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Abstract. We consider abstract second order evolution equations with unbounded feedback with de-
lay. Existence results are obtained under some realistic assumptions. Sufficient and explicit conditions
are derived that guarantee the exponential or polynomial stability. Some new examples that enter into
our abstract framework are presented.
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1. Introduction

Time-delay often appears in many biological, electrical engineering systems and mechanical
applications [1,11,21], and in many cases, in particular for distributed parameter systems, even arbitrarily
small delays in the feedback may destabilize the system, see e.g. [8–10,12,15–17,20,23]. The stability issue of
systems with delay is, therefore, of theoretical and practical importance.

We further remark that some techniques developed recently [16,17] in order to obtain some existence results
and decay rates have some similarities. We therefore propose to consider an abstract setting as large as possible
in order to contain a quite large class of problems with time delay feedbacks. In a second step we prove existence
and stability results in this setting under realistic assumptions. Finally in order to show the usefulness of our
approach, we give some examples where our abstract framework can be applied. For a similar approach, we
refer to the paper in preparation [4]. Without delay such an approach was developed in [3].

Before going on, let us present our abstract framework. Let H be a real Hilbert space with norm and inner
product denoted respectively by ‖.‖H and (., .)H . Let A : D(A) → H be a self-adjoint positive operator with
a compact inverse in H. Let V := D(A

1
2 ) be the domain of A

1
2 . Denote by D(A

1
2 )′ the dual space of D(A

1
2 )

obtained by means of the inner product in H.
Further, for i = 1, 2, let Ui be a real Hilbert space (which will be identified to its dual space) with norm and

inner product denoted respectively by ‖.‖Ui
and (., .)Ui and let Bi ∈ L(Ui, D(A

1
2 )′).
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We consider the system described by

⎧⎪⎪⎨
⎪⎪⎩

ω̈(t) +Aω(t) +B1u1(t) +B2u2(t− τ) = 0, t > 0

ω(0) = ω0, ω̇(0) = ω1,

u2(t− τ) = f0(t− τ), 0 < t < τ,

(1.1)

where t ∈ [0, ∞) represents the time, τ is a positive constant which represents the delay, ω : [0, ∞) → H is the
state of the system and u1 ∈ L2([0, ∞), U1), u2 ∈ L2([−τ, ∞), U2) are the input functions. Most of the linear
equations modelling the vibrations of elastic structures with distributed control with delay can be written in
the form (1.1), where ω stands for the displacement field.

In many problems, coming in particular from elasticity, the input ui are given in the feedback form ui(t) =
B∗

i ω̇(t), which corresponds to colocated actuators and sensors. We obtain in this way the closed loop system

⎧⎪⎪⎨
⎪⎪⎩

ω̈(t) +Aω(t) +B1B
∗
1 ω̇(t) +B2B

∗
2 ω̇(t− τ) = 0, t > 0

ω(0) = ω0, ω̇(0) = ω1,

B∗
2 ω̇(t− τ) = f0(t− τ), 0 < t < τ.

(1.2)

The first natural question is the well-posedness of this system. In Section 2 we will give a sufficient condition
that guarantees that this system (1.2) is well-posed, where we closely follow the approach developed in [16] for
the wave equation. Secondly, we may ask if this system is dissipative. We show in Section 3 that the condition

∃0 < α < 1, ∀u ∈ V, ‖B∗
2u‖2

U2
≤ α ‖B∗

1u‖2
U1

(1.3)

guarantees the energy is decreasing; under this condition, using a result from [5] (see also [22]) we pertain a
necessary and sufficient condition for the decay to zero of the energy. Note that this last condition is independent
of the delay and therefore under the condition (1.3), our system is strongly stable if and only if the same
system without delay is strongly stable. Note further that if (1.3) is not satisfied, there exist cases where some
instabilities may appear (see [16,17,23] for the wave equation). Hence this assumption seems realistic.

In a third step, again under the condition (1.3) and a certain boundedness assumption from [3] between the
resolvent operator of A and of the operators B1 and B2, see condition (4.1), we prove that the exponential decay
of the system (1.2) follows from a certain observability estimate. Again this observability estimate is independent
of the delay term B2B

∗
2 ω̇(t − τ) and therefore, under the conditions (1.3) and (4.1), the exponential decay of

the system (1.2) follows from the exponential decay of the same system without delay. Nevertheless we give the
dependence of the decay rate with respect to the delay, in particular we show that if the delay increases the
decay rate decreases. This is the content of Section 4. A similar analysis for the polynomial decay is performed
in Section 5 by weakening the observability estimate. Again we show that if the delay increases the decay rate
decreases. In view of some applications, Section 6 is devoted to the proof of these two observability estimates
by using a frequency domain method and a reduction to some conditions between the eigenvectors of A and the
feedback operator B∗

1 .
Finally we finish this paper by considering in Section 7 different examples where our abstract framework can

be applied. To our knowledge, all the examples, with the exception of the first one, are new.

2. Well-posedness of the system

We aim to show that system (1.2) is well-posed. For that purpose, we use semi-group theory and an idea
from [16] (see also [17]). Let us introduce the auxiliary variable z(ρ, t) = B∗

2 ω̇(t− τρ) for ρ ∈ (0, 1) and t > 0.
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Note that z verifies the transport equation for 0 < ρ < 1 and t > 0⎧⎪⎪⎨
⎪⎪⎩

τ ∂z
∂t + ∂z

∂ρ = 0

z(0, t) = B∗
2 ω̇(t)

z(ρ, 0) = B∗
2 ω̇(−τρ) = f0(−τρ).

(2.1)

Therefore, the system (1.2) is equivalent to
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω̈(t) +Aω(t) +B1B
∗
1 ω̇(t) +B2z(1, t) = 0, t > 0

τ ∂z
∂t + ∂z

∂ρ = 0, t > 0, 0 < ρ < 1

ω(0) = ω0, ω̇(0) = ω1, z(ρ, 0) = f0(−τρ), 0 < ρ < 1

z(0, t) = B∗
2 ω̇(t), t > 0.

(2.2)

If we introduce
U := (ω, ω̇, z)T ,

then U satisfies

U ′ = (ω̇, ω̈, ż)T =
(
ω̇, −Aω(t) −B1B

∗
1 ω̇(t) −B2z(1, t), −1

τ

∂z

∂ρ

)T

·
Consequently the system (1.2) may be rewritten as the first order evolution equation

{
U ′ = AU

U(0) = (ω0, ω1, f
0(−τ.)), (2.3)

where the operator A is defined by

A

⎛
⎜⎝

ω

u

z

⎞
⎟⎠ =

⎛
⎜⎝

u

−Aω −B1B
∗
1u−B2z(1)

− 1
τ

∂z
∂ρ

⎞
⎟⎠,

with domain

D(A) := {(ω, u, z) ∈ V × V ×H1((0, 1), U2); z(0) = B∗
2u, Aω +B1B

∗
1u+B2z(1) ∈ H}·

Now, we introduce the Hilbert space

H = V ×H × L2((0, 1), U2)

equipped with the usual inner product

〈⎛
⎝ ω

u
z

⎞
⎠ ,

⎛
⎝ ω̃

ũ
z̃

⎞
⎠
〉

=
(
A

1
2ω, A

1
2 ω̃

)
H

+ (u, ũ)H +
∫ 1

0

(z(ρ), z̃(ρ))U2
dρ. (2.4)

Let us suppose now that
∃0 < α ≤ 1, ∀u ∈ V, ‖B∗

2u‖2
U2

≤ α ‖B∗
1u‖2

U1
. (2.5)

Under this condition, we will show that the operator A generates a C0-semigroup in H.
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For that purpose, we choose a positive real number ξ such that

1 ≤ ξ ≤ 2
α
− 1. (2.6)

This constant exists because 0 < α ≤ 1.
We now introduce the following inner product on H

〈⎛
⎝ ω

u
z

⎞
⎠ ,

⎛
⎝ ω̃

ũ
z̃

⎞
⎠〉

H

=
(
A

1
2ω, A

1
2 ω̃

)
H

+ (u, ũ)H + τξ

∫ 1

0

(z(ρ), z̃(ρ))U2
dρ.

This new inner product is clearly equivalent to the usual inner product (2.4) on H.

Theorem 2.1. Under the assumption (2.5), for an initial datum U0 ∈ H, there exists a unique solution
U ∈ C([0, +∞), H) to system (2.3). Moreover, if U0 ∈ D(A), then

U ∈ C([0, +∞), D(A)) ∩ C1([0, +∞),H).

Proof. By Lumer-Phillips’ theorem, it suffices to show that A is m-dissipative (see Def. 3.3.1 and Thms. 1.4.3
and 1.4.6 of [18]).

We first prove that A is dissipative. Take U = (ω, u, z)� ∈ D(A). Then

〈AU, U〉H =

〈⎛
⎜⎝

u

−Aω −B1B
∗
1u−B2z(1)

− 1
τ

∂z
∂ρ

⎞
⎟⎠,

⎛
⎜⎝

ω

u

z

⎞
⎟⎠
〉

H
=

(
A

1
2u, A

1
2ω

)
H
− (Aω +B1B

∗
1u+B2z(1), u)H − ξ

∫ 1

0

(
∂z
∂ρ (ρ), z(ρ)

)
U2

dρ.

Since Aω +B1B
∗
1u+B2z(1) ∈ H, we obtain

〈AU, U〉H =
(
A

1
2u, A

1
2ω

)
H
− 〈Aω, u〉V ′, V − 〈B1B

∗
1u, u〉V ′, V − 〈B2z(1), u〉V ′, V

− ξ

∫ 1

0

(
∂z

∂ρ
(ρ), z(ρ)

)
U2

dρ

= 〈Aω, u〉V ′, V − 〈Aω, u〉V ′, V − ‖B∗
1u‖2

U1
− (z(1), B∗

2u)U2

− ξ

∫ 1

0

(
∂z

∂ρ
(ρ), z(ρ)

)
U2

dρ,

by duality. By integrating by parts, we obtain∫ 1

0

(
∂z

∂ρ
(ρ), z(ρ)

)
U2

dρ = −
∫ 1

0

(
z(ρ),

∂z

∂ρ
(ρ)

)
U2

dρ+ (‖z(1)‖2
U2

− ‖z(0)‖2
U2

),

and thus ∫ 1

0

(
∂z

∂ρ
(ρ), z(ρ)

)
U2

dρ =
1
2
(‖z(1)‖2

U2
− ‖B∗

2u‖2
U2

).

Therefore, by Cauchy-Schwarz’s inequality, we find

〈AU, U〉H = −‖B∗
1u‖2

U1
− (z(1), B∗

2u)U2
− ξ

2
‖z(1)‖2

U2
+
ξ

2
‖B∗

2u‖2
U2

≤ −‖B∗
1u‖2

U1
+

(
1
2
− ξ

2

)
‖z(1)‖2

U2
+

(
1
2

+
ξ

2

)
‖B∗

2u‖2
U2
.
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By (2.5), we obtain

〈AU, U〉H ≤
(
α

2
+
ξα

2
− 1

)
‖B∗

1u‖2
U1

+
(

1
2
− ξ

2

)
‖z(1)‖2

U2

with α
2 + ξα

2 − 1 ≤ 0 and 1
2 − ξ

2 ≤ 0 because ξ satisfies condition (2.6). This shows that 〈AU, U〉H ≤ 0 and then
the dissipativeness of A.

Let us now prove that λI −A is surjective for some λ > 0.
Let (f, g, h)T ∈ H. We look for U = (ω, u, z)T ∈ D(A) solution of

(λI −A)

⎛
⎝ ω

u
z

⎞
⎠ =

⎛
⎝ f

g
h

⎞
⎠

or equivalently

⎧⎨
⎩

λω − u = f
λu+Aω +B1B

∗
1u+B2z(1) = g

λz + 1
τ

∂z
∂ρ = h.

(2.7)

Suppose that we have found ω with the appropriate regularity. Then, we have

u = −f + λω ∈ V.

We can then determine z, indeed z satisfies the differential equation

λz +
1
τ

∂z

∂ρ
= h

and the boundary condition z(0) = B∗
2u = −B∗

2f + λB∗
2ω. Therefore z is explicitly given by

z(ρ) = λB∗
2ωe−λτρ −B∗

2fe−λτρ + τe−λτρ

∫ ρ

0

eλτσh(σ)dσ.

