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UNIQUE CONTINUATION PRINCIPLE FOR SYSTEMS
OF PARABOLIC EQUATIONS

OTARED KAVIAN! AND LUZ DE TERESA 2

Abstract. In this paper we prove a unique continuation result for a cascade system of parabolic
equations, in which the solution of the first equation is (partially) used as a forcing term for the
second equation. As a consequence we prove the existence of e-insensitizing controls for some parabolic
equations when the control region and the observability region do not intersect.
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1. STATEMENT OF THE PROBLEM AND MAIN RESULTS

This paper is devoted to the study of unique continuation properties for cascade systems of parabolic equa-
tions. This kind of problems has been studied in particular by Bodart and Fabre [1] in the context of the so
called e-insensitizing control problems for the heat equation, and has been solved only in the particular case
in which the control domain and the observability domain have non empty intersection (see Sect. 5 or [1] for a
complete description of the problem).

To begin with a simple example, as far as the unique continuation property is concerned, let @ C RY be a
Lipschitz bounded domain and, for pg € L?(€2), let p be the solution of

O¢p — div(aVp) =0 in (0,7) xQ
p(0, ) = po(x) in Q (1.1)
p(t,o) =0 on (0,7T) x 0.

Here a := (a;j)1<i j<n is a self-adjoint matrix such that for some positive constant co > 0 and all £ € RV, and
all z € Q
Yo ay(@)& > eolél, ai; € WH(Q), (1.2)
1<i,j<N
The first kind of unique continuation result which we are interested in, can be illustrated with the following:
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Theorem 1.1. Let Q be a bounded Lipschitz domain and let the matriz a satisfy (1.2). For po,ug € L?(£2)
denote by p the solution of (1.1), and for an open wy C 2 let u satisfy the equation

Ou — div(aVu) = ply, in (0,T) x Q
u(0,2) = up(x) in Q (1.3)
u(t,o) =0 on (0,T) x 99.

Assume that wi C Q is an open subdomain and for some Ty > T1 > 0 and an infinite sequence (t;);>1 with
tj € [Th,Ts] we have u(t;,x) =0 in w1. Then we have po = up =0 in Q (hence p =0 and u = 0).

Another variant of this unique continuation principle concerns a cascade system of parabolic equations in
which the second equation is a backward evolution equation.

Theorem 1.2. Let Q2 be a bounded Lipschitz domain and let the matriz a satisfy (1.2). For py € L?(Q) denote
by p the solution of (1.1), and for an open wo C 2 let z be the solution of the backward heat equation

—0Oz — div(aVz) = p(t, z)1,, in (0,T) x Q
z(T,x) =0 in (1.4)
z(t,o) =0 on (0,T) x 9.

Assume that wi C Q is an open subdomain and for some T > Ty > Ty > 0 and an infinite sequence (t;);>1 with
t; € [Th,T»] we have z(tj,x) =0 in wi. Then we have po =0 in Q (and hence p=0 and z=0).

Note that when w := wg Nwy # 0, the above assumptions on « (or on z) imply easily that p(t,z) = 0 on
(0, T) x w, and hence the classical unique continuation principle for the heat equation (see for instance Saut and
Scheurer [9]) implies that p(¢t,2) = 0 on (0,7) x Q, and consequently po = 0. However, as we shall see, when
wo Nwy = (O the result is not obvious.

Actually the main ingredients of the proof of the above results consist in two properties, shared by a large
class of evolution equations associated to a self-adjoint operator A (for instance Au := —div(aVu) with Dirichlet
boundary conditions): the first ingredient is the fact that the semi-group S(¢) := exp(—tA) generated by such
operators on a Hilbert space have the unique continuation property: if S(¢)f =0 on (0,7) X w with w C Q an
open subset (for instance), then f = 0. The second ingredient is that the semi-group S(t) satisfies the so-called
backward unique continuation property, that is if for some 7' > 0 one has S(T)f = 0, then f = 0. Indeed we
do not claim that we can prove a unique continuation result for a cascade system of evolution equations with
such general operators, since our arguments need some more technical assumptions. However, the assumptions
we make are weak enough to include a large class of parabolic systems.

In Sections 2 and 3 we prove our main results, in an abstract setting, for a cascade system of equations. More
precisely we consider equations such as

op+Ap=20 for t >0 Op+Ap=20 for t >0
Oyu + Au = Byp(t) for t >0 —0iz + Az = Bop(t) for 0<t<T
or
p(0) = po p(0) = po
u(0) = uo z(T) = 0.

We denote by H a Hilbert space of functions defined on €, where Q@ C RY is an open set (bounded or not); as
a typical example one can think of H as being (L?(Q2))™, for some integer m > 1. The norm of H is denoted
by || - || and its scalar product by (:|-). We consider (A, D(A)) an unbounded self-adjoint operator acting on H,
that is D(A) C H and A: D(A) — H. We assume that

A is self-adjoint and has a compact resolvent, (1.5)
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and that the sequence of eigenvalues of (A, D(A)), denoted by (A\y)r>1 satisfies
36>0, 3ep>0, 3ko>1, Vk>ko, M >cokP. (1.6)

We denote by
Pk :H—>N(A—)\kl), (17)
the orthogonal projection on the eigenspace N(A — A\iI) associated to Ag. Thus for f € H we have

f = > k>1Puf. The operator A being as above, for each real number v > 0 we assume that the domain
D(A") is endowed with its natural norm, that is

2
u€ D(AY) = |ulBan = lul®+ DA IPe(u)]? < oo,
k>1

or, in the simpler case in which the least eigenvalue \; is positive,

u€e D(AY) — HuH%(m) = Z)\i’y |Px(u)]|? < oo.
k>1

As a matter of fact, as we shall see below, we can always assume that the condition A\; > 0 is satisfied. Also, by
an abuse of notation, when v < 0, denoting by ng > 1 a (possible) integer such that A,, = 0, we shall denote
again D(A7) as being the closure of H for the norm

1/2

wim (| Pag(@)l? + D AP (u)]
k‘;ﬁno

and for f € D(AY), g € D(AP) with a + 3 > 0 we write

(flg) =D _(Pe(f)IPx(9))-

k>1

This amounts to identifying H with its dual H’, and then the dual of D(A") equipped with the above norm is
identified with D(A™7).

With these conventions in mind, we shall need bounded linear operators noted B which satisfy certain
properties.

Definition 1.3. The operator (A, D(A)) being as in (1.5)—(1.6), we shall say that B € SAP(AY, H) if
{B : D(AY) — H is a bounded linear operator for some v > 0, (1.8)
Vf.ge D), (Bflg)=(fIBg), (Bf|f)=0. '

Another useful class of operators consists in those which satisfy a certain abstract unique continuation property
for A with respect to B. To be more precise, we introduce the following definition:

Definition 1.4. The operator (A, D(A)) being as in (1.5)—(1.6), and X being a Banach space, we shall say
that B e UCP(AY, X) if

(1.9)

B:D(AY) — X is a linear bounded operator for some ~ > 0,
peNA—-XII) and Bp=0 = ¢=0 on Q.
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For pg € H we denote by p the solution of the evolution equation

op+Ap=0 on (0,00) x
p(0) = po in Q (1.10)
p(t) € D(A) for ¢ > 0.

With p solution to (1.10), for By € SAP(AY, H)NUCP(A", H), we consider u the solution of

Oyu + Au = Byp(t) on (0,00)
u(0) = ug (1.11)
u(t) € D(A) for a.e.t > 0,

where ug € H is a given initial data, and, for a given positive T' > 0, we denote by z the solution of the backward
evolution equation

—0iz + Az = Bop(t) on (0,7) x Q
2(T)=0 in Q (1.12)
z(t) € D(A) for a.e.t > 0.

Our first main result concerns the system of forward-forward equations (1.10)—(1.11):

Theorem 1.5 (forward-forward). Let the operator A satisfy conditions (1.5), (1.6), and let By € SAP(AY, H)N
UCP(AY,H). Assume that ug € H, and py € D(AP) for some 3 > vo—1 are given and denote by p the solution
of (1.10) and by u the solution of (1.11). If By € UCP(A", H) is such that Biu(t;) = 0 for an infinite sequence
t; € [Th, T»] for some 0 < T1 < Ty, then ugp =po =0, that is p=u=0.

