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OPTIMAL CONTROL OF THE PRIMITIVE EQUATIONS OF THE OCEAN
WITH LAGRANGIAN OBSERVATIONS ∗

Maëlle Nodet1

Abstract. We consider an optimal control problem for the three-dimensional non-linear Primitive
Equations of the ocean in a vertically bounded and horizontally periodic domain. We aim to reconstruct
the initial state of the ocean from Lagrangian observations. This inverse problem is formulated as an
optimal control problem which consists in minimizing a cost function representing the least square error
between Lagrangian observations and their model counterpart, plus a regularization term. This paper
proves the existence of an optimal control for the regularized problem. To this end, we also prove new
energy estimates for the Primitive Equations, thanks to well-chosen functional spaces, which distinguish
the vertical dimension from the horizontal ones. We illustrate the result with a numerical experiment.
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Introduction

The ocean plays a major role in governing the earth climate. Physical oceanographers and climatologists
work toward a better knowledge of the ocean properties (currents, temperature, salinity, marine biology, etc.).
Some mathematical tools are involved in this progress, in particular Data Assimilation (DA) methods. Data
Assimilation covers all mathematical methods which allow to blend optimally all sources of information about the
ocean (measures, model equations, errors statistics) in order to improve ocean modeling, forecasts or climatology.
We will focus on one particular application of DA, which is to reconstruct the initial state of the ocean from
the observations. As the ocean system is chaotic, it shows high sensitivity to initial condition, and therefore its
initial state should be computed accurately in order to produce high-quality forecasts.

One class of data assimilation methods, called Variational Data Assimilation [5,6] (4D-Var), is based on
optimal control theory [7]: the inverse problem of reconstructing the initial state of the ocean is formulated as
an optimal control problem. This problem consists in minimizing a cost function which represents the misfit
between the observations and their model counterpart. The 4D-Var method aims to compute numerically the
minimum of the cost function, using gradient descent methods, in which the gradient is computed thanks to
the adjoint model.

This paper deals with a particular problem of data assimilation for the ocean, namely the assimilation of
Lagrangian data. The ocean is mainly observed at the surface, thanks to observing satellites. In-situ data
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are sparsely sampled in time and space, and it is therefore important to make the most of their information.
Lagrangian data consist of positions of floats drifting at depth (around one thousand meters deep), they give
information about in-depth currents. The problem of variational assimilation of Lagrangian data has been
studied numerically in [11].

In this paper we investigate the theoretical justification of this problem. We prove the existence of an optimal
control for Lagrangian observations for the Primitive Equations (PEs) of the ocean. To this end, we had to
establish local existence and unicity of strong solutions for the PEs, allowing existence of Lagrangian trajectories,
so that the cost function is well defined. The problem of local existence and unicity of strong solution for the
PEs has been studied by Lions, Temam, Wang and Ziane [9,14]. Titi and Cao [15] as well as Kukavica and
Ziane [4] also proved the global existence of strong solutions. However, we consider here Dirichlet boundary
conditions at the top and bottom of the ocean, and in that case the previous results and methods do not apply,
as the surface pressure remains a problematic term in the estimates. Due to the dissymmetry between the
vertical dimension and the horizontal ones in our domain (vertically bounded and horizontally periodic) and
also in the PEs (as the equation for the vertical velocity is degenerated, contrary to Navier-Stokes equations),
we had to introduce new functional spaces. In these spaces we successively prove new energy estimates for the
linear PEs and existence of strong solutions for the non-linear PEs.

This paper is organized as follows. In Section 1 we state the equations, the functional spaces, the cost
function, the optimal control problem and the main results of the article. In Section 2 we prove new energy
estimates for the linear PEs and local existence and unicity of the non-linear PEs. In Section 3 we prove the
existence of an optimal control. Finally, in Section 4 we present a numerical illustration of this problem.

1. Statement of the problem and main results

1.1. The Primitive Equations of the ocean

We consider the Primitive Equations of the ocean in a three dimensional domain (see [9,14]):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tu − νΔu + (U.∇2)u + w∂zu − αv + ∂xp = 0 in Ω × (0, T )
∂tv − νΔv + (U.∇2)v + w∂zv + αu + ∂yp = 0
∂zp − βθ = 0
∂tθ − νΔθ + (U.∇2)θ + w∂zθ + γw = 0 in Ω × (0, T )

w(x, y, z) = −
∫ z

0 ∂xu(x, y, z′) + ∂yv(x, y, z′) dz′ in Ω × (0, T )

U(t = 0) = U0, θ(t = 0) = θ0 in Ω

(1.1)

with

• Ω = T
2×(0, a) the physical domain, with T

2 = (R/2πZ)2 the bidimensional torus, such that the domain
is periodic in the horizontal directions x and y, vertically bounded in z, with fixed depth;

• (0, T ) the time interval;
• U = (u, v) the horizontal velocity vector, w the vertical velocity, θ the temperature and p the pressure;
• U0 = (u0, v0) and θ0 the initial conditions;
• ∇2 = (∂x, ∂y) the horizontal 2D gradient operator, (∇2.) the horizontal divergence operator, ∇ =

(∂x, ∂y, ∂z) the 3D gradient operator, Δ = ∂xx + ∂yy + ∂zz the 3D Laplacian;
• α, ν, γ, β physical constants.

The boundary conditions are the following:

⎧⎪⎨
⎪⎩

u, v, θ are periodic in x, y

u = 0, v = 0, θ = 0 on T
2 × {z = 0, z = a} × (0, T )∫ a

z=0 ∂xu + ∂yv dz = 0 on T
2 × (0, T ).

(1.2)
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These equations and boundary conditions arise from the three-dimensional Navier-Stokes equations, with the
following modifications:

• the density ρ is a linear function of the temperature θ;
• the Boussinesq hypothesis states that the density ρ does not vary except in the buoyancy term (βθ term

in equation ∂zp − βθ = 0);
• the hydrostatic hypothesis states that the equation governing the vertical velocity is degenerated into

equation ∂zp − βθ = 0;
• non-homogeneous Dirichlet conditions are imposed on θ on z = 0 and z = a, and then a stationary

solution U = 0, p and θ depending only on z is subtracted, introducing a term w∂zθ in the equation
governing θ and homogeneous Dirichlet conditions for θ;

• the incompressibility equation ∂xu + ∂yv + ∂zw is re-written to obtain w explicitly from u and v,
including the condition w(z = 0) = 0;

• the other boundary condition for w, w(z = a) = 0 is rewritten using only u and v.

Remark 1.1. The Dirichlet boundary condition express a no-slip condition between air and sea, which is
physically realistic. As stated by [14], this condition requires an exact resolution of the boundary layer, this is
why it is often replaced by the Robin condition ν ∂u

∂z + u = 0 and ν ∂v
∂z + v = 0 at the top of the ocean.

We denote by X(t) = (u(t), v(t), θ(t)) the state vector of our system, and by X0 = (u0, v0, θ0) the initial
state, which will be our control.

