) ∈ ]0, 1[ such that

δ(ε) � 1 as ε→ 0
c

n(ε)
≤ |ai+1 − ai| ≤ δ(ε) +

c

n(ε)
, |vε(ai, ai)| ≤ K ln | ln ε|,

∀i ∈ {1, 2, . . . , n(ε)}, ∀ε ∈ ]0, 1].

Here the function vε has been introduced in Lemma 5.2, and rε = R+
ln | ln ε|
| ln ε| .
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Proof. The proof is actually due to the following bound∫
∂D(0,rε)

|vε(x, x)| dx ≤ C ln | ln ε|, (5.4)

that holds uniformly in ε ∈ ]0, 1]. Let us show why this bound holds. We cover ∂D(0, rε) by N balls (B(yi, ζ))i,
with (yi)i ⊂ ∂D(0, rε) and ζ ∈ ]0, 1[ is to be chosen appropriately. We introduce a scaled partition of unity χζi
such that

N∑
i=1

|χζi | = 1 in ∂D(0, rε), suppχζi ⊂ B(yi, ζ), ∀i ∈ {1, . . . ,N}·

Then ∫
∂D(0,rε)

|vε(x, x)| dx =
N∑
i=1

∫
∂D(0,rε)

|χζi (x) vε(x, x)| dx. (5.5)

By Corollary 5.3, we write for all i ∈ {1, . . . ,N}∫
∂D(0,rε)

|χζi (x) vε(x, x)| dx ≤
∫
∂D(0,rε)

|χζi (x) vε(x, yi)| dμ∗(x) +
C

η2

∫
∂D(0,rε)

|χζi (x)| |x − yi|α dμ∗(x),

where α ∈ ]0, 1[, η = R− rε, and μ∗ is the Lebesgue measure in ∂D(0, rε).
Recalling that suppχζi ⊂ B(yi, ζ), we get upon choosing ζ = η2/α and summing up over i,

N∑
i=1

1
η2

∫
∂D(0,rε)

|χζi (x)| |x − yi|α dμ∗(x) ≤ C.

On the other hand, by Lemma 5.2, there exists a constant C > 0 such that∫
∂D(0,rε)

|χζi (x) vε(x, yi)| dμ∗(x) ≤ C

∫
B(yi,ζ)∩∂D(0,rε)

| ln |x− yi| | dμ∗(x)

≤ Cζ| ln ζ|.

Recalling our choice of ζ = η2/α and η = O(| ln ε|−1/2), and summing up over i, we get for a new constant
C > 0

N∑
i=1

∫
∂D(0,rε)

|χζi (x) vε(x, x)| dx ≤ CN × ζ ln | ln ε| ≤ C ln | ln ε|,

where we have used that N × 2πζ ≈ 2πrε → 2πR. Substituting in (5.5), we obtain the desired bound (5.4).
Now, defining the function

fε(t) : [0, 1[ 	 t 
→ |vε
(
rεe2πi t, rεe2πi t

) |,
and applying Lemma 5.5 below, we get the desired sequence of points. �
Lemma 5.5. Let (fε)ε∈ ]0,1] ⊂ C([0, 1],R+) be a family of continuous functions. Assume that there exists a
constant C > 0 such that

‖fε‖L1([0,1]) ≤ C ln | ln ε|, ∀ε ∈ ]0, 1].
There exist constants K > 0 and c0 ∈ ]0, 1[ such that, given a family (N(ε)) ⊂ N satisfying N(ε) � 1, there
exists a family (δ(ε)) ⊂ ]0, 1[ and a sequence (tεm)m∈N ⊂ ]0, 1[ and

|fε(tεi )| ≤ K ln | ln ε|, c0
N(ε)

≤ ∣∣tεi+1 − tεi
∣∣ ≤ δ(ε) +

c0
N(ε)

,

∀i ∈ {1, 2, . . . , N(ε)}, ∀ε ∈ ]0, 1].
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Proof. Let us introduce, for a given K > 0, the set

EεK = {t ∈ [0, 1]: |fε(t)| < K ln | ln ε|}·

Using the uniform bound on ‖fε‖L1([0,1]), we can choose K sufficiently large such that

|EεK | ≥ 1
2

∀ε ∈ ]0, 1],

where | · | denotes the Lebesgue measure.
Let ε ∈ ]0, 1]. Since the function fε is continuous, the set EεK is open. Thus, we essentially meet two cases:

