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Abstract. The paper studies optimal portfolio selection for discrete time market models in mean-
variance and goal achieving setting. The optimal strategies are obtained for models with an observed
process that causes serial correlations of price changes. The optimal strategies are found to be myopic
for the goal-achieving problem and quasi-myopic for the mean variance portfolio.
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1. Introduction

The paper investigates optimal portfolio selection for discrete time stochastic market models. These problems
have been studied intensively in the literature (see, e.g., [9] and more recent works or [10,13,20,21]. The single-
period version of this problem was set and solved by Markowitz [17] in mean-variance setting. Multi-period
version appears to be more challenging. If the market model is complete, then the martingale method can
be used (see, e.g., [20]). Unfortunately, a discrete time market model is complete only under very restrictive
assumptions. For incomplete discrete time markets, the main tool is dynamic programming. It requires to
calculate the optimal value function backward starting at terminal time using the probability distributions of
future prices. In Markovian setting, this function satisfies an anticausal backward Bellman equation, usually
with finite dimensional state space. The dynamic programming method was used to obtain the existing results
in mean-variance multi-period setting. In particular, this method was used by Li and Ng [13] for a model with
independent security returns. Schweizer [21] and Henrotte [10] studied more general market model with serial
correlations for the problem of mean-variance optimal hedging of random claims. The strategies obtained in
these papers require the future probability distributions of the prices. In addition, these strategies depend on
the choice of the time horizon.

For some special discrete time market models, optimal strategies are known to be myopic, i.e., they don’t
use the knowledge of the future probability distributions of the market prices and don’t require forecast of these
prices (see, e.g., [9,12,19]). More precisely, the strategy for discrete time is myopic if, at time t, it depends
only on the historical observations and on the future probability distributions of the prices at time t + 1.
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In other words, it requires one step forward prediction only, and the optimal choice of the portfolio at time t
does not depend on the terminal time and on the probability distributions of the prices at times after t+ 1.

In fact, the most well-known myopic optimal strategies were introduced for continuous time markets [18].
For the power and log utility functions, the optimal strategies are myopic for continuous time models if the
market parameters (the appreciation rates and the volatilities) are currently observable and their forecast is
not required. For the case of non-observable parameters, the optimal strategies are found to be myopic for the
log utility function only. The impact of the observability or non-observability was intensively studied in the
literature (see some references in [1,8]).

Unfortunately, the optimal strategies are rarely myopic for discrete time market models. Hakansson [9]
showed that the optimal strategy is not myopic for U(x) =

√
x if returns have serial correlation and evolve as

a Markov process. The optimal strategies found in [10,21] are also non-myopic; they require forecast of future
distributions. Clearly, it is interesting to find new examples of optimal myopic strategies.

In the present paper, we study optimal portfolio strategies and their myopicness for a incomplete discrete
time market; new examples of optimal myopic strategies are found.

We consider the goal-achieving problem of minimization EU(X̃T − κ) and, following Li and Ng [13], the
multi-period mean-variance problem Var X̃T → min, EX̃T ≥ const. Here X̃T is the discounted wealth, κ > X0

is a given target value, U is a function that describes investor preferences. We consider only U(x) = |x|δ,
where δ > 0.

Similarly to Schweizer [21] and Henrotte [10], we consider the market model with serial correlations for the
price changes. The novelty is that we introduce a model with an observable parameter process that causes
the correlations. This model can be considered as an analog of the continuous time market models such that
the appreciation rate can be observed directly, i.e., when the Merton’s optimal strategies are myopic for power
utility functions.

We use some alternative to the dynamic programming method. More precisely, we calculate the optimal
strategies directly, using the approach from Dokuchaev [3,5], where optimal and myopic strategies were obtained
in discrete time setting for power and log utilities. The present paper extends this approach on the goal achieving
and mean-variance problems. Convenient and compact explicit formulas for optimal strategies are obtained.
For the goal-achieving problem, these strategies appear to be myopic. In the mean variance setting, the optimal
strategy appears to be non-myopic, but the required information about the future distributions is very limited:
for a multi-stock market with n stocks, for an arbitrarily large n, it is required to estimate a single scalar
parameter α defined by (3.7). As a consequence, the corresponding strategy does not leave the efficient frontier
even if this parameter is calculated with an error, or if the time horizon is changed (Cor. 4.1). In addition, we
found that, under natural assumptions, the probability distributions for the distant future have little effect on
the value of this parameter. This also reduces non-myopicness of the optimal strategy. It is why this strategy
can be called quasi-myopic.