The second result concerns the system of forward-backward equations (1.10)—(1.12):

Theorem 1.6 (forward-backward). Assume that A satisfies (1.5), (1.6), and let By€ SAP(AY, HYNUCP(A", H).
Let By €e UCP(AY,H). For a given pg € H let p be the solution of (1.10) and z be the solution of equation (1.12).
If B1z(t;) = 0 for an infinite sequence t; € [T1,Ts] for some 0 < Ty < Ty, then we have po =0 and p =2z =0.

To illustrate the above assumptions on A, B, assume that Q € RY is a bounded smooth domain, set D(A) :=
H?(Q) N Hi(Q) and Au := —Au. Then if w C Q is an open subset and Bu := u1l,, we may choose v = 0
and X := L?(Q): in this case property (1.9) boils down to the classical unique continuation property for the
Laplacian: if —Ap = A\p and u € H}(Q), then the assumption ¢ = 0 in w, implies » = 0 (see Sect. 4). Note
also that in this situation the property (1.8) is also satisfied. Another example, with A as previously, is the
following: choose v := 1, set X := L?(9Q) and I C 99 being a relatively open subset of the boundary, consider

ou
Bu := ].F %

In this case A, B satisfy again (1.9) since

9
% _0 onT,

H}(Q), —Ap=
¢ € Hy(%), = 5o

implies again that ¢ =0 in Q.

The remainder of this paper is organized as follows. In Section 2 we establish a representation formula for
u and z and we prove Theorem 1.5. In Section 3 we prove Theorem 1.6, while in Section 4 we show how
our abstract result can be applied to some heat equations, such as those considered in Theorems 1.1 and 1.2.
In Section 5 we consider a system of cascade Stokes equations and in Section 6 we give a few applications of
Theorem 1.6 in control theory.
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2. PRELIMINARY RESULTS FOR THE REPRESENTATION OF SOLUTIONS AND PROOF
OF THEOREM 1.5

Observe that in (1.6) there is no need to assume that A\; > 0. As a matter of fact, once the eigenvalues are
assumed to be distinct, indeed each having its own multiplicity greater or equal than one, condition (1.6) can
be replaced by the condition

0<A <Aey1, 3B>0, Feo>0, VE>1, A\ >cokP. (2.1)
Indeed we choose A\g > —A; so that upon setting Ay := A + Ao, and
pi=e Np(t), u(t) = e Mtult),

we have
8t5+ Aoﬁ: 0, 6@ + Aoa = Bﬁ

and therefore replacing the operator A by Ap, which satisfies conditions (2.1), if a unique continuation result
is proved for Ag, p and u, then clearly our main theorems apply to A, p and u. A similar modification can be
applied to the cascade system involving p and z (see Sect. 3). From now on we assume that \; > 0, that is that
A satisfies (2.1).

We recall here that if B satisfies condition (1.8), it is an elementary exercise (which consists in expanding
the scalar product (B(f + tg)|f + tg) for g € D(A”) and ¢t > 0, and then letting ¢ converge to zero) to observe
that the semi-positivity assumption in (1.8) on B, together with the fact that D(A") is dense in H, yield

feD(AY), (Bf|f)=0= Bf=0. (2.2)

We denote by S(t) := exp(—tA) the semigroup generated by A on H. Thus, for py € H if p(t) is given by (1.10)
we have (P, being the orthogonal projection on N(A — A1), see (1.7))

S(t)po = p(t) = > e " Pypy. (2.3)
E>1

Since A is a self-adjoint operator on H (with A\; > 0), the semi-group S(¢) is holomorphic, contractive, and in
particular for ¢ > 0 and py € H we have S(t)py € D(A?) for all v > 0 (see for instance Yosida [10], Chap. IX),
and more generally for py € D(A%) where a < 7y, we have for a constant ¢ depending on (v — «)

1A7P@)] < e(y = a) =7 |Ipol pa).- (2.4)

A straightforward consequence of the unique continuation assumption (1.9) is the following unique continu-
ation principle for solutions of equation (1.10).

Theorem 2.1. Let A satisfy (1.5), (2.1), po € H and let p be the solution of equation (1.10). If B €
UCP(AY,X), and To > Ty > 0 are such that Bp(t;) = 0 for an infinite sequence t; € [I1,T5], then we
have pg = 0 and p(t) =0 on (0,00).

Proof. Recall that t — p(t) is analytic on (0,00) — D(AY). Denoting by (-,-) the duality between the X’
and X, for g € X’ setting F(t) := (g, Bp(t)), we have an analytic function F' on (0,00) — R. Since we have
F(t;) = 0 for an infinite sequence ¢; € [T, T3], it follows that F'(t) = 0 for all ¢ € (0,00). Therefore for all
t € (0,00), and all g € X’ we have

0= (g, Bp(t)) = Y e ' (g, BPy(po))
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Since the numbers A\ are all distinct, from this and the classical well known result concerning the topological
independence of the exponentials (e’Akt)kN, we conclude that (g, BPx(po)) = 0 for all ¢ € X’ and all k£ > 1,

that is BPy(pg) = 0. Thus by (1.9) we have Py(pg) = 0 for all k > 1. Therefore py = 0. O

Another result which shall be needed, is the so called backward uniqueness result for the semi-group S(t):

Theorem 2.2. Let pg € H. If p satisfies (1.10) and for some T > 0 one has p(T) = 0 then p(t) = 0 for all
t € (0,00) and pg = 0. More precisely for 0 < t < T, setting 0 :=t/T we have

@) < llpoll*=* Ip(T)1°.

This is a classical result concerning semi-groups generated by self-adjoint operators A such that (Af|f) > 0.
The proof, in a general setting is based on the fact that the function ¢ — h(t) := log ||p(t)||? is convex. Another
proof, more elementary but applying to our case, consists in writing

@2 =3 2 [Bawo)|2 = 3 (IPso)[2)' ™" (72T IPe(po) 12)”

E>1 E>1
1-6 0
> Pk (po)l|® D e P (po)lI* | = llpol PO (T,
k>1 k>1

where we use Holder’s inequality in £4(N*) and ¢4 (N*) with ¢ := (1 —0)~! and ¢/ := 6.
Remark 2.3. Note that the above argument is also valid for pg € D(A%), that is

2l peasy < llpollp ey 1T D a0

for any a € R.

Our aim is to show that if By € UCP(A",X) is such that Biu(t;) = 0, or Byz(t;) = 0, for an infinite
sequence t; € [T1,Ts] with 71,75 € (0,T), then we have pp = 0. To this end we begin by representing the
solutions of the system of equations (1.10)—(1.11), or (1.10)—(1.12), in terms of the initial data pg. For pg € H
and pg # 0, we consider the subset K C N

K:=K(po) :={n >1; Pppo # 0} (2.5)

and we denote )
ap = ||Pupol|, and for n € K, ¢, := —Py,po, (2.6)

7%

so that for n € K we have Agp,, = A\, pn, with ||¢,| = 1, and we may write

Do = Z AP -

nekK

Even though we are defining the eigenfunction ¢,, when n ¢ K, it is sometimes convenient, and harmless, to
use the (abuse of) notation pg = >, < @, @, since for n ¢ K by definition we have a;,, = 0. It follows that p(t)
is given by B
p(t) = S(t)po = Z ane My, = Z ane Mo, (2.7)
nekK n>1
Note also that since for any n € K we have Bopn = >~ Pj(Bows), we can express Bop(t) as

Bop(t) = Y e ™ Bopn = Y > ane M Pj(Bogn) = > Y ane " Pi(Bopy).

nekK nek j>1 j>1nek
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The solution of the equation

O + Av = f(t) in (0,7)
v(0) = vo (2.8)
v(t) € D(A) a.e. on (0,7,
is given by
v(t) = S(t)vo + /0 S(t —7)f(r)dr, (2.9)

provided that, for instance, f € C([0,T); H) (actually it is enough to have f € L1(0,T); H) for some g > 1
but, as we shall see below, at this point it is not necessary to enter into this kind of subtleties). Since for ¢ > 0
we have