We will focus on smooth solutions of the Primitives Equations (PEs), so that the cost function (involving
Lagrangian trajectories) can be defined. To this end we first define the following functional spaces, for m ∈ N:

L2
zH

m
xy =

{
u ∈ L2(Ω) periodic in x, y, ∂α

x,yu ∈ L2(Ω), ∀α ∈ N
2, |α| ≤ m

}
Um+1 =

{
X = (u, v, θ) ∈ (L2

zH
m
xy)

3, periodic in x, y,

X = 0 on T
2 × {z = 0, z = a},∫ a

z=0
∂xu + ∂yv dz = 0 on T

2

∇X = (∇u,∇v,∇θ) ∈ ((L2
zH

m
xy)3)3

}
Hm+1 =

{
u ∈ L2

zH
m
xy, periodic in x, y,

u = 0 on T
2 × {z = 0, z = a},

∇u ∈ (L2
zH

m
xy)

3
}

associated to the following scalar product and norms:

(u1, u2)L2
zHm

xy
=
∑

|α|≤m

∫
Ω

∂α
x,yu1∂

α
x,yu2 dxdy dz

(∇u1,∇u2)(L2
zHm

xy)3 =
∑

|α|≤m

∫
Ω

∂α
x,y∇u1.∂

α
x,y∇u2 dxdy dz

(X1, X2)Um+1 = (u1, u2)L2
zHm

xy
+ (∇u1,∇u2)(L2

zHm
xy)3

+ (v1, v2)L2
zHm

xy
+ (∇v1,∇v2)(L2

zHm
xy)3

+ K(θ1, θ2)L2
zHm

xy
+ K(∇θ1,∇θ2)(L2

zHm
xy)3

‖u‖2
L2

zHm
xy

= (u, u)L2
zHm

xy

‖X‖2
Um+1 = (X, X)Um+1

(K is a “large” constant which will be set later).
We define on (Hm+1)3 the same scalar product and norm as on Um+1.
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In this framework, we have:

Theorem 1.2. Let m ≥ 2 be an integer and X0 = (u0, v0, θ0) ∈ Um+1. If K is large enough, there exists t∗ > 0
with t∗ = t∗(α, β, γ, ν, ‖X0‖Um+1) and there exists a unique solution X(t) = (u(t), v(t), θ(t)) of the PEs (1.1)
with boundary conditions (1.2) such that

X ∈ C([0, t∗];Um+1), ∂tX ∈ L2(0, t∗; L2
zH

m
xy).

Moreover, we have:

‖X(t)‖2
Um+1 +

1
ν

∫ t

0

‖∂tX(s)‖2
2,m ds ≤ M

δ
‖X0‖2

Um+1 (1.3)

for all t ∈ [0, t∗], where δ depends on t∗.

This result is proven in Section 2.

1.2. The Lagrangian observations and the cost function

We can assume, without loss of generality, that there is only one drifting float, and that its position is
observed at only one given time t1. Its position ξ(t) = (ξ1(t), ξ2(t)) in the plane z = z0 is solution of the
following differential equation: ⎧⎨

⎩
dξ

dt
= U(t, ξ1(t), ξ2(t), z0)

ξ(0) = ξ0.
(1.4)

The following proposition is an easy consequence of Theorem 1.2:

Proposition 1.3. Under the hypotheses of Theorem 1.2, the unique solution X of the PEs (1.1) and (1.2) is
continuous in time and in z, Lipschitz in (x, y). Moreover, for all ξ0 ∈ T 2 and z0 ∈ [0, a], there exists a unique
Lagrangian trajectory, solution of equation (1.4), associated to X, ξ0 and z0.

The observation operator is then well-defined as follows:

G(t1; X0) = ξ(t1) (1.5)

where ξ is defined by equation (1.4) where the velocity field U = (u, v) is solution of the PEs (1.1) and (1.2)
initialized with X0.

Remark 1.4. Contrary to the classical theory of J.-L. Lions [7], the observation operator is non linear; more-
over it is defined as a function of either the initial state X0, or as a function of the complete velocity field
{U(t), t ∈ [0, t1]}, and not only U(t1).

We then define the following cost function:

J (X0) = 1
2‖ξ(t1) − d‖2 + ω

2 ‖X0‖2
Um+1

= J o(X0) + ωJ b(X0)
(1.6)

with:
• J o the observation term of the cost function, J b the background term;
• d = (d1, d2) ∈ R

2 the observation;
• m an integer, m ≥ 2;
• ω a positive constant;
• ‖.‖ the Euclidean norm in the 2D horizontal plane z = z0.

Remark 1.5. The positive constant ω is very important numerically, as it measures the weight of the back-
ground term with respect to the observation term in the cost function, and it will therefore greatly influence
the numerical result. However it is not important for the theoretical work, thus in the sequel we shall assume,
without loss of generality, that ω = 1.
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1.3. Statement of the problem and main result

The optimal control problem associated to the observation of Lagrangian data is the following:

Problem 1.6. Let d ∈ R
2 be an observation. We look for an optimal control X∗

0 ∈ Um+1 solution of the
following minimization problem:

J (X∗
0 ) = inf

X0∈Um+1
J (X0)

where the cost function is defined by (1.6), the state equation by (1.1,1.2) and the observations by (1.4).

The main result of this paper is:

Theorem 1.7. There exists an optimal control X∗
0 ∈ Um+1 solution of Problem 1.6.

This result is proven in Section 3.

2. Existence of strong solutions for the Primitive Equations of the ocean

In this section we prove Theorem 1.2 in three steps: first we prove energy estimates for the linear PEs, then
we prove estimates for the non linear terms of (1.1) and then we prove Theorem 1.2.

2.1. Energy estimates for the linear Primitive Equations

We consider the following linear Primitive Equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu − νΔu − αv + ∂xp = F1 in Ω × (0, T )
∂tv − νΔv + αu + ∂yp = F2

∂zp − βθ = 0
∂tθ − νΔθ + γw = F3 in Ω × (0, T )

w(x, y, z) = −
∫ z

0
∂xu(x, y, z′) + ∂yv(x, y, z′) dz′ in Ω × (0, T )

U(t = 0) = U0, θ(t = 0) = θ0 in Ω

(2.1)

with the same notations as in Section 1.1 and boundary conditions (1.2).
In the sequel we will use the following notations:

∫∫
f :=

∫ T

0

∫
Ω

f(t, x, y, z) dxdy dz dt

‖f‖ := ‖f‖L2(Ω)

‖f‖2,m := ‖f‖L2
zHm

xy

‖f‖m := ‖f‖Hm
xy

‖(f1, f2)‖2,m := ‖(f1, f2)‖(L2
zHm

xy)2

‖(f1, f2, f3)‖2,m := ‖(f1, f2, f3)‖(L2
zHm

xy)3 .

The following proposition holds true:

Proposition 2.1. For all K large enough, for all T > 0, there exist constants C1(a, ν, K, γ, β), C2(K, ν),
C3(a, ν) and C4(ν) such that, for all X0 ∈ Um+1, F ∈ L2(0, T ; L2

zH
m
xy), the unique solution X(t) of the linear

PEs (2.1) satisfies:

X(t) ∈ C([0, T ],Um+1).
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Moreover, the following inequality holds true:

‖X(t)‖2
2,m + ‖∇X(t)‖2

2,m +
1
ν

∫ t

0

‖∂tX(s)‖2
2,m ds ≤ eC1t

(
C2‖X0‖2

2,m + C3‖∇X0‖2
2,m + C4

∫ T

0

‖F (s)‖2
2,m ds

)

(2.2)
for all t ∈ [0, T ].