The strategies obtained here can be compared with the continuous time strategies from Hipp and Taksar [11],
Lim and Zhou [15], and Lim [14].

It can be added that Schweizer [21], Li and Ng [13], and Henrotte [10] considered the optimality criterions
that include the total wealth. We consider the case when the discounted wealth is presented in the optimality
criterions.

2. The market model

We are given a standard probability space (Ω,F ,P), where Ω is the set of all elementary events, F is a
complete σ-algebra of events, and P is the probability measure.

We consider a model of a market consisting of the risk-free bond or bank account with price Bt and the risky
stocks with prices St,k, where t = 0, 1, 2, . . . , and k = 1, . . . , n. Here n ≥ 1 is the number of stocks. The initial
prices S0,k > 0 and B0 > 0 are given non-random variables.
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We assume that

St,k = ρtSt−1,k(1 + ξt,k), k = 1, . . . , n
Bt = ρtBt−1, t = 1, 2, . . . (2.1)

Here ξt,k and ρt are random variables such that ξt,k > −1 and ρt ≥ 1 for all t, k.
In this setting, the single period risk-free return is ρt − 1, and the single period return for the kth stock is

ρt − 1 + ρtξk,t.
Let us describe our main assumptions about the distributions of (ρt, ξt), where ξt = (ξt,1, . . . , ξt,n). For ξt

and other similar vectors we mean vector-columns, i.e., ξt takes values in Rn.
Let T = {T } be a set of possible terminal times; T ⊆ {1, 2, 3, . . .}.
We assume that the following condition is satisfied.

Condition 2.1. There exists a sequence {θt}t≥1 of random variables that take values in a metric space Z such
that the following holds for all T ∈ T :

(i) The pairs {(ξt, ρt)}T
t=1 are mutually conditionally independent given θ1, . . . , θT−1.

(ii) For any t = 2, . . . , T−1, the pair (ξt, ρt) is independent from θt, . . . , θT−1 conditionally given θ1, . . . , θt−1.
In addition, the pair (ξ1, ρ1) is independent from θ1, . . . , θT−1 unconditionally.

(iii) θt, St, and Bt, are currently observable, i.e., the values {(θs, Ss, Bs)}s≤t are known at time t. (It follows
that ξt and ρt are currently observable).

(iv) At any time t = 0, . . . , T − 1, the conditional distributions of (ξt+1, ρt+1) given (θ1, . . . , θt) are known.
(If t = 0, then the unconditional distribution is known.)

In this model, {θt} defines mutual dependence of the pairs {(ξt, ρt)} i.e, it is the source of serial correlations;
we assume that this process is currently observable. The vector θt represents observable market data that affect
the probability distributions of price movement. It can include, for instance, historical trade volume, economic
indicators, price index, a systematic market risk factor, the beta coefficients in the CAPM model, etc.

In fact, the vector (θ1, . . . , θt) together with the conditional distribution of (ξt+1, ρt+1) given (θ1, . . . , θt)
describes information about ξt+1 available at time t.

Note that Condition 2.1(iv) can be actually relaxed (see Rem. 3.3 below).

Example 2.1. Condition 2.1(i)–(ii) is satisfied, for instance, if there exists a metric space W and measurable
functions ft(·) : Zk−1 ×W → Rn+1 such that (ξt, ρt) = ft(θ1, . . . , θt−1, wt), t = 1, 2, . . . , where wt are mutually
independent random variables that take values in W and are independent from {θt}.

The notation a.s. means “almost surely”, i.e., “with probability 1”.
We assume also that the following condition is satisfied.

Condition 2.2. For all T ∈ T ,
(i) E{ρT

t ξ
T
t | θ1, . . . , θt−1} < +∞ a.s. for t = 1, . . . , T , t ≤ k (if t = 1, then we mean the unconditional

expectation); and
(ii) For any t = 1, . . . , T , the conditional covariance matrix for ξt given θ1, . . . , θt−1 is non-degenerate, and

P(ξt,k > 0 | θ1, . . . , θt−1) > 0, P(ξt,k < 0 | θ1, . . . , θt−1) > 0 a.s.

(If t = 1, then we mean again the unconditional probability.)