S(t)g =Y exp(=Met)Prg,  PrS(t —7)f(7) = exp(=Ak(t — 7))Px(f(7)),
k1

we can write (with a convergence in C([0,T]; H) of the series involved)

o(t) = e M Pi(vg) + Z/O exp(—Ax(t — 7)) P (f(7))dr. (2.10)

E>1 k>1
For the remainder of this section we assume that for some vy > 0 the operator By satisfies

By : D(A}) — H is a linear bounded operator. (2.11)

First consider
Vo 1= U, f(t) := Bop(t), po € D(A™),
so that p € C([0,T]; D(AY)) and v is in fact the function w solution of (1.11). Then by (2.4) we have

1 Bop()|l < 1 Boll lp(t)ll pavoy < [1Boll l[poll paro)

and we know that ¢t — Bop(t) belongs to C([0,T]; H). Since

Bop(t) = Z ane” ! Bopn, and for n € K, By, = Z]P’k(Bocpn),
neK k>1

one can check quite easily that the convergence of the series is uniform in ¢t € [¢,T] for any 0 < ¢ < T. From
the very expression of the mapping ¢t — Bop(t), one sees that this function has a natural holomorphic extension
to the right half-plane of C, that is to the set [®(t) > 0]. Due to the fact that we need the analyticity of the
mapping ¢t — u(t), we detail somewhat this aspect of the convergence of the series involved at various levels. Let
N > 1 be an integer and poy := ZZZV anpn, and denote by py,un the corresponding solutions constructed
through the above approach: we have indeed

N N
() = Bopn(t) = ane ™'Y " Py(Bown) = > Y ame M'Pi(Bogn).
n=1

E>1 k>1n=1

It is clear that the function fN is analytic and has a natural holomorphic extension to the right half of the
complex plane, that is [R(¢t) >0 :={t=7+is€ C; 7> 0}. wefix0<e < T, for any j > 1, and any t € C
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with R(t) € [e,T] we have the estimate

_ _ N+j N+j
1Fnas() = In@I < D ane™ 1Y Pr(Bown) || < [[Boll Y ane™
n=N+1 k>1 n=N+1
oo 1/2 . 1/2
< HBOH ( Z OL%) ( Z 625/\n> .
n=N+1 n=N+1

This means that (fN) ~N>1 is a sequence of holomorphic functions on the right hand half-plane of C which is a
uniformly convergent Cauchy sequence on any strip of the type [¢ < R(¢) < T'] and thus converges uniformly to
a holomorphic function f which can be written, for any ¢ with R(¢) > 0 in the form

f( = Bop(t) Z Za e ”TIP’;c (Bown) = ZZ@ e ”TIP’;c (Bown)- (2.12)

neKk>1 k>1n>1

In the same manner we are going to show that ¢ — u(t) has a holomorphic extension to the half plane R(¢) > 0:

Lemma 2.4. Let A satisfy (1.5), (2.1), and let By € UCP(AY, H). Forpg € D(AY) and py # 0, the solution u
of (1.11) is given by the series

7)\)6 —e —Ant
At —Ant

Ze *Py (g +ZZan —, Pr(Bopn) +t Zane P,.(Bown), (2.13)

k>1 k>1 nk k>1
for any t € C with R(t) > 0, and t — u(t) is holomorphic.
Proof. With pon,pn as above, we can write

t ~
un(t) = S(tyug + / S(t—7)fn(T)dr = S(t)uo + > Z / “A(=T) AT A7 Py (Boon).
0 k>1n=1

Step 1. We show first that uy is a holomorphic function on [R(¢) > 0]. Upon calculating the integrals,
according to whether k # n or k = n, we find that

“Ant _ oAkt N -
un(t) = S+ D an—————— Pu(Bowa) + ¢ Y an e Pu(Bogn). (2.14)
E>1 1<n<n k= n—1
n#k

Observe that

/\kt N e—Ant _ oAkt

; 1<;N Oén Mo — BOSOn Z <Z< Qp ﬂ Pk(BOSDn)
ntk T k#n
— At
+ Z o t—— py- P (Bogn),
n=1k>N+1
so that if we show that for N fixed, the mapping
N e~ Ant _ o= Akt
3

n=1k>N+1
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is analytic and has a holomorphic extension to R(t) > 0, then ¢ — uy(¢) is analytic on R(¢) > 0 (recall that we
already know that ¢ — S(t)up has an analytic extension to this half plane). Now, N > 1 being fixed, for any
integer m > 1 consider the holomorphic function F), defined for ¢t € [R(¢) > 0] by

N N+m _ _
e Ant —e Apt

Fou(t) 3:2 Z O‘nﬂpk(Bocpn)'

n=1k=N+1

For a,b > Ay and t € C with R(t) € [e,T], consider the function

e—at _ e—bt
g(a,b,t) == b— if b7 a (2.16)
te— et if a=0.

Since we have .
e~ _ oV — (b — a)/ exp(—(a+ (b —a)o)t)do,
0
for 0 < a < b and R(t) € [¢, T], we have the bound

lg(a, b, )] <Te",

and therefore for n < k the mapping t — g(\,, Ak, t) is holomorphic on the strip R(¢) € [e,T] and we have the

estimate

e—)\nt _ e—)\kt

Ay A, )] = < Te M,
90 M B = |55 | < Te
Thus we can write, proceeding as above,
N N+m+j
Fuii () = Fn® =S an S g0 M) Pu(Bogn), (2.17)
n=1 k=N+m+1
and since
N4m+j 2 N+m+j
> g0 A O PR(Bogn)|| = Y. 190w, Ak, B [Pk (Bosen) |12
k=N+m+1 k=N+m+1
N+m-+j
<T?e M N |[Pe(Bown)l®
k=N+m+1
<T?e™ 3 |PR(Bown) 1%,
k>N+m—+1

we can conclude from (2.17)

1/2

N
[Fmj(t) = Fm ()| <T <Z an e”") Y IPu(Bowa)lI?

k>N+m+1
This shows that the sequence of holomorphic functions (F, ), converges uniformly on any strip [¢ < R(t) < T
to the function F defined in (2.15), and thus finally we can induce that ux is holomorphic on [R(¢) > 0].

Step 2. In order to finish the proof of our lemma, we have to show that (un)n>1 is a Cauchy sequence of
holomorphic functions on any strip [¢ < R(t) < T of the complex plane. As we know already that t — S(t)ug
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is holomorphic on this half plane, we can assume without loss of generality that ug := 0 and thus using the
function g(A,, Ak, t) we can write

N
=3 3 angln 1) PulBog), (2.18)
n=1 k>1
so that for j > 1 we have
N+j
uny;(t) —un(t) = Z Z ang(An, Ak, t) Pe(Bown) =: E1(t) + Ea(t) + E3(t) (2.19)
n=N+1 k>1
where for convenience we have set
N+j N N N+j
El(t) = Z Zang(AnaAkvt) ]P)k(BOQOn) = ZPI@ <B0 Z Qi g()‘n;Akat)SDn>
n=N+1 k=1 k=1 n=N+1
N+j n N+j N+H+j
Ba(t):= Y. Y g t) Pe(Bogn) = > Py <BOZang Ay Ak 1) )
n=N+1 k=N+1 k=N+1
N+j 00
Es(t) = Z Z Qo g()‘naAkvt) ]P)k(BOQOQOn)

n=N+1 k=n-+1

With a little bit patience, using the same arguments as when we established the estimates for (F;, )., one checks
easily that for t € C and € < R(t) < T we have

2

N N+j
B2 =3 P (Bo S anghn, Ak,tm)
k=1 n=N+1
N N+j 2
§ Z BO Z ang()‘naAkat)cpn
k=1 n=N+1
N N+j
<D UBol? Y ad g A )P
k=1 n=N-+1
N N+j
<imer (e ) (3 o)
k=1 n=N+1
so that finally for some constant ¢(e,T") depending only on &, T
IE\@)I* < e, D) Bol* > i (2.20)
n=N+1

