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THE HOMOLOGY OF SPECIAL LINEAR GROUPS
OVER POLYNOMIAL RINGS (1)

BY KEVIN P. KNUDSON (2)

ABSTRACT. - We study the homology of SLn(F[t,t~1}) by examining the action of the group on a suitable
simplicial complex. The i^-term of the resulting spectral sequence is computed and the differential, d1, is calculated
in some special cases to yield information about the low-dimensional homology groups of SLn(F[t,t~1]). In
particular, we show that if F is an infinite field, then H2(SLn(F[t,t~1]),!) = K2(F[t,t~1]) for n > 3. We also
prove an unstable analogue of homotopy invariance in algebraic JC-theory; namely, if F is an infinite field, then
the natural map SLn(F) —>• SLrt(F[t\) induces an isomorphism on integral homology for all n > 2.

RfisuMfi. - Nous etudions Fhomologie de SLn(F[t,t~1]) en examinant 1'action de ce groupe sur un complexe
simplicial adequat. Le terme E1 de la suite spectrale associee est determine et la differentielle d1 est calculee
dans certains cas, ce qui permet alors de comprendre Fhomologie du groupe SLn(F[t,t~1]) en bas degre. En
particulier, nous montrons que si F est un corps infini, alors H'z(SLn(F[t,t~1]),!) = K'z(F[t,t~1]) pour n >, 3.
Nous prouvons aussi un analogue instable de 1' invariance homotopique en ^-theorie algebrique : si F est un corps
infini alors la fleche naturelle SLn(F) -^ SLn{F[t]) induit un isomorphisme en homologie entiere pour n ^ 2.

Since Quillen's definition of the higher algebraic K-groups of a ring [15], much attention
has been focused upon studying the (co)homology of linear groups. There have been some
successes -Quillen's computation [14] of the mod I cohomology of GLnffq), Soule's
results [18] on the cohomology of SL^(T}- but few explicit calculations have been
completed. Most known results concern the stabilization of the homology of linear groups.
For example, van der Kallen [II], Chamey [7], and others have proved quite general
stability theorems for GLn of a ring. Also, Suslin [19] proved that if F is an infinite
field, then the natural map

H^GL^F)) —— ff,(G£,(F))

is an isomorphism for i < m. Other noteworthy results include Borel's computation of the
stable cohomology of arithmetic groups [I], [2], the computation of H*(SLn(F), R) for
F a number field by Borel and Yang [3], and Suslin's isomorphism [20] of H^SL^F))
with the indecomposable part of K^F).

This paper is concerned with studying the homology of linear groups defined over the
polynomial rings F[t] and F[t,t~1}. One motivation for this is an attempt to find unstable
analogues of the fundamental theorem of algebraic K-theory [15]: If R is a regular ring,
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386 K. P. KNUDSON

then there are natural isomorphisms

(1) W[t}) - K^R)

and

(2) K^t-^^K^eK^R).

In this paper, we study the homology of SLn(F[t^t~1}). Before stating our main result,
we first establish some notation.

The group SLn(F[t^t~1}) acts on a contractible {n — 1)-dimensional building X with
fundamental domain an (n — l)-simplex C. This yields a spectral sequence converging to
the homology of SLn(F[t,t~1}) with J^-term satisfying

(3) E^= © ff,(r,)
dim a=p

where Ya denotes the stabilizer of the p-simplex a in SLn(F[t^t~1]), and a is contained
in C. The vertex stabilizers are isomorphic to SLn(F[t}), and the other stabilizers break
up into isomorphism classes in such a way that in each class, there is a group F^ which
fits into a split short exact sequence

i — K — r ^ ^ P a — i
where Po- is a parabolic subgroup of SLn(F) and K consists of the matrices in SLn(F[t})
which are congruent to the identity modulo t. Our main result is the following.

THEOREM (cf. Theorem 5.1). - If F is an infinite field, then the inclusion Py —> Fo-
induces an isomorphism

H.(P^I)—ff.(r,,z).
If a is a vertex, we have Fa = SLn(F[t}) and Pa = SLn(F). In this case the theorem

reduces to the following unstable analogue of (1).

THEOREM (cf. Theorem 3.4). - If F is an infinite field, then the inclusion SLn(F) —>
SLn{F[t}) induces an isomorphism

H.(SL^F)^I) -^ H.(SL^F[t})^l).

This theorem improves on a result of Soule [17].
Theorem 5.1 completes the computation of the E^-term of the spectral sequence (3).