Note that Condition 2.2(ii) represents a weakened modification of nondegeneracy condition from Schweizer [21].
Let St = (St,1, . . . , St,n) (we mean again a vector column).
Let X0 = 1 be the initial wealth of an investor at time t = 0, and let Xt be the wealth at time t ≥ 0. We

set that
Xt = βtBt + γ�t St, (2.2)
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where βt is the quantity of the bond portfolio and where γt = (γt,1, . . . , γt,n) is the quantity of the stock port-
folio (a vector-column), γ�t St =

∑
k γt,kSt,k. The pair (βt, γt) describes the state of the bond-stocks securities

portfolio at time t. We call the sequences of these pairs strategies.
We consider the problem of choosing an optimal strategy. Some constraints will be imposed on current

operations in the market.
Let Ft be the filtration generated by the process (St, Bt, θt) that represents the flow of observable data.

Definition 2.1. A strategy {(βt, γt)} is said to be admissible if

(i) The process (βt, γt) is adapted to the filtration Ft.
(ii) For all t ≥ 0,

E {|Xt| θ1, . . . , θt} < +∞ a.s.

(iii) For all t ≥ 0,

Xt+1 −Xt = βt (Bt+1 −Bt) + γ�t (St+1 − St) .

Note that βt and γt are defined by {ξm, ρm, θm}t
m=1.

For the trivial, risk-free, “keep-only-bonds” strategy, the portfolio contains only the bonds, γt ≡ 0, and the
corresponding wealth is Xt ≡ β0Bt/B0 ≡

∏t
m=1 ρm.

Let Rt
Δ=

∏t
m=1 ρm.

Definition 2.2. The process X̃t
Δ= R−1

t Xt is called the discounted wealth.

Set S̃t
Δ= R−1

t St, t > 1, S̃0
Δ= S0. Clearly, S̃t = S̃t−1(1 + ξt).

Proposition 2.1. Let {(Xt, γt)} be a sequence, and let the sequence {(βt, γt)} be an admissible strategy, where
βt = (Xt − γtXt)B−1

t . Then the strategy {(βt, γt)} is self-financing if and only if the process X̃t = R−1
t X̃t

evolves as
X̃t+1 − X̃t = γ�t (S̃t+1 − S̃t), t ≥ 0.

It follows from this proposition that the sequence {γt} alone suffices to specify admissible strategy {(βt, γt)}.
For t ≥ 0, let random Ft-adapted sets Δt ⊂ Rn be given such that 0 ∈ Δ for all t, ω.
In the following definition we consider the infinite time horizon.

Definition 2.3. Let Σ̄ be the set of all sequences γ· = {γt} such that the corresponding strategy {(βt, γt)} is
admissible and such that γt ∈ Δt a.s.

We shall call again a sequence γ· ∈ Σ̄ strategy.
The constraints in Definition 2.3 cover many models with restrictions on the portfolio selection. There are

some examples:

(i) Let Δt = {v ∈ Rn : dim(v) ≤ m}, where m is given, and where dim(v) denotes the total number of
non-zero components of a vector v ∈ Rn. Then these constraints describe optimal portfolio compression
problem when portfolio cannot include more than m different stocks at any time.

(ii) Let Δt = {v = (v1, . . . , vn) ∈ Rn : vk ∈ [ak, bk]}, where −∞ ≤ ak ≤ bk ≤ +∞ are given constants.
Then these constraints describe the model with restrictions on the quantity of shares.

(iii) Let Δt = {v = (v1, . . . , vn) ∈ Rn : Skvk ∈ [ak, bk]}, where −∞ ≤ ak ≤ bk ≤ +∞. Then these
constraints describe the model with restrictions on the wealth invested in particular stocks.

(iv) Let Δt = {v = (v1, . . . , vn) ∈ Rn : v1 ≥ 0, . . . , vk ≥ 0}. Then these constraints describe the model
where the short sale is forbidden for the stocks 1, . . . , k.

(v) Let Δt be finite or countable. Then these constraints cover the model where stock shares are not
divisible arbitrarily.
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3. Goal achieving problem

Let the initial wealth X0 = 1 and δ ∈ (0,+∞) be given. Let U(x) = |x|δ.
We assume that Conditions 2.1–2.2 are satisfied for all T ∈ T .
Let κ > X0 be given.
Consider the following optimization problem:

Minimize E{U(X̃T − κ) | θ1, . . . , θT−1} ∀T ∈ T with probability 1 over γ· ∈ Σ̄. (3.1)

In this setting, κ serves as the target value.