This means that once ω is found with the appropriate properties, we can find z and u. In particular, we have

z(1) = λB∗
2ωe−λτ −B∗

2fe−λτ + τe−λτ

∫ 1

0

eλτσh(σ)dσ = λB∗
2ωe−λτ + z0, (2.8)

where z0 = −B∗
2fe−λτ + τe−λτ

∫ 1

0 eλτσh(σ)dσ is a fixed element of U2 depending only on f and h.
It remains to find ω. By (2.7), ω must satisfy

λ2ω +Aω + λB1B
∗
1ω +B2z(1) = g +B1B

∗
1f + λf,

and thus by (2.8),

λ2ω +Aω + λB1B
∗
1ω + λe−λτB2B

∗
2ω = g +B1B

∗
1f + λf −B2z

0 =: q,

where q ∈ V ′. We take then the duality brackets 〈., .〉V ′, V with φ ∈ V :

〈
λ2ω +Aω + λB1B

∗
1ω + λe−λτB2B

∗
2ω, φ

〉
V ′, V

= 〈q, φ〉V ′, V .
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Moreover: 〈
λ2ω +Aω + λB1B

∗
1ω + λe−λτB2B

∗
2ω, φ

〉
V ′, V

= λ2 〈ω, φ〉V ′, V + 〈Aω, φ〉V ′, V + λ(〈B1B
∗
1ω, φ〉V ′, V + e−λτ 〈B2B

∗
2ω, φ〉V ′, V )

= λ2 (ω, φ)H +
(
A

1
2ω, A

1
2φ

)
H

+ λ((B∗
1ω, B

∗
1φ)U1

+ e−λτ (B∗
2ω, B

∗
2φ)U2

)

because ω ∈ V ⊂ H . Consequently, we arrive at the problem

λ2 (ω, φ)H +
(
A

1
2ω, A

1
2φ

)
H

+ λ((B∗
1ω, B

∗
1φ)U1

+ e−λτ (B∗
2ω, B

∗
2φ)U2

) = 〈q, φ〉V ′, V . (2.9)

The left hand side of (2.9) is continuous and coercive on V. Indeed, we have

∣∣∣λ2 (ω, φ)H +
(
A

1
2ω,A

1
2φ

)
H

+ λ((B∗
1ω,B

∗
1φ)U1

+ e−λτ (B∗
2ω,B

∗
2φ)U2

)
∣∣∣

≤ λ2 ‖ω‖H ‖φ‖H +
∥∥∥A 1

2ω
∥∥∥

H

∥∥∥A 1
2φ

∥∥∥
H

+λ(‖B∗
1ω‖U1

‖B∗
1φ‖U1

+ e−λτ ‖B∗
2ω‖U2

‖B∗
2φ‖U2

)

≤ Cλ2 ‖ω‖V ‖φ‖H +
∥∥∥A 1

2

∥∥∥2

‖ω‖V ‖φ‖V +λ(‖B∗
1‖2

L(V, U1) ‖ω‖V ‖φ‖V + e−λτ ‖B∗
2‖2

L(V, U2) ‖ω‖V ‖φ‖V )
≤ C ‖ω‖V ‖φ‖V ,

and for φ = ω ∈ V

λ2 ‖ω‖2
H +

(
A

1
2ω, A

1
2ω

)
H

+ λ(‖B∗
1ω‖2

U1
+ e−λτ ‖B∗

2ω‖2
U2

) ≥
∥∥∥A 1

2ω
∥∥∥2

H
≥ C ‖ω‖2

V .

Therefore, this problem (2.9) has a unique solution ω ∈ V by Lax-Milgram’s lemma. Moreover Aω +B1B
∗
1u+

B2z(1) = g + λf − λ2ω ∈ H. In summary, we have found (ω, u, z)T ∈ D(A) satisfying (2.7). �

Remark 2.2. We deduce from Theorem 2.1 that D(A) is dense in H (see [18]).

Remark 2.3. For initial data (ω0, ω1, f
0(−τ.))T in D(A), we easily show that the solution (ω(t), u(t), z(t))T =

T (t)(ω0, ω1, f
0(−τ.))T , where T (t) is the semigroup generated by A, is indeed solution of (1.2) in the sense that

u(t) = ω̇(t),

and
z(ρ, t) = B∗

2(t− τρ),

and ω satisfies (1.2).

3. The energy

We now restrict hypothesis (2.5) to obtain the decay of the energy. Namely, we suppose that (1.3) holds,
namely

∃0 < α < 1, ∀u ∈ V, ‖B∗
2u‖2

U2
≤ α ‖B∗

1u‖2
U1
.

For an initial datum (ω0, ω1, f
0(−τ.))T ∈ H, Theorem 2.1 guarantees the existence of a weak solution

(ω(t), u(t), z(t))T = T (t)(ω0, ω1, f
0(−τ.))T . Hence the associated energy (which corresponds to the inner

product on H) is defined by

E(t) :=
1
2

(∥∥∥A 1
2ω(t)

∥∥∥2

H
+ ‖u(t)‖2

H + τξ

∫ 1

0

‖z(ρ, t)‖2
U2

dρ
)
,
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where ξ is a positive constant satisfying

1 < ξ <
2
α
− 1, (3.1)

that exists because 0 < α < 1.
Note that by Remark 2.3 for initial data in D(A), this energy takes the form

E(t) :=
1
2

(∥∥∥A 1
2ω

∥∥∥2

H
+ ‖ω̇‖2

H + τξ

∫ 1

0

‖B∗
2 ω̇(t− τρ)‖2

U2
dρ

)
. (3.2)

3.1. Decay of the energy

Proposition 3.1. If (1.3) holds, then for all (ω0, ω1, f
0(−τ.))T ∈ D(A), the energy of the corresponding regular

solution of (1.2) (i.e. (ω, ω̇, B2ω̇(t− τρ))T ∈ C([0, +∞), D(A))∩C1([0, +∞),H)) is non-increasing and there
exist two positive constants C1 and C2 depending only on α and ξ such that

− C2

(
‖B∗

1 ω̇(t)‖2
U1

+ ‖B∗
2 ω̇(t− τ)‖2

U2

)
≤ E′(t) ≤ −C1

(
‖B∗

1 ω̇(t)‖2
U1

+ ‖B∗
2 ω̇(t− τ)‖2

U2

)
. (3.3)

Proof. Deriving (3.2), we obtain

E′(t) =
(
A

1
2ω, A

1
2 ω̇

)
H

+ (ω̇, ω̈)H + τξ

∫ 1

0

(B∗
2 ω̇(t− τρ), B∗

2 ω̈(t− τρ))U2
dρ

= 〈Aω, ω̇〉V ′,V − (ω̇, Aω +B1B
∗
1 ω̇ +B2B

∗
2 ω̇(t− τ))H

+ ξτ

∫ 1

0

(B∗
2 ω̇(t− τρ), B∗

2 ω̈(t− τρ))U2
dρ

= 〈Aω, ω̇〉V ′,V − 〈ω̇, Aω +B1B
∗
1 ω̇ +B2B

∗
2 ω̇(t− τ)〉V, V ′

+ ξτ

∫ 1

0

(B∗
2 ω̇(t− τρ), B∗

2 ω̈(t− τρ))U2
dρ,

because Aω + B1B
∗
1 ω̇ +B2B

∗
2 ω̇(t− τ) ∈ H. Then

E′(t) = 〈Aω, ω̇〉V ′,V − 〈ω̇, Aω〉V, V ′ − 〈ω̇, B1B
∗
1 ω̇〉V, V ′ − 〈ω̇, B2B

∗
2 ω̇(t− τ)〉V, V ′

+ ξτ

∫ 1

0

(B∗
2 ω̇(t− τρ), B∗

2 ω̈(t− τρ))U2
dρ

= −‖B∗
1 ω̇‖2

U1
− (B∗

2 ω̇, B
∗
2 ω̇(t− τ))U2

+ ξτ

∫ 1

0

(B∗
2 ω̇(t− τρ), B∗

2 ω̈(t− τρ))U2
dρ.

Moreover, recalling that z(ρ, t) = B∗
2 ω̇(t− τρ), we see that

∫ 1

0

(B∗
2 ω̇(t− τρ), B∗

2 ω̈(t− τρ))U2
dρ =

∫ 1

0

(
z(ρ, t),

∂z

∂t
(ρ, t)

)
U2

dρ

= −1
τ

∫ 1

0

(
z(ρ, t),

∂z

∂ρ
(ρ, t)

)
U2

dρ,
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because ∂z
∂ρ (ρ, t) = −τ ∂z

∂t (ρ, t). Then, we have

∫ 1

0

(B∗
2 ω̇(t− τρ), B∗

2 ω̈(t− τρ))U2
dρ = − 1

2τ

∫ 1

0

∂

∂ρ
‖z(ρ, t)‖2

U2
dρ

= − 1
2τ

(‖z(1, t)‖2
U2

− ‖z(0, t)‖2
U2

)

= − 1
2τ

(‖B∗
2 ω̇(t− τ)‖2

U2
− ‖B∗

2 ω̇(t)‖2
U2

).

Consequently,

E′(t) = −‖B∗
1 ω̇‖2

U1
− (B∗

2 ω̇, B
∗
2 ω̇(t− τ))U2

− ξ

2
‖B∗

2 ω̇(t− τ)‖2
U2

+
ξ

2
‖B∗

2 ω̇(t)‖2
U2
.

Cauchy-Schwarz’s inequality yields

E′(t) ≤ −‖B∗
1 ω̇‖2

U1
+

(
1
2

+
ξ

2

)
‖B∗

2 ω̇(t)‖2
U2

+
(

1
2
− ξ

2

)
‖B∗

2 ω̇(t− τ)‖2
U2

and

E′(t) ≥ −‖B∗
1 ω̇‖2

U1
+

(
−1

2
+
ξ

2

)
‖B∗

2 ω̇(t)‖2
U2

−
(

1
2

+
ξ

2

)
‖B∗

2 ω̇(t− τ)‖2
U2
.

Therefore, by (1.3), these estimates leads to

E′(t) ≤ −C1

(
‖B∗

1 ω̇(t)‖2
U1

+ ‖B∗
2 ω̇(t− τ)‖2

U2

)

with

C1 = min
{(

1 − ξα

2
− α

2

)
,

(
ξ

2
− 1

2

)}
which is positive according to the assumption (3.1), and to

E′(t) ≥ −C2

(
‖B∗

1 ω̇‖2
U1

+ ‖B∗
2 ω̇(t− τ)‖2

U2

)

with

C2 = max
{

1,
ξ + 1

2

}
which is also positive. �

Remark 3.2. Integrating the expression (3.3) between 0 and T, we obtain

∫ T

0

(
‖B∗

1 ω̇(t)‖2
U1

+ ‖B∗
2 ω̇(t− τ)‖2

U2

)
dt ≤ 1

C1
(E(0) − E(T )) ≤ 1

C1
E(0).

This estimate implies that B∗
1 ω̇(.) ∈ L2((0, T ), U1) and B∗

2 ω̇(.− τ) ∈ L2((0, T ), U2).

Remark 3.3. If (1.3) is not satisfied, there exist cases where instabilities may appear, see [16,17,23] for the
wave equation. Hence this condition appears to be quite realistic.
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3.2. Decay of the energy to 0

We give a necessary and sufficient condition that guarantees the decay to 0 of the energy.

Proposition 3.4. Assume that (1.3) holds. Then, for all initial data in H, we have

lim
t→∞E(t) = 0 (3.4)

if and only if for any (non zero) eigenvector ϕ ∈ D(A) of A, we have

B∗
1ϕ �= 0. (3.5)

Remark 3.5. Notice that this necessary and sufficient condition is the same than in the case without delay
(see [22]) and therefore, the system (1.2) with delay is strongly stable (i.e. the energy tends to zero) if and only
if the system without delay (i.e. for B2 = 0) is strongly stable.

Proof. ⇐ Let us show that (3.5) implies (3.4). For that purpose we closely follow [22].
First, we show that A has no eigenvalue on the imaginary axis. If it is not the case, let iω be an eigenvalue

of A where ω ∈ R. Let ϕ be an eigenvector associated with iω. Then ϕ is of the form

ϕ =

⎛
⎝ z

iωz
iωe−iωτρB∗

2z

⎞
⎠,

with
− ω2z +Az + iωB1B

∗
1z + iωe−iωτB2B

∗
2z = 0. (3.6)

It is an immediate consequence of the identity (iωI −A)ϕ = 0.
First we notice that ω �= 0 since for ω = 0, the above identity reduces to Az = 0 with z ∈ D(A). Since by

hypothesis A is invertible, we get z = 0 and therefore 0 is not an eigenvalue of A.
We now take the duality bracket 〈., .〉V ′, V between (3.6) and z ∈ V :

0 =
〈−ω2z +Az + iωB1B

∗
1z + iωe−iωτB2B

∗
2z, z

〉
V ′, V

=
〈
(−ω2I +A)z, z

〉
V ′, V

+ iω ‖B∗
1z‖2

U1
+ iωe−iωτ ‖B∗

2z‖2
U2
.

We look at the imaginary part of this expression to obtain

ω
(
‖B∗

1z‖2
U1

+ cos(ωτ) ‖B∗
2z‖2

U2

)
= 0,

which implies, because ω �= 0,
‖B∗

1z‖2
U1

+ cos(ωτ) ‖B∗
2z‖2

U2
= 0.