However, the differential d1 is difficult to calculate in general. In Section 6 we compute the
map in a few special cases and obtain information about the low dimensional homology
groups of SLn(F[t^t~1]). In particular, we show that if F is an infinite field, then for
n > 3, there is an isomorphism

H,(SL^F[t^ r1]), Z) - K^F[t, r1]).

The homology of SL^(F[t, t~1}) was studied by the author in [12] using slightly different
techniques than those used here. The main result of [12] is the following.
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THE HOMOLOGY OF SPECIAL LINEAR GROUPS 387

THEOREM (cf. [12, Theorem 5.1]). - Let F be a number field and denote by r-i
(resp. r^} the number of real (resp. conjugate pairs of complex) embeddings of F. Then for
k > 2ri + 3r2 + 2 there is a natural isomorphism

Hk{sw[t, r1]), Q) ^ fffc-iG^, Q).
The results of this paper reprove and generalize the results of [12]. In particular, Theo-
rems 3.1 and 4.3 of [12] hold for infinite fields of arbitrary characteristic, not just fields
of characteristic zero.

This paper is organized as follows:
In Section 1 we present the necessary background material on the Bruhat-Tits building X.

We also introduce a complex y which will be used in subsequent sections.
In Section 2 we study the action of SLn(F[t,t~1}) on X and examine the structure

of the various stabilizers.
In Section 3 we prove Theorem 3.4, the unstable version of (1). Even though this is a

special case of Theorem 5.1, we prove it separately for two reasons. First, it is a striking
result which deserves to be called a theorem in its own right, and second, the proof sets
the stage for the proof of Theorem 5.1.

In Section 4 we find fundamental domains for the actions of the various stabilizers on
the complex V introduced in Section 1.

In Section 5 we prove Theorem 5.1.
Finally, in Section 6 we compute the o^-map in the spectral sequence (3) in some

special cases.

Notation. - If G is a group acting on a simplicial complex X and if a is a simplex in X,
we denote the stabilizer of a in G by G^. If R is a ring, we denote the group of units
by Rx. The set of n x n matrices over R will be denoted by Mn{R). Unless otherwise
stated, F will be an infinite field of arbitrary characteristic.

1. Preliminaries on buildings

In this section, we summarize the basic facts about the Bruhat-Tits building associated
to a vector space over a field with discrete valuation. The building was constructed in [6];
more detailed information may be found there (or see Brown [4, Ch. V]).

Let K be a field with discrete valuation, v. Denote by 0 the valuation ring of v\ that is,

0 = {x G K : v(x) ^ 0}.

Choose a field element TT satisfying v(7r) = 1, and denote by k the residue field 0/TrO.
By a lattice in K^', we mean a finitely generated 0-submodule which spans K^\ such
a submodule is free of rank n. Two lattices I/, Lf are called equivalent if there is some
nonzero field element x such that L' = xL. Denote the equivalence class of the lattice
L by [L\. If z'1,... ,Vn are linearly independent elements of ^n, denote the equivalence
class of the lattice they span by [^ i , . . . ,Vn}-
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388 K. P. KNUDSQN

Assign a type to a lattice class as follows. If [v i , . . . ,^] is a lattice class, we define
its type to be the element

^(det^i,...^))

modulo n, where det(i;i,..., ^n) denotes the determinant of the matrix having ^ i , . . . , v^
as columns.

Construct a simplicial complex X in the following manner. The vertices of X are
equivalence classes of lattices in Kn. A collection of vertices A o , A i , . . . , Am forms an
m-simplex if there exist representatives -Lo, ̂ i , . . . , Lm satisfying

TrLm C LQ C £1 C • • • C Lm.

Since Li/^Lm is a subspace of the n-dimensional k- vector space L^/TT-L^, the maximal
simplices of X have n vertices; that is, dimX = n — 1. Moreover, the complex X is
contractible [4, p. 137]. There is an obvious action of GLn(K) on X. Note that this action
is transitive on the vertices of X.

We now find a fundamental domain for the action of SLn(K) on X. Let C be the
(n - l)-simplex with vertices [e i , . . . , e,, 7re,+i, . . . TTC^], i = 1 , . . . , n, where e i , . . . , On is
the standard basis of A^\ Then we have the following result (see [4, p. 137]).

PROPOSITION 1.1. - The (n — 1) -simplex C is a fundamental domain for the action of
SLn(K) on X.