Remark 3.1. Note that the required minimization for all possible time horizons and with probability 1 looks
unusual for stochastic control setting, since it can be rarely achieved. For the case of a fixed T , the problem of
maximization with probability 1 is also non-trivial, since admissible strategies do not use at time t the future
values {θk}k>t. However, we found below the optimal strategy that solves problem (3.1).

Additional definitions

Let mapping Ht(v) = Ht(v, ω) : Rn × Ω → R be defined as

Ht(v)
Δ= E

{
U

(
1 + v�ξt+1

) ∣∣∣Ft

}
,

and let the mapping H0 : R → R ∪ {−∞} be defined as H0(v)
Δ= EU

(
1 + v�ξ1

)
.

It is assumed that, in the definition of Ht(v), we select a version of the conditional expectation being
the so-called regular conditional expectation [7]. This selection ensures that Ht(v) is Ft-measurable for any
Ft-measurable random vector v.

The optimal strategy for the goal achieving problem

Theorem 3.1. Let the sequence of random sets {Δt} be conditionally independent from the sequence {(ξt, ρt)}
given {θt}. Let the strategy {(βt, γt)} = {(βt, γt,1, . . . , γt,n)} be such that γt ∈ Δt a.s., and

γt,k = μt,kỸtS̃
−1
t,k , βt =

Xt − γ�t St

Bt
, t = 0, 1, 2, . . . , (3.2)

where

Ỹt
Δ= X̃t − κ,

Xt is the corresponding wealth, X̃t is the corresponding discounted wealth, and where the random vector μt =
(μt,1, . . . , μt,n) is Ft-measurable and such that

Ht(μt) ≤ Ht(v) ∀v = (v1, . . . , vn) ∈ Rn : (v1ỸtS̃
−1
t,1 , . . . , vnỸtS̃

−1
t,n) ∈ Δt. (3.3)

Then this strategy is admissible, i.e., γ· ∈ Σ̄ with given κ, and it is the optimal strategy for problem (3.1) in the
class Σ̄.

In particular, the vector μ0 ∈ Δ0 is non-random and such that H0(μ0) ≤ Ht(v) for all v = (v1, . . . , vn) ∈ Rn

such that (v1Ỹ0S̃
−1
0,1 , . . . , vnỸ0S̃

−1
0,n) ∈ Δ0.
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Note that the assumption on the existence of the vectors μt is not restrictive when U is convex. The choice
of μt is unique in this case.

Goal achieving with quadratic criterion

Starting from now and up to the end of the paper, we assume that Δt ≡ Rn and U(x) = x2.
Let a0 = Eξ1, Q0 = Eξ1ξ�1 ,

at
Δ= E{ξt+1| Ft}, Qt

Δ= E{ξt+1ξ
�
t+1| Ft}, t = 0, 1, 2 . . . (3.4)

By Condition 2.2(ii), Qt > 0 a.s. for all t.

Theorem 3.2. Under the assumptions of Theorem 3.1 with U(x) = x2,

μt = −Q−1
t at, (3.5)

i.e.,

γt,k = −Q−1
t at(X̃t − κ)S̃−1

t,k .

In addition,
E(X̃T − κ)2 = αT (X0 − κ)2, EX̃T = αT (X0 − κ) + κ, (3.6)

where X̃T is the corresponding discounted wealth, and where

αT
Δ= E

T−1∏
t=0

(1 − a�t Q
−1
t at). (3.7)

Note that, in Theorem 3.2, EX̃T = X0 + (X0 − κ)(αT − 1) > X0 if αT < 1.

Remark 3.2. It can be seen that the optimal strategies in Theorems 3.1 and 3.2 are myopic; they do not
depend at time t on distributions of ξt+2, ξt+3, . . ., and it does not depend on T . It is an analog of Merton’s
type myopic strategy known for continuous time market.

Remark 3.3. In fact, the strategies in Theorems 3.1 and 3.2 are such that we do not need to know the entire
conditional distribution of (ξt+1, ρt+1) given θ1, . . . , θt for calculation of the portfolio at time t: we need only
the n-dimensional vector μt = μt(θ1, . . . , θt) defined by this distribution. It reminds the situation in continuous
time setting where the so-called “market price of risk” process is sufficient to define the optimal strategy for
log and power utility functions; see the discussion in [3]. This parameter −μt can be considered as an analog of
the so-called “market price of risk” process defined for the continuous time market.