We deduce that

0 = ‖B∗
1z‖2

U1
+ cos(ωτ) ‖B∗

2z‖2
U2

≥ ‖B∗
1z‖2

U1
− ‖B∗

2z‖2
U2

≥ (1 − α) ‖B∗
1z‖2

U1
≥ 0,

by (1.3) with α < 1. Consequently
‖B∗

1z‖U1
= 0

which implies
B∗

1z = 0. (3.7)
Moreover, by (3.6), (3.7) and (1.3), we have

Az = ω2z.
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Therefore, z is an eigenvector of A of associated eigenvalue ω2 such that

B∗
1z = 0,

which contradicts (3.5). Thus, A has no eigenvalue on the imaginary axis.
Now, we can apply the main theorem of Arendt and Batty [5]: As σ(A)∩iR is empty (because the surjectivity

of (iωI −A) is equivalent to the injectivity of −ω2 +A− iωB1B
∗
1 − iωeiωτB2B

∗
2), we obtain (3.4).

⇒ Let us show that (3.4) implies (3.5). For that purpose we use a contradiction argument. Suppose that
there exists an eigenvector ϕ of A of associated eigenvalue λ2 such that

B∗
1ϕ = 0.

Let us set
ω(., t) = ϕ cos(λt).

Then ω is solution of (1.2) and satisfies
E(t) = E(0)

because
‖B∗

1 ω̇(t)‖2
U1

= λ2 sin2(λt) ‖B∗
1ϕ‖2

U1
= 0

and
‖B∗

2 ω̇(t− τ)‖2
U2

= λ2 sin2(λ(t− τ)) ‖B∗
2ϕ‖2

U2

≤ αλ2 sin2(λ(t − τ)) ‖B∗
1ϕ‖2

U1
= 0,

by (1.3). This means that we have obtained a solution of system (1.2) with a constant energy, which
contradicts (3.4). �

4. The exponential stability

4.1. A priori estimate

In order to obtain the characterization of decay properties of the damped system via observability inequalities
for the conservative system we will use the following assumption from [3]:

If β > 0 is fixed and Cβ = {λ ∈ C |�λ = β }, the function

λ ∈ Cβ → H(λ) = λB∗(λ2I +A)−1B ∈ L(U) is bounded, (4.1)

where B ∈ L(U, V ′) with U a Hilbert space.
We consider the evolution system {

ÿ(t) +Ay(t) = Bv(t)
y(0) = ẏ(0) = 0, (4.2)

and the following conservative system

{
φ̈(t) +Aφ(t) = 0

φ(0) = ω0, φ̇(0) = ω1.
(4.3)

Let us recall the two following results proved in [3]:

Lemma 4.1. Suppose that v ∈ L2(0, T ;U) and that the solutions φ of (4.3) are such that B∗φ(.) ∈ H1(0, T ;U)
and there exists a constant C > 0 such that

‖(B∗φ)′(.)‖L2(0,T ;U) ≤ C ‖(ω0, ω1)‖V ×H ∀(ω0, ω1) ∈ V ×H.
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Then the system (4.2) admits a unique solution having the regularity

y ∈ C(0, T ;V ) ∩ C1(0, T ;H).

Proposition 4.2. Suppose that v ∈ L2(0, T ;U) and that the system (4.2) admits a unique solution having the
regularity

y ∈ C(0, T ;V ) ∩ C1(0, T ;H).

Then hypothesis (4.1) holds if and only if B∗y(.) ∈ H1(0, T ;U) and there exists a constant C > 0 independent
of T such that

‖(B∗y)′(.)‖L2(0,T ;U) ≤ CeβT ‖v‖L2(0,T ;U) .

Let ω ∈ C(0, T ;V ) ∩ C1(0, T ;H) be the solution of (1.2) with (ω0, ω1, f
0(−τ.))T ∈ D(A). Then it can be

split up in the form
ω = φ+ ψ,

where φ is solution of the system without damping (4.3), and ψ satisfies

{
ψ̈(t) +Aψ(t) = −B1B

∗
1 ω̇(t) −B2B

∗
2 ω̇(t− τ)

ψ(0) = 0, ψ̇(0) = 0.
(4.4)

We now set B = (B1B2) ∈ L(U, V ′) where U = U1 × U2. It is easy to verify that B∗ =
(
B∗

1

B∗
2

)
∈ L(V, U).

Therefore ψ is solution of {
ψ̈(t) +Aψ(t) = Bv(t)
ψ(0) = 0, ψ̇(0) = 0,

(4.5)

where v(t) =
( −B∗

1 ω̇(t)
−B∗

2 ω̇(t− τ)

)
. In other words, ψ is solution of system (4.2) with

B = (B1 B2)

and by Remark 3.2

v =
( −B∗

1 ω̇(·)
−B∗

2 ω̇(· − τ)

)
∈ L2((0, T ), U).

Then ψ = ω − φ ∈ C(0, T ;V ) ∩ C1(0, T ;H). Suppose that hypothesis (4.1) is satisfied for B = (B1B2) and
U = U1 × U2. By applying Proposition 4.2, we obtain

∫ T

0

‖(B∗ψ)′‖2
U dt ≤ Ce2βT

∫ T

0

‖v(t)‖2
U dt,

which is equivalent to

∫ T

0

(‖(B∗
1ψ)′‖2

U1
+ ‖(B∗

2ψ)′‖2
U2

)dt ≤ Ce2βT

∫ T

0

(‖B∗
1 ω̇(t)‖2

U1
+ ‖B∗

2 ω̇(t− τ)‖2
U2

)dt.

In particular, we have

∫ T

0

‖(B∗
1ψ)′‖2

U1
dt ≤ Ce2βT

∫ T

0

(‖B∗
1 ω̇(t)‖2

U1
+ ‖B∗

2 ω̇(t− τ)‖2
U2

)dt.
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Therefore, since ω = φ+ ψ, we have

∫ T

0

‖(B∗
1φ)′(t)‖2

U1
dt ≤ 2

(∫ T

0

‖(B∗
1ω)′(t)‖2

U1
dt+

∫ T

0

‖(B∗
1ψ)′(t)‖2

U1
dt

)

≤ Ce2βT

∫ T

0

(
‖(B∗

1 ω̇)(t)‖2
U1

+ ‖(B∗
2 ω̇)(t− τ)‖2

U2

)
dt.

Thus, we have proved the following result:

Lemma 4.3. Suppose that assumption (4.1) is satisfied for B = (B1B2), U = U1 × U2. Then the solutions ω
of (1.2) and φ of (4.3) satisfy

∫ T

0

‖(B∗
1φ)′(t)‖2

U1
dt ≤ Ce2βT

∫ T

0

(‖B∗
1 ω̇(t)‖2

U1
+ ‖B∗

2 ω̇(t− τ)‖2
U2

)dt,

with C > 0 independent of T .

4.2. The stability result

Theorem 4.4. Assume that hypotheses (1.3) and (4.1) are verified for B = (B1 B2), U = U1 × U2. If there
exist a time T > 0 and a constant C > 0 such that the observability estimate

∥∥∥A 1
2ω0

∥∥∥2

H
+ ‖ω1‖2

H ≤ C

∫ T

0

‖(B∗
1φ)′(t)‖2

U1
dt (4.6)

holds, where φ is solution of (4.3), then system (1.2) is exponentially stable in the energy space: there exist
C > 0 independent of τ and ν > 0 such that, for all initial data in H,

E(t) ≤ CE(0)e−νt ∀t > 0. (4.7)

Proof. Let ω be a solution of (1.2) with initial data (ω0, ω1, f
0(−τ ·)) ∈ D(A).

Without loss of generality, we can always assume that (4.6) holds with T > τ and C independent of τ .
Integrating inequality (3.3) of Proposition 3.1 between 0 and T , we obtain

E(0) − E(T ) ≥ C

∫ T

0

(
‖B∗

1 ω̇(t)‖2
U1

+ ‖B∗
2 ω̇(t− τ)‖2

U2

)
dt

≥ C

2

∫ T

0

(
‖B∗

1 ω̇(t)‖2
U1

+ ‖B∗
2 ω̇(t− τ)‖2

U2

)
dt+

C

2

∫ T

0

‖B∗
2 ω̇(t− τ)‖2

U2
dt

≥ Ce−2βT

(∫ T

0

‖(B∗
1φ)′(t)‖2

U1
dt+

∫ T

0

‖B∗
2 ω̇(t− τ)‖2

U2
dt

)
by Lemma 4.3.

By assumption (4.6), we obtain

E(0) − E(T ) ≥ Ce−2βT

(∥∥∥A 1
2ω0

∥∥∥2

H
+ ‖ω1‖2

H +
∫ T

0

‖B∗
2 ω̇(t− τ)‖2

U2
dt

)
,

with C independent of τ . As T > τ , by change of variables, we have∫ T

0

‖B∗
2 ω̇(t− τ)‖2

U2
dt =

∫ T−τ

−τ

‖B∗
2 ω̇(t)‖2

U2
dt

≥
∫ 0

−τ

‖B∗
2 ω̇(t)‖2

U2
dt = τ

∫ 1

0

‖B∗
2 ω̇(−τρ)‖2

U2
dρ.
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The two previous inequalities and (3.1) directly imply that

E(0) − E(T ) ≥ C′e−2βT

(∥∥∥A 1
2ω0

∥∥∥2

H
+ ‖ω1‖2

H + ξτ

∫ 1

0

‖B∗
2 ω̇(−τρ)‖2

U2
dρ

)
,

with C′ = C/(2/α− 1). This means that for T > τ , we have

E(0) − E(T ) ≥ C′e−2βTE(0).

This estimate is equivalent to
E(0) − E(T ) ≥ C′e−2βTE(T ),

because the energy is decreasing, which leads to

E(T ) ≤ γE(0),

where γ = 1
1+C′e−2βT < 1. Applying this argument on [(m− 1)T, mT ], for m = 1, 2, ... (which is valid because

the system is invariant by translation in time), we will get

E(mT ) ≤ γE((m− 1)T ) ≤ ... ≤ γmE(0).

Therefore, we have
E(mT ) ≤ e−νmTE(0), m = 1, 2, ...

with ν = 1
T ln 1

γ = 1
T ln(1 +C′e−2βT ) > 0 which depends on T and thus on τ (because T > τ). For an arbitrary

positive t, there exists m ∈ N∗ such that (m− 1)T < t ≤ mT and by the non-increasing property of the energy,
we conclude

E(t) ≤ E((m− 1)T ) ≤ e−ν(m−1)TE(0) ≤ 1
γ

e−νtE(0).

Hence the energy decays exponentially with the decay rate ν = 1
T ln 1

γ = 1
T ln(1+C′e−2βT ) < 1

τ ln(1+C′e−2βτ ),
because T > τ . Notice that the constant C of (4.7) can be chosen such that C ≥ 1 + C′ (which is independent
of τ) because 1

γ = 1 + C′e−2βT ≤ 1 + C′.
By density of D(A) into H, we deduce that (4.7) holds for any initial data in H. �

Remark 4.5. In the previous theorem, we have seen that the decay rate is ν = 1
T ln 1

γ = 1
T ln(1 +C′e−2βT ) <

1
τ ln(1 + C′e−2βτ ) because T > τ and where C′ is independent of τ . Therefore, when τ becomes larger, the
decay rate is slower.

Remark 4.6. Notice that the sufficient condition (4.6) for the exponential decay of the energy is the same than
the case without delay (see [3]). Therefore, if the hypothesis (4.1) holds and if the dissipative system without
delay (i.e. with B2 = 0) is exponentially stable, then the system (1.2) is exponentially stable.

5. The polynomial stability

In some cases, the decay of the energy is not exponential, but can be polynomial. Our aim here is to give a
sufficient condition that yields the explicit decay rate.

The proof of this stability result requires the next technical lemma proved in [2], Lemma 5.2.

Lemma 5.1. Let (εk)k be a sequence of positive real numbers satisfying

εk+1 ≤ εk − Cε2+μ
k+1 ∀k ≥ 0, (5.1)
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where C > 0 and μ > −1 are constants. Then there exists a positive constant M (depending on μ and C) such
that

εk ≤ M

(1 + k)
1

1+μ

∀k ≥ 0,

with M >
(

4
(1+μ)C

) 1
1+μ

.

Moreover we recall the following interpolation result.

Lemma 5.2. For (ω0, ω1) ∈ D(A) × V , we have

‖ω0‖m+1

D(A
1
2 )

≤ C ‖ω0‖m
D(A) ‖ω0‖

D(A
1−m

2 )
,

‖ω1‖m+1
H ≤ C ‖ω1‖m

D(A
1
2 )

‖ω1‖D(A− m
2 )
,

where C > 0.