In order to estimate || Fx(t)|| first we write Es in the form

N+j N+j
Z ]Pk (BO Z ang >‘na>‘kﬂ )SDTI)a

k=N+1
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so that

N+j 2

D

k=N+1

12 (1)1

N+j
Pk‘ (BO Z ang()‘na )\ka t)@n)

n=~k

N+j 2

||B0||2 Z Z ang()‘naAkat)cpn

k=N+1 | n=k
N+j N+j

STBIT Y Yo
n=~k

k=N+1

N+j

IN

and finally we get the following estimate on || Eq(t)]]

1B2(8)]1* < T || Bol|? ( > ai) Y e (2.21)
k

The estimate on FEj3 is straightforward: indeed

N+j 00
IBs@ < > o |2 90 Ay )P(Bown)
n=N+1 k=n

and since

0o 2

Y 90 A tPe(Bown) || = D 190, A ) IPr(Bown) |
k=n k=n
(o)
< T?e72 M N " |[Pu(Bown)|? = T > || Bogu 1%,
k=n
§ T2 672€An BO||2;
we get finally
oo
IBs() <TBoll Y ane (2.22)
n=N-+1

Therefore, thanks to the assumption (2.1) on the growth of the eigenvalues, using (2.20), (2.21), (2.22)
we obtain that (un)y is a Cauchy sequence of holomorphic functions converging uniformly to w on any strip
[e < R(t) < TJ, and we have

u(t) = Z e_/\kth(uO) + Z Z ang()‘m Ak t)Pk(BOSDn)

>1 k>1nek
= Z ei/\kt]P)k (Uo) + Z Q(Ana Ak, t)]P)k (Bocpn)a
>1 kn>1

which, upon using the explicit expression for g(\,, A, t), that is (2.16), yields the representation formula for u
solution of equation (1.11), and the lemma is proved. O
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Once we have the above representation formulas for u, we can consider the unique continuation questions
mentioned in Section 1. First from the representation formula for the solution w of (1.11), that is from Lemma 2.4
we conclude the following, which establishes in fact Theorem 1.5:

Lemma 2.5. Under the assumptions of Theorem 1.5 if Biu(t;) = 0 for an infinite sequence t; € [T1,Ts) for
some 0 < Ty < Ty, then for all k > 1 we have ay, = 0, that is po =0, and p=u = 0.

Proof. We proceed in two steps.
Step 1. In a first approach assume that py € D(A). Then for any g € X', if (g, Biu(t;)) = 0 for an infinite
sequence t; € [T4,T5], since t — (g, Biu(t)) is holomorphic in ¢, we may conclude that (g, Biu(t)) = 0 on (0, c0).
Therefore we have that Byu(t) = 0 for all ¢ € (0, c0).

If po # 0, then the set K defined in (2.5) is non empty and we know that w is given by (2.13). Let
no := min {n ; n € K}. Then multiplying the representation formula (2.13) by ¢t ! exp(Ap,t), we get for all ¢ > 0

El (t) - O‘noBl]P)k(BOQOno) = E2(t)7 (223)
where for convenience we have set
(Ang—Ar)t Ang=Ak)t _ a—(An—Ang)t
(§] 0 0 e 0
Fq(t) := — B IP’ U le} B1P. (B
0 5SS S S )

E5(t) := E91(t) + Eaa(t) + Ea3(t)

and
—(A=Ang)t
e 0
Egl(t) = Z fBIPk(UO)
k‘ZTLo
()\k An )t _ (A An )t
e 0 (S 0
Eg(t) == Z Zan W B1Pr(Bown) (2.25)
k>ng n#k k
Eys(t) := Z ane_(’\”_’\"o)t B1P,,(Bown)-
n>ngo

First one observes easily that F5(t) — 0, for instance weakly in X, as t — +00. Next, we shall show that this
implies that
Oy B1Pry (Bown,) = 0. (2.26)

Assume for a moment that (2.26) is proved. Then since o, > 0, this implies that B1Py,(Bopn,) = 0: hence by
the unique continuation assumption for the operators A, By we conclude that P,,(Boyn,) = 0. However this
implies in particular that

(]P)TIU(BOSDTIONQORO) - (BOSDno|<Pno) =0.
Since By € SAP(A", H), thanks to our observation (2.2), we conclude that Byp,, = 0. At this point, since
By € UCP(A", H), we conclude that ¢,, = 0, a contradiction with the fact that by definition we have ||, || = 1.
This contradiction shows that we have K = 0, that is pp = 0.

So, in order to finish the proof of the lemma in this first step (that is when py € D(AY)), we have to
prove (2.26). To this end we are going to look more closely at the behavior of Fy(t), appearing in the left hand
side of (2.23) as t — +o00, according to whether ng = 1 or ng > 2. It is clear that if ny = 1, then the left hand
side of (2.23) is reduced t0 —a,Pny (Bown, ), and thus after passing to the limit as ¢ — 400, we obtain (2.26).

If ng > 2, then the series in E4(¢) can be written, for ¢ large,

(Ang—Aw)t 1

e Y (0%

Ei(t) =) — Bl (Uo +> FYR jA Bo%) +0 (f)
nekK "

k<ng
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Since for k < ng we have Ea(t) — 0 and

. G(A"O_)\k)t
lim — = +o0,
t——4o00 t

this means that (2.23) is possible only if for any k& < ny we have

(07
Blpk (UQ + Z )\k%)\ BO@n) =0.

nek

Finally, we have F;(t) = O(1/t) as t — +oo, and thus (2.23) yields again (2.26).

Now to see that up = 0 as well, we observe that since by the above argument we have py = 0, then
u(t) = S(t)uo satisfies Byu(t;) = 0 for an infinite sequence, therefore by Theorem 2.1 we have ug = u = 0. The
proof of Theorem 1.5 is done when py € D(A™).

Step 2. Consider now the general case py € D(A?) for some 3 > o — 1. If 3 > 7 then we are again in the
situation of the above first step. If v9 — 1 < 8 < 7y, then

1Bop(t)1l < [|Boll Ip(t) | pcaro) < €| Boll = [Ipoll pas).-

In this case, choosing 1 < ¢ < 1/(y0 — /), we see that the mapping ¢ — Byp(t) belongs to L4(0,T; H) and
thus by the maximum regularity results for inhomogeneous evolution equations (see for instance Pazy [8], or
Coulhon and Duong [2]) we can assert that the solution of

é?tﬂ + Au = Bop(t) on (0, OO)
a(0) =0 (2.27)
u(t) € D(A) for a.e.t >0,

exists and is unique in L4(0,T; D(A)), for any T > 0. We can choose 0 < t, < T} such that p(t.) € D(A7) and
u(ts) € D(A). Now if we set

Pos = P(ts), s := S(ts)uo + u(ts), and  p.(t) = p(t+ ), w(t) :=u(t+t.), tej =15 — s

the function u, satisfies the evolution equation

Opus + Aus = Bopa(t) for t >0
u*(O) = UQx
u(t) € D(A) for a.e. t >0,

and we have Bju.(t.;) = 0 for an infinite sequence t,; € [T} — t.,T> — t.]. Since in this case we know that
po« € D(AY) we can apply the result of the previous step to u., p. and conclude that pg. = 0. At this point the
backward uniqueness Theorem 2.2 implies that p(¢) = 0, that is pg = 0, and using again the unique continuation
theorem for u(t) = S(t)up we conclude that u(t) = 0 and thus ug = 0. O

The proof of a unique continuation result for a cascade system of forward-backward evolution equations such
as (1.10)—(1.12) is somewhat more delicate and is dealt with in the next section.
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3. UNIQUE CONTINUATION RESULT FOR A CASCADE OF FORWARD-BACKWARD
EVOLUTION EQUATIONS

Using the approach of the previous section together with the notations thereof, we consider the solution of
equations (2.8), with the particular choice:

vo:=0, po€H, [f(t):=DBop(t) for t >0, and f(t):=f(T —t)=Bop(T —t)for 0<t<T.