Proof. Classical variational methods (see for example [9,14]) prove that for X0 given in Um+1 and
F ∈ L2(0, T ; L2

zH
m
xy), there exists X(t) at least in L2(0, T ;V) ∩ C([0, T ];H), where V and H are classical

spaces (see [2,3,13]) defined as follows:

Definition 2.2. Let

E1 = {U = (u, v) ∈ C∞(Ω)2, u, v periodic in x, y, u = 0, v = 0 on T
2 × {z = 0, z = a}∫ a

0 ∂xu(x, y, z′) + ∂yv(x, y, z′) dz′ = 0, ∀(x, y) ∈ T
2}

E2 = {θ ∈ C∞(Ω), θ periodic in x, y, θ = 0 on T
2 × {z = 0, z = a}}·

Then H1 (respectively H2) is defined to be the closure of E1 in L2(Ω)2 (resp. L2(Ω)), and V1 (resp. V2) is the
closure of E1 (resp. E2) in H1(Ω)2 (resp. H1(Ω)), and finally H = H1 ×H2, V = V1 × V2.

Thus it suffices to prove (2.2). To this end, we successively state four energy estimates: first an estimate of
‖X(t)‖L2

xyz
and similarly of ‖X(t)‖L2

zHm
xy

, then an estimate of ‖∇X(t)‖L2
xyz

and similarly of ‖∇X(t)‖L2
zHm

xy
.

To obtain energy estimates for ‖X(t)‖L2
xyz

, we multiply equations (2.1) by u, v, w, Kθ and we integrate in
space an time. Thus we have:

T1 + T2 + T3 + T4 + T5 = T6

T1 =
∫∫

∂tuu + ∂tvv + K∂tθθ T2 =
∫∫

−νΔuu − νΔvv − νKΔθθ

T3 =
∫∫

−αvu + αuv T4 =
∫∫

−βθw + Kγwθ

T5 =
∫∫

∂xpu + ∂ypv + ∂zpw T6 =
∫∫

F1u + F2v + KF3θ.

(2.3)

We integrate by parts using conditions (1.2) and we get:

T1 = 1
2

(
‖u(t)‖2 + ‖v(t)‖2 + K‖θ(t)‖2 − ‖u0‖2 − ‖v0‖2 − ‖θ0‖2

)
= 1

2

(
‖X(t)‖2 − ‖X0‖2

)
T2 = ν

∫ t

0
‖∇u(s)‖2 + ‖∇v(s)‖2 + K‖∇θ(s)‖2 ds

= ν
∫ t

0 ‖∇X(s)‖2

T3 = 0

T5 = −
∫∫

p(∂xu + ∂yv + ∂zw) +
∫ t

0

∫
T2 p(w|z=1 − w|z=0) dxdy dt

= 0.

(2.4)

Then (2.3) and (2.4) give:

‖X(t)‖2 + 2ν

∫ t

0

‖∇X(s)‖2 = ‖X0‖2 + 2
∫∫

(F1u + F2v + KF3θ) − 2(Kγ − β)
∫∫

wθ. (2.5)

Then we give a bound of the right hand side of equality (2.5). First we establish the following useful inequality
for ‖w‖:

‖w‖2 =
∫
Ω |
∫ z

0 ∂xu + ∂yv dz′|2 dxdy dz

≤
∫
Ω 2z

∫ z

0 |∂xu|2 + |∂yv|2 dz′ dxdy dz

≤ a2(‖∂xu‖2 + ‖∂yv‖2).
(2.6)
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Thanks to (2.6) we have:

2
∫∫

(F1u + F2v + KF3θ) ≤
∫ t

0
‖F1(s)‖2 + ‖F2(s)‖2 + K‖F3(s)‖2

+ ‖u(s)‖2 + ‖v(s)‖2 + K‖θ(s)‖2 ds

=
∫ t

0 ‖F (s)‖2 + ‖X(s)‖2 ds

−2(Kγ − β)
∫∫

wθ ≤ |Kγ − β|
∫ t

0
(‖w‖2 + ‖θ‖2)

≤ |Kγ − β|
∫ t

0 a2‖∂xu‖2 + a2‖∂yv‖2 + ‖θ‖2 ds.

(2.7)

Then (2.5) and (2.7) lead to:

‖X(t)‖2 + 2ν
∫ t

0 ‖∇X(s)‖2 ≤ ‖X0‖2 +
∫ t

0 ‖F (s)‖2 +
∫ t

0 ‖X(s)‖2 ds

+
∫ t

0
‖∂zu‖2 + ‖∂zv‖2 ds

+ |Kγ − β|
∫ t

0 a2‖∂xu‖2 + a2‖∂yv‖2 + ‖θ‖2 ds

≤ ‖X0‖2 +
∫ t

0 ‖F (s)‖2 +
∫ t

0 ‖U(s)‖2

+ (K + |Kγ − β|)‖θ(s)‖2 ds

+
∫ t

0
max(1, a2|Kγ − β|)‖∇U(s)‖2 ds.

We proceed similarly to obtain a bound on ‖X(t)‖L2
zHm

xy
. First we note that if u, v, w, θ and p satisfy

equation (2.1), then for all α ∈ N
2, ∂α

xyu, ∂α
xyv, ∂α

xyw, ∂α
xyθ and ∂α

xyp satisfy the same equation (where Fi is
replaced by ∂α

xyFi and X0 by ∂α
xyX0) and the same boundary conditions. Therefore we can apply the same

calculations and obtain the following inequality:

‖X(t)‖2
2,m + 2ν

∫ t

0 ‖∇X(s)‖2
2,m ≤ ‖X0‖2

2,m +
∫ t

0 ‖F (s)‖2
2,m

+
∫ t

0
‖U(s)‖2

2,m + (K + |Kγ − β|)‖θ(s)‖2
2,m ds

+
∫ t

0 max(1, a2|Kγ − β|)‖∇U(s)‖2
2,m ds.

(2.8)

To establish the second type of estimates, we then multiply the equation by ∂tu, ∂tv, ∂tw and K∂tθ and we
integrate over Ω × (0, t):

T1 + T2 + T3 + T4 + T5 = T6

T1 =
∫∫

∂tu∂tu + ∂tv∂tv + K∂tθ∂tθ

T2 =
∫∫

−νΔu∂tu − νΔv∂tv − νKΔθ∂tθ

T3 =
∫∫

−αv∂tu + αu∂tv

T4 =
∫∫

−βθ∂tw + Kγw∂tθ

T5 =
∫∫

∂xp∂tu + ∂yp∂tv + ∂zp∂tw

T6 =
∫∫

F1∂tu + F2∂tv + KF3∂tθ.

Using integration by parts and boundary conditions (1.2) we get:

T1 =
∫ t

0 ‖∂tu(s)‖2 + ‖∂tv(s)‖2 + K‖∂tu(s)‖2 ds

=
∫ t

0
‖∂tX(s)‖2 ds

T2 = ν
2‖∇X(t)‖2 − ν

2‖∇X0‖2

T4 =
∫∫

(Kγ + β)w∂tθ +
∫
Ω

(
θ0w0 − θ(t)w(t)

)
dxdy dz

T5 = 0.
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Thus:
2
∫ t

0 ‖∂tX(s)‖2 ds + ν‖∇X(t)‖2 = ν‖∇X0‖2 + 2
∫∫

αv∂tu − αu∂tv

− 2
∫∫

(Kγ + β)w∂tθ + 2
∫
Ω(θ(t)w(t) − θ0w0) dxdy dz

+ 2
∫∫

F1∂tu + F2∂tv + KF3∂tθ.