Proof. If we denote by {λkn}n the eigenvalues of A
1
2 counted without multiplicity, ln the multiplicity of the

eigenvalue λkn and {ϕkn+j}0≤j≤ln−1 the orthonormal eigenvectors associated with the eigenvalue λkn , this

lemma is a direct consequence of the equivalence ‖u‖2
D(As) ∼ ∑

n≥1

∑ln−1
j=0 |ukn+j |2 λ4s

kn
for all s ∈ R, when

u =
∑

n≥1

∑ln−1
j=0 ukn+jϕkn+j and of Hölder’s inequality with p = 1 + 1

m and q = m+ 1. �

As for (ω0, ω1, f
0(−τ.))� ∈ D(A), ω0 is not necessarily in D(A), we can not apply Lemma 5.2 to ω0, and

therefore we need to make the following hypothesis: there exists C > 0 such that for all (ω0, ω1, z)� ∈ D(A),
we have

‖ω0‖m+1
V ≤ C ‖(ω0, ω1, z)‖m

D(A) ‖ω0‖
D(A

1−m
2 )

. (5.2)

Theorem 5.3. Let ω be a solution of (1.2) with (ω0, ω1, f
0(−τ ·))� ∈ D(A). Assume that the hypotheses (1.3),

(4.1) and (5.2) are verified for B = (B1 B2), U = U1×U2. If there exist a positive real number m, a time T > 0
and a constant C > 0 such that

∫ T

0

‖(B∗
1φ)′(t)‖2

U1
dt ≥ C

(
‖ω0‖2

D(A
1−m

2 )
+ ‖ω1‖2

D(A− m
2 )

)
(5.3)

holds where φ is solution of (4.3), then the energy decays polynomially, i.e., there exists C > 0 depending on m
and τ such that, for all initial data in D(A),

E(t) ≤ C

(1 + t)
1
m

∥∥(ω0, ω1, f
0(−τ ·))∥∥2

D(A)
∀t > 0. (5.4)

Proof. As the hypothesis (4.1) is satisfied for B = (B1B2), U = U1 × U2, by using Lemma 4.3, we obtain

∫ T

0

(
‖B∗

1 ω̇(t)‖2
U1

+ ‖B∗
2 ω̇(t− τ)‖2

U2

)
dt ≥ Ce−2βT

(
‖ω0‖2

D(A
1−m

2 )
+ ‖ω1‖2

D(A− m
2 )

)
.
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On the other hand, integrating the inequality (3.3) of Proposition 3.1 between 0 and T ∗ for T ∗ large enough:
T ∗ ≥ max(T, τ), we have

E(0) − E(T ∗) ≥ C

∫ T∗

0

(‖B∗
1 ω̇(t)‖2

U1
+ ‖B∗

2 ω̇(t− τ)‖2
U2

)dt

≥ C

2

∫ T∗

0

(‖B∗
1 ω̇(t)‖2

U1
+ ‖B∗

2 ω̇(t− τ)‖2
U2

)dt+
C

2

∫ T∗

0

‖B∗
2 ω̇(t− τ)‖2

U2
dt

≥ Ce−2βT∗
(
‖ω0‖2

D(A
1−m

2 )
+ ‖ω1‖2

D(A− m
2 )

+ τ

∫ 1

0

‖B∗
2 ω̇(−τρ)‖2

U2
dρ

)
,

by change of variable (because T ∗ > τ). Therefore

E(T ∗) ≤ E(0) −K1e−2βT∗
(
‖ω0‖2

D(A
1−m

2 )
+ ‖ω1‖2

D(A− m
2 )

+ τξ

∫ 1

0

‖B∗
2 ω̇(−τρ)‖2

U2
dρ

)
, (5.5)

for some K1 > 0 independent of T ∗ and τ .
Therefore, by (5.2), the previous interpolation result of Lemma 5.2 and a convexity inequality, we have:

‖(ω0, ω1)‖m+1
V ×H ≤ C

(
‖ω0‖m+1

V + ‖ω1‖m+1
H

)
≤ C

(∥∥(ω0, ω1, f
0(−τ.))∥∥m

D(A)
‖ω0‖

D(A
1−m

2 )
+ ‖ω1‖m

D(A
1
2 )

‖ω1‖D(A− m
2 )

)

≤ C
∥∥(ω0, ω1, f

0(−τ.))∥∥m

D(A)

(
‖ω0‖

D(A
1−m

2 )
+ ‖ω1‖D(A− m

2 )

)
.

Denoting by X−m = D(A
1−m

2 ) ×D(A−m
2 ), we have shown that

‖(ω0, ω1)‖2
X−m

≥ C
‖(ω0, ω1)‖2m+2

V ×H

‖(ω0, ω1, f0(−τ.))‖2m
D(A)

· (5.6)

Now introduce the modified energy

Ẽ(t) =
1
2
‖U(t)‖2

D(A) =
1
2
(‖U(t)‖2

H + ‖AU(t)‖2
H).

As in Proposition 3.1, this energy Ẽ is decaying.
Combining estimates (5.5) and (5.6), we obtain

E(T ∗) ≤ E(0) −K2e−2βT∗
(
‖(ω0, ω1)‖2m+2

V ×H

Ẽ(0)m
+ ξτ

∫ 1

0

‖B∗
2 ω̇(−τρ)‖2

U2
dρ

)
,

for some K2 > 0 independent of T ∗ and τ , or equivalently

E(T ∗) ≤ E(0) −K2e−2βT∗
(
‖(ω0, ω1)‖2m+2

V ×H

Ẽ(0)m
+ ξτ

∥∥f0(−τ.)∥∥2

L2((0, 1), U2)

)
. (5.7)

Using the trivial estimate

(ξτ)m+1
∥∥f0(−τ.)∥∥2m+2

L2((0, 1), U2)
= ξτ

∥∥f0(−τ.)∥∥2

L2((0, 1), U2)
(ξτ)m

∥∥f0(−τ.)∥∥2m

L2((0, 1), U2)

≤ τξ
∥∥f0(−τ.)∥∥2

L2((0, 1), U2)
Ẽ(0)m
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the above inequality (5.7) becomes

E(T ∗) ≤ E(0) −K2e−2βT∗

⎛
⎝‖(ω0, ω1)‖2m+2

V ×H + (ξτ)m+1
∥∥f0(−τ.)∥∥2m+2

L2((0, 1), U2)

Ẽ(0)m

⎞
⎠

≤ E(0) −K ′e−2βT∗ E(0)m+1

Ẽ(0)m
,

with K ′ > 0 independent of T ∗ and τ . Since the energy of our system is decaying, we obtain

E(T ∗) ≤ E(0) −K ′e−2βT∗ E(T ∗)m+1

Ẽ(0)m
· (5.8)

We now follow the method used in [2]. The estimate (5.8) being valid on the intervals [kT ∗, (k + 1)T ∗], for
any k ≥ 0, we have

E((k + 1)T ∗) ≤ E(kT ∗) −K ′e−2βT∗ E((k + 1)T ∗)m+1

Ẽ(kT ∗)m
· (5.9)

Setting

εk =
E(kT ∗)
Ẽ(0)

,

and dividing (5.9) by Ẽ(0), we obtain

εk+1 ≤ εk −K ′e−2βT∗
εm+1

k+1 , (5.10)

because Ẽ(kT ∗) ≤ Ẽ(0). By Lemma 5.1 with μ = m − 1 > −1 (as m > 0), there exists a constant M ′ > 0

(depending on m and K ′e−2βT∗
, and verifying M ′ >

(
4e2βT∗

mK′

) 1
m

) such that

εk ≤ M ′

(1 + k)
1
m

∀k ≥ 0,

or equivalently

E(kT ∗) ≤ M ′

(1 + k)
1
m

Ẽ(0).

This estimate and again the decay of the energy lead to estimate (5.4), where C = M ′(1 + T ∗)
1
m . �

Remark 5.4. Since the proof of the above theorem reveals that C = M ′(1 +T ∗)
1
m with M ′ >

(
4e2βT∗

mK′

) 1
m

and
T ∗ > τ , the constant C depends on τ and when τ becomes larger, the decay rate becomes slower.

6. Checking the observability inequalities

In this section, we show how to obtain the observability inequalities used in Theorems 4.4 and 5.3. Our
method is based on the generalized gap condition. Before giving spectral conditions to obtain exponential or
polynomial decay, we recall some results about Ingham’s inequality.
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6.1. Preliminaries about Ingham’s inequality

Let {λk}k≥1 be the set of eigenvalues of A
1
2 counted with their multiplicities (i.e. we repeat the eigenvalues

according to their multiplicities). We further rewrite the sequence of eigenvalues {λk}k≥1 as follows:

λk1 < λk2 < ... < λki < ...

where k1 = 1, k2 is the lowest index of the second distinct eigenvalue, k3 is the lowest index of the third distinct
eigenvalue, etc. For all i ∈ N∗, let li be the multiplicity of the eigenvalue λki , i.e.

λki−1 < λki = λki+1 = ... = λki+li−1 < λki+li = λki+1 .

We have k1 = 1, k2 = l1, k3 = l1 + l2, etc. Let {ϕki+j}0≤j≤li−1 be the orthonormal eigenvectors associated
with the eigenvalue λki . We assume that the following generalized gap condition holds:

∃M ∈ N∗, ∃γ0 > 0, ∀k ≥ 1, λk+M − λk ≥Mγ0. (6.1)

Fix a positive real number γ′0 ≤ γ0 and denote by Ak, k = 1, ..., M the set of natural numbers km satisfying
(see for instance [6]) ⎧⎪⎪⎨

⎪⎪⎩
λkm − λkm−1 ≥ γ′0

λkn − λkn−1 < γ′0 for m+ 1 ≤ n ≤ m+ k − 1,

λkm+k
− λkm+k−1 ≥ γ′0.

Then one easily checks that the sets Ak + j, j = 0, ..., k − 1, k = 1, ...,M form a partition of N∗. Notice that
some sets Ak may be empty because, for the generalized gap condition, the choice of M takes into account
multiple eigenvalues.

Now for km ∈ Ak, we recall that the finite differences em+j(t), j = 0, ..., k−1, corresponding to the exponential
functions e−iλkm+j

t, j = 0, ..., k − 1 are given by

em+j(t) =
m+j∑
p=m

m+j∏
q=m

q 	=p

(λkp − λkq )−1eiλkp t.

Write for shortness, e−n(t) the same finite differences functions corresponding to −λkn .
Now we are ready to recall the next inequality of Ingham’s type, see for instance Theorem 1.5 of [6]:

Theorem 6.1. If the sequence (λn)n≥1 satisfies (6.1), then for all sequence (an)n∈Z∗ (where Z∗ = Z \ {0}), the
function

f(t) =
∑

n∈Z∗
anen(t),

satisfies the estimates ∫ T

0

|f(t)|2dt ∼
∑

n∈Z∗
|an|2, (6.2)

for T > 2π
γ0

.

Going back to the original functions eiλkn t, the above equivalence (6.2) means that, for T > 2π
γ0

, the function
(from now on λ−kn = −λkn)

f(t) =
∑
n∈Z∗

αneiλkn t,
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satisfies the estimates ∫ T

0

|f(t)|2dt ∼
M∑

k=1

∑
|kn|∈Ak

‖B−1
kn
Ckn‖2

2, (6.3)

where ‖ · ‖2 means the Euclidean norm of the vector, for kn ∈ Ak the vector Ckn is given by

Ckn = (αn, . . . , αn+k−1)T ,

and the k × k matrix Bkn allows to pass from the coefficients akn to αkn , namely

Ckn = Bkn · (an, . . . , an+k−1)T ,

and is given by Bkn = (Bkn, ij)1≤i, j≤k the matrix of size k × k such that

Bkn, ij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n+j−1∏
q = n

q �= n+ i− 1

(λkn+i−1 − λkq )−1 if i ≤ j, (i, j) �= (1, 1),

1 if (i, j) = (1, 1),
0 if i > j.

More explicitly, we have

Bkn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
λkn−λkn+1

1
(λkn−λkn+1)(λkn−λkn+2) · · · 1

(λkn−λkn+1 )···(λkn−λkn+k−1)

0 1
λkn+1−λkn

1
(λkn+1−λkn )(λkn+1−λkn+2 ) · · · 1

(λkn+1−λkn )···(λkn+1−λkn+k−1 )

0 0 1
(λkn+2−λkn )(λkn+2−λkn+1 ) · · · 1

(λkn+2−λkn )···(λkn+2−λkn+k−1 )

...
...

. . .
...

0 0 0 · · · 1
(λkn+k−1−λkn )···(λkn+k−1−λkn+k−2 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We proceed similarly for n ≤ −1, the indices being decreasing from n to n− k + 1.

Remark 6.2. If the standard gap condition

∃γ0 > 0, ∀n ≥ 1, λkn+1 − λkn ≥ γ0 (6.4)

holds, then A1 = Z∗ and B1 = 1 and in that case f(t) =
∑

n∈Z∗ αneiλkn t satisfies Ingham’s inequality (see [13]):

∫ T

0

|f(t)|2dt ∼
∑
n∈Z∗

|αn|2, (6.5)

for T > 2π
γ0

.

Now, let U be a separable Hilbert space (in the sequel, U will be U1). For a vector c =

⎛
⎜⎝

c1
...
cm

⎞
⎟⎠ in Um, we

set ‖.‖U, 2 the norm in Um defined by

‖c‖2
U, 2 =

m∑
l=1

‖cl‖2
U .