Proof. - Let C' be an arbitrary (n — l)-simplex with vertices A o , . . . , A^_i, with A^ of
type n — i. By the Invariant Factor Theorem, there is a basis / i , . . . , /n of K71 such that

Ao = [A, . . . , /n ] , Ai = [/i, 7 r /2 , . . . , 7 r / „ ] , . . . , A^_i = [/i, . . . ,7r/^],

and det(/i, . . . , fn) = TT^U for some integer r and u G C^. Replacing /i by Tr"7^"1/!,
and ^ by 7r~rfi, i = 2 , . . . ,n, we still have

AO = [/!?• • • 5 / n L - • • , A^_i = [/i, . . . ,7Tfn},

but now det(/i , . . . ,fn) = 1. Let g be the matrix having /i , . . . , /n as columns. Then g
takes C\.oC'. Since the action of SLn(K) preserves type, it follows that C is a fundamental
domain. D

The stabilizer of [e i , . . . , e^] in SLn(K) is the subgroup SLn(O). Thus, the stabilizer
of [ei , . . . ,e^7re^4- i , . . . ,7re^] is

giSLn(0)g^\

where
gi = diag(l,l,...,l,7r,...,7r),

the first TT appearing in the {i + l)st column. The stabilizer of an edge is the intersection
of the stabilizers of its vertices; the stabilizer of a 2-simplex is the intersection of the
stabilizers of its edges, and so on.
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THE HOMOLOGY OF SPECIAL LINEAR GROUPS 389

In this paper, we shall be interested in studying various group actions on two Bruhat-Tits
buildings associated to two different fields associated to a field F.

EXAMPLE 1.2. - Denote by C the field of formal Laurent series over F. Define a
valuation v on C by

^( ̂  a,f) = no, a^ / 0.
\>no /

Here, we choose TT = t. Observe that the ring F[t,t~1} is dense in C. Denote by X the
Bruhat-Tits building associated \,Q Cn.

EXAMPLE 1.3. - Denote by F(t) the field of fractions of F[t}. Define a valuation z;oo
on F{t) by

Voo (a/b) = deg b - deg a, 6 /0 .

In this case, we choose TT = 1/t. Denote by V the Bruhat-Tits building associated to F^t)71.

Remark. - Denote by K the completion of K with respect to the valuation v. Then the
Bruhat-Tits buildings of K and K are isomorphic. In particular, the completion F{t) of
F(t) is isomorphic to C via the map t \-^ t~1. It follows that the complexes X and Y are
isomorphic. Although these complexes are isomorphic, it will be convenient to distinguish
them when doing homological computations.

2. The action of SL^F[t,t~1}} on X

We now investigate the action of the group SLn{F[t,t~1}) on the complex X of
Example 1.2. Since F[t,t~1] is a dense subring of the field £, we have the following
result.

LEMMA 2.1. - The subgroup SLn(F[t,t~1}) is dense in SLn{C).

Proof. - The closure of SLn(F[t,t~1}) in SLn(C) contains the subgroup of elementary
matrices over C. Since these matrices generate SLn(C), the result follows. D

Denote by V the vector space C^ and let GL(V)0 denote the kernel of the homomorphism

v o det : GL(V) —> 1.

Then we have the following (cf. [16, Thm. 2, p. 78]).

PROPOSITION 2.2. - IfG is a subgroup ofGL(V)° whose closure contains SL(V), then the
(^ _ ^-simplex C (see Proposition 1.1) is a fundamental domain for the action ofGonX.

Proof. - We know that C is a fundamental domain for the action of SL(V) on X. Let
C' be an (n — l)-simplex in X. There is an element s of SL(V) with

sC=C'.

ANNALES SCIENTIPIQUES DE L'ECOLE NORMALE SUPERIEURE



390 K. P. KNUDSON

Let U be the subgroup of GLn(O) consisting of the matrices which are congruent to the
identity mod i\ this is an open subgroup of GL(V). By hypothesis, there is an element u
of U and an element g of G with g = su. Observe that u fixes each vertex of C. Hence,
we have the chain of equalities

gC = suC = sC = C\

and since G preserves type, it follows that C is a fundamental domain for the action of G
on X. D

The preceding two results imply that the {n — 1)-simplex C is a fundamental domain
for the action of SLn(F[t,t~1}) on X.

We now identify the stabilizers in SLn(F[t,t~1}) of the simplices of C. Label the
vertices of C as

pi = [ei,... ,e^_i,tei,... ,te^ i = 1 ,2 , . . . ,n.

Note that j?i = [ te i , . . . , ten] = [ e i , . . . , e^]. Evidently, the stabilizer of pi in
SLn(F[t^t~1]) is the subgroup

SL^F[t}) = SL^(O) n SLn(F[t^ t-1}).