4. Mean-variance optimal portfolio selection

Let T ∈ T be a given integer. Let α Δ= αT be defined by (3.7).
Consider the following optimization problem:

Minimize Var X̃T subject to EX̃T ≥ c over γ· ∈ Σ̄. (4.1)

We assume that Conditions 2.1–2.2 are satisfied. In addition, we assume from now that the following condition
is satisfied.

Condition 4.1. There exists t ∈ {0, 1, . . . , T − 1} such that P(at 
= 0) > 0.

This last condition ensures that there exists a strategy such that EX̃T ≥ c.
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Theorem 4.1. The unique optimal strategy for problem (4.1) in the class Σ̄ is the strategy defined in Theorem 3.2
for the goal achieving problem with U(x) = x2 and with the target value

κ̂ =
c−X0α

1 − α
·

Therefore, the optimal strategy {(βt, γt,1, . . . , γt,n)} obtained in Theorem 4.1 is such that

γt,k = μt,kỸtS̃
−1
t,k , βt =

Xt − γ�t St

Bt
, t = 0, 1, . . . , T − 1, (4.2)

where Ỹt
Δ= X̃t − κ̂, Xt is the corresponding wealth, X̃t is the corresponding discounted wealth, μt = −Q−1

t at,
and where Qt, at, and α, are defined by (3.4), (3.7).

Remark 4.1. Since α = αT depends on (T, {(θt, St, ρt)}T−1
t=1 ), the optimal strategy in Theorem 4.1 is non-

myopic. However, the required information about the future distributions and terminal time is very limited:
it is contained in this single scalar parameter α. Strategies with similar features were introduced in [6] for
continuous time model: the optimal strategy for multi-stock market was represented as a myopic one given that
a single scalar parameter is known (an integral of the squared risk premium process). Some development of this
approach was obtained in [2,4].

Remark 4.2. Since the effectiveness of the forecast is usually decreasing in time, it is natural to accept that
a�t Q

−1
t at → 0 as t → +∞. In that case, the value κ̂ is not very sensitive with respect to the changes in the

choice of large T or with respect to the errors in the estimates of the future distributions for large t.

Robustness of the efficient frontier property

The fact that the forecast is required for a scalar parameter reduces impact of a forecast error. It can be
seen from the following corollary.

Corollary 4.1. Let a strategy be calculated as suggested in Theorem 4.1 with α replaced by some α̃ ∈ (0, 1).
(For instance, this α̃ can be calculated for another time horizon T̃ 
= T , or it can be calculated using some wrong
prior distribution hypothesis.) Then this strategy belongs to Σ̄ and it is on the efficient frontier. More precisely,
this α̂ ∈ (0, 1) defines a new target value

κ̃
Δ=
c−X0α̃

1 − α̃

such that the following holds:

(i) This strategy is optimal for the goal achieving problem with this target value k̃; and
(ii) This strategy is optimal for the mean variance problem

Minimize Var X̃T subject to EX̃T ≥ c̃,

where c̃ is defined from the equation

c̃−X0α

1 − α
= κ̃.
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The features pointed out in Remarks 4.1, 4.2, and Corollary 4.1, reduce the impact of non-myopicness of the
optimal strategy from Theorem 4.1.

An example

Let θt be a random process with values in Z, and let wt be a random process in Rm independent from the
process θt and such the random variables wt are mutually independent. Let a function F : Z × Rm → Rn be
given. Our assumptions cover the market model with ξt = F (θt−1, wt). Since the optimal strategy for the goal
achieving problem is myopic, it does not require to know the distribution of the process θt. For instance, if θt

is a Markov process, than the strategy does not require its transition probabilities. The optimal strategy in
Theorem 4.1 requires to calculate the target value k̃ and this requires to calculate α. In particular, it requires
transition probabilities of θt, if θt is a Markov process.

Remark 4.3. Condition 2.1(i) is not satisfied for a case when {(ξt, ρt)} is a general Markov process. This
is why the myopicness in the last example for a special Markov process does not contradict the conclusion of
Hakannson [9] that serial correlations may prevent the optimal strategy to be myopic for U(x) =

√
x.