Then we obtain the inequality of Ingham’s type in U :
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Proposition 6.3. If we have the standard gap condition (6.4), then for all sequence (an)n in U , the function

u(t) =
∑
n∈Z∗

aneiλkn t

satisfies the estimates ∫ T

0

‖u(t)‖2
U dt ∼

∑
n∈Z∗

‖an‖2
U ,

for T > 2π
γ0

.

Proof. As U is a separable Hilbert space, there exists a Hilbert basis (ψk)k≥1 of U . Therefore, an ∈ U can be
written as

an =
+∞∑
k=1

ak
nψk.

We truncate an as follows: for K ∈ N∗, let a(K)
n =

K∑
k=1

ak
nψk and set uK(t) =

K∑
k=1

( ∑
n∈Z∗

ak
neiλkn t

)
ψk. Since

(ψk)k≥1 is a Hilbert basis, we have by Fubini’s theorem

‖uK(t)‖2
U =

K∑
k=1

∣∣∣∣∣
∑

n∈Z∗
ak

neiλkn t

∣∣∣∣∣
2

.

Thus, by applying Ingham’s inequality (6.5), we have

∫ T

0

‖uK(t)‖2
U dt =

K∑
k=1

∫ T

0

∣∣∣∣∣
∑

n∈Z∗
ak

neiλkn t

∣∣∣∣∣
2

dt

∼
K∑

k=1

∑
n∈Z∗

(ak
n)2

∼
∑

n∈Z∗

K∑
k=1

(ak
n)2.

Therefore ∫ T

0

‖uK(t)‖2
U dt ∼

∑
n∈Z∗

∥∥∥a(K)
n

∥∥∥2

U
.

As uK → u and a(K)
n → an when K → +∞, we obtain the result. �

In the same way, we obtain an Ingham’s type inequality in a Hilbert space U in the case of the generalized
gap condition (6.1).

Corollary 6.4. If the sequence (λn)n≥1 satisfies (6.1), then for all sequence (αn)n∈Z∗ in U , the function

f(t) =
∑
n∈Z∗

αneiλkn t,

satisfies the estimates ∫ T

0

|f(t)|2dt ∼
M∑

k=1

∑
|kn|∈Ak

‖B−1
kn
Ckn‖2

U,2, (6.6)
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for T > 2π
γ0

, where

Ckn = (αn, . . . , αn+k−1)T ∈ Uk.

6.2. A first observability inequality

Proposition 6.5. Assume that the generalized gap condition (6.1) holds and that U1 is separable. Let φ be the
solution of (4.3) with (ω0, ω1) ∈ V ×H. Then there exists a time T > 0 and a constant C > 0 (depending on T )
such that (4.6) holds if and only if

∃γ > 0, ∀k = 1, . . . ,M, ∀kn ∈ Ak, ∀ξ ∈ RLn ,
∥∥B−1

kn
Φknξ

∥∥
U1, 2

≥ γ ‖ξ‖2 , (6.7)

where the matrix Φkn with coefficients in U1 and size k×Ln, where Ln =
k∑

i=1

ln+i−1 − 1, is given as follow: for

all i = 1, . . . , k, we set

(Φkn)ij =
{
B∗

1ϕkn+i−1+j−Ln,i−1 if Ln,i−1 < j ≤ Ln,i,
0 else,

where
Ln,0 = 0,

Ln,i =
i∑

i′=1

ln+i′−1 − 1 ∀i ≥ 1.
(6.8)

Proof. We first show that (6.7)⇒(4.6). Writing

ω0 =
∑
i≥1

li−1∑
j=0

aki+jϕki+j

and

ω1 =
∑
i≥1

li−1∑
j=0

bki+jϕki+j

where (λkiaki+j)i, j , (bki+j)i, j ∈ l2(N∗), then the solution φ of system without damping (4.3) is given by

φ(·, t) =
∑
i≥1

li−1∑
j=0

(
aki+j cos(λkit) +

bki+j

λki

sin(λki t)
)
ϕki+j .

Consequently

(B∗
1φ)′(t) =

∑
i≥1

li−1∑
j=0

(−aki+jλki sin(λki t) + bki+j cos(λkit))B
∗
1ϕki+j .

By grouping the terms corresponding to the same eigenvalue, we get

(B∗
1φ)′(t) =

∑
i≥1

⎛
⎝li−1∑

j=0

− aki+jB
∗
1ϕki+j

⎞
⎠λki sin(λki t) +

∑
i≥1

⎛
⎝lj−1∑

j=0

bki+jB
∗
1ϕki+j

⎞
⎠ cos(λkit)

=
∑

n∈Z∗
αneiλkn t,
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where

αn =
1
2

⎛
⎝
⎛
⎝ln−1∑

j=0

bkn+jB
∗
1ϕkn+j

⎞
⎠ + i

⎛
⎝ln−1∑

j=0

akn+jB
∗
1ϕkn+j

⎞
⎠λkn

⎞
⎠ ∀n ≥ 1,

α−n =
1
2

⎛
⎝
⎛
⎝ln−1∑

j=0

bkn+jB
∗
1ϕkn+j

⎞
⎠− i

⎛
⎝ln−1∑

j=0

akn+jB
∗
1ϕkn+j

⎞
⎠λkn

⎞
⎠ ∀n ≥ 1.

Integrating the square of the norm of this identity between 0 and T > 0 and using Ingham’s inequality (6.6)
in U1, for T large enough, we get

∫ T

0

‖(B∗
1φ)′(t)‖2

U1
dt ≥ C

M∑
k=1

∑
|kn|∈Ak

∥∥B−1
kn
Ckn

∥∥2

U1, 2
,

where Ckn = (αn, . . . , αn+k−1)
T is a vector of Uk

1 .
But for all kn ∈ Ak, setting

Ãkn =
(
λknakn , . . . , λknakn+ln−1, λkn+1akn+1 , . . . , λkn+1akn+1+ln+1−1, . . . ,

λkn+k−1akn+k−1 , . . . , λkn+k−1akn+k−1+ln+k−1−1

)T
,

B̃kn =
(
bkn , . . . , bkn+ln−1, bkn+1 , . . . , bkn+1+ln+1−1, . . . , bkn+k−1 , . . . ,

bkn+k−1+ln+k−1−1

)T
,

we readily check that

∫ T

0

‖(B∗
1φ)′(t)‖2

U1
dt ≥ C

M∑
k=1

∑
|kn|∈Ak

(∥∥∥B−1
kn

ΦknÃkn

∥∥∥2

U1,2
+

∥∥∥B−1
kn

ΦknB̃kn

∥∥∥2

U1,2

)
.

Hence the assumption (6.7) yields

∫ T

0

‖(B∗
1φ)′(t)‖2

U1
dt ≥ C

M∑
k=1

∑
|kn|∈Ak

(∥∥∥Ãkn

∥∥∥2

2
+

∥∥∥B̃kn

∥∥∥2

2

)

= C

(∥∥∥A 1
2ω0

∥∥∥2

H
+ ‖ω1‖2

H

)

because (ϕkn+i)n,i is an orthonormal basis associated with the operator A
1
2 .

It remains to show that (4.6)⇒(6.7).
Let k = 1, . . . ,M and kn ∈ Ak be fixed. Take ω0 =

∑n+k−1
i=n

∑li−1
j=0 aki+jϕki+j and ω1 =∑n+k−1

i=n

∑li−1
j=0 bki+jϕki+j . Then the solution φ of system (4.3) is given by

φ(·, t) =
n+k−1∑

i=n

li−1∑
j=0

(
aki+j cos(λkit) +

bki+j

λki

sin(λkit)
)
ϕki+j ,

and then

(B∗
1φ)′(t) =

n+k−1∑
i=n

li−1∑
j=0

(−aki+jλki sin(λkit) + bki+j cos(λki t))B
∗
1ϕki+j .
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Applying again Ingham’s inequality, we get for T large enough and Ãkn , B̃kn defined above

∫ T

0

‖(B∗
1φ)′(t)‖2

U1
dt ∼

∥∥∥B−1
kn

ΦknÃkn

∥∥∥2

U1,2
+

∥∥∥B−1
kn

ΦknB̃kn

∥∥∥2

U1,2
.

By (4.6), we obtain

∥∥∥B−1
kn

ΦknÃkn

∥∥∥2

U1,2
+

∥∥∥B−1
kn

ΦknB̃kn

∥∥∥2

U1,2
≥ C

∥∥∥A 1
2ω0

∥∥∥2

H
+ ‖ω1‖2

H

= C

n+k−1∑
i=n

li−1∑
j=0

(a2
ki+jλ

2
ki

+ b2ki+j), (6.9)

for some C > 0. Hence we conclude that ∥∥B−1
kn

Φknξ
∥∥

U1, 2
≥ γ ‖ξ‖2 .

This ends the proof. �
Remark 6.6. If the standard gap condition (6.4) holds, then A1 = N∗ and B1 = 1. In this case, the assump-
tion (6.7) becomes

∃γ > 0, ∀kn ≥ 1, ∀ξ ∈ Rln , ‖Φknξ‖U1
≥ γ ‖ξ‖2 .

Moreover, if the standard gap condition (6.4) holds and if the eigenvalues are simple, the assumption (6.7)
becomes

∃γ > 0, ∀k ≥ 1, ‖B∗
1ϕk‖U1

≥ γ.

Remark 6.7. The above Proposition 6.5 yields a time T > 0 and a constant C > 0 depending on T such that
(4.6) holds but the time T and the constant C do not depend on the delay τ . Hence if the minimal time T is
not strictly greater than τ , by choosing T ′ > max{T, τ}, we still have

∥∥∥A 1
2ω0

∥∥∥2

H
+ ‖ω1‖2

H ≤ C

∫ T ′

0

‖(B∗
1φ)′(t)‖2

U1
dt,

with the same constant C as before and that does not depend on τ . This means that under the generalized gap
condition (6.1), the condition (6.7) is equivalent to the sufficient condition of Theorem 4.4.

6.3. A second observability inequality

Proposition 6.8. Assume that the generalized gap condition (6.1) holds and that U1 is separable. Let φ be the
solution of (4.3) with (ω0, ω1) ∈ V ×H. Then for a fixed real number m > 0, there exist a time T > 0 and a
constant C > 0 such that (5.3) holds if and only if

∃γ > 0, ∀k = 1, . . . ,M, ∀kn ∈ Ak, ∀ξ ∈ RLn ,
∥∥B−1

kn
Φknξ

∥∥
U1, 2

≥ γ

λm
kn

‖ξ‖2 . (6.10)

Proof. The proof is similar to the one of Proposition 6.5 because

∑
n≥1

1
λ2m

kn

ln−1∑
j=0

(a2
kn+jλ

2
kn

+ b2kn+j) =
∑
n≥1

ln−1∑
j=0

(a2
kn+jλ

2(1−m)
kn

+ b2kn+jλ
−2m
kn

)

∼ ‖ω0‖2

D(A
1−m

2 )
+ ‖ω1‖2

D(A− m
2 )
.

The details are therefore omitted. �
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Remark 6.9. If the standard gap condition (6.4) holds, the assumption (6.10) becomes

∃γ > 0, ∀kn ≥ 1, ∀ξ ∈ Rln , ‖Φknξ‖U1
≥ γ

λm
kn

‖ξ‖2 .

Moreover, if the standard gap condition (6.4) holds and if the eigenvalues are simple, the assumption (6.10)
becomes

∃γ > 0, ∀k ≥ 1, ‖B∗
1ϕk‖U1

≥ γ

λm
kn

·

A remark similar to Remark 6.7 can be made for polynomial stability.

7. Examples

We end up this paper by considering different examples for which our abstract framework can be applied.
To our knowledge, all the examples, with the exception of the first one, are new.

7.1. A wave equation on 1-d networks with nodal feedbacks

In this section we show that the result obtained in [17] enter in the framework of this paper. Obviously we
will use the same notations for a network that in [17] that we briefly recall (for more details see [17]). We denote
by E = {ej; 1 ≤ j ≤ N} the set of edges ej of length lj > 0 of a given network R and V the set of vertices of R.
For a function u : R → R, we set uj = u|ej

the restriction of u to ej . For a fixed vertex v, we set

Ev = {j ∈ {1, ..., N} ; v ∈ ēj}·
If card(Ev) ≥ 2, v is an interior node. Let Vint be the set of interior nodes. If card(Ev) = 1, v is an exterior
node. Let Vext be the set of exterior nodes. For v ∈ Vext, we set Ev = {jv}.

We now fix a partition of Vext:

Vext = D ∪N ∪ Vc
ext, where D �= ∅.

We actually will impose Dirichlet boundary condition at the nodes of D, Neumann boundary condition at the
nodes of N and finally a feedback boundary condition at the nodes of Vc

ext. We further fix a subset Vc
int of Vint

where a feedback transmission condition will be imposed. By shortness, we denote by Vc the set of controlled
nodes, namely

Vc = Vc
int ∪ Vc

ext.