Denote by gi the matrix

Qi = diag(l,. . . , 1, t,... ,t), i = 2 , . . . , n

where the first i — 1 entries are equal to 1. Then the stabilizer of pi in SLn(F[t^t~1]) is

g,SL^F[t])g^.

Denote by F^,,.^ the stabilizer of the (k - l)-simplex having vertices p^ , . . . ,p^ .
The group F^...^ is the intersection of the stabilizers I\,..., F^ of the vertices of the
simplex. Elements of F^...^ have the form

/ L,
tV^
tV^

v^+u

^12

L2

tV^

tVk+1,2

Vl3

^23

Ls

tVk+1,3

• • • v^
• • • V^,k
• • • Vs,k

tVk+}.^k

t^V
^2,

^3,

Lk

\,k-\-l \

fc+1
fc+1

+1 /

where we have

^€M^_^(F[t]), K r < k + l

V^s eM^_^_,^_^_,(F[t]), 1 < r , 5 < f c + l

(here, we set io = 1 and ik+i = n + 1).

4e SERIE - TOME 30 - 1997 - N° 3



THE HOMOLOGY OF SPECIAL LINEAR GROUPS 391

Consider the stabilizers I\^...j,. These are subgroups of I\ = SLr,{F[t]). Elements
of the group ^ij^...jk have the form

/ £1 Yi2 î3 • • • V^k-1 V^\
tV'21 2.2 ^23 —— V^k-1 V^k

tVsi tV^ 1/3 • • • V3,fc-l V^k

\tVk,i tV^2 tV^ ' • • tV^k-i Lk )
where we have

£,eM^-^(F[t]), Kr<k
y^eM^-^^-^(FM), K r ^ ^ k

(here, we set j'i = 1 and j^+i = n + 1).
These groups are related as follows.
PROPOSITION 2.3. - The group r^,...^ is conjugate to r\(^_^+i),...,(^-^+i) inside

GLn(F[t^t-1}).
Proof. - First conjugate 1 ,̂...̂  by the element

g = d iag( t , t . . . , t , l , . . . , l )
where the first zi - 1 entries are equal to t. The resulting group has elements of the form

/ £1 tVi2 tVz3 ' " tV^k Vi,fc+i \
V^\ L^ ^23 • • • ^2,fc ^2,fc+l

^31 ^32 ^3 • • • ^3,fc ^3,fc4-l

^4,1 tVk,2 tV^3 ' " Lk Vk^k+1

Wfc+1,1 ^fe+1,2 ^+1,3 • • • ^+l,fe ^fc4-l /

where the Lr and K^ are as above. Now conjugate by the permutation matrix corresponding
to the permutation

1 \—> n — i\ -h 2
2 ̂  n — %i + 3

%i — 1 i-̂  n
%i ^-^ 1

%2 - 1 1-̂  ^2 - %1

%2 h-^ ^2 — %! + 1

%2 4- 1 '-̂  ^2 "- '̂1 + 2

n i—^ n — i \ + 1.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



392 K.P . KNUDSON

Note that if r denotes the n-cycle (12 • • •n), then this permutation is simply r'1"1. The
resulting group has the form

/

tV^

\

L2

tV32

tV^

tVk+lft

tV^

V23

Ls
tV43

tVk,3

tVk+1,3

tVi3

Vu

V34

L4

tVk,4

tVk+i
tVu

Lk
tVk+i,k
tV^k

V2,k+l

V3,k+l

^4,A;+1

Vk,k+l

Lk+1

Vl,k+l

V21

V31

V41

Vk,l

Vk+1,1

Ll

\

1

which is precisely the group r\(^_^+i),...^_^+i). D
If <r is a p-simplex in C, denote by Vo the stabilizer of a in SLn(F[t,t~1]). Since the

complex X is contractible, we have a spectral sequence converging to the homology of
SLn(F[t,t~1}) with ^-term

(4) ^ © W^)
dim a==p

where a ranges over the ^-simplices of C. By Proposition 2.3, we need only compute the
homology of each Fij^...^; we do this in Section 5.

In the next section we single out the I\, i == 1, . . . , n and compute their homology.

3. The vertex stabilizers.
The homology of SLn(F[t})

Notation. - For G a subgroup of GLn(R), R a commutative ring with unit, denote by
G the subgroup G D SLn(R).