Either there exists an interval
]xε − δε, xε + δε[⊂ EεK

with lim inf
ε→0

δε > 0 (in which case the statement of the theorem becomes evidently true), or there exists a

constant c0 ∈ ]0, 1
2 [ and possibly infinitely many disjoint intervals⋃

i∈Iε

]xεi − δεi , x
ε
i + δεi [⊂ EεK

such that xε1 < xε2 < · · · and

lim sup
ε→0

(∑
i∈Iε

Δi

)
= 0, lim inf

ε→0

(∑
i∈Iε

δεi

)
≥ c0

2
, (5.6)

where Δi =
∣∣xεi+1 − δεi+1 − xεi − δεi

∣∣.
Consequently, setting tε1 = xε1 and EεK =

⋃
i∈Iε

]xεi − δεi , x
ε
i + δεi [, we get

EεK
∖]

tε1, t
ε
1 +

c0
8N(ε)

[
�= ∅.

So, setting

tε2 = inf
(
EεK
∖]

tε1, t
ε
1 +

c0
8N(ε)

[)
,

we get, thanks in particular to (5.6),
tε2 − tε1 ≤ 2

∑
i

Δi +
c0

8N(ε)
,

and

EεK
∖]

tε1, t
ε
2 +

c0
8N(ε)

[
�= ∅.

Therefore, we set

tε3 = inf
(
EεK
∖]

tε1, t
ε
2 +

c0
8N(ε)

[)
·

By induction, given n ≤ N(ε), we can construct points tε2 < tε3 < · · · < tεn such that

c0
8N(ε)

≤ tεi+1 − tεi ≤
c0

8N(ε)
+
∑
i

Δi, ∀i ∈ {1, . . . , n},

yielding therefore the desired sequence (tεm) with δ(ε) =
∑
i∈Iε

Δi. �
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5.3. The test configuration

We know from Theorem 3.4 that the function ξε(x) achieves its unique minimum on the circle ∂D(0, Rε)
with ε� Rε −R � εα, for α ∈ ]0, 1[.

Since we expect vortices of a minimizer of (1.1) to be pinned on the circle ∂D(0, Rε), and to be uniformly
distributed along this circle, we construct a test configuration whose vortices are placed, for technical reasons,

on the circle ∂D(0, rε), with rε = R+
ln | ln ε|
| ln ε| . We mention that similar constructions have been also introduced

in the papers [2–4].
Let n(ε) ∈ N∩ ]1, c2ε

−1[ for an appropriate constant c ∈ ]0, 1[. Lemma 5.4 provides us with n(ε) points
(ai)

n(ε)
i=1 on the circle ∂D(0, rε), that satisfy in particular

B(ai, ε) ∩B(aj , ε) = ∅, ∀i �= j.

We define a measure μ by:

μ(x) =

{
0 if x �∈ ∪iB(ai, ε)
2
ε2

if x ∈ ∪iB(ai, ε),
(5.7)

and a function h′ in Ω = D(0, 1) by ⎧⎨⎩−div
(

1
u2
ε

∇h′
)

+ h′ = μ in Ω,

h′ = 0 on ∂Ω.
(5.8)

We notice that ∫
B(ai,ε)

μ dx = 2π, ∀i = 1, 2, . . . , n(ε),
∫

R2
μ dx = 2π n(ε).

We define an induced magnetic field h = h′ + hε (here hε has been introduced in (3.4)). Then we define an
induced magnetic potential A = A′ + H

u2
ε
∇⊥hε by taking simply

curlA′ = h′.

This choice is always possible as one can take A′ = ∇⊥g with g ∈ H2(Ω) such that Δg = h′.
We turn now to define an order parameter ψ which we take in the form

ψ = u uε = ρ eiφ uε, (5.9)

where ρ is defined by:

ρ(x) =

⎧⎪⎨⎪⎩
0 if x ∈ ∪iB(ai, ε),
1 if x �∈ ∪iB(ai, 2ε),

|x− ai|
ε

− 1 if ∃ i s.t. x ∈ B(ai, 2ε) \B(ai, ε).
(5.10)

The phase φ is defined (modulo 2π) by the relation:

∇φ−A′ = − 1
u2
ε

∇⊥h′ in Ω \ ∪iB(ai, ε), (5.11)

and we emphasize here that we do not need to define φ in regions where ρ vanishes.
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Lemma 5.6. There exist constants ε0 ∈ ]0, 1[ and C > 0 such that∫
Ω

(
1

u2
ε(x)

|∇h′|2 + |h′|2
)

dxdy ≤ 2πu2
ε(rε)n(ε)| ln ε| + C n(ε) ln | ln ε| + C [n(ε)]2 + o

(
[n(ε)]2

)
.