On the criterions with the total wealth

The results of Li and Ng [13] and Henrotte [10] covers the model with random bond prices and with the
total wealth presented in optimality criterion instead of the discounted wealth used in our setting. It makes
difference for the case of random bond prices. More precisely, we do not consider the problems

Minimize EU(XT − κ) (4.3)

or
Minimize VarXT subject to EXT ≥ const. (4.4)

Formally, problems (4.3), (4.4) with random bond prices can be embedded into our model, if one takes
Bt ≡ B0 and Δt = {v = (v1, . . . , vn) :

∑n
k=1 St,kvk = Xt}, i.e., if the admissible strategies are such that∑n

k=1 γt,kSt,k ≡ Xt. In that case, the bond price process can be included into the model as a component of the
vector process St (for instance, as St,1). In our notations for the goal-achieving problem, these constraints mean
that (Xt − ρtκ)

∑n
k=1 μt,k ≡ Xt. This approach requires minimization of Ht(v) over the sets Δt that depend

on Xt defined by the past prices and past portfolio choices. We leave it for the future research.

A. Appendix: Proofs

Proof of Proposition 2.1. repeats the proof of Proposition 2.1 for the case n = 1 from Dokuchaev [1], p. 17, and
we omit it here. �

Proof of Theorem 3.1. By (3.2), γt,k = μt,kỸtS̃
−1
t,k , and Proposition 2.1 implies that

X̃t+1 − X̃t = Ỹt+1 − Ỹt = γ�t [S̃t+1 − S̃t] = γ�t S̃tξt+1 = μ�
t ξt+1Ỹt. (A.1)

By (A.1),
Ỹt = Ỹt−1 + Ỹt−1μ

�
t−1ξt, t ≥ 1.

It follows that

ỸT = Ỹ0

T∏
t=1

(1 + μ�
t−1ξt). (A.2)

Let us show that γ· ∈ Σ̄. By Condition 2.2(ii), it follows that |μt| ≤ c given θ1, . . . , θt, where c = c(θ1, . . . , θt) ∈
[0,+∞). By Condition 2.2(i), it follows that E{|Ỹt|

∣∣ θ1, . . . , θt} < +∞, E{|X̃t|
∣∣ θ1, . . . , θt} < +∞ a.s., and,

therefore, E{|Xt|
∣∣ θ1, . . . , θt} < +∞ a.s. for t ≥ 0. Hence the strategy (3.2) is admissible and γ· ∈ Σ̄.
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Let us show that the strategy γ· is optimal in the class Σ̄. Consider an arbitrary admissible strategy
γ′· = {(γ′t,1, . . . , γ′t,n)} ∈ Σ̄. Let X̃ ′

t be the corresponding discounted wealth, Ỹ ′
t = X̃ ′

t − κ. Set

μ′
t,k

Δ=

{
γ′t,k

�S̃t,kỸ ′
t

−1
, Ỹ ′

t 
= 0,
0, Ỹ ′

t = 0,
t ≥ 0.

Clearly, γ′t,k = μ′
t,kỸ

′
t S̃

−1
t,k a.s. for t ≥ 0, and

Ỹ ′
t = Ỹ ′

t−1 + μ′
t−1

�ξtỸ ′
t−1, t ≥ 1,

Ỹ ′
T = Ỹ0

T∏
t=1

(1 + μ′
t−1

�ξt).

Set Θ Δ= (θ1, . . . , θT−1) for T > 1. To cover the case when T = 1, we assume that Θ = 1 if T = 1; in that case,
the conditional expectations E{·|Θ} below became unconditional expectations.

We have that

E{U(Ỹ ′
T ) |Θ} = U(Ỹ0)E

{
T∏

t=1

U(1 + μ′
t−1

�ξt)
∣∣∣ Θ

}
·

Set

Vt
Δ= U

(
1 + μ�

t−1ξt
)
, V ′

t
Δ= U

(
1 + μ′

t−1
�ξt

)
. (A.3)

Set
Wt

Δ= (ρ1, ξ1, . . . , ρt, ξt,Θ), t > 0, W0 = Θ.
Let EWt denotes the conditional expectation E{ · |Wt}, and let EW0 = E. We introduce the following sequences
of random variables:

ψT
Δ= EWT−1VT , ψt

Δ= EWt−1 [Vtψt+1], t = T − 1, . . . , 1,

and

ψ′
T

Δ= EWT−1V
′
T , ψ′

t
Δ= EWt−1 [V

′
t ψt+1], t = T − 1, . . . , 1.