We here consider the following initial and boundary system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2uj

∂t2 (x, t) − ∂2uj

∂x2 (x, t) = 0 0 < x < lj , t > 0, ∀j ∈ {1, ..., N}
uj(v, t) = ul(v, t) = u(v, t) t > 0, ∀j, l ∈ Ev, v ∈ Vint∑
j∈Ev

∂uj

∂nj
(v, t) = −α(v)

1
∂u
∂t (v, t) − α

(v)
2

∂u
∂t (v, t− τ) t > 0, ∀v ∈ Vc∑

j∈Ev

∂uj

∂nj
(v, t) = 0 t > 0, ∀v ∈ Vint\Vc

int

ujv(v, t) = 0 t > 0, ∀v ∈ D
∂ujv

∂njv
(v, t) = 0 t > 0, ∀v ∈ N

u(t = 0) = u(0), ∂u
∂t (t = 0) = u(1)

∂u
∂t (v, t− τ) = f0

v (t− τ) ∀v ∈ Vc, 0 < t < τ,

(7.1)

where α(v)
i ≥ 0 are fixed non-negative real numbers and the delay τ is positive.
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To rewrite this system in the form (1.2), we introduce

H = L2(R) = {u : R → R; uj ∈ L2(0, lj), ∀j = 1, ..., N}

and the operator

A :
{
D(A) → H

(ϕj)j �→ (− d2

dx2ϕj)j
(7.2)

where

D(A) =

⎧⎨
⎩ϕ ∈ V ∩

N∏
j=1

H2(0, lj) ;
∑
j∈Ev

∂ϕj

∂nj
(v) = 0, ∀v ∈ Vint;

∂ϕjv

∂njv

(v) = 0, ∀v ∈ N ∪ Vc
ext

⎫⎬
⎭ , (7.3)

and

V :=

⎧⎨
⎩ϕ ∈

N∏
j=1

H1(0, lj) : ϕj(v) = ϕk(v)∀j, k ∈ Ev, ∀v ∈ Vint ; ϕjv (v) = 0, ∀v ∈ D
⎫⎬
⎭ ·

The operator A is self-adjoint and positive with a compact inverse in H. Moreover

D(A
1
2 ) = V.

We now define U = U1 = U2 = RVc , where Vc is the cardinal of Vc, with norm ‖.‖U = ‖.‖2 and the operators Bi

for i = 1, 2 as

Bi :

⎧⎪⎨
⎪⎩

U → D(A
1
2 )′

(kv)v∈Vc �→
∑
v∈Vc

√
α

(v)
i kvδv.

(7.4)

It is easy to verify that B∗
i (ϕ) = (

√
α

(v)
i ϕ(v))T

v∈Vc
for ϕ ∈ D(A

1
2 ) and thus BiB

∗
i (ϕ) =

∑
v∈Vc

α
(v)
i ϕ(v)δv for

ϕ ∈ D(A
1
2 ). Hence the system (7.1) can be rewritten in the form (1.2).

We notice that (2.5) is here reduced to

∃0 < α ≤ 1, ∀ϕ ∈ V,
∑
v∈Vc

(α(v)
2 ϕ(v))2 ≤ α

∑
v∈Vc

(α(v)
1 ϕ(v))2,

and therefore, the system (7.1) is well posed for α(v)
2 ≤ α

(v)
1 for all v ∈ Vc by Theorem 2.1, and the energy is

decreasing for α(v)
2 < α

(v)
1 for all v ∈ Vc by Proposition 3.1.

By Proposition 6.2 of [7], the generalized gap condition (6.1) holds with M = N + 1.
We know, by [17], that the hypothesis (4.1) is satisfied. Moreover, the hypothesis (5.2) is verified because

‖ω0‖m+1
V ≤ C ‖ω0‖m

X ‖ω0‖
D(A

1−m
2 )

≤ C ‖(ω0, ω1, z)‖m
D(A) ‖ω0‖

D(A
1−m

2 )
,

where X = V ∩
( N∏

j=1

H2(0, lj)
)
, by using Corollary 6.4 of [17].

Now we define Ψkn(v) the matrix of size k × Ln by: for all i = 1, ..., k, we set

(Ψkn(v))ij =
{
ϕkn+i−1+j−Ln, i−1(v) if Ln, i−1 < j < Ln, i,
0 else,
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where Ln, 0 = 1 and Ln, i =
i∑

i′=1

(ln+i′−1 − 1) for i ≥ 1. Then, for all ξ ∈ RLn , we have

∥∥B−1
kn

Φknξ
∥∥2

U1, 2
=

∑
v∈Vc

αl
1

∥∥B−1
kn

Ψkn(v)ξ
∥∥2

2

=
∑
v∈Vc

αl
1ξ

T Ψkn(v)TB−T
kn

B−1
kn

Ψkn(v)ξ

= ξT

(∑
v∈Vc

αl
1Ψkn(v)TB−T

kn
B−1

kn
Ψkn(v)

)
ξ.

Therefore by setting

M̃kn =
∑
v∈Vc

αl
1Ψkn(v)TB−T

kn
B−1

kn
Ψkn(v),

we see that assumption (6.7) becomes

∃γ > 0, ∀k ∈ {1, ...,M}, ∀kn ∈ Ak, λmin(M̃kn) ≥ γ,

and the assumption (6.10) becomes

∃m ∈ R∗
+, ∃γ > 0, ∀k ∈ {1, ...,M}, ∀kn ∈ Ak, λmin(M̃kn) ≥ γ

λ2m
kn

which corresponds respectively to the conditions (6.8) and (7.4) from the paper [17], because λk ∼ kπ
L , where

L =
N∑

j=1

lj .

Note that if the standard gap condition (6.4) holds and if all eigenvalues are simple (i.e., lk = 1), then the
condition (6.7) becomes

∃γ > 0, ∀k ≥ 1,
∑
v∈Vc

α
(v)
1 |ϕk(v)|2 ≥ γ, (7.5)

while the conditions (6.10) becomes

∃m ∈ R∗
+, ∃γ > 0, ∀k ≥ 1,

∑
v∈Vc

α
(v)
1 |ϕk(v)|2 ≥ γ

λ2m
k

· (7.6)

Consequently, we find again all the results from [17] (see for instance the examples treated in Sect. 7 of [17]),
here we can even precise the dependence of the decay rate with respect to the delay τ .

7.2. An Euler-Bernoulli beam with interior damping

We consider an Euler-Bernoulli beam of length 1 with interior damping and a delay term at ξ. Two types of
boundary conditions will be considered. Without delay, these two problems were analyzed in [2,3], where some
decay rates similar to the ones proved below were obtained.
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7.2.1. Mixed boundary conditions

We consider the following initial and boundary system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂2ω
∂t2 (x, t) + ∂4ω

∂x4 (x, t) + α1
∂ω
∂t (ξ, t)δξ + α2

∂ω
∂t (ξ, t− τ)δξ = 0 0 < x < 1, t > 0

ω(0, t) = ∂ω
∂x (1, t) = ∂2ω

∂x2 (0, t) = ∂3ω
∂x3 (1, t) = 0 t > 0

ω(x, 0) = ω0(x), ∂ω
∂t (x, 0) = ω1(x) 0 < x < 1

∂ω
∂t (ξ, t− τ) = f0(t− τ) 0 < t < τ,

(7.7)

where ξ ∈ (0, 1), α1, α2 > 0 and τ > 0. To enter into the framework of Section 1, we rewrite this system in the
form (1.2). For that purpose, we introduce H = L2(0, 1) and the operator

A : D(A) → H : ϕ �→ d4

dx4
ϕ (7.8)

where D(A) = {ϕ ∈ H4(0, 1) ; ϕ(0) = ∂ϕ
∂x (1) = ∂2ϕ

∂x2 (0) = ∂3ϕ
∂x3 (1) = 0}. The operator A is self-adjoint and

positive with a compact inverse in H. We now define U = U1 = U2 = R and the operators B1 and B2 as

Bi : U → D(A
1
2 )′ : k �→ √

αi k δξ, i = 1, 2. (7.9)

It is easy to verify that B∗
i (ϕ) =

√
αiϕ(ξ) for ϕ ∈ D(A

1
2 ) and thus BiB

∗
i (ϕ) = αiϕ(ξ)δξ for ϕ ∈ D(A

1
2 ) and

i = 1, 2. Then the system (7.7) can be rewritten in the form (1.2). We notice that (2.5) is equivalent to

∃0 < α ≤ 1, α2 ≤ αα1,

and consequently, this system is well posed for α2 ≤ α1 by Theorem 2.1, and the energy is decreasing for
α2 < α1 by Proposition 3.1.

Let us now state the next well-known results about the spectral properties of A.

Proposition 7.1. The eigenvalues of the operator A defined in (7.8) are simple and are given by λ2
k = (2k+1

2 π)4

of associated eigenvector ϕk(x) =
√

2 sin(2k+1
2 πx), for all k ∈ N. Consequently the standard gap condition (6.4)

holds, i.e., there exists a constant γ0 > 0 such that

λk+1 − λk ≥ γ0 > 0 ∀k ≥ 0,

and moreover for all k ≥ 0, ‖B∗
1ϕk‖U1

=
√

2α1

∣∣sin((kπ + π
2 )ξ)

∣∣ .
The hypothesis (4.1) was verified in [2]. Moreover, we have by Lemma 2.9 of [19]:

Lemma 7.2. ξ is a rational number with an irreductible fraction

ξ =
p

q
, where p is odd

if and only if there exists a constant γ > 0 such that

∀k ≥ 1,
∣∣∣sin(

(kπ +
π

2
)ξ
)∣∣∣ > γ.
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Therefore, by applying Proposition 3.4 and Theorem 4.4, we obtain the following results:

Proposition 7.3. Assume that α2 < α1. Then
(i) The energy of system (7.7) decays to 0 if and only if

ξ �= 2m
2k + 1

, m, k ∈ N.

(ii) The energy of system (7.7) decays exponentially if ξ is a rational number with an irreductible fraction

ξ =
p

q
, where p is odd.

Remark 7.4. As mentioned before, in the case α2 = 0 we recover the results from [2].

7.2.2. Other boundary conditions

We here consider the following initial and boundary system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂2ω
∂t2 (x, t) + ∂4ω

∂x4 (x, t) + α1
∂ω
∂t (ξ, t)δξ + α2

∂ω
∂t (ξ, t− τ)δξ = 0 0 < x < 1, t > 0

ω(0, t) = ω(1, t) = ∂2ω
∂x2 (0, t) = ∂2ω

∂x2 (1, t) = 0 t > 0

ω(x, 0) = ω0(x), ∂ω
∂t (x, 0) = ω1(x) 0 < x < 1

∂ω
∂t (ξ, t− τ) = f0(t− τ) 0 < t < τ,

(7.10)

where ξ ∈ (0, 1), α1, α2 > 0 and τ > 0. This system (7.10) is not exponentially stable if α2 = 0 as shown in [3].
Hence we only consider the polynomial decay of system (7.10). As before we rewrite this system in the form
(1.2) by introducing H = L2(0, 1) and the operator

A : D(A) → H : ϕ �→ d4

dx4
ϕ (7.11)

with D(A) = {ϕ ∈ H4(0, 1)∩V ; ∂2ϕ
∂x2 (0) = ∂2ϕ

∂x2 (1) = 0}, V = H2(0, 1)∩H1
0 (0, 1). The operator A is self-adjoint

and positive with a compact inverse in H. We then define U = U1 = U2 = R and the operators B1, B2 by (7.9).
Then the system (7.10) can be rewritten in the form (1.2) and consequently, this system is well posed for

α2 ≤ α1 by Theorem 2.1, and the energy is decreasing for α2 < α1 by Proposition 3.1.
The spectral properties of A are well-known and can be summarized as follows:

Proposition 7.5. The eigenvalues of the operator A defined in (7.11) are simple and given by λ2
k = k4π4 of

eigenvector ϕk(x) =
√

2 sin(kπx), for all k ∈ N∗. Therefore there exists a constant γ0 > 0 such that the standard
gap condition (6.4) is verified and moreover

‖B∗
1ϕk‖U1

=
√

2α1 |sin(kπξ)| .

Hypothesis (4.1) was verified in [3]. Let us prove that the condition (5.2) is satisfied.

Lemma 7.6. Let m ∈ R∗
+. Then there exists C > 0 such that for all ω0 ∈ X =

{
u ∈ V : u

∣∣
(0, ξ) ∈ H4(0, ξ),

u
∣∣
(ξ, 1) ∈ H4(ξ, 1), ∂2u

∂x2 (0) = ∂2u
∂x2 (1) = 0

}
, we have

‖ω0‖m+1
V ≤ C ‖ω0‖m

X ‖ω0‖
D(A

1−m
2 )

,

where the natural norm in X is given by ‖u‖2
X = ‖u‖2

H4(0,ξ) + ‖u‖2
H4(ξ,1).
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Proof. Let us fix a cut-off function η ∈ D(0, 1) such that η = 1 in a neighbourhood of ξ, η = 0 on
[

2
3 + ξ

3 , 1
]

and η = 0 on
[
0, ξ

3

]
. Since (1 − η)ω0 ∈ D(A), by Lemma 5.2, we have

‖(1 − η)ω0‖m+1
V ≤ C ‖(1 − η)ω0‖m

X ‖(1 − η)ω0‖
D(A

1−m
2 )

.