Consider the stabilizers Fi , . . . ,I\ of the vertices of C. Each of these is isomorphic
to SLn{F[t}). To compute homology we use the Bruhat-Tits building y of Example 1.3.
Recall that this is the building associated to the n-dimensional vector space V = -F^)^

There is an obvious left action of SLn(F[t]) on y. Let e i , . . . , en be the standard basis
of V. Then the subcomplex T having vertices

[eir^r2,...^-.!^-1,^], where ri > r^ > ' • ' ^ r^-i > 0

is a fundamental domain for the action of SLn{F[t}) on y [17].
The complex T is an infinite wedge. Denote by VQ the vertex [e i , . . . , e^ ] and by

Vi the vertex [ei^ e ^ t ^ . . . , e^, e ^ + i , . . . , en], i = 1 ,2, . . . , n — 1. For a k element subset
I = { % i , . . . , ik} of { 1 , 2 , . . . , n - 1}, define E^ to be the subcomplex of T which is the
union of all rays with origin VQ passing through the (k — l)-simplex ( v ^ , . . . , z^). There~ \"AIi

,(n-l)<n- l ' ^W^ ) such E\ ). Observe that if I = { 1 , 2 , . . . , n - 1}, then Ey ) = T. When weare
7^(0write Ey, the superscript / denotes the cardinality of the set J.

4° SfiRIE - TOME 30 - 1997 - N° 3



THE HOMOLOGY OF SPECIAL LINEAR GROUPS 393

Define a filtration V9 of T by setting V^ = VQ and

(5) V^^IJ^, Kk<n-l

where I ranges over all fc-element subsets o f { l , 2 , . . . , n — 1}. Note that y^"1) == T.
Evidently, the stabilizer of VQ in SLn{F[t]) is the subgroup SLn{F). For any other vertex

7; = [e^r 1 ,62^2, . . . , e^-iF71-1, e^] in T, let F^ denote the stabilizer of v in 5'Z^(F[t]).
The subgroup Ty is the semidirect product of a reductive group Lv contained in SLn{F)
and a unipotent group ̂  contained in SLn(F[t}). If p^ denotes the polynomial in the
fcth row and l\h column of an element of F^, then we have degpki <: r^ — r^. It follows
that the subgroup Ty has a block form

r.
(Ll v^

L2

0

Vl3 • • •

V23 • • •

Lm-1

v^
v^

vm—l,m

\

where the Lk and Vki satisfy

Lk G GL^_^_,(F), where r^_,+i=r^_,+2 = • • • = r,,

V^ e M^-^_^^_^_,(F[f]), where r^_,+i=r,,_,+2 = • • • = r^

^-1+1=^-1+2 = • • ' =r^

(we set %o = 0)- Observe that the stabilizers I\, z = l , 2 , . . . , n — 1, have the block form
of the n — 1 maximal parabolic subgroups in SLn. I f J = { z i , . . . , ^ } and if v is a vertex
in £'} ) which does not lie in any Ej -1), where J C I , then F^ has the block form of the
intersection F^ H • • • H F^ . Observe that if v is a vertex of T not lying in any Ey'2^
then the TI are positive and distinct and hence the group Ty is upper triangular.

If e is an edge with vertices v^w, then the stabilizer Fg is simply the intersection i\; ni\y.
Similarly, the stabilizer of a 2-simplex is the intersection of the edge stabilizers, and so
on. It follows that if I <^ k and if a is an ^-simplex in E\ , where I = { z i , . . . ^ i k } , not
lying entirely in any E y ' ' , where J C I , then 1̂  has the block form of the intersection
r^ n • • • n r^.

The case n = 3 is shown in Figure 1.
Since the complex y is contractible, we have a spectral sequence converging to

H.(SLn{F[t}),l) with E^term satisfying

(6) ^= © ^(r.)
dim <7==p

where a ranges over the simplices of T.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



394 K. P. KNUDSON

Fig. 1. - The fundamental domain T for n = 3.

(1)
' { 1 }

3.1. The homology of the stabilizers

We now compute the homology of the groups r^r. Suppose that A is an F-algebra. Let
P be a subgroup of GLn-^m{A) having block form

P = ^£1 M
< 0 L.

where £1 C G2^(A), L^ C GLm{A\ and M is a vector subspace of M^^(A) such that
L^M = M = ML^. Suppose that each L, contains the group of diagonal matrices over F.
Denote by L the subgroup of P defined by

£= <£i 0
< 0 2.2

A proof of the following is deduced easily from [10, Lemma 9] by observing that
the argument used works with F replaced by A. Recall that G denotes the intersection
G n SL^R).