In order to get a bound on the right hand side we use the following inequality:

xy ≤ ε

2
x2 +

1
2ε

y2 ∀x, y ∈ R, ∀ε > 0.

Thus we obtain, for all positive real numbers εi, 2 ≤ i ≤ 5:

2
∫∫

αv∂tu − αu∂tv ≤ α
∫ t

0 (ε2‖∂tU(s)‖2 + 1
ε2
‖U(s)‖2) ds

−2
∫∫

(Kγ + β)w∂tθ ≤ (Kγ + β)
∫ t

0 ε3‖∂tθ(s)‖2 ds

+ (Kγ + β)
∫ t

0
a2

ε3
(‖∂xu(s)‖2 + ‖∂yv(s)‖2) ds

2
∫
Ω
(θ(t)w(t) − θ0w0) dxdy dz ≤ a2ε4(‖∂xu(t)‖2 + ‖∂yv(t)‖2) + 1

ε4
‖θ(t)‖2

+ ‖θ0‖2 + a2‖∂xu0‖2 + a2‖∂yv0‖2

2
∫∫

F1∂tu + F2∂tv + KF3∂tθ ≤
∫ t

0
( 1

ε5
‖F (s)‖2 + ε5‖∂tX(s)‖2) ds.

And finally we get:

(ν − a2ε4)‖∇U(t)‖2 + Kν‖∇θ(t)‖2

+
∫ t

0
(2 − αε2 − ε5)‖∂tU(s)‖2 − 1

ε4
‖θ(t)‖2

+ (2K − (Kγ + β)ε3 − Kε5)‖∂tθ(s)‖2 ds ≤ (ν + a2)‖∇U0‖2 + Kν‖∇θ0‖2 + ‖θ0‖2

+ (Kγ + β)
∫ t

0
a2

ε3
‖∇U(s)‖2 ds + α

∫ t

0
1
ε2
‖U(s)‖2 ds

+
∫ t

0
1
ε5
‖F (s)‖2 ds.

As previously we obtain the same result for the derivative in x and y:

(ν − a2ε4)‖∇U(t)‖2
2,m + Kν‖∇θ(t)‖2

2,m

− 1
ε4
‖θ(t)‖2

2,m +
∫ t

0 (2 − αε2 − ε5)‖∂tU(s)‖2
2,m

+ (2K − (Kγ + β)ε3 − Kε5)‖∂tθ(s)‖2
2,m ds ≤ (ν + a2)‖∇U0‖2

2,m + Kν‖∇θ0‖2
2,m + ‖θ0‖2

2,m

+ (Kγ + β)
∫ t

0
a2

ε3
‖∇U(s)‖2

2,m ds

+ α
∫ t

0
1
ε2
‖U(s)‖2

2,m ds +
∫ t

0
1
ε5
‖F (s)‖2

2,m ds.

The εi are chosen as follows:

ε2 =
1
α

, ε3 =
1
γ

, ε4 =
ν

2a2
, ε5 =

1
2

and thus we get:

ν
2‖∇U(t)‖2

2,m + Kν‖∇θ(t)‖2
2,m

− 2a2

ν ‖θ(t)‖2
2,m +

∫ t

0
1
2‖∂tU(s)‖2

2,m

+ (K
2 − γβ)‖∂tθ(s)‖2

2,m ds ≤ (ν + a2)‖∇U0‖2
2,m + Kν‖∇θ0‖2

2,m + ‖θ0‖2
2,m

+
∫ t

0
a2γ(Kγ + β)‖∇U(s)‖2

2,m ds

+
∫ t

0 α2‖U(s)‖2
2,m ds +

∫ t

0 2‖F (s)‖2
2,m ds.

(2.9)
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We then add equation (2.8) and equation (2.9) multiplied by 2
ν to obtain:

‖U(t)‖2
2,m + (K − 4a2

ν2 )‖θ(t)‖2
2,m + ‖∇U(t)‖2

2,m + 2K‖∇θ(t)‖2
2,m

+
∫ t

0
1
ν ‖∂tU(s)‖2

2,m + (K
2 − γβ) 2

ν ‖∂tθ(s)‖2
2,m ds +

∫ t

0
2ν‖∇U(s)‖2

2,m + 2νK‖∇θ(s)‖2
2,m ds

≤ ‖U0‖2
2,m + (K + 2

ν )‖θ0‖2
2,m + (2 + 2a2

ν )‖∇U0‖2
2,m + 2K‖∇θ0‖2

2,m

+
∫ t

0
(1 + 4

ν )‖F (s)‖2
2,m ds

∫ t

0
(1 + 2α2

ν )‖U(s)‖2
2,m ds +

∫ t

0
(K + |Kγ − β|)‖θ(s)‖2

2,m ds

+
∫ t

0 (max(1, a2|Kγ − β|) + 2γa2

ν (Kγ + β))‖∇U(s)‖2
2,m ds.

For K ≥ 2 max(4a2

ν2 , 2γβ), for all T and for all t ∈ [0, T ] we have:

‖X(t)‖2
2,m + ‖∇X(t)‖2

2,m +
1
ν

∫ t

0

‖∂tX(s)‖2
2,m ds ≤ C5 + C1

∫ t

0

‖X(s)‖2
2,m + ‖∇X(s)‖2

2,m ds

with:
C5 = 2‖U0‖2

2,m + (2K + 4
ν )‖θ0‖2

2,m + (4 + 4a2

ν )‖∇U0‖2
2,m + 4K‖∇θ0‖2

2,m

+
∫ T

0
(2 + 8

ν )‖F (s)‖2
2,m ds

C1 = 2 max
(
1 + 2α2

ν , 1+|γ−β/K|
1+2α2/ν , max(1, a2|Kγ − β|) + 2γa2

ν (Kγ + β)
)
.

With Gronwall lemma we get:

C5 + C1

∫ t

0

‖X(s)‖2
2,m + ‖∇X(s)‖2

2,m ds ≤ C5 eC1t

thus
‖X(t)‖2

2,m + ‖∇X(t)‖2
2,m + 1

ν

∫ t

0
‖∂tX(s)‖2

2,m ds

≤ eC1t
(
C2‖X0‖2

2,m + C3‖∇X0‖2
2,m + C4

∫ T

0 ‖F (s)‖2
2,m ds

)
with

C2 = 2 +
4

Kν
, C3 = 4 +

4a2

ν
and C4 = 2 +

8
ν
· �

2.2. Estimation of the non linear terms

We will now estimate the non linear terms of equation (1.1). The following proposition holds true:

Proposition 2.3. Let m ≥ 2 be an integer, X1 and X2 elements of Um+1. Let us define:

F1 = (U1.∇2)u2 + w1∂zu2

F2 = (U1.∇2)v2 + w1∂zv2

F3 = (U1.∇2)θ2 + w1∂zθ2

then we have, for all i ∈ {1, 2, 3}:

‖Fi‖2
2,m ≤ C (‖X1‖2,m + a2‖∇X1‖2,m) ‖∇X1‖2,m ‖∇X2‖2

2,m

where C is a constant (independent of a) of order 1.
If X1 = X2 then we have, for all i ∈ {1, 2, 3}:

‖Fi‖2
2,m ≤ C5

(
‖X1‖2

2,m + ‖∇X1‖2
2,m

)2
where C5 = C5(a) is a constant such that C5 = C′

5 + C′′
5 a2 (where C′

5 and C′′
5 are constants of order 1).
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Proof. First let us address the term u1∂xu2:

‖u1∂xu2‖2
2,m =

∫ a

z=0
‖u1(z)∂xu2(z)‖2

m dz

≤
∫ a

z=0
‖u1(z)‖2

m‖∂xu2(z)‖2
m dz

(2.10)

because Hm
xy is an algebra for m ≥ 2.