Since for any € > 0 we know that ¢ — p(t) is analytic on [, 00), and also belongs to C([e, 00); D(AY)) for any
~ > 0, it is clear that for 0 < £ < T we have f € C([0,T—e]; D(A™)), whenever By satisfies (2.11). It is moreover
clear that ¢ — f has a natural holomorphic extension to the strip of the complex plane [0 < R(t) < T — ¢].
Therefore v is given by (2.9), and on the other hand the solution of (1.12) is z(t) = v(T'—t) where v satisfies (2.8),

with the above choice of the right hand side f So, since € > 0 is arbitrary, for 0 < t < T we have

() = o(T — t) = /O ST —t— ) f(r)dr
T T
= /t S(r—t)f(r)dr = /t S(r —t)Bop(r)dr.
/ > e MR (Byp(r))dr.

tog>1

Finally, using (2.12) we obtain

2(t) = Z Z an, (/ e (T e_/\"TdT> P (Bown),

t

and therefore, according to whether A\, + Ay = 0 or not, we have:

Lemma 3.1. Let A satisfy (1.5), (1.6), and let By € UCP(A",H). If po € H, with pg # 0, then for 0 <t < T,
the solution z of (1.12) may be represented in the form of the series

o~ QkFA)t _ o=+ An)T

)\k+)\n

z(t) = (T —1) Z aneA’“th(Bogan)Jr Z ay et

Ak +An=0 Ak An#£0

Moreover the mapping t — z(t) has a holomorphic extension to the strip [0 < R(t) < T.

Proof. Note that since \; > 0 for j > k¢ (given by (1.6)), the first sum in the right hand side of (3.1) is a
finite sum of holomorphic functions in ¢ € [0 < R(¢) < T] (which may be reduced to zero if Ay, + A, # 0 for all
k,n > 1), and so the main point is to show that the function defined by the second term, that is

—(AeFAn)t Ao +2A)T

e e

b > e — Py (Bogn)
Akt An £0 kT An

is holomorphic on [0 < R(¢) < T]. Therefore there is no loss in generality to assume that

for some 6 >0, forall n,k>1, [An + Ag| > 6. (3.2)
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Assuming this we have to show that
o~ QkFAn)t _ o= (+An)T
Apt

n>1k>1

Now if we set poy := 22;1 anpn and if we denote by py, zn the corresponding solutions of (1.10) and (1.12),
then it is easy to see that zy is given by

e—kk(T—t) e—knT

N
Z: z>: — e+ A Pk(BOSDn)-

One may check easily that, for NV > 1 fixed, the sequence of holomorphic functions

“Ant o= A (T=t) g=An T

N N _
Z Za" e+ A\ Pk(BOSDn)v

1 k=1

defined on the strip [0 < R(¢) < T converges uniformly to zy on [¢ < R(t) < T —¢] for any € > 0 small enough,
implying that zy is a holomorphic function defined on [0 < R(¢) < T].
Now for j > 1 we have

N+Jj o Mk(T=t) g=AnT
ZN+j(t - ZN Z Zan N+ Pk(BOSDn)a
n=N+1 k>1 kT An
and so
N+j o= Ant _ o= Ak(T—t) o= AnT
[EOEENG] ES D SV Pr(Bogn)||- (3.4)
n=N+1 k>1 kT An

Since for ¢ < R(t) < T — ¢ we have

“Ant o= Ak(T=t) g=AnT

e—)\ne + e—)\ka e—)\nT e—)\na + e_”\"T
< < )
An + Ak A+ Ak

e

for n fixed we conclude that

2
2

At o= AR(T=t) o=AnT “Ant _ o= Ak(T—t) g=AnT

(& — e
> Pi(Bogn)|| = P (Bown)|?
E>1 )\k + )\n k>1 )\k + )‘n
e~ Mne 4 =T 2
<|({—— Pr(B
() S

e Ane 4 e=AnT\ 2
< (S5 Il

—Ane AT 2
< |Bol? e te ™
=70 A+ Ak
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Therefore, using (3.2) and reporting this into (3.4), we obtain

N+j “Ane 4 a—AnT
e "nt+e 2||Bo -
Jewss(® = s < [Boll 3 an (Ssr—) = A5 3 ane
n=N+1 " k n>N+1

for any t € C such that [¢ < R(t) < T — ¢]|. Therefore the sequence of holomorphic functions (zx)n converges
uniformly on the strip [¢ < R(¢) < T— ] to z, and thus z is given by the series stated in the lemma and ¢ — z(t)
is holomorphic on [0 < R(t) < T7. O

It is easily seen that we may derive some consequences of the representation formula obtained in Lemma 3.1:
indeed using the fact that ¢ — z(t) is holomorphic on [0 < R(t) < T we have:

Corollary 3.2. Under the assumptions of Theorem 1.6, if po € H with po # 0, and if B1z(t;) = 0 for an
infinite sequence of t; € [T, Ts] for some 0 < Ty < Ty, then Biz(t) =0 fort € (0,T) and we have

—Ant

(T - t) Z ane)\ktBIPk(BOSOn) + Z Qp H Blpk(BOSDn) =
An A =0 Mebmgo kT An
At ef(Ak‘i’An)T
Z Qp € k ﬁ Bﬂpk (B()Qﬁn)
Ak +An #0 k "

At this point we recall the following result on Dirichlet series:

Lemma 3.3. Let (by)n>1 be a sequence of H such that ) - ||bn| < 00, and (An)p>1 a sequence of distinct
real numbers. If
Vs eR, Zei)‘”sbnzo
n>1
then for all n > 1 we have b, = 0.

Proof. If this were not the case, let ng be the least integer n > 1 such that b, # 0. Multiplying the series
anj bne*n® by e 0% and integrating over [/, £] for some ¢ > 0, we have

0=buy+ > < / o "_A”O)Sds> bo=buy + > an.
Ano

n>nop+1 n>nop+1

It is clear that letting ¢ — 400 yields b,, = 0, which is in contradiction with the definition of b, . (]

Now returning to the result of Corollary 3.2, we see that the series on each side converge uniformly and
define a holomorphic function on the strip [e < R(¢) < T —¢] (for any ¢ such that 0 < ¢ < T'), and therefore in
particular choosing ¢ := % +1is, with s € R, we can conclude that for all s € R

T - s
(_ o 18) Z ane)\kT/Q el/\kéBl]P)k(BOCPn) + Z )\aﬁ e_’\"T/2e_1’\”5 Bl]P)k(BO(Pn) _
An+Ar=0 At an0 TR An

Z : +)\ e —(Ak+2X,)T/2 PREVE Bl]P)k(BO(Pn) (35)
A+, #0 k

This can be written in the form

T e s s
Vs eR, (— — is) > ane M BIPL(Bogn) + 3 e My, = Y ey, (3.6)

An+A=0 n>1 n>1
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where we have set (for k,n > 1):

a _ —
bip 1= Z ﬁe MT/2 BIPy (Bogn) = an e /2 Z
k>1

A +FAn#0 A +FAn#0

1
BPy(B 3.7
)\k +>\n 1 k( 0()0”)) ( )

and

@ «
ba += o AT BBy By, ) = e M2 B " o= MT Py (Bogy) | (3.8
2k Z;l )"f"’_)\ne 1Pk (Bown) = e 1 Z;l )\k+)\ne x(Bown) (3.8)

Ap+An#£0 Ap+An#0

Now using Lemma 3.3 we can state

Proposition 3.4. Let pg € H and py # 0. Assume that B1z(t) = 0 for t € (0,T). Then b1, and by being
defined in (3.7) and (3.8), for all n,k > 1 we have:

Py, Bo < > angon> =0, by, =by =0. (3.9)

A +An=0

Proof. In order to apply Lemma 3.3, we verify first that for j = 1,2 we have

> b1l < oo, > lbanl| < oo. (3.10)

n>1 n>1

Let § := min{|\, + Ag|; n,k > 1, A\, + A #0}. Tt is clear that thanks to assumption (1.6) we have § > 0.
Now for n € K define the function

1
n ‘= — Pr(Boyn)- 3.11
b= Y g PeBos) (3.11)
An+Ap#0
One can see that ¢, € D(A) satisfies
o= Y (53 )2||P Bogn2< 2 3 IPu(Bog)l2 = SBogal®  (3.12)
n — — )\k+)\n k 0¥n >~ 52 — k 0Pn - 52 0Pn .
An+Ap#0 An+Ap#£0

and thus we have the estimate B

ol < 1201 (313)

Therefore, noting that as a matter of fact by, can be expressed as
bin = an e 772 By (4y,), (3.14)

we have o
b1nll < e T2 By |9nl < 7" |Ball || Boll e *T72.