By the definitions,

E{U(ỸT ) |Θ} = U(Ỹ0)E
{
ψ1

∣∣∣ Θ
}
, E{U(Ỹ ′

T ) |Θ} = U(Ỹ0)E
{
ψ′

1

∣∣∣ Θ
}
· (A.4)

By Condition 2.1(i), the vectors (ξt, ρt), t ≥ 1, are conditionally independent given Θ. By the definitions, μt

are non-random for any t in the conditional probability space given Θ. It follows that ψt are non-random for
any t in the conditional probability space given Θ.

By (3.3),

EWT−1VT ≤ EWT−1 V̄
′
T a.s.

Hence
ψT ≤ ψ′

T a.s.
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By (3.3) again, it follows that
EWt−1Vt ≤ EWt−1V

′
t a.s. (A.5)

Let t ∈ {2, . . . , T}. Let us show that if
ψt ≤ ψ′

t a.s. (A.6)

then
ψt−1 ≤ ψ′

t−1 a.s. (A.7)

Let (A.6) be satisfied. Remind that ψt is non-random on the conditional probability space given Θ. By (A.5),
it follows that

ψt−1 = EWt−1 [Vtψt] ≤ EWt−1 [V
′
t ψt] ≤ EWt−1 [V

′
t ψ

′
t] = ψ′

t−1 a.s.

Hence (A.7) follows from (A.6). Therefore, it can be concluded that ψ1 ≤ ψ′
1 a.s. By (A.4), it follows that

E{U(ỸT ) |Θ} ≤ E{U(Ỹ ′
T ) |Θ} a.s. Hence E{U(ỸT ) |Θ} ≥ E{U(Ỹ ′

T ) |Θ} a.s. This completes the proof of
Theorem 3.1. �

Proof of Theorem 3.2. By Condition 2.1(i), we have that

at
Δ= E{ξt+1| θ1, . . . , θt}, Qt

Δ= E{ξt+1ξ
�
t+1| θ1, . . . , θt}, t ≥ 0.

Further,

Ht(v) = E{U(1 + v�ξt+1)| Ft} = E{(1 + v�ξt+1)2| θ1, . . . , θt}
= 1 + 2v�at + v�Qtv = (v +Q−1

t at)�Qt(v +Q−1
t at) + 1 − a�t Q

−1
t at.

Hence μt = −Q−1
t at is the unique vector that solves (3.3) for U(x) = x2. For this μt,

E
T−1∏
t=0

(1 + μ�
t ξt+1)2 = EE

{T−1∏
t=0

(1 + μ�
t ξt+1)2

∣∣∣Θ}
= E

T−1∏
t=0

(1 − a�t Qtat) = αT . (A.8)

By (A.2), it follows that, for this μt,

E(X̃T − κ)2 = EE(X̃T − κ)2|Θ} = (X0 − κ)2E
T−1∏
t=0

Ht(μt)

= (X0 − κ)2E
T−1∏
t=0

(1 − a�t Q
−1
t at) = (X0 − κ)2αT .

We used for the second equality here that at and Qt are non-random on the conditional probability space
given Θ. Similarly,

E(X̃T − κ) = EE(X̃T − κ)|Θ} = (X0 − κ)E
T−1∏
t=0

(1 − a�t Q
−1
t at) = (X0 − κ)αT .

This completes the proof of Theorem 3.2. �

Proof of Theorem 4.1. Let mappings Φi : Σ̄ → R be defined as Φ0(γ·) = EX̃2
T , Φ1(γ·) = EX̃T , where X̃T is the

corresponding discounted wealth.
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Proposition A.1. Problem (4.1) has the same set of solutions as any of the following problems of minimization
over γ· ∈ Σ̄:

(i)

Minimize Var X̃T subject to EX̃T = c. (A.9)

(ii)

Minimize EX̃2
T subject to EX̃T = c. (A.10)

(iii)

Minimize EX̃2
T subject to EX̃T ≥ c. (A.11)

Proof of Proposition A.1. Since Var X̃T = EX̃2
T − (EX̃T )2, we have that problems (A.9) and (A.10) are equiv-

alent, i.e., they have the same sets of the solutions. Further, let J Δ= inf EX̃2
T for problem (A.10). It follows

that there exists a sequence {γk
· }+∞

k=1 ⊂ Σ̄ such that Φ0(γk
· ) → J as k → +∞ and Φ1(γk

· ) = hkc, where hk ≥ 1.
Set γ̂k

·
Δ= h−1

k γk
· . The kind of the functions Φi is such that Φ0(γ̂k

· ) = h−2
k Φ0(γk

· ) ≤ Φ0(γ̂k
· ) and Φ1(γ̂k

· ) = c.
It follows that the wider condition in problem (A.11) does not improve the performance of optimal strategies
comparing with problem (A.10). Similarly, it can be shown that problem (4.1) is equivalent to problem (A.9).
This completes the proof. �

Let us continue the proof of Theorem 4.1. It follows from Proposition A.1 that it suffices to solve prob-
lem (A.11).