PROPOSITION 3.1. - If F is an infinite field, then the inclusion ~L —> P induces an
isomorphism

H.(L,I)-^H.(P^I). D

4® SERIE - TOME 30 - 1997 - N° 3



THE HOMOLOGY OF SPECIAL LINEAR GROUPS 395

COROLLARY 3.2. - Suppose that P is a subgroup ofGLn{A) having block form

(Ll

\

Vu
L2

0

v^ • - .
v^ • • •

Lm-1

V,m

V2m

^m-l,TO

Lm

\

1

where each Li C GLn,(A) and each Vij is a vector subspace of Mn,,rij(A) such that
LiVij = Vij = V i jL j . Assume that each Li contains the group of diagonal matrices over F.
Denote by L the subgroup

fL.
L=

\0 L,

of P. Then the inclusion L —> P induces an isomorphism

H.(L,1)——ff.(P,Z).

Proof. - Consider the sequence of inclusions

z^
/ Ll

0
\

' • •

0

0

I'm--1

0

ym—l^m

Lm

\

/

^ 0 0 \

Lm-2 V, m—2 | Vm-2,m-l vm-1,•m,Vm

lJr^\.—\ 'm—l,m

0 L•m /

/ Li 0 0 \
0 L-j | V23 • • • V2n

P.

\ 0 0
-"TO—I ''m—l,m

L•m I

By Proposition 3.1, each of these maps induces a homology isomorphism. It follows that
the inclusion L —> P induces an isomorphism

ff.(I,Z)——H.(P,1).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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396 K. P. KNUDSON

If a is a simplex in T, then the subgroup F^ has a block form as in the corollary.
We have an extension

1 —— U^ —— F, —— L^ —— 1

where Uo- is a unipotent group and La is a reductive subgroup of SLn(F). The corollary
implies that the inclusion La —» I\ induces an isomorphism

H.(L^l) —— ff.(r,,Z).

Let J = { % i , . . . , Zfc} be a subset of { 1 , 2 , . . . , n - 1}. If a is a simplex in

EW-J^-1),
JC^

then r^ has the block form of the intersection F^ H « • • D I\^. If r is another such
simplex, then T-r has the same block form. Thus, Ly = Lr and it follows that Ta and Tr
have the same homology. Moreover, if a is a face of T, then the map Fr — F^ induces
an isomorphism on homology.

3.2. The homology of SLn(F[t})

Given a coefficient system M on a simplicial complex Z (i.e., a covariant functor from
the simplices of Z to the category of abelian groups), we may define the chain complex
C.(Z,M) by setting

C,(Z^M)= © M{a)
dima=p

with boundary map the alternating sum of the maps induced by the face maps in Z.
We shall make use of the following result (compare with [18, Lemma 6]).

LEMMA 3.3. - Suppose F^ C F^ C • • • C F^ = Z is a filtration of the simplicial
complex Z by subcomplexes such that each F^ and each component of F^ — F(<^~l') is
contractible. Suppose that M. is a coefficient system on Z such that the restriction of M.
to each component of F^ — F^~^ is constant. Then the inclusion F^ —^ Z induces
an isomorphism

H.(F^°\M)—H.{Z^M).

Proof. - The filtration of Z induces a filtration of C.(Z^A4). This yields a spectral
sequence converging to ff,(Z,.M) with I^-term having %th column

H.^F^.F^-^'.M).

Consider the relative chain complex C.^F^.F^'^'.M). By hypothesis, this chain
complex is a direct sum of chain complexes with constant coefficients. Since each F^
is contractible, it follows that

^.(F^F^-^.M) =0, % > 1.

4° SERIE - TOME 30 - 1997 - N° 3



THE HOMOLOGY OF SPECIAL LINEAR GROUPS 397

Thus, only the Oth column H^{F^\M) is nonzero. This proves the lemma. D
We may now compute H^(SLn(F[t])^ Z). The argument in the proof below is used

implicitly by Soule in the proof of Theorem 5 of [17].

THEOREM 3.4. - IfF is an infinite field, then the natural inclusion SLn{F) —> SLn{F[t\)
induces an isomorphism

H.(SL^F)^l) — — H . ( S L ^ F [ t } ) ^ I ) .

Proof. - Recall the spectral sequence (6). The i^-term satisfies

E^- © H^)^H^q(SL^F[t})).
dim a=p

For each q > 0, define a coefficient system Tq on T by

^q{a)=Hq(Y^.
Then the q\h row in the spectral sequence is simply C^T^q) and the c^-map is the
boundary map in this chain complex.

Recall the filtration V* of T (5). For each simplex in

^(fc) | | ^(fc-i)E^-UE^J! ~ U ̂ J
JCI

the stabilizers have the same reductive part and hence have the same homology (see the
discussion following the proof of Corollary 3.2). It follows that the restriction of Fq to
each component of V^ — V^~^ is constant. By Lemma 3.3, the inclusion 2:0 —^ ^
induces an isomorphism

H.{^^)—.H.(T^q).