We estimate now supz∈(0,a) ‖u1(z)‖2
m. We first write an estimation in space dimension 1 for ϕ(z) ∈ H1(0, a)

with ϕ(0) = 0:
|ϕ(z)|2 =

∫ z

0
∂z |ϕ(z′)|2 dz′

=
∫ z

0
2ϕ(z′)∂zϕ(z′) dz′

≤ 2
( ∫ a

0 |ϕ(z)|2 dz
∫ a

0 |∂zϕ(z)|2 dz
)1/2

.

Similarly we can write an estimation for ‖u1(z)‖2
m:

‖u1(z)‖2
m ≤ 2‖u1‖2,m‖∂zu1‖2,m. (2.11)

Therefore (2.10) and (2.11) give us:

‖u1∂xu2‖2
2,m ≤ 2‖u1‖2,m‖∂zu1‖2,m

∫ a

z=0
‖∂xu2(z)‖2

m dz

≤ 2‖X1‖2,m‖∇X1‖2,m‖∇X2‖2
2,m.

And if u1 = u2 we have:
‖u1∂xu1‖2

2,m ≤ 2‖X1‖2,m‖∇X1‖3
2,m

≤
(
‖X1‖2

2,m + ‖∇X1‖2
2,m

)2
.

We establish the same inequalities for the terms u1∂xu2, u1∂xθ2, v1∂yu1, v1∂yv2 and v1∂yθ2.
Let us now focus on w1∂zu2. As in (2.10), we have:

‖w1∂zu2‖2
2,m ≤

∫ a

z=0

‖w1(z)‖2
m‖∂zu2(z)‖2

m dz.

We have also, as in (2.11):
‖w1(z)‖2

m ≤ 2‖w1‖2,m‖∂zw1‖2,m

thus:
‖w1∂zu2‖2

2,m ≤ 2‖w1‖2,m‖∂zw1‖2,m‖∂zu2‖2
2,m

≤ C‖w1‖2,m‖∇X1‖2,m‖∇X2‖2
2,m.

Then we can bound ‖w1‖2,m as in (2.6):

‖w1‖2
2,m =

∑
|α|≤m

∫ a

0
|∂α

xyw1|2 dz

=
∑

|α|≤m

∫ a

0
|∂α

xy

∫ z

0
∂xu1(z′) + ∂yv1(z′) dz′|2 dz

≤
∑

|α|≤m

∫ a

0 z dz
∫ a

0 2|∂α
xy∂xu1(z)|2 + 2|∂α

xy∂yv1(z)|2 dz

≤ a2
(
‖∂xu1‖2

2,m + ‖∂yv1‖2
2,m

)
≤ a2‖∇X1‖2

2,m

therefore we get:
‖w1∂zu2‖2

2,m ≤ Ca2‖∇X1‖2
2,m‖∇X2‖2

2,m.

And if u1 = u2 we have:

‖w1∂zu1‖2
2,m ≤ Ca2‖∇X1‖4

2,m ≤ Ca2
(
‖X1‖2

2,m + ‖∇X1‖2
2,m

)2
.

We have the same estimates for w1∂zv2 et w1∂zθ2, and that concludes the proof of Proposition 2.3. �
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2.3. End of the proof

We will now construct a solution of the non linear equation (1.1). Let us first introduce some notations.
Let L be an operator defined as follows:

L(X, p0) =

⎡
⎢⎣

∂tu − Δu − αv + ∂xp0 +
∫ z

0 β∂xθ dz

∂tv − Δv + αu + ∂yp0 +
∫ z

0
β∂yθ dz

∂tθ − Δθ + γw

⎤
⎥⎦.

And let us define F (X1, X2) by:

F (X1, X2) =

⎡
⎣−(U1.∇2)u2 − w1∂zu2

−(U1.∇2)v2 − w1∂zv2

−(U1.∇2)θ2 − w1∂zθ2

⎤
⎦.

We now define N , which is the square of a norm:

N(X(t)) = ‖X(t)‖2
Um+1 +

∫ t

0

‖∂tX(s)‖2
2,m ds.

We are then given an initial condition X0 ∈ Um+1. Let us define the sequence (Xn, pn
0 ) in the following way:

X0(t, x, y, z) = X0(x, y, z), ∀(t, x, y, z) ∈ R+ × Ω{
L(Xn+1, pn+1

0 ) = F (Xn, Xn) pour n ≥ 0
Xn+1|t=0 = X0.

We now verify that the sequence (Xn, pn
0 ) is well defined for all t and that N(Xn(t)) is finite for all n and all t:

we denote by N0 the value N(X0) = ‖X0‖2
Um+1. Let us assume that Xn is well defined with a finite norm N1/2

for all t. Thanks to Propositions 2.1 and 2.3, we get existence and unicity of Xn+1 and moreover:

N(Xn+1(t)) ≤ C0 eC1t(N0 +
∫ t

0
‖F (Xn, Xn)‖2

2,m ds)

≤ C0 eC1t(N0 + C5

∫ t

0 ‖Xn‖4
Um+1 ds)

≤ C0 eC1t(N0 + C5 t sups∈[0,t] N(Xn(s))2)
≤ C6 eC1t(N0 + t sups∈[0,t] N(Xn(s))2)
< ∞.

Now, let us choose t∗ ≤ (4 C2
6 e2C1t∗N0)−1, we then have by recurrence

sup
t∈[0,t∗]

N(Xn(t)) ≤ 2 C6 eC1t∗N0.

In fact, we have N0 ≤ 2 C6 eC1t∗N0 (after increasing C6 if necessary) and then by recurrence:

supt∈[0,t∗] N(Xn+1(t)) ≤ C6 eC1t∗(N0 + t∗ sups∈[0,t] N(Xn(s))2)

≤ C6 eC1t∗(N0 + t∗(2C6 eC1t∗N0)2)
≤ 2 C6 eC1t∗N0.

The sequence (Xn) is therefore bounded for N uniformly in t ∈ [0, t∗].
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To pass to the limit, we write the equation verified by Xn+1 − Xn:

L(Xn+1 − Xn) = F (Xn, Xn) − F (Xn−1, Xn−1), Xn+1 − Xn|t=0 = 0.

Thanks to Propositions 2.1 and 2.3 we obtain:

supt∈[0,t∗] N(Xn+1 − Xn) ≤ C
∫ t∗

0
‖F (Xn, Xn) − F (Xn−1, Xn−1)‖2

2,m dt

= C
∫ t∗

0
‖ 1

2F (Xn − Xn−1, Xn + Xn−1)
+ 1

2F (Xn + Xn−1, Xn − Xn−1)‖2
2,m dt

≤ C
∫ t∗

0
N(Xn − Xn−1)N(Xn + Xn−1) dt

≤ C
∫ t∗

0
N(Xn − Xn−1)(N(Xn) + N(Xn−1)) dt

≤ CN0
∫ t∗

0
N(Xn − Xn−1) dt

≤ CN0t∗ supt∈[0,t∗] N(Xn − Xn−1)
≤ (CN0t∗)n supt∈[0,t∗] N(X1 − X0).