Proof. Notice that the field h′ can be expressed by means of the function Gε introduced in Lemma 5.2,

h′(x) =
∫

Ω

Gε(x, y)μ(y) dy, ∀x ∈ Ω. (5.12)

Therefore, we get the identity∫
Ω

(
1

u2
ε(x)

|∇h′|2 + |h′|2
)

dx =
∫

Ω×Ω

Gε(x, y)μ(x)μ(y) dxdy, (5.13)

which shows that it is sufficient to estimate
∫

Ω×Ω

Gε(x, y)μ(x)μ(y) dxdy. We decompose the integral∫
Ω×Ω

Gε(x, y)μ(x)μ(y) dxdy into two terms:

∫
Ω×Ω

Gε(x, y)μ(x)μ(y) dxdy =
∑
i�=j

∫
B(ai,ε)×B(aj,ε)

Gε(x, y)μ(x)μ(y) dxdy

+
n(ε)∑
i=1

∫
B(ai,ε)×B(ai,ε)

Gε(x, y)μ(x)μ(y) dxdy. (5.14)

Let us estimate the first term. We write using Lemma 5.2,∑
i�=j

∫
B(ai,ε)×B(aj ,ε)

Gε(x, y)μ(x)μ(y) dxdy ≤ C
∑
i�=j

∫
B(ai,ε)×B(aj,ε)

( | ln |x− y| | + 1
)
μ(x)μ(y) dxdy. (5.15)

Now, recalling the definition of μ in (5.7) and the choice of the points (ai) in Lemma 5.4 , we get∑
i�=j

c

n(ε)2

∫
B(ai,ε)×B(aj ,ε)

| ln |x− y| |μ(x)μ(y) dxdy ≤ C, (5.16)

where C > 0 is any constant such that

C >

∫
∂D(0,R)×∂D(0,R)

| ln |x− y| | dμ∗(x)dμ∗(y)

and dμ∗ is the arc-length measure on the circle ∂D(0, R).
Therefore, (5.15) becomes for a new constant C > 0,∑

i�=j

∫
B(ai,ε)×B(aj ,ε)

Gε(x, y)μ(x)μ(y) dxdy ≤ C n(ε)2. (5.17)

Again, using Corollary 5.3, we estimate∫
B(ai,ε)×B(ai,ε)

Gε(x, y)μ(x)μ(y) dxdy =
4
ε4

∫
B(ai,ε)×B(ai,ε)

(
u2
ε(x)
2π

ln
1

|x− y| + |vε(x, y)|
)

dxdy. (5.18)
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On the one hand, we have

4
ε4

∫
B(ai,ε)×B(ai,ε)

u2
ε(x)
2π

ln
1

|x− y| dxdy = 4
∫
B(0,1)×B(0,1)

u2
ε(ai + z′

ε )
2π

ln
[

1
ε|z′ − w′|

]
dz′dw′.

Recall that the function uε is radial and that |ai| = rε. By Theorem 3.4, we have∣∣∣∣u2
ε

(
ai +

z′

ε

)
− u2

ε(rε)
∣∣∣∣ ≤ O(ε), ∀z′ ∈ B(0, 1).

Therefore,∫
B(ai,ε)×B(ai,ε)

u2
ε(x)
2π

ln
1

|x− y| μ(x)μ(y) dxdy ≤ 4
∫
B(0,1)×B(0,1)

u2
ε(rε) + O(ε)

2π
ln
[

1
ε|z′ − w′|

]
dz′dw′

= 2π u2
ε(rε)| ln ε| + o(1). (5.19)

On the other hand, assuming that the following estimate holds

lim sup
ε→0

1
n(ε) ln | ln ε|

n(ε)∑
i=1

4
ε4

∫
B(ai,ε)×B(ai,ε)

|vε(x, y)| dxdy ≤ C, (5.20)

then (5.18) becomes

n(ε)∑
i=1

∫
B(ai,ε)×B(ai,ε)

Gε(x, y)μ(x)μ(y) dxdy ≤ [u2
ε(rε)| ln ε| + C ln | ln ε|]n(ε). (5.21)

Combining (5.15) and (5.21), and using (5.13), we get the result of Lemma 5.6.
It remains to prove the claim in (5.20).