Observe that

H ( ^ f ^ ( ^ ( F ) ) p = 0
H^J-q)-^ ^^

It follows that the E^-term of the spectral sequence (6) satisfies

2 _ f H q ( S L ^ F ) ) p=0
M ~ \ 0 p > 0.

Remark. - Theorem 3.4 may be viewed as an unstable version of Quillen's homotopy
invariance in algebraic J^-theory [15].

Remark. - The n = 2 case of Theorem 3.4 was proved for fields of characteristic zero
in [12] by considering the Mayer-Vietoris sequence associated to the amalgamated free
product decomposition (due to Nagao [13])

(7) SW[t}) ̂  SW) *B(F) B(F[t})
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where B{R) denotes the upper triangular group over R. Proposition 3.2 of [12] shows
that B(F) and B{F[t\) are the same homologically. This implies that the Mayer-Vietoris
sequence associated to (7) breaks into short exact sequences

0 -^ Hk{B(F)) —. Hk(B(F[t})) C Hk(SL^(F)) -^ Hk{SL^(F[t})) -^ 0,

from which it follows that H.{SL^(F),I) ^ H.(SL^F[t]),l).
As an immediate consequence of Theorem 3.4 we have the following result.

COROLLARY 3.5. - The natural inclusion GLn{F) —^ GLn{F[t\) induces an isomorphism

H.(GL^F)^l) -^ H.{GLn(F[t])^l).

Proof. - Consider the commutative diagram

1 — SL^F) — GL^F) —— ^ — 1
i i I I

1 —. SLn{F[t]) —. GLn(F[t]) — ^ F X - ^ L

This yields a map of spectral sequences which by Theorem 3.4 is an isomorphism at the
E^level. D

By applying a theorem of Suslin, we have the following stability result.

COROLLARY 3.6. - Ifn < m, then the natural map

H,{GL^F[t])^ 1) —. H^GL^F[i}\ 1)

is an isomorphism for i < n.

Proof. - Consider the commutative diagram

H^GL^F), T) —. H,{GLm{F\ Z)
[ I

H,{GLn(F[t})^) —— H,(GL^F[t})^).

By [19, 3.4], the top horizontal map is an isomorphism for i < n and by Corollary 3.5, so
is each of the two vertical maps. D

4. The level t congruence subgroup and a fundamental domain
for the action of I\^ ...^ on y

Consider the exact sequence

1 -^ K -^ SLn(F[t]) ̂  SL^(F) —> 1

where K consists of those matrices which are congruent to the identity modulo t. In the
preceding section we described a fundamental domain, T, for the action of SLn(F[t]) on
the complex y of Example 1.2. In order to find a fundamental domain for the action of
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ri^,...,^ on y, we proceed in steps. First, we find a fundamental domain for the action
of K, then a fundamental domain for the action of r\2,...,n, and finally, a fundamental
domain for the action of Fi^...^.

Denote by Bn(F) the upper triangular subgroup of SLn(F) and choose a set S of coset
representatives for SLn(F)/Bn(F). Set

T = U 5r-
se5

PROPOSITION 4.1. - 77^ complex T is a fundamental domain for the action ofK on V.

Proof. - Let a be an {n - l)-simplex of V. There exists some x in SLn(F[t}) and a
unique simplex o-o of T such that <r = X(TQ. Write

and

Then

re = ky, k € ̂  ^/ G 5^(F)

^ = 5-^ s G 5, ZA G Bn{F).

a- = ksuao.

Note that ZA acts trivially on T; i.e., uo-o = (TO. Hence, a- = kso-o, and thus

a ^ 5ao modJ^.

It remains to show that no two vertices of T' are identified by K.
Suppose x : 5iAi —> s^K^ where the si belong to S and x is some element of K. Then

S-tS^lX : 5iAi ——> 5iA2.

Now, s^s^x belongs to SLn(F[t\) and the 5iA, are inequivalent modulo SLn(F[t\)
(i.e., we could have taken s\T as a fundamental domain). Hence, Ai == As. Denote this
common vertex by A. Moreover, s^s^x stabilizes 5iA. Observe that the stabilizer of
5iA in SLn(F[t}) is

s^SLn(F[t]))^

It follows that

s-^_s^lx = s^s~[1

where 7 stabilizes A. So,

(8) x=s^s^.