We can again decrease t∗ (if necessary) such that CN0t∗ < 1, consequently (Xn) is a Cauchy sequence with
respect to N , and thus it converges to X strongly in C([0, t∗],Um+1); ∂tX

n converges to ∂tX strongly in
L2(0, t∗; L2

zH
m
xy) and inequality (1.3) is true.

We can then pass to the limit into the variational formulation of the equation, and reintroduce the pressure,
thanks to very classical methods (see for example [9] and the further paper by Temam and Ziane [14]), and this
concludes the proof of Theorem 1.2.

3. Existence of an optimal control

In this section we prove Theorem 1.7.
The proof uses the minimizing sequences method, in two steps: first we prove the convergence of the obser-

vation term, and then we pass to the limit in the state equation.

3.1. Convergence of the observation term

Let (Xn
0 ) be a minimizing sequence for J :

J (Xn
0 ) → inf

X0∈Um+1
J (X0) = inf

X0∈Um+1
J o(X0) + ‖X0‖2

Um+1.

Then (Xn
0 ) is bounded in Um+1 and in (Hm+1)3, and converges to X∗

0 weakly in Um+1 and in (Hm+1)3. The
core of the proof is the convergence of the observation term J o(Xn

0 ) = 1
2‖ξn(t1)−d‖2 to 1

2‖ξ∗(t1)−d‖2 where ξn

et ξ∗ are the Lagrangian trajectories associated to Xn
0 and X∗

0 . Indeed, we will then get the strong convergence
of Xn

0 to X∗
0 in Um+1 and in (Hm+1)3 and we will easily verify that X∗

0 is a minimizer of J .
Let Xn be the solution of equations (1.1) and (1.2) associated with Xn

0 . We choose t∗ according to The-
orem 1.2 (t∗ depends on the norm of X0 and we know that the norm of Xn

0 is bounded, thus we can find
t∗ satisfying for every Xn). This proposition states that the sequence (Xn) is bounded (uniformly in n) in
C([0, t∗], (Hm+1)3) and that the sequence ∂tX

n is uniformly bounded in L2(0, t∗; (L2
zH

m
xy)3). We then prove

that (Xn) is uniformly bounded in C1/2([0, t∗], (L2
zH

m
xy)3):

‖Xn(t2) − Xn(t1)‖2,m = ‖
∫ t2
t1

∂tX
n‖2,m

≤
√

t2 − t1(
∫ t2

t1
‖∂tX

n‖2
2,m)1/2

≤
√

t2 − t1 C
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where C does not depend on n or any ti. Thus we get:

(Xn) is uniformly bounded in C([0, t∗], (Hm+1)3)
(Xn) is uniformly bounded in C1/2([0, t∗], (L2

zH
m
xy)3)

⇒ (Xn) is uniformly bounded in Cθ/2([0, t∗], ([Hm+1, L2
zH

m
xy]θ)3)

for all θ ∈ [0, 1].
We now prove that there exists a small θ > 0 such that, for δ > 0 small enough, the space [Hm+1, L2

zH
m
xy]θ

is compact in the following space Lδ:

Lδ =
{
u ∈ H1/2+δ

z H2+δ
xy , periodic in x, y, u = 0 on {z = 0, z = a} × T

2
}
·

For δ > 0, Lδ is a subset of the space of the functions continuous in z and Lipschitz in (x, y).
We now describe the Hilbert interpolation [Hm+1, L2

zH
m
xy]θ, thanks to Fourier series for (x, y) ∈ T

2 and sine
series in z ∈ (0, a). Let ζ = (ξ, η) ∈ R

2 be the Fourier variable associated with the Fourier series on the torus,
and κ ∈ N

∗ the Fourier variable associated with sine series on (0, a).
We then have:

ϕ(x, y, z) ∈ L2
zH

m
xy ⇔ W1(ζ, κ) ϕ̂(ζ, κ) ∈ �2(Z2 × N

∗)
ϕ(x, y, z) ∈ Hm+1 ⇔ W2(ζ, κ) ϕ̂(ζ, κ) ∈ �2(Z2 × N

∗)
where W1 and W2 are weights defined as follows:

W1(ζ, κ) = (1 + |ζ|2)m
2

W2(ζ, κ) = (1 + |ζ|2)m+1
2 + (1 + |ζ|2)m

2 (1 + |κ|2) 1
2 .

For all θ > 0 small enough we get:

ϕ ∈ [Hm+1, L2
zH

m
xy]θ ⇔ W θ

1 W 1−θ
2 ϕ̂ ∈ �2(Z2 × N

∗)

with:
W θ

1 W 1−θ
2 = (1 + |ζ|2)mθ

2 ((1 + |ζ|2)m+1
2 + (1 + |ζ|2)m

2 (1 + |κ|2) 1
2 )(1−θ)

= (1 + |ζ|2)m
2 ((1 + |ζ|2) 1

2 + (1 + |κ|2) 1
2 )(1−θ).

For δ > 0 small enough, we also have:

ϕ ∈ Lδ ⇔ Wδ(ζ, κ) ϕ̂(ζ, κ) ∈ �2(Z2 × N
∗)

where:
Wδ(ζ, κ) = (1 + |ζ|2)

2+δ
2 (1 + |κ|2)

δ+1/2
2 .

To establish that the injection [Hm+1, L2
zH

m
xy]θ is compact (for θ > 0 small enough) in Lδ (for δ > 0 small

enough) it is sufficient to find δ and θ such that:

lim
|ζ|,|κ|→+∞

Wδ(ζ, κ)
W1(ζ, κ)θ W2(ζ, κ)1−θ

= 0.

We have:
Wδ

W θ
1 W 1−θ

2

=
(1 + |ζ|2) 2+δ

2 (1 + |κ|2) δ+1/2
2

(1 + |ζ|2)m
2 ((1 + |ζ|2) 1

2 + (1 + |κ|2) 1
2 )(1−θ)

≤ (1 + |ζ|2) δ
2 (1 + |κ|2) δ+1/2

2

((1 + |ζ|2) 1
2 + (1 + |κ|2) 1

2 )(1−θ)

≤
1
3 (1 + |ζ|2) 3δ

2 + 2
3 (1 + |κ|2) 3δ+3/2

4

((1 + |ζ|2) 1
2 + (1 + |κ|2) 1

2 )(1−θ)
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using that m ≥ 2 and ab ≤ ap

p + bq

q for a, b positive and p = 3, q = 3
2 . Then we get:

Wδ

W θ
1 W 1−θ

2

≤ (1 + |ζ|2) 3δ
2 − 1−θ

2 + (1 + |κ|2) 3δ+3/2
4 − 1−θ

2 .

For θ and δ positive and small enough we have:

3δ

2
− 1 − θ

2
� −1

2
and

3δ + 3/2
4

− 1 − θ

2
� −1

8
·

Then we can find θ and δ positive and small enough such that the right hand side of equation (3.1) converges to 0.
We have finally shown that (Xn) is uniformly bounded in Cθ/2([0, t∗], ([Hm+1, L2

zH
m
xy]θ)3) with [Hm+1, L2

zH
m
xy]θ

compact in Lδ. Then (Xn) converges strongly to X∗ in C([0, t∗], (Lδ)3). And finally we have:

J o(Xn
0 ) =

1
2
‖ξn(t1) − d‖2 → 1

2
‖ξ∗(t1) − d‖2 = J o(X∗

0 ).