Let us show first that the strategy presented is optimal.
Let us introduce the Lagrangian for the problem (A.11)

L(γ·, q)
Δ= Φ0(γ·) + q(c− Φ1(γ·)) = EX̃2

T + q(c− EX̃T ).

It can rewritten as

L(γ·, q) = E
(
X̃T − q

2

)2

+ qc− q2

4
·

Let

q̂ =
2(c−X0α)

1 − α
·

Consider now the problem

Minimize L(γ·, q̂) = E
(
X̃T − q̂

2

)2

+ q̂c− q̂2

4
over γ· ∈ Σ̄. (A.12)

Theorem 3.2 applied for κ̂ = q̂/2 and U(x) = x2 gives the unique optimal solution γ̂· of problem (A.12).
Further, it follows from (3.6) that the corresponding discounted wealth is such that

EX̃T = α

(
X0 −

q̂

2

)
+
q̂

2
= α

(
X0 −

2(c−X0α)
1 − α

)
+

2(c−X0α)
1 − α

=
1

1 − α

(
(1 − α)αX0 − αc+ α2X0 + c− αX0

)
= c.
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Set Σ̄0 = {γ· ∈ Σ̄ : EX̃T ≥ c}. Let γ· ∈ Σ̄0, then

Φ0(γ·) − Φ0(γ̂·) ≥ L(γ·, q̂) − L(γ̂·, q̂) ≥ 0.

Therefore, the strategy γ· is optimal for the problem (4.1).
Let us show that the optimal strategy is unique. Note that Condition 4.1 ensures that the following Slater

condition is satisfied:

∃γ· ∈ Σ̄ : EX̃T > c. (A.13)

The following proposition follows from classical Lagrange Duality Theorem (see, e.g., [16], Chap. 8.6, p. 224).

Proposition A.2.

(i) The following relation holds:

inf
γ·∈Σ̄0

X̃2
T = inf

γ·∈Σ̄
sup
q≥0

L(γ·, q) = sup
q≥0

inf
γ·∈Σ̄

L(γ·, q). (A.14)

The supremum on the right-hand side of (A.14) is achievable for a finite q̂ ≥ 0.
(ii) If the infimum on the left of (A.14) is achieved for some γ· ∈ Σ̄ (i.e., it is the solution of the minimization

problems with constraints (4.1)), then

q̂(EX̃T − c) = 0. (A.15)

The pair (γ·, q̂) is the solution of the problem supq≥0 infγ·∈Σ̄ L(γ·, q), and γ· is the solution of the problem
infγ·∈Σ̄ L(γ·, q̂).

We have that γ· = γ̂·(q) defined by Theorem 3.2 with U(x) = x2 and κ = q/2 is the unique solution of the
problem infγ·∈Σ̄ L(γ·, q).

By Theorem 3.2, we have

L(γ̂·(q), q) =
(
X0 −

q

2

)2

E
T−1∏
t=0

(1 + μ�
t ξt+1)2 + qc− q2

4
=

(
X0 −

q

2

)2

α+ qc− q2

4
·

We used (A.8) here.
Clearly, α = αT ∈ (0, 1), and the problem

Maximize L(γ̂·(q), q) =
(
X0 −

q

2

)2

α+ qc− q2

4
over q > 0

has the unique solution q̂. Therefore, q̂ is the unique solution of the problem supq≥0 L(γ̂·(q), q), and the pair
(γ̂·(q̂), q̂) is the unique solution of the problem supq≥0 infγ·∈Σ̄ L(γ·, q). Then the uniqueness of optimal strategy
follows from Proposition A.2(ii). This completes the proof of Theorem 4.1. �

Proof of Corollary 4.1. The choice of α is used for the calculation of the target value only. Therefore, the pair
(α̃, c) gives the same strategy as the pair (α, c̃). This completes the proof. �
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