Therefore we have ) - [|bin|| < oo.
In order to see that ), ., ||bax|| < 0o, we observe that upon setting

(6%
F = e MT 3.15
k ; )\k + )\n € ©n, ( )

Ap+An#£0
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we have clearly ||Fg|| < 6 te M7 ||po|| and
bop = e M1/2 By (Pr(BoFy)) . (3.16)

Therefore, since

D llbaell < UIBull Y- e /2 |[Py(BoFy) |

k>1 E>1

<ote M By Y e M2 < 0,
E>1

Thus knowing that now -, ||bin| < oo and ), [|bax| < oo we may apply Lemma 3.3 in the following way.
First for ko > 1 fixed such that A, + Ay, = 0 for at least some n > 1, we multiply (3.5) by exp(—idg,s), we
integrate in s on the interval [—¢, ] and we let £ — +o00 we conclude that

eA’COT/QBl]P’kO Z anBop, | =0.

n>1
An+Ag, =0

Therefore, since By € UCP(AY, H), for all k> 1 such that for some n > 1 one has A, + Ay = 0 we have

Pe| Y. onBopn | =0

n>1
An+Ap=0

and thus (3.6) reduces to
Vs eR, Z e AnSpy, = Z ePho,,.

n>1 n>1

At this point it is clear that Lemma 3.3 implies that by, = bap, = 0, and the proposition is proved. (]

Using (3.14) and (3.16), we may conclude the following: if Byz(t) = 0 on (0,7, then by Proposition 3.4 we
know that by, = bar, = 0 for all n,k > 1. So by (3.14) we induce that a, B1t, = 0 for all n > 1. On the other
hand by relation (3.16) we conclude that B1P(BoF)) = 0. Therefore by (1.9), that is the unique continuation
property for the operator By € UCP(A", H), we have that P (BoF)) = 0 on Q for all k > 1. These observations
can be gathered in the following corollary:

Corollary 3.5. Under the assumptions of Theorem 1.6 on A, By, By if po € H and py # 0, define v, as
in (3.11), bin, bog being defined by (3.7)—(3.8), and Fy, being as in (3.15). If B1z(t) = 0 for t € (0,T) then
anB1y, =0 for alln € K and

Vi>1,  Pu(BoFy)=0. (3.17)
From (3.17) we conclude in particular that for all k£ € K we have

an
)\k + )\n

(Pr(BoFx)lpr) = Y e T
xn1§i¢o

BOQOn|SDk) = 07

a result which can be noted in the following corollary:
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Corollary 3.6. Under the assumptions of Corollary 3.5, if B1z(t) =0 on (0,T) then we have

Ckn AT
Vk €K, > oo ane =0, (3.18)

nek
An+Ap#0

where we have set cpr = iy = (Bown|ek)-

In order to prove our unique continuation result for z, we are going to show that as a matter of fact the
relations (3.18) imply that p(T') = 0, and thus py = 0, yielding a contradiction.

Assuming pg # 0, we define Hy as the span of the eigenfunctions ¢,, for n € K and we denote by (Ag, D(Ayp))
the restriction of the operator (A, D(A)) to the space Hy, that is

Hy:=EPRe,,  D(Ag):=D(A)NHy, Agu:=Au for ue D(Ap).
nek

Note that for n € K, each A, is a simple eigenvalue of Ay and ¢, is its eigenfunction. We denote by Py the
orthogonal projection of H into Hy (this amounts to setting Po := g Pn). For n € K

1
= ]P B .
Un Z; N+ A k( O‘Pn)

An+Ap#£0

This means that 1, is the solution of the equation

Aot + At = ]P)O,n(BOSDn)a o € D(Ao), with Pop := Z Pg.
AniAp 0

Then we can define a linear operator L : D(A;") — Hy (with mo > 0 a sufficiently large integer, or even real
number, chosen below), by setting Ly, := 1, and more generally for f =3 i (f|eon)en € D(AF?)

Lf=> (flen)Lon = > _(flen)tn.

nekK nek

Since by (3.13) we have ||Lg,|| = ||¢n] < 071 ||Bol|, the integer mg needs to be large enough to ensure that L f
is well defined for any f € D(A{™). Observe that

IZAI < 67 IBoll D 1(flen)l = 67 IBoll D (1 + IAal?) ™ 21(flin)] (L + A ) 7702

nek nekK
1/2 1/2
<07 Bol| <Z(1 + A [2)me I(flson)l2> (Z(l + IAnIQ)"”“) < oo,
nek nekK

provided that 2mg3 > 1, since by Assumption (2.1) we have \,, > con?: therefore L is well defined on D(Ap™)
for such a choice of mg.

We shall need the following representation result regarding the relationship between the operator L and the
semi-group So(t) := exp(—tAo) acting on Hy.
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Lemma 3.7. Assume that A satisfies (1.5), (2.1), and let By € SAP(A", H)NUCP(AY™, H) (that is satis-
fying (1.8) and (1.9)). Let mg be an integer (or a real number) such that 2(mo + 1)3 > 1. For f € D(A§™®),
denoting by So(t) = exp(—tAg) the semi-group generated by the operator Ay on Hy we have

@)= [ Bossorisona
0
In particular this implies that if Lf =0, then f =0.

Proof. For t > 0 define F(t) := So(t)f =, >k e (f|¢n)pn. Note that for g € D(A) one has

(Boglg) = > (glen)(gler) (Bowalor) = > e (glen)(gler)-
n,kekK n,k>1

So we have

| @essosisiona= [7 | 3 e (rlen) e Sl |

n,kekK

= > cur (flen) (flo) /0 oAty

n,kekK

= > s Ulen)(flew) = (L111).

n,kekK
In order to finish the proof of the lemma, observe that if L f = 0 then

/OOO(BOSO(t)ﬂSO(t)f)dt =0,

which means (BSo(t)f]So(t)f) = 0 for all ¢ € (0,00), since By satisfies (1.8). According to (2.2) this implies
that BoF(t) = BoS(t)f = 0 in (0,00). However since O;F + AgF = 0 in (0,00), the unique continuation
principle for this evolution equation, that is Theorem 2.1 applied to Ay and F, implies that F' = 0 on (0, c0),
that is f = 0. (]

Now we are in a position to show our unique continuation principle for a cascade of forward-backward
evolution equations:

Main Theorem 3.8 (forward-backward). Assume that A satisfy (1.5), (2.1), and By € SAP(AY,H) N
UCP(AY,H). Let By € UCP(AY,H). For a given po € H let p be the solution of (1.10). If z is the so-
lution of equation (1.12) and satisfies B1z(t;) = 0 for an infinite sequence (t;); with t; € [Th,Ts] for some
0<Ty <Ty<T, then we have p =z =0 and po = 0.

Proof. We know that the assumption B;z(t;) = 0 for an infinite sequence (t;); yields that Byz(t) = 0 for all
t € (0,T). If we had pg # 0, setting f :=p(T) = >, cx n e T, then one sees that for any choice of mg as
above, we have f € D(Ay"™), so Lf is well defined and is given by

Li= 2, A +>\ (Flen)er = 3 Ao +>\k e o

n,kek n,kek

In particular for any k£ € K we have

Ckn AT
(L § AnT — § T =0
f|§0k‘ )\ + )\k P )\n T )\k [679%~] B
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where we use the fact that c,x = cin, and Corollary 3.6. Therefore we have Lf = 0, and by Lemma 3.7
we conclude that f = 0, that is p(T) = 0. At this point, using the backward uniqueness result recalled in
Theorem 2.2, we conclude that pg = 0, which is a contradiction. (]

Remark 3.9. It is noteworthy that the proof of Lemma 3.7 yields also the following result which seems
interesting in its own right:

Lemma 3.10. Let H be a separable Hilbert space, (pn)n>1 a Hilbert basis of H and B : H — H a self-adjoint
bounded operator such that (Bf|f) > 0 for all f € H. If (An)n>1 s a sequence of positive numbers such that
for some positive number ¢y > 0 one has Ay, > co for all n > 1, then upon setting

1
Lf:= B n j n ) 5
f ,;1 AnJrAj( enles) (flen)e;

L is non-negative that is (Lf|f) > 0, more precisely for t > 0 defining the semi-group S(t)f =
2@1 e (flon)on we have

@)= | T(BS()1S (1) F)dt > 0.