Proof of (5.20). By Corollary 5.3, we write,

4
ε4

∫
B(ai,ε)×B(ai,ε)

|vε(x, y)| dxdy ≤ 4π|vε(ai, ai)| + Cεα

η2
,

where α ∈ ]0, 1[ and η = rε −R. Using our particular choice of η = O(| ln ε|−1/2), we deduce that

1
n(ε)

n(ε)∑
i=1

4
ε4

∫
B(ai,ε)×B(ai,ε)

|vε(x, y)| dxdy ≤ 4π
n(ε)

⎛⎝n(ε)∑
i=1

|vε(ai, ai)| + o(1)

⎞⎠ .

Recalling the choice of the points (ai) in Lemma 5.4, we see that the right hand side above is uniformly bounded
by a constant times ln | ln ε|, yielding the result in (5.20). �

In the next lemma, we state a decomposition of the energy due to [7].

Lemma 5.7. Consider (u,A) ∈ H1(Ω; C) ×H1(Ω; R2) and define

A′ = A− H

u2
ε

∇⊥hε,
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where uε and hε are introduced in Theorem 2.1 and (3.4) respectively. Then we have the decomposition of the
energy,

Fε,H(u,A) = H2J0(ε) +
∫

Ω

(
u2
ε|(∇− iA′)u|2 + |curlA′|2 +

1
ε2
u4
ε(1 − |u|2)2

)
dx

+ 2H
∫

Ω

(hε − 1)
[
curl
(
A′ + (iu,∇A′u)

)]
dx

+H2

∫
Ω

1
u2
ε

(|u|2 − 1
) |∇hε|2 dx.

Here, the functional Fε,H and the energy J0(ε) are introduced in (2.22) and (3.2) respectively.

Proof of Proposition 5.1. Let (ψ,A) be the test configuration constructed in (5.8)–(5.11), and put ϕ = ψ
uε

. By
Lemma 2.7, it is sufficient to establish the upper bound

Fε,H(ϕ,A) ≤ H2J0(ε) + (C∗ − λ)(ln | ln ε|)2.

By the construction of ϕ and Theorem 2.1, we get,

1
ε2

∫
Ω

u2
ε(1 − |ϕ|)2 dx = O(1).

By Lemma 3.3, we have ∫
Ω

1
u2
ε

(|ϕ|2 − 1
) |∇hε|2 dx ≤ Cε2.

Let μ(ϕ,A′) = curl
(
A′ + (iϕ,∇A′ϕ)

)
. Notice that

μ(ϕ,A′) =
{

0 in Ω \⋃iB(ai, 2ε),
μ+ μr(ϕ,A′) in

⋃
iB(ai, 2ε),

where μ is the measure defined in (5.7) and

μr(ϕ,A′) = −(|ϕ|2 − 1)div
(

1
u2
ε

∇h′
)

+ (∇⊥|ϕ|2) · (∇φ −A).

Using the definition of μ and Lemma 3.3, we write,

2H
∫

Ω

(hε − 1)
[
curl
(
A′ + (iϕ,∇A′ϕ)

)]
dx = 2H(hε(rε) − 1)

∫
Ω

μ(ϕ,A′) dx

+ 2H
∫

Ω

[hε(x) − hε(rε)]μ(ϕ,A′) dx

≤ 4πn(ε)(hε(rε) − 1)H

+ 2H(hε(rε) − 1)
∫

Ω

μr(ϕ,A′) dx+ Cε

∫
Ω

|μ(ϕ,A′)| dx. (5.22)
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Since |ϕ| = 1 on ∂B(ai, 2ε), an integration by parts yields∫
B(ai,2ε)

μr(ϕ,A′) dx =
∫
B(ai,2ε)

[
−(|ϕ|2 − 1)div

(
1
u2
ε

∇h′
)

+ (∇⊥(|ϕ|2 − 1)) · ∇
⊥h′

u2
ε

h′
]

dx

=
∫
B(ai,2ε)

[
−(|ϕ|2 − 1)div

(
1
u2
ε

∇h′
)

+ (|ϕ|2 − 1)div
(

1
u2
ε

∇h′
)
h′
]

dx

= 0.

On the other hand, using the definitions of μ and ϕ, and Cauchy-Schwarz inequality, we write,∫
B(ai,2ε)

|μ(ϕ,A′)| dx ≤
∫
B(ai,2ε)

(
μ+ 2|h′| + C

ε
|∇h′|

)
dx

≤ 2π + C

(∫
B(ai,2ε)

(|∇h′|2 + |h′|2) dx

)1/2

.