Since
‖(1 − η)ω0‖

D(A
1−m

2 )
= sup

ϕ∈D(A
m−1

2 )

((1−η)ω0, ϕ)
‖ϕ‖

D(A
m−1

2 )

= sup
ϕ∈D(A

m−1
2 )

(ω0, (1−η)ϕ)
‖ϕ‖

D(A
m−1

2 )

≤ C ‖ω0‖
D(A

1−m
2 )

,

for some C > 0 (depending on η) we get

‖(1 − η)ω0‖m+1
V ≤ C ‖ω0‖m

X ‖ω0‖
D(A

1−m
2 )

. (7.12)

In a second step, we set

ω1(x) = η(ξ − x)ω0(ξ − x) if 0 < x < l1 := ξ
ω2(x) = η(x+ ξ)ω0(x + ξ) if 0 < x < l2 := 1 − ξ.

For any j = 1, 2, we introduce the following extension of ωj:

(Eω)j(x) = ωj(x) if x ∈ (0, lj),
(Eω)−j(x) =

∑n−1
i=0 νiωj(−2ix) if x ∈ (−2−(n−1)lj , 0),

where ωj is extended by zero outside its support and the real numbers νi are the unique solution of the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n−1
i=0 νi = 1

−∑n−1
i=0 2iνi = 1∑n−1

i=0 22iνi = 1

−∑n−1
i=0 23iνi = 1∑n−1

i=0 2−2kiνi = 1, ∀k = 1, . . . , n− 4,

and finally n ∈ N∗ is chosen large enough such that n ≥ m+ 3.
We obtain an extension of ω to a function Eω, which belongs to D(Ã) (due to the four first properties of the νi),

where Ã is the positive operator d4

dx4 on the star shaped network S̃ = ∪j=1, 2(0, lj)
⋃∪j=1, 2(−2−(n−1)lj, 0), with

interior vertex ξ (identified to 0) and Dirichlet boundary conditions at all other vertices.
Therefore, we can apply the interpolation lemma 5.2 to Ã and then write

‖Eω‖m+1

D(Ã
1
2 )

≤ C ‖Eω‖m
D(Ã) ‖Eω‖D(Ã

1−m
2 )

.

But we easily check that
‖ηω0‖m+1

D(A
1
2 )

≤ ‖Eω‖m+1

D(Ã
1
2 )
.

Consequently, we have
‖ηω0‖m+1

D(A
1
2 )

≤ C ‖Eω‖m
D(Ã) ‖Eω‖D(Ã

1−m
2 )

.
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Moreover, as E is an extension operator, we have

‖Eω‖D(Ã) ≤ K ‖ω0‖X ,

and thus
‖ηω0‖m+1

D(A
1
2 )

≤ C ‖ω0‖m
X ‖Eω‖

D(Ã
1−m

2 )
.

To estimate the last factor, we use a duality argument. We write

‖Eω‖
D(Ã

1−m
2 )

= sup
ϕ∈D(Ã

m−1
2 )

|(Eω, ϕ)|
‖ϕ‖

D(Ã
m−1

2 )

·

For ϕ ∈ D(Ã
m−1

2 ), we have

∫
S̃
Eωϕ =

∑
j=1, 2

∫ lj

0

ωj(x)ϕj(x) dx +
∑

j=1, 2

∫ 0

−2−(n−1)lj

(Eω)−j(x)ϕ−j(x) dx.

By changes of variables, we obtain

∫
S̃
Eωϕ =

∑
j=1, 2

∫ lj

0

ωj(x)(Fϕ)j(x) dx,

where

(Fϕ)j(x) = ϕj(x) + χj(x)
n−1∑
i=0

νi2−iϕj(−2−ix) ∀x ∈ (0, lj),

the cut-off function χj being fixed such that χj ≡ 1 on [0, 2lj/3] and χj ≡ 0 on [5lj/6, lj] (reminding that
ωj(x) ≡ 0 for x > 2lj/3). Now we notice that the conditions on νi guarantees that Fϕ belongs to D(A

m−1
2 )

and by Leibniz’s rule we have
‖Fϕ‖

D(A
m−1

2 )
≤ C ‖ϕ‖

D(Ã
m−1

2 )
.

Therefore ∫
S̃
Eωϕ ≤ C ‖ω‖

D(A
1−m

2 )
‖ϕ‖

D(Ã
m−1

2 )
.

By duality, we conclude that
‖Eω‖

D(Ã
1−m

2 )
≤ C ‖ω‖

D(A
1−m

2 )
.

Consequently, with the previous inequalities, we obtain

‖ηω0‖m+1

D(A
1
2 )

≤ C ‖ω‖m
X ‖ω‖

D(A
1−m

2 )
. (7.13)

The conclusion follows from (7.12) and (7.13). �
This lemma leads to (5.2). Indeed for (ω0, ω1, z) ∈ D(A), we have

‖ω0‖m+1
V ≤ C ‖ω0‖m

X ‖ω0‖
D(A

1−m
2 )

≤ C ‖(ω0, ω1, z)‖m
D(A) ‖ω0‖

D(A
1−m

2 )
.

Now, we denote by S the set of all real numbers ρ such that ρ /∈ Q and if [0, a1, ..., an, ...] is the expansion
of ρ as a continued fraction, then the sequence (an) is bounded. It is well-known that S is uncountable and
that its Lebesgue measure is zero. Roughly speaking, the set S contains all irrational numbers which are badly



STABILIZATION OF SECOND ORDER EVOLUTION EQUATIONS 449

approximated by rational numbers. In particular, by the Euler-Lagrange theorem, S contains all irrational
quadratic numbers (i.e. the roots of a second order equation with rational coefficients). By a classical result,
we have:

Lemma 7.7. If s ∈ S, then there exists a positive constant γ such that

|sin(kπs)| ≥ γ

k
∀k ≥ 1.

Therefore, by applying Proposition 3.4 and Theorem 5.3 with m = 1
2 , we obtain the next results:

Proposition 7.8. Assume that α2 < α1. Then
(i) The energy of system (7.10) decays to 0 if and only if ξ is irrational.
(ii) The energy of system (7.10) decays polynomially like 1

(1+t)2 if ξ belongs to S.

Remark 7.9. Again in the case α2 = 0 we recover the results from [2,3].

7.3. Examples with distributed damping terms

7.3.1. A non homogeneous string with distributed damping terms (1-d)

We consider the following initial and boundary system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂2ω
∂t2 (x, t) − ∂2ω

∂x2 (x, t) + α1
∂ω
∂t (x, t)χ|I1 + α2

∂ω
∂t (x, t− τ)χ|I2 = 0 in (0, 1) × (0, ∞)

ω(0, t) = ω(1, t) = 0 t > 0

ω(x, 0) = ω0(x), ∂ω
∂t (x, 0) = ω1(x) in (0, 1)

∂ω
∂t (x, t− τ) = f0(x, t− τ) in I2 × (0, τ),

(7.14)

where here and below χ|I denotes the characteristic function of the set I. In the remainder of this subsection
we assume that α1, α2 > 0, τ > 0 and

I2 ⊂ I1 ⊂ [0, 1].

Later we will need that
∃δ ∈ [0, 1] and ε > 0: [δ, δ + ε] ⊂ I1. (7.15)

We rewrite this system in the form (1.2). For that purpose, we introduce H = L2(0, 1) and the operator

A : D(A) → H : ϕ �→ − d2

dx2
ϕ (7.16)

where D(A) = H1
0 (0, 1) ∩ H2(0, 1) and V = D(A

1
2 ) = H1

0 (0, 1). The operator A is self-adjoint and positive
with a compact inverse in H. We then define Ui = L2(Ii) and the operators Bi as

Bi : Ui → H ⊂ V ′ : k �→ √
αi k̃ χ|Ii

(7.17)

where k̃ is the extension of k by zero outside Ii (which defines an element of L2(0, 1)).
It is easy to verify that B∗

i (ϕ) =
√
αiϕ|Ii

for ϕ ∈ V and thus BiB
∗
i (ϕ) = αiϕ|Ii

χ|Ii
= αiϕχ|Ii

for ϕ ∈ V and
i = 1, 2. Then the system (7.14) can be rewritten in the form (1.2). Moreover

‖B∗
i ϕ‖2

Ui
= αi

∫
Ii

|ϕ|2 dx.
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Therefore, we notice that (2.5) is equivalent to

∃0 < α ≤ 1, α2

∫
I2

|ϕ|2 dx ≤ αα1

∫
I1

|ϕ|2 dx,

and consequently, this system is well posed for α2 ≤ α1 by Theorem 2.1, and the energy is decreasing for
α2 < α1 by Proposition 3.1.

Proposition 7.10. The eigenvalues of the operator A defined in (7.16) are simple and given by λ2
k = (kπ)2

of associated eigenvector ϕk(x) =
√

2 sin(kπx), for all k ∈ N∗. Hence there exists a constant γ0 > 0 such
that the standard gap condition (6.4) holds. Moreover if (7.15) holds, then there exists γ > 0 such that
∀k ≥ 1, ‖B∗

1ϕk‖U1
≥ γ.

Proof. It is well-known that the eigenvectors of the operator A are ϕk(x) =
√

2 sin(kπx) of eigenvalue
(kπ)2, k ≥ 1 of multiplicity 1. Hence, the standard gap condition (6.4) is verified.

From the definition of B∗
1 we have

‖B∗
1ϕk‖2

U1
= α1

∫
I1
|ϕk(x)|2 dx

≥ 2α1

∫ δ+ε

δ
|sin(kπx)|2 dx = α1

[
x− sin(2kπx)

2kπ

]δ+ε

δ≥ α1

(
ε− 1

kπ

) ≥ α1
ε
2 ,

for k ≥ E( 2
επ )+1 =: kε, where E(x) is the entire part of x. This leads to the conclusion because for k ∈ {1, ..., kε},

we have ∫ δ+ε

δ

|sin(kπx)|2 dx > 0. �

Lemma 7.11. The operators A and B = (B1B2) ∈ L(U, V ′) where U = U1 × U2 satisfy assumption (4.1).

Proof. Let i ∈ {1, 2} and ϕ ∈ L2(Ii). It can be easily checked that v = (λ2 +A)−1Biϕ satisfies{
λ2v − d2v

dx2 =
√
αiϕ̃χ|Ii

v(0) = v(1) = 0.
(7.18)

As v ∈ L2(0, 1), v can be written as

v =
∞∑

k=1

ckϕk.

By replacing v in (7.18), ck must satisfy

ck =
√
αi

λ2 + λ2
k

(ϕ̃, ϕk) ,

and therefore

v =
∞∑

k=1

√
αi

λ2 + λ2
k

(ϕ̃, ϕk)ϕk.

Moreover

‖λv‖2
L2(0, 1) =

∞∑
k=1

∣∣∣∣ λ

λ2 + λ2
k

∣∣∣∣
2

αi |(ϕ̃, ϕk)|2 .

Now, we set z = λ
λ2+λ2

k
and, if λ = β + iy, with y ∈ R, then

|z|2 =
β2 + y2

(β2 − y2 + λ2
k)2 + 4β2y2

≤ C(β),
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where C(β) is a positive constant depending only on β. Indeed, if y2 ≤ β2+λ2
k

2 , then

|z|2 ≤ β2 + y2(
β2+λ2

k

2

)2 ≤ β2 + β2+λ2
k

2(
β2+λ2

k

2

)2

which is bounded uniformly in k, and if y2 ≥ β2+λ2
k

2 , then

|z|2 ≤ β2 + y2

4β2y2
,

which is a decreasing function with respect to y and thus

|z|2 ≤ β2 + β2+λ2
k

2

4β2
(

β2+λ2
k

2

) ,
which is again uniformly bounded in k. Therefore, we have

‖λv‖2
L2(0, 1) ≤ C(β)αi

∞∑
k=1

|(ϕ̃, ϕk)|2 ≤ C(β)αi ‖ϕ‖2
L2(Ii)

,

which leads to ∥∥λB∗
j v

∥∥2

L2(Ij)
≤ αj ‖λv‖2

L2(0, 1) ≤ C(β)αiαj ‖ϕ‖2
L2(Ii)

, ∀j ∈ {1, 2} ·
Consequently, the operator λ→ λB∗

j (λI +A)−1Bi is bounded on Cβ and the lemma is proved. �

Therefore, by applying Theorem 4.4, we obtain:

Proposition 7.12. If α2 < α1 and (7.15) holds, then the energy of system (7.14) decays exponentially.