When H is finite dimensional, for instance when H = C™ or H = R"”, this shows that if B is a non-negative
self-adjoint matrix, then the matrix L defined by

is also non-negative, and if B is positive definite so is L. However L can be positive definite even if B is only
non-negative. For instance, this particular example is of interest: if A; # X; for ¢ # j, taking B;; := 1 for
1 <4,j <n, one may verify that (Bf|f) > 0 and in fact the matrix

1
= (555)
Ai + )‘j 1<i,j<n

is positive definite: for we know already that (Lf|f) > 0 and therefore if it happens that (Lf|f) = 0, for
all ¢ > 0 we must have (BS(¢)f|S(t)f) = 0. However B being self-adjoint, (BS(t)f|S(¢)f) = 0 means that
BS(t)f =0, which in turn means that for all £ > 0 we have >, ., fre Mt =0, that is fr =0 for 1 < k < n.
Note that in this example the matrix B is not positive definite (being a matrix of rank one). As a matter of fact
this observation is a generalization of the well known result asserting that the Hilbert matrix L := (L;;)1<i j<n
defined by L;; = 1/(i + j) is positive definite.

4. THE CASE OF STOKES EQUATIONS

Consider a bounded Lipschitz domain ¢ RY, and
H = {ue (L*()"; div(u) =0} -
Consider the Stokes operator on €, that is the unbounded operator defined on H by

Au := —Au, D(A) = {ue (H}(Q)"; AuecH}-
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In order to apply our unique continuation result of Sections 2 and 3 to this case, among other things we have
to check that the eigenvalues Ay for the Stokes eigenvalue problem, that is

—Apr + V7 = Ak in Q
div(ex) =0 in 0 (4.1)
u=0 on 0N

have a lower bound such as A, > ¢o k2/"V. Indeed by the variational characterization of the eigenvalues, we have

Ar = inf max |Vu )|?da,
A A ueA

where the class A) is defined as the set of subsets of genus k on the sphere

Sp == {u € (HL ()N div(u) =0, / lu(z)|?dz = 1}
Q
(endowed with the topology of Hj()) that is precisely
AP = {f(S*1); f: 8% — Sy is odd and continuous} -
Now denoting by AP the eigenvalues for the Dirichlet problem (here p? € (Hg(Q))V)

—Apl = AR in Q
0P =0 on 0f),

we have

AP = inf max/ |Vu(z)*de,
A€eA, ueA QO

S = {ue (H3 (2 /|u |2d$—1}

Ay = {f(S*1); f: 51 — S is odd and continuous} -

where denoting by

the class Ay is defined as being

Since clearly we have A) C Ay, it follows that \; > )\],3. As a consequence, the eigenvalues of the Stokes
operator satisfy the growth condition mentioned in (1.6) with ko = 1 and 5 = 2/N.

Next observe that the classical unique continuation principle for the Laplacian yields easily a unique continu-
ation principle for the Stokes operator. Namely, if w C € is an open ball such that ¢ € (H3(Q))V satisfies (4.1)
and ¢ = 0 on w, then according to the first equation we have Vrp = 0 in w, so that 7 is equal to constant
in w, which can be taken to be zero. However taking the divergence of this first equation, and using the fact
that div(ex) = 0, we have also that Am;, = 0 in  while 75, = 0 in w: therefore the classical unique continuation
principle for the Laplacian implies that 7 = 0 in €. It follows that —Apr — Appr = 0 in © and ¢, = 0 in w:
applying again the unique continuation principle for the Laplacian, we conclude that ¢, = 0. This means that
if for v € H we set

Bu:=1,u

then B satisfies both properties (1.8) and (1.9) with v = 0.
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Therefore we can consider a coupled system of Stokes equations such as:

Out — Aut +Vrlt =0 in (0,00) x Q2
Opu? — Au? + V2 =1, u'(t) in (0,00) x Q
div(u') = div(u?) =0 in (0,00) x (4.2)
u(t,o) = u?(t,0) =0 on (0,00) x 999 '
u(0,2) = ud(x) in
u?(0,2) = ud(x) in 0

and state the following unique continuation result:
Theorem 4.1 (forward-forward coupled Stokes systems). Let wg,w; C 2 be two open subsets of 2, and for
given u,ut € H, let u',u® be solution to (4.2). Then if for an infinite sequence (t;); > 1 with t; € [T1,T»] and

0 < Ty < Ty we have u?(tj,z) =0 for x € wy, then we have uy = u = 0.

Indeed we have also an analogous result for the following forward-backward Stokes system:

5‘tu1—Au1+V7r1:0 in (O,T)XQ
—0wu? — Au? 4+ V72 = 1, u'(t) in (0,To0) x
div(u') = div(u?) =0 n (0,7) xQ (4.3)
u(t,o) = u?(t,0) =0 on (0,7) x 09 ’
u' (0, 2) = up(z) in 2
u?(T,x) =0 in

and we can state the following unique continuation result:

Theorem 4.2 (forward-backward coupled Stokes systems). Let wg,w; C £ be two open subsets of 2, and for
given u$ € H, let u',u? be solution to (4.3). Then if for an infinite sequence (t;); > 1 with t; € [Ty, T2 and
0< Ty <To<T we have u*(tj,x) =0 for x € wy, then we have u = 0.

The reader may consider other types of operators B, as the ones given in the previous section, since using
the above unique continuation property for the Stokes operator one may easily see that if ¢y satisfies (4.1) and
if for a relatively open subset I' C 92 we have

9
%:o on T,

then ¢ =0 in Q.

Let us denote o(v,p) := —nl + (Vv + Vo) for v : Q@ — RY and 7 : @ — R. Then since Stokes
equations (4.1) may be written as div(o(px, 1)) = A with div(pr) = 0 and ¢ € (HE ()Y, instead of the
normal derivative gy /On one may consider a more physical boundary information, such as

o(pk,me)n =0 on T’

where o(pg, m;)n corresponds to the so-called Cauchy forces on the boundary. Then the unique continuation
property mentioned above for the Stokes equation yields that ¢ = 0 in . For instance as another example
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of cascade equations we may consider (4.3) which can be written as (here Bov := 1,,v)

ou — div(a(u ,7r1)) =0 in (0,7) x Q
—0wu? — div(o(u?, 7?)) = Bou'(t) in (0,7) x
div(u') = div(u?) = 0 in (0,7) x
ul(t,o) = u*(t,0) =0 on (0,T) x 0%
u (0, ) = uj(z) in
W(T,z) =0 in Q.

Now proceeding as in the previous section with B;(v) := 1p o(v, 7)n, we have that if o(u?(t;),7%(t;)) =0on T’
for an infinite sequence (¢;); € [T1,7%] C (0,T), then we have u$ = 0. There are numerous other such remarks,
and we leave them to the reader’s interest.

5. APPLICATION TO CONTROL PROBLEMS AND EXAMPLES

The concept of insensitizing control for the heat equation was introduced by Lions in [7] and is in relation
with the following heat equation

Oy — div(aVy) = & + hly, in @:=(0,T) xQ
y(0,2) = yo(x) + 790 in Q (5.1)
y(t,o) =0 on (0,7) x 90

in which the data are incomplete in the following sense: &, y° are given in L?(Q) and L?(Q) respectively, while
h = h(z,t) is a control term in L?(Q) to be determined, but

~ 9o € L*(Q) is unknown and ||7o[|12(n) = 1 and represents in some sense the uncertainty on the initial
data;
— 7 € R is unknown and small enough.