Therefore, (5.22) becomes, for a new constant C > 0,

2H
∫

Ω

(hε − 1)
[
curl
(
A′ + (iϕ,∇A′ϕ)

)]
dx ≤ 4πn(ε)(hε(rε) − 1)H

+ Cε

[(∫
Ω

(|∇h′|2 + |h′|2) dx
)1/2

+ n(ε)H

]
.

Thanks to Lemma 5.7, we get

Fε,H(ϕ,A) ≤ H2J0(ε) + (1 + Cε)
∫

Ω

(
1
u2
ε

|∇h′|2 + |h′ − 1|2
)

dx+ 4πn(ε)(hε(rε) − 1)H + O (ε n(ε)H) .

We recall that the magnetic field satisfies H = kε| ln ε| + λ ln | ln ε|, and we apply Lemma 5.6 to deduce the
upper bound,

Fε,H(ϕ,A) ≤ H2J0(ε) + 2πn(ε)(1 − hε(rε))
[(

u2
ε(rε)

1 − hε(rε)
− 2kε

)
| ln ε|

+ C
n(ε) + ln | ln ε|

1 − hε(rε)
− λ ln | ln ε|

]
+ o(n(ε)2 + n(ε)

√
ε). (5.23)

Recall the definition of rε = R+
ln | ln ε|
| ln ε| . Thanks to Lemma 3.3 and Theorem 3.4, we get:

∣∣∣∣ u2
ε(rε)

1 − hε(rε)
− 2kε

∣∣∣∣ ≤ C̃
ln | ln ε|
| ln ε| ·

Thus, when choosing C∗ > 2C + C̃ and n(ε) = [ ln | ln ε| ] ([ · ] denotes the largest integer less than ·), the upper
bound (5.23) becomes,

Fε,H(ϕ,A) ≤ H2J0(ε) + (C∗ − λ)(ln | ln ε|)2,
thus achieving the proof of Proposition 5.1. �
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6. Proof of main theorems

6.1. Proof of Theorem 1.1

Theorem 4.2 provides us with a family of vortex balls (B(ai, ri))i. In particular, when the lower bound of
Corollary 4.3 is matched with the upper bound (4.1), permits us to deduce,

0 ≥ 2π a
∑
di>0

(| ln ε| − C ln | ln ε| − k−1
ε H

) |di| + 2π
∑
di≤0

(a| ln ε| − C ln | ln ε|) |di|.

Taking λ∗ < −C and λ ≤ λ∗, we deduce that
∑

i |di| = 0 whenever the magnetic field satisfies H < kε| ln ε| +
λ ln | ln ε|. The energy decomposition of Lemma 5.7, together with point (4) of Proposition 4.1, yield now the
estimate

1
ε2

∫
Ω

(1 − |ϕ|2) dx� 1

which when combined with Lemma 2.9 gives the desired result, |ϕ| ≥ 1
2 in Ω.

Now, when λ ≥ λ∗, the properties (a)–(c) of Theorem 1.1 are consequences of Theorem 4.2 and Lemma 4.4,
which give in particular the upper bound on the total degree

∑
i |di| ≤ C ln | ln ε|.

Assume now that H = kε| ln ε| + λ ln | ln ε|, with λ > 0. When the lower bound of Corollary 4.3

Fε,H(ϕ,A) ≥ H2J0(ε) + 2πa
∑
di>0

(| ln ε| − C ln | ln ε| − k−1
ε H

)
di + 2π

∑
di≤0

(a| ln ε| − C ln | ln ε|) |di|

is matched with the upper bound of Proposition 5.1, we deduce that

2πa
∑
di>0

(C − λ) ln | ln ε|di ≤ (C∗ − λ)(ln | ln ε|)2.

Taking λ > max(C∗, C), we deduce the desired lower bound on the total degree∑
i

|di| ≥
∑
di>0

di ≥ c ln | ln ε|.

This achieves the proof of Theorem 1.1.

6.2. Proof of Theorem 1.2

Let (ψ,A) be a minimizer of (1.1) such that |ψ| > 0 in Ω. Then all the degrees (di) in Theorem 4.2 are null:

di = 0 ∀i.