Then we prove that (Xn
0 ) converges strongly to X∗

0 in Um+1:

J (X∗
0 ) = ‖X∗

0‖2
Um+1 + J o(X∗

0 )
≤ lim‖Xn

0 ‖2
Um+1 + limJ o(Xn

0 )
≤ infX0∈Um+1 J (X0)

thus J (X∗
0 ) = infX0∈Um+1 J (X0), then ‖Xn

0 ‖Um+1 → ‖X∗
0‖Um+1, therefore (Xn

0 ) converges strongly to X∗
0

in Um+1, and X∗
0 is a minimizer of J .

The strong convergence of (Xn) in C([0, t∗], (Lδ)3) implies also:

X∗(t = 0) = X∗
0 .

3.2. Passage to the limit in the state equation

In this section we prove that the limit X∗ satisfies equation (1.1) and boundary conditions (1.2). To do so,
we first pass to the limit in the weak formulation of the equation. Let X ′ = (u′, v′, θ′) ∈ (D((0, t∗) × Ω))3 be a
test function satisfying conditions (1.2). We now pass to the limit in the five following terms:

T1 =
∫∫

∂tu
nu′ + ∂tv

nv′ + K∂tθ
nθ′

T2 =
∫∫

−νΔunu′ − νΔvnv′ − νKΔθnθ′

T3 =
∫∫

−αvnu′ + αunv′

T4 =
∫∫

−βθnw′ + Kγwnθ′

T5 =
∫∫

(Un.∇2u
n + wn∂zu

n)u′ + (Un.∇2v
n + wn∂zv

n)v′

+ K(Un.∇2θ
n + wn∂zθ

n)θ′.

T1. As we proved that (∂tX
n) is uniformly bounded in L2(0, t∗; (L2

zH
m
xy)

3), it converges thus weakly in
L2(0, t∗; (L2

zH
m
xy)3). We can prove easily that its limit is ∂tX

∗, e.g., for ∂tu
n:

∫∫
∂tu

nu′ = −
∫∫

un∂tu
′ → −

∫∫
u∗∂tu

′ =
∫∫

∂tu
∗u′.

Then we get for T1:
T1 →

∫∫
∂tu

∗u′ + ∂tv
∗v′ + K∂tθ

∗θ′.
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T2. A space integration by parts gives: ∫∫
−νΔunu′ = −

∫∫
νunΔu′.

To the limit we obtain:
T2 → −

∫∫
νu∗Δu′ −

∫∫
νv∗Δv′ − K

∫∫
νθ∗Δθ′.

T3. We easily have:
T3 →

∫∫
−αv∗u′ + αu∗v′.

T4. The first part is easy. For the second we have:∫∫
wnθ′ = −

∫∫ [ ∫ z

0 (∂xun(z′) + ∂yvn(z′)) dz′
]
θ′

=
∫ t∗

0

∫
xy

∫ a

z′=0(∂xun(z′) + ∂yvn(z′))
[ ∫ a

z=z′ θ′(z) dz
]
dz′

=
∫∫

(∂xun + ∂yvn)
[ ∫ a

z′=z
θ′(z′) dz′

]
thanks to Fubini’s equality. As (Xn) converges strongly in L2(0, t∗; (L2

zH
m
xy)3) with m ≥ 2, we can pass to the

limit, using Fubini again and posing w∗ =
∫ z

0
(∂xu∗(z′) + ∂yv∗(z′)) dz′:

T4 → −β
∫∫

θ∗w′ − Kγ
∫∫

w∗θ′.

T5. Let us consider the following part (the other parts can be evaluated similarly):∫∫
(wn∂zu

n − w∗∂zu
∗)u′ =

∫∫
w∗(∂zu

n − ∂zu
∗)u′ +

∫∫
(wn − w∗)∂zu

nu′

= T5,1 + T5,2.

We know that ∂zu
n − ∂zu

∗ converges weakly to 0 in L2(0, t∗; L2
zL

2
xy). We also have w∗ ∈ L2(0, t∗; L2

zH
2
xy)

because X∗ ∈ L2(0, t∗;Um+1). We now prove that w∗u′ ∈ L2(0, t∗; L2
zL

2
xy) as in the proof of Proposition 2.3:

∫∫
|w∗u′|2 ≤

∫
t

∫
z ‖w∗u′‖2

H2
xy

≤
∫

t

∫
z
‖w∗‖2

H2
xy
‖u′‖2

H2
xy

≤
∫

t ‖u′‖L2
zH2

xy
‖∂zu

′‖L2
zH2

xy
‖w∗‖2

L2
zH2

xy

≤ supt

[
‖u′‖L2

zH2
xy
‖∂zu

′‖L2
zH2

xy

]
‖w∗‖2

L2
t L2

zH2
xy

< ∞.

Thus T5,1 converges to 0.
For T5,2 we have:

|
∫∫

(wn − w∗)∂zu
nu′|2 ≤ ‖wn − w∗‖2

L2((0,t∗)×Ω)‖∂zu
nu′‖2

L2((0,t∗)×Ω)

≤ C‖Xn − X∗‖2
L2(0,t∗;L2

zH1
xy)

∫
t

∫
z ‖∂zu

n‖2
H2

xy
‖u′‖2

H2
xy

≤ C‖Xn − X∗‖2
L2(0,t∗;L2

zH1
xy)‖∂zu

n‖2
L2(0,t∗;L2

zH2
xy)

≤ C‖Xn − X∗‖2
L2(0,t∗;L2

zH1
xy)‖Xn‖2

L2(0,t∗;Um+1)

≤ C‖Xn − X∗‖2
L2(0,t∗;L2

zH1
xy)

so T5,2 converges also to 0. This gives the expected limit for T5:

T5 →
∫∫

(U∗.∇2u
∗ + w∗∂zu

∗)u′ + (U∗.∇2v
∗ + w∗∂zv

∗)v′

+ K(U∗.∇2θ
∗ + w∗∂zθ

∗)θ′.
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Then the limit X∗ satisfies the following equation, for all X ′ ∈ (D((0, t∗) × Ω))3 satisfying (1.2):

0 =
∫∫ (

∂tu
∗u′ + ∂tv

∗v′ + ∂tθ
∗θ′
)

−
∫∫

(νu∗Δu′ + νv∗Δv′ + Kνθ∗Δθ′)
+
∫∫

(−αv∗u′ + αu∗v′)
+
∫∫

(−βθ∗w′ − Kγ
[ ∫ z

0 (∂xu∗(z′) + ∂yv∗(z′)) dz′
]
θ′)

−
∫∫ (

(U∗.∇2u
∗ + w∗∂zu

∗)u′ + (U∗.∇2v
∗ + w∗∂zv

∗)v′

+ K(U∗.∇2θ
∗ + w∗∂zθ

∗)θ′
)
.

(3.1)

We now prove that this defines a linear functional which is continuous on L2(0, t∗; (H1
0 (Ω))3). It is obvious that

the terms involving linearly X∗ and its derivates define a linear functional. It remains to study terms involving
X∗ non linearly. Let us define:

φ(u′) =
∫∫

(u∗∂xu∗ + w∗∂zu
∗)u′.