7.3.2. The wave equation with distributed damping terms

Let Ω be an open bounded domain of Rn, n ≥ 1, with a boundary Γ of class C2. We assume that Γ is divided
into two parts ΓD and ΓN , i.e. Γ = ΓD ∪ ΓN , with Γ̄D ∩ Γ̄N = ∅ and ΓD �= ∅. Let

O2 ⊂ O1 ⊂ Ω

such that O1 is an open neighborhood of ΓN (i.e. ΓN ⊂ ∂O1). Moreover, we assume that x0 ∈ Rn is such that

(x− x0) · ν(x) ≤ 0 ∀x ∈ ΓD. (7.19)

We consider the following initial and boundary system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2ω
∂t2 (x, t) − Δω(x, t) + α1

∂ω
∂t (x, t)χ|O1 + α2

∂ω
∂t (x, t− τ)χ|O2 = 0 in Ω × (0, ∞),

ω(x, t) = 0 on ΓD × (0, ∞),
∂ω
∂ν (x, t) = 0 on ΓN × (0, ∞),

ω(x, 0) = ω0(x), ∂ω
∂t (x, 0) = ω1(x) in Ω,

∂ω
∂t (x, t− τ) = f0(x, t− τ) in O2 × (0, τ),

(7.20)
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where ∂ω
∂ν is the normal derivative of ω and α1, α2 > 0, τ > 0. In order to reformulate this system in the form

(1.2), we introduce H = L2(Ω) and the operator

A : D(A) → H : ϕ �→ −Δϕ (7.21)

where D(A) = {ϕ ∈ V ∩ H2(Ω): ∂ϕ
∂ν (x) = 0 on ΓN} and V = D(A

1
2 ) = {ϕ ∈ H1(Ω): ϕ = 0 on ΓD}. The

operator A is self-adjoint and positive with a compact inverse in H. We then define Ui = L2(Oi) and the
operators Bi as

Bi : Ui → H ⊂ V ′ : k �→ √
αi k̃ χ|Oi

(7.22)

where k̃ is the extension of k by zero outside Oi (which defines an element of L2(Ω)).
It is easy to verify that B∗

i (ϕ) =
√
αiϕ|Oi

for ϕ ∈ V and thus BiB
∗
i (ϕ) = αiϕ|Oi

χ|Oi
for ϕ ∈ V and i = 1, 2.

Then the system (7.20) can be rewritten in the form (1.2). Moreover

‖B∗
i ϕ‖2

Ui
= αi

∫
Oi

|ϕ|2 dx,

and therefore (2.5) is equivalent to

∃0 < α ≤ 1, α2

∫
O2

|ϕ|2 dx ≤ αα1

∫
O1

|ϕ|2 dx.

Consequently, this system is well posed for α2 ≤ α1 by Theorem 2.1, and the energy is decreasing for α2 < α1

by Proposition 3.1.
To obtain the exponential decay of system (7.20), we simply check the observability inequality (4.6) and

hypothesis (4.1), which are the aim of the two following propositions.

Proposition 7.13. There exists a time T0 such that for all times T > T0 there exists a positive constant C
(depending on T ) for which the observability inequality (4.6) holds for any regular solution of system (4.3).

Proof. This proposition is proved in [14,16]. �

Proposition 7.14. The operators A and B = (B1B2) ∈ L(U, V ′) where U = U1 ×U2 satisfy assumption (4.1).

Proof. Let i ∈ {1, 2} and ϕ ∈ L2(Oi). It can be easily checked that v = (λ2 +A)−1Biϕ satisfies

⎧⎨
⎩

λ2v − Δv =
√
αiϕ̃χ|Oi

in Ω,
v = 0 on ΓD,
∂v
∂ν = 0 on ΓN .

(7.23)

As v ∈ L2(Ω), it can be written as

v =
∞∑

k=1

ckϕk.

By replacing v in (7.23), ck must satisfy

ck =
√
αi

λ2 + λ2
k

(ϕ̃, ϕk) ,

and therefore

v =
∞∑

k=1

√
αi

λ2 + λ2
k

(ϕ̃, ϕk)ϕk.
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Moreover, by Parseval’s identity, we have

‖λv‖2
L2(Ω) =

∞∑
k=1

∣∣∣∣ λ

λ2 + λ2
k

∣∣∣∣
2

αi |(ϕ̃, ϕk)|2 .

Now, for λ = β + iy, with y ∈ R, we have checked in the previous subsection that

∣∣∣∣ λ

λ2 + λ2
k

∣∣∣∣
2

≤ C(β),

where C(β) is a positive constant depending only on β. Therefore, we have

‖λv‖2
L2(Ω) ≤ C(β)αi

∞∑
k=1

|(ϕ̃, ϕk)|2 ≤ C(β)αi ‖ϕ‖2
L2(Oi)

,

which leads to ∥∥λB∗
j v

∥∥2

L2(Oj)
≤ αj ‖λv‖2

L2(Ω) ≤ C(β)αiαj ‖ϕ‖2
L2(Oi)

, ∀j ∈ {1, 2} ·
Consequently, the operator λ→ λB∗

j (λI +A)−1Bi is bounded on Cβ and the lemma is proved. �
Therefore, by applying Theorem 4.4, we obtain:

Proposition 7.15. If α2 < α1, then the energy of system (7.20) decays exponentially.

Remark 7.16. This result is a generalization of [16] because in [16] the authors supposed that O2 = O1.

7.3.3. A beam with distributed damping terms

We consider the following initial and boundary system:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂2ω
∂t2 (x, t) + ∂4ω

∂x4 (x, t) + α1
∂ω
∂t (x, t)χ|I1 + α2

∂ω
∂t (x, t− τ)χ|I2 = 0 in (0, 1) × (0, ∞),

ω(0, t) = ω(1, t) = ∂2ω
∂x2 (0, t) = ∂2ω

∂x2 (1, t) = 0 t > 0,

ω(x, 0) = ω0(x), ∂ω
∂t (x, 0) = ω1(x) in (0, 1),

∂ω
∂t (x, t− τ) = f0(x, t− τ) in I2 × (0, τ),

(7.24)

where α1, α2 > 0, τ > 0 and where
I2 ⊂ I1 ⊂ [0, 1].

We rewrite this system in the form (1.2) by introducing H = L2(0, 1), the operator A by (7.11) and the
operators B1 and B2 by (7.17). Hence this system is well posed for α2 ≤ α1 by Theorem 2.1, and the energy is
decreasing for α2 < α1 by Proposition 3.1.

By the results of the previous subsections, we know that the standard gap condition holds and if (7.15) holds
that the eigenvector ϕk(x) =

√
2 sin(kπx) of A associated with λ2

k = k4π4 satisfies

‖B∗
1ϕk‖U1

≥ γ,

for some γ > 0.

Lemma 7.17. The operators A and B = (B1B2) ∈ L(U, V ′) where U = U1 × U2 satisfy assumption (4.1).

Proof. The proof is the same than in the previous subsection. �
Therefore, by applying Proposition 3.4 and Theorem 4.4, we obtain the

Proposition 7.18. If α2 < α1 and (7.15) holds, then the energy of system (7.24) decays exponentially.
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7.3.4. A wave equation on 1-d networks with internal damping terms

In this last subsection we consider again a wave equation on a given network R but we suppose that the
feedbacks are located in the edges. Namely with the notations from Section 7.1 we consider the system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2uj

∂t2 (x, t) − ∂2uj

∂x2 (x, t) + α
(j)
1

∂uj

∂t (x, t)χ|I(j)
1

+ α
(j)
2

∂uj

∂t (x, t− τ)χ|I(j)
2

= 0 0 < x < lj, t > 0, ∀j ∈ {1, . . . , N},
uj(v, t) = ul(v, t) = u(v, t) t > 0, ∀j, l ∈ Ev, v ∈ Vint,∑
j∈Ev

∂uj

∂nj
(v, t) = 0 t > 0, ∀v ∈ V\D,

ujv(v, t) = 0 t > 0, ∀v ∈ D,
u(t = 0) = u(0), ∂u

∂t (t = 0) = u(1),

∂uj

∂t (x, t− τ) = f0
j (x, t− τ) in I(j)

2 × (0, τ), ∀j ∈ {1, . . . , N},

(7.25)

where α(j)
i are fixed non-negative real numbers, the delay τ is positive and the intervals I(j)

i satisfy

I
(j)
2 ⊂ I

(j)
1 ⊂ ej .

As before we can rewrite this system in the form (1.2), by introducing H = L2(R), the operator A defined
by (7.2), Ui = L2(∪N

j=1I
(j)
i ) and the operators Bi for i = 1, 2 as

Bi :

⎧⎪⎨
⎪⎩

U → D(A
1
2 )′

k �→
N∑

j=1

√
α

(j)
i k̃χ|I(j)

i

(7.26)

where k̃ means the extension of k by zero outside ∪N
j=1I

(j)
i . It is easy to verify that

B∗
i (ϕ) =

N∑
j=1

√
α

(j)
i ϕ|I(j)

i

χ|I(j)
i

for ϕ ∈ D(A
1
2 ). Hence the system (7.25) can be rewritten in the form (1.2).

As before it is easy to see that the system (7.1) is well posed for α(j)
2 ≤ α

(j)
1 for all j = 1, . . . , N by

Theorem 2.1, and the energy is decreasing for α(j)
2 < α

(j)
1 for all j = 1, . . . , N by Proposition 3.1.

As mentioned before by Proposition 6.2 from [7], the generalized gap condition (6.1) holds with M = N + 1,
but in this general setting, the conditions (6.7) or (6.10) seem difficult to check. Hence, for the sake of simplicity,
if we suppose here that the standard gap condition (6.4) holds and that all eigenvalues are simple (i.e., lk = 1),
then condition (6.7) becomes

∃γ > 0, ∀k ≥ 1,
N∑

j=1

α
(j)
1

∫
I
(j)
1

ϕk(x)2 dx ≥ γ, (7.27)

while condition (6.10) becomes

∃m ∈ R∗
+, ∃γ > 0, ∀k ≥ 1,

N∑
j=1

α
(j)
1

∫
I
(j)
1

ϕk(x)2 dx ≥ γ

λ2m
k

· (7.28)



STABILIZATION OF SECOND ORDER EVOLUTION EQUATIONS 455

For instance using an argument like in Proposition 7.10, we easily see that (7.27) (resp. (7.28)) holds if (7.5)
(resp. (7.6)) holds and if ∪N

j=1I
(j)
1 contains a neighborhood of the set of control points Vc.

In the same manner, we have:

Proposition 7.19. If there exists ε > 0 and for all j ∈ {1, . . . , N}, there exists δj ∈ (0, lj) such that

[δj , δj + ε] ⊂ I
(j)
1 ∀j ∈ {1, . . . , N},

then (7.27) holds.

Proof. For any k ∈ N∗, let ϕk be the eigenvector of A associated with the eigenvalue λ2
k. Then its restriction ϕk,j

to the edge ej can be written in the form

ϕk,j(x) = ck,j cos(λkx) + dk,j sin(λkx) ∀x ∈ (0, lj),

for some real numbers ck,j and dk,j . Hence the normalization of ϕk yields

1 =
N∑

j=1

∫ lj

0

|ϕk,j(x)|2 dx ≤ 2(max
j
lj)

N∑
j=1

(c2k,j + d2
k,j). (7.29)

On the other hand by the above expression of ϕk,j and direct calculations, we see that

∫
I
(j)
1

ϕk(x)2 dx ≥
∫ δj+ε

δj

ϕk(x)2 dx

≥ (c2k,j + d2
k,j)

(
ε

2
− 1

2λk

)
− |ck,jdk,j |

λk

≥ (c2k,j + d2
k,j)

(
ε

2
− 1
λk

)
·

Therefore for k large enough such that
ε

2
− 1
λk

≥ ε

4
,

which is equivalent to k ≥ kε, for some kε ∈ N∗, we deduce that

∫
I
(j)
1

ϕk(x)2 dx ≥ ε

4
(c2k,j + d2

k,j).

By summing this estimate on j and using the normalization estimate (7.29), we obtain (7.27) for k ≥ kε. The
proof is complete since for k ≤ kε,

N∑
j=1

α
(j)
1

∫
I
(j)
1

ϕk(x)2 dx > 0. �

The analysis of the condition (7.27) in some particular cases reveals that the condition of the above proposition
is far from being optimal but in its full generality we cannot easily obtain a weaker condition.

As in the previous subsection one easily shows (see the proof of Lem. 7.11) that the operators A and B =
(B1B2) ∈ L(U, V ′) where U = U1 × U2 satisfy the assumption (4.1).
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In conclusion applying either Theorem 4.4 or Theorem 5.3, we obtain:

Proposition 7.20. Assume that α(j)
2 < α

(j)
1 for all j = 1, . . . , N and that the standard gap condition (6.4)

holds and that all eigenvalues are simple (i.e., lk = 1). Then
(i) The energy of system (7.25) decays exponentially if (7.27) holds.
(ii) The energy of system (7.25) decays like t−

1
m if (7.28) holds.
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