It results now from the upper bound Fε,H(ϕ,A) ≤ H2J0(ε), the lower bound of Theorem 4.2 and the energy
decomposition of Lemma 5.7:∫

Ω

(
|(∇− iA′)ϕ|2 +

1
2ε2

(1 − |ϕ|2)2 + |curlA−Hhε|2
)

dx� 1 (ε→ 0),

where A′ = A− H
u2

ε
∇⊥hε.

From this estimate and the G-L equation satisfied by ϕ, we are able to prove (cf. [22], Lem. 6.4) the following
estimate

ε‖(∇− iA′)ϕ‖H1(S1) � 1 (ε→ 0).
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Consequently, the trace theorem yields

ε‖n(x) · (∇− iA′)ϕ‖L2(∂S1) � 1 (ε→ 0).

Since the functions hε and uε are radial, we have

n(x) · (∇− iA′)ϕ = n(x) · (∇− iA)ϕ.

Let us also notice that ∣∣∣∣n(x) ·
[
(∇− iA)ψ

ψ
− ∇uε

uε

] ∣∣∣∣ = 1
|ϕ| |n(x) · (∇− iA′)ϕ| .

On the other hand, since 1
ε2

∫
Ω(1 − |ϕ|2)2 dx � 1, Lemma 2.9 yields that |ϕ| ≥ 1

2 in Ω. Therefore, we deduce
that

ε

∥∥∥∥n(x) ·
[
(∇− iA)ψ

ψ
− ∇uε

uε

]∥∥∥∥
L2(∂S1)

≤ 2ε ‖n(x) · (∇− iA′)ϕ‖L2(∂S1)
� 1.

Now, invoking Theorem 2.4, we conclude the result of Theorem 1.2, with γ(a) given in (2.8).

6.3. The regime a > 1

Let us sum up what we know in this case. Let us introduce the following Ginzburg-Landau functional
analyzed in [8]

H1(Ω; C) 	 u 
→ Fε(u) =
∫

Ω

(
|∇u|2 +

1
2ε2

(1 − |u|2)2
)

dx. (6.1)

Let us also recall the definition of the function ξε : Ω → R− introduced in (3.16). We recall also the set
Λε = {x ∈ Ω: |ξε(x)| = max

Ω
|ξε| } which governs the location of the vortices of a minimizer of (1.1).

Now, the result of Lemma 4.4 permits to prove the existence of a constant M > 0 such that (see [28], Sect. 3)

Fε(ϕ) <M| ln ε|, (6.2)

where ϕ = ψ
uε

and (ψ,A) always denote a minimizer of (1.1).
On the other hand, the result of Theorem 3.4 states that

Λε = {0}, ξ′′ε (0) > 0. (6.3)

The estimate (6.2) is the basis on which the analysis in [30] is build-up. It permits to prove an expression of
the first critical field:

HC1 = kε| ln ε| + k1,ε,

where kε is given by (4.6) and k1,ε = O(1). If HC1 + k < H < HC1 + O(1), k > 0, then a minimizer (ψ,A)
of (1.1) has a finite number of vortices, each of degree 1, and localized near the center of the disc Ω = D(0, 1).
Furthermore, it is proved that if more than one vortex exists, distinct vortices will tend, after normalization, to
distinct points in R2.

The results in (6.3) are the basis to build-up the analysis of [31], which permits to obtain a sequence of
critical fields. We point out that in order to adapt the analysis of [31], we need to remember that in every
compact subset K of D(0, R), the function uε converges to 1 exponentially fast in C2(K).

We define the normalized energy:

wε,n : R
n 	 (x1, x2, . . . , xn) 
→ −2π

∑
i�=j

ln |xi − xj | + 2πξ′′ε (0)
n∑
i=1

|xi|2. (6.4)
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The analysis of [31] yields that, if the magnetic field satisfies

H = kε (| ln ε| + δ ln | ln ε|) , n− 1 < δ < n, n ∈ N,

then a minimizer (ψ,A) of (1.1) has n-vortices (xi(ε))ni=1, each of degree 1, and such that, when putting
x̃i(ε) = xi(ε)

√
H , then the configuration (x̃i(ε))ni=1 is localized near a minimizer of the renormalized energywε,n.

Furthermore, the following expansion of the energy holds as ε→ 0:

Fε,H(ϕ,A) = H2J0(ε) − 2π n
(
| ln ε| − H

kε

)
+ π(n2 − n) lnH

+ wε,n (x̃1(ε), . . . , x̃n(ε)) +Qn + o(1),

where Qn is an explicit constant depending only on n.
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