An observation functional
1 (T
D(y) = —/ / y*(x, t)da dt (5.2)
0 wo
being given, the question is whether there exists a control h € L?((0,7) x w1) such that

0(y(h, 7))

o = 0. (5.3)

=0
Here Q ¢ RY is a smooth bounded domain, w; C € is a small control region, while wy C € is a small observation

set. We denote by y(h,7) := y(t,x; h, ) the solution of (5.1). Bodart and Fabre [1] relaxed the notion to the
e-insensitivity in the following way: for every e > 0 find a control h € L?(w; x (0,7T)) such that

78@(%(? 7)) <e. (5.4)
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It is not difficult to see that condition (5.4) (resp. (5.3)) is equivalent to the partial approximate (resp. null)
controllability of the cascade system:

Oy — div(aVy) = €+ hy, in Q
y(0,2) = yo(x) in (5.5)
y(t,o) =0 on (0,7) x 0N
—0iq — div(aVyq) = yly, in Q
q(T,z) =0 in Q (5.6)
q(t,o) =0 n (0,7) x 09Q.

That is, the e-insensitivity (resp. insensitivity) condition (5.4) (resp. (5.3)) is equivalent to

19(0)[ 20y <, (resp. ¢(0) = 0).

When wy Nw; # 0, the problem was completely solved, even in the semilinear case, in Bodart and Fabre [1]
for the approximate framework, and partially solved (i.e. for 4° = 0) by the second author (de Teresa [3])
in the insensitizing context. The results of the previous sections allow us to solve the e-insensitizing control
problem when wy Nw; = (). So the main result in this section is the following;:

Theorem 5.1. Assume that the matriz a satisfies (1.2) and that the domain Q is bounded and Lipschitz. For
any given initial data yo € L*(Q), £ € L*(Q) and ¢ > 0, if wo,w1 C Q are respectively any observation and
control subdomains, there exists an e-insensitizing control h = h(e,yo,&) for the functional given by (5.2), where
y is the solution to (5.1).

The proof of this result is a direct consequence of the unique continuation property proved in Theorem 1.2
and is by now classical (see e.g. [4] or [1]), nevertheless for the sake of completeness we give a sketch of the
proof. To this aim we need to introduce a new functional: given yo € L?(Q2), £ € L*(Q) and & > 0, we consider

for po € L?(9)
/ / z dmdt+5||p0||L2+/yoz d:EJr/ /fzdxdt (5.7)
w1

where z is the solution to (1.4) when p is solution to (1.1). We have the following result.

Lemma 5.2. J is continuous, strictly convex and coercive, that is

lim  J(po) = +o0.

llpoll L2 —o0

More precisely we have
J
lim inf (Po)
Ipoll 2 =00 [|pol| 2
In particular, J achieves its minimum at a unique pg. When py # 0, it satisfies the following optimality

condition:
T c T
/ / EzdmdtJrA—/ﬁopod:ch/yoz(O)d:EJr/ /fzdxdt:O (5.9)
0 Ju Ipollz2 Jo Q o Ja

for any po € L*(Q), where z is the corresponding solution to (1.4).

> e (5.8)

Proof. The continuity and convexity are straightforward as is the optimality condition, once the existence of
the minimum is proved. We concentrate in proving (5.8). Suppose that this is not so; then there would exist a
sequence of initial data p such that

J 7
lim EIpO)
n—oo ||pg L2

and lim ||pyllrz = oc. (5.10)
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Defining the normalized data pfj := p{/||pi| L2, we denote by p™ and Z™ be the corresponding solutions to (1.1)
and (1.4). It is easily seen (refer e.g. Bodart and Fabre [1]) that for a subsequence (still denoted by n) we have:

po —po  weakly in L?(9), p" —p and Z" —z strongly in L*(Q), Z"(0) — z(0) in L*(Q),

with p, z satisfying equations (1.1), (1.4) corresponding to pg. Observe that since

n n T T
0 wi 0 Q Q

126 [ 2 2

if we have fOT fu.u z2dz dt > 0, then

J o3
lim inf @ > e,
n—oo |pg

contrary to (5.10). Therefore assumption (5.10) implies necessarily that fOT fwl 22dzdt = 0, that is z = 0 on
(0,T) x w1, and consequently according to the unique continuation principle proved in Theorem 1.2, we have
that z =0 =pon (0,7) xQ and that pg = 0. Passing to the limit in (5.11) we obtain a contradiction with (5.10).
This contradiction shows that our claim (5.8) holds. (]

Proof of Theorem 5.1. The claim of Theorem 5.1 follows now easily. Indeed, observe that the system (1.4),
(1.1) is the adjoint of system (5.5), (5.6). Therefore taking h := Z, the solution of (1.4) corresponding to
the minimizer py of J, thanks to the optimality condition (5.9), we obtain a partial e-control for the cascade
system (5.5), (5.6). That is, we get ||¢(0)|/z2(0) < e. O

Observe that our main result Theorem 3.8 allows also to control equation (5.5) from a non empty subset
'y C 99 of the boundary or to use a coupling in (5.6) on a subset 'y C I on the boundary.

For the case of two forward-forward equations simultaneous approximate controllability of both equations
can be performed. As an example of the kind of situations we can expect to hold, we have the following result:

Proposition 5.3. Leta := (a;;)1<i j<n satisfy (1.2). For anye > 0 and data (yo, wo), (y1,w1) € H1 () given,
and for every domain w C 2 and every nonempty I' C 9S) subset of the boundary, there exists h € L*((0,T) xT)
such that if y is the solution to

Oy — div(aVy) =0 in (0,T) x Q
0,x2) = imn Q
y(0,2) =yo (5.12)
y(t,o) =0 on (0,T) x (OQ\T)
y(t,o) =h on (0,T)x T,
and if w satisfies
Ow — div(aVw) = yl, in (0,T) x Q
w(0, z) = wo in Q (5.13)
w(t,o) =0 on (0,T) x 09,

then we have
1y(T) —yillg—1 + [[w(T) —wi][ g <e.

The results in the previous section give also e-insensitizing results for the Stokes system (we thank an
anonymous referee of this paper for having kindly informed us that the problem of (null) insensitizing control,
in the easier case in which w; Nwy # 0, has been treated by Guerrero in [6]).
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6. OPEN PROBLEMS

First of all we notice that in the latter controllability result, we are only obtaining a partial approximate
control for the cascade system in the sense that we are not simultaneously obtaining an approximate control
for the state y. An interesting problem is to control simultaneously (5.5), (5.6), that is, to get a control h such
that the corresponding solution satisfies

g2 <&, ly(T)]r2 <e.

In fact a controllability result in this direction is equivalent to the unique continuation property of sys-
tem (1.1)—(1.4) but with the additional assumption that 2(T) = zy € L%(Q), instead of 2(T) = 0 as in this
paper. Observe that the proof of Theorem 1.2 uses the fact that z(T") = 0.

The techniques used along this paper cannot be applied in the case of a linear system with potentials, i.e.,
we do not know if Theorem 1.2 holds true for p, z solution of

Op— Ap+b(z,)p =0 in Q
p(0,2) = po(x) in (6.1)
p(t,o) =0 on (0,T) x 09
—0z — Az + a(x,t)z = ply, in @
z(T,x) =0 in Q (6.2)
z(t,o) =0 on (0,T) x 99

with a,b € L°°(Q) and then the semilinear e-insensitizing control problem remains open. See [1] for a description
and solution of the problem when wy Nwy # 0.

Observe also that the linear operators involved in the cascade systems are assumed to be the same: indeed,
as far as the control problem is concerned this is not an annoyance, but from a mathematical point of view it
would be interesting to consider situations in which two different linear operators are involved in the cascade
systems. In a forthcoming study [5], Ferndndez-Cara et al. show a counterexample to the unique continuation
in the following case: assuming that p satisfies

atp — UPzz = 0 in (OvT) X (Oa 1)
p0.2) =po(z)  in (0,1) (6.3)
p(t,0) =p(t,1) =0 for ¢t € (0,7),
and z is solution to
Oz — Zgp = P in (0,7) x (0,1)
2(0,x) = zo(x) in (0,1) (6.4)
2(t,0) = 2(t,1) =0 for t € (0,T).

More precisely, when p # 1 and /i € Q there exist non zero solutions to (6.3), (6.4) such that z;[,—o = 0, that
is, the unique continuation principle is not any more true.
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