We will prove that φ is continuous on L2(0, t∗; L2(Ω)) and therefore on L2(0, t∗; H1
0 (Ω)). As we have X∗ ∈

C(0, t∗,Um+1), every space derivative of u∗, and also w∗ and ∂zw
∗, are in C(0, t∗, L2

zH
2
xy). Then we have, as in

the proof of Proposition 2.3:∫∫
|u∗∂xu∗ + w∗∂zu

∗|2 =
∫

t,z
‖u∗∂xu∗ + w∗∂zu

∗‖2
L2

xy

≤ C
∫

t,z
‖u∗∂xu∗ + w∗∂zu

∗‖2
H2

xy

≤ C
∫

t,z ‖u∗‖2
H2

xy
‖∂xu∗‖2

H2
xy

+ ‖w∗‖2
H2

xy
‖∂zu

∗‖2
H2

xy

≤ C
∫

t ‖u
∗‖L2

zH2
xy
‖∂zu

∗‖L2
zH2

xy
‖∂xu∗‖2

H2
xy

+ C
∫

t
‖w∗‖L2H2

xy
‖∂zw

∗‖L2H2
xy
‖∂zu

∗‖2
H2

xy

≤ C supt ‖X∗(t)‖4
Um+1 .

Thus φ is a continuous linear functional on L2(0, t∗; H1
0 (Ω)). Similarly we deal with every other non linear term

in X∗.
Finally, formula (3.1) defines a linear functional, which is continuous on L2(0, t∗; H1

0 (Ω))3 and vanishes on
the elements of L2(0, t∗; (H1

0 (Ω))3) satisfying the boundary conditions (1.2). As in [14] and in the theory of
Navier-Stokes equations (e.g., see [8,12]), we can reintroduce the pressure: there exists p∗ ∈ D′(0, t∗, L2(Ω))
such that (X∗, p∗) is a solution of the Primitive Equations (1.1) with boundary conditions (1.2).

4. Numerical experiments

In this section, we briefly present some illustrative numerical results. A detailed description of the numerical
setup and more in-depth results can be found in [11].

4.1. Numerical setup

This problem was addressed with a realistic state-of-the-art Primitive Equations ocean model, namely OPA
code, developed by LODYC (see [10]). The model is set-up in a classical double-gyre wind-driven configuration:
it is representative of mid-latitude ocean circulation, where a non-linear and non-stationary jet-stream (such as
the Gulf Stream) develops at the convergence of the subpolar gyre and the subtropical gyre.

The optimal control problem that we solved numerically is very similar to the one presented before, the
regularization term in the cost function (1.6) being different:

J (X0) = 1
2

∑M
j=1

∑N
i=1 ‖ξj(ti) − dj

i‖2 + ω
2 ‖X0 − Xb‖2

B

= J o(X0) + ωJ b(X0).
(4.1)
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Figure 1. Observation term J o of the cost function (top) and gradient of the total cost
function ∇J (bottom) as a function of the iterations number. The linearization re-occurs
every ten iterations.

The observation term J o is the same, except that we have M floats drifting and N time-sampling of their
positions. The background term J b involved a so-called background state Xb, containing a priori information
(such as climatology, or results of a previous forecast) and a background error covariance matrix B to define
the B-norm:

‖X‖2
B = tXB−1X.

4.2. Four-dimensional variational data assimilation

The cost function (4.1) is minimized thanks to an iterative process involving its gradient. This gradient is
computed thanks to the adjoint of the ocean model, and also the adjoint of the observation operator (1.5). This
method, called four-dimensional variational data assimilation, has been introduced in meteorology by Le Dimet
(see [5,6]) and is based on [7]. Although this method has been introduced for linear models and observation
operators, it can be extended to “reasonably” non-linear cases: in [1] the authors proposed an incremental
approach, which consists in linearizing the operators around a given trajectory and then proceed to minimize
the quadratic cost function. Once the minimum is reached, the operators are once again linearized around it,
and the new cost function is minimized, and so on. Figure 1 presents the decrease of the cost function and its
gradient as a function of the iteration number. Every ten iterations, the linearized operators and their adjoints
are updated.
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Figure 2. Kinetic energy of the true state, background (no assimilation) and assimilated state
at the surface after 30 days; the x-coordinate represent longitude grid-points and y-coordinate
are latitude grid-points.

4.3. Illustration

The test-experiment presented here involves M = 1000 floats, drifting at 1000 m depth, whose positions are
sampled every day during ten days. In order to achieve convergence, we had to assume that we have a priori
information on temperature and salinity, so that the assimilation process aims to reconstruct the velocities,
from the positions information. We performed identical twin experiments: a given output of the ocean model
is called “true state” and is used to generate observations. From the true state we construct the background
state: the background temperature is equal to the true one, and the background velocities are obtained from
another state of the ocean. Therefore, the background differs from the true state only because it has wrong
velocities. The free run of the background provides a “no-assimilation” experiment. Then the iterative process
is initialized with the background, and the observations are assimilated. We then get an “assimilated state”
which should be close to the true state. The experiment presented here consists of three assimilation process
on three successive ten-days periods.

Figure 2 presents the square root of the kinetic energy at time T = 30 days, at the surface, for the true state
(reference), the background (no assimilation) and the assimilated state. The assimilation process reconstructed
very well the true state. Let us note that the horizontal velocity field presented in Figure 2 is the surface one,
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Figure 3. Relative RMS errors for u (top) and v (bottom) on the whole grid as a function of
time for the background and the assimilated state, as a function of the time.

whereas the floats drift at 1000 m depth. The assimilation thus transfered information to every vertical level
and not only the 1000 m deep one.

Figure 3 presents the evolution of the relative RMS error (with respect to the true state) over the 30 days
time window. For any velocity field (u(x, y, z, t), v(x, y, z, t)), such relative RMS error for u is a function of time,
computed as follows:

E(u; t) =
(∫

Ω |ut(x, y, z, t) − u(x, y, z, t)|2 dxdy dz∫
Ω
|ut(x, y, z, t)|2 dxdy dz

)1/2

where ut is the true velocity. Similarly we can compute E(v; t). We then can compare the errors for the
background E(ub; t) and the assimilated state E(ua; t). We can see that after 30 days the error has been divided
by 3 for u and 4 for v.



OPTIMAL CONTROL OF THE PRIMITIVE EQUATIONS WITH LAGRANGIAN OBSERVATIONS 419

References

[1] P. Courtier, J.N. Thepaut and A. Hollingsworth, A strategy for operational implementation of 4D-Var, using an incremental
approach. Q. J. Roy. Meteor. Soc. 120 (1994) 1367–1387.

[2] V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations, Lecture Notes in Mathematics 749.
Springer-Verlag, Berlin (1979).

[3] C. Hu, R. Temam and M. Ziane, Regularity results for linear elliptic problems related to the primitive equations. Chinese
Ann. Math. Ser. B 23 (2002) 277–292. Dedicated to the memory of Jacques-Louis Lions.

[4] I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean. Nonlinearity 20 (2007) 2739–2753.
[5] F.-X. Le Dimet, A general formalism of variational analysis. Technical Report 73091 22, CIMMS, Norman, Oklahoma, USA

(1982).
[6] F.-X. Le Dimet and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: theo-

retical aspects. Tellus Series A 38 (1986) 97.
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