We have a split exact sequence

1 —. (K n (5£,(F[t]))A) -^ (5£,(F[t]))A ̂  PA —. 1
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where PA is a parabolic subgroup of SLn(F). Write 7 = kv, where k G K and v G PA.
Then

re = s^kvs^ 1

= 52('y5]-l)(5l-^;-l)fc(v5l'l).

Since X is a normal subgroup of SLn(F[t\), we have

(^iv-1)^^]-1) e ̂ .
Denote this element by A/. Then we may write

x = s^vs^1)^

or

(9) x(kf)-l = ̂ (^r1).
Now, the element x(k/)~l belongs to K while the element s^(vs~y1} belongs to SLn(F).
Since the groups K and SLn(F) intersect in the identity, both sides of equation (9) must
equal 1. It follows that

^2 = S-tV~1.

Since v~1 stabilizes A, we have

s^A. = (s-iV'1)^ = 5iA.

It follows that T is a fundamental domain for the action of K on y. D

Remark. - When n = 2, Proposition 4.1 allows us to deduce the free product
decomposition

(10) K = ̂ p.^sCs-1

where -{cr^^i}
(here, the set S of coset representatives of S L ^ ( F ) / B ' z ( F ) may be identified with P^F)).
For further details see [12, 4.1].

Now consider the stabilizer I\2,...,n of the simplex C (see Proposition 1.1). We have
a split short exact sequence

1 ——— K -^ I\2,...,n ̂  B,(F) -^ 1.

Choose a set of representatives for the permutation group En in SLn(F) (e.g., we could
take even permutations of the identity matrix along with odd permutations of the matrix
diag(—l, 1, . . . , 1)). Denote by 2\2,...,n the subcomplex of y defined by

l̂,2,...,n = |j ?T.
PC^rz
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PROPOSITION 4.2. - The subcomplex 'Di,2,...,n is a fundamental domain for the action of
I\2,.,n on V.

Proof. - We have a split extension

1 — — U — — B ^ F ) - ^ T — — 1

where U is the unipotent radical of Bn{F) and T is the diagonal subgroup. The composition
of TT with the map

I\2,.,n^^n(^)

yields a split extension

1 — — G — — I \ 2 , . . . , n — T — — 1 .

Here, the group G consists of matrices of the form

<1 + tp^ J?i2 • • • • • • Pin

tp21 1 + tP'22 ' " • " P2n

tpnl ' " ' " tpn,n-l 1 + tpnn .

where the pij lie in F[t}. We first show that 2\2,...,n is a fundamental domain for the
action of G on V.

Consider the extension

1 — > K — > G ^ U — > 1 .

Suppose that a is an (n — l)-simplex in y. Then there exist k G K, s C S, and 0-0 € T
such that

a- = ksao.

Recall the Bruhat decomposition of SLn(F) (see e.g., [9, p. 172]):

5L,(F) = J ̂ B
J?€S^

(here, B = Bn(F)). From this it follows that if s is an element of the set S, then we
may write s = upv for some u G U, p G Eyi, and v G Bn(F). Then we have the chain
of equalities

or = ksao = kupvao == kupaQ.

The last equality follows since Bn(F) acts trivially on T. Now, ku lies in G. Hence,

a =. pao modG.

It follows that 2\2,...,n is a fundamental domain for the action of G on y. Observe that
the diagonal subgroup T acts trivially on Pi,2,...,n-
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LEMMA 4.3. - Suppose a group H acts on a simplical complex Z, and that there is a
split extension

1 —> N—> H—>Q —>1.

Suppose further that the subcomplex A is a fundamental domain for the action of N on Z
and that Q acts trivially on A. Then A is a fundamental domain for the action ofH on Z.

Proof. - It suffices to show that no two vertices of A are identified by the action of H.
Suppose that ^i and v^ are vertices of A and that there is an element h in H with hv-^ = v^.
Write h = nq, where n G N , and q G Q. Then we have

y^ = hv-i == nqv\ == nv\.

Since the vertices of A are inequivalent modulo N , we must have ^i = v^. D
The lemma implies that 2\2,...,n is a fundamental domain for the action of I\2,...,n

on y. This completes the proof of Proposition 4.2. D
Finally, consider the group Fij^...^. Note that Fij^ ...^ contains the subgroup H of

Ey^ consisting of permutation matrices that are products of the form

01(72 • • • CTfc_i

where <Ji is a permutation of the set

{ j i j i + l,...,^+i - 1}

(we take ji = 1). Let TV be a set of coset representatives of H\'Sn containing the identity.
Define a subcomplex Pi^,...,^ by

,̂...̂  = u pr'
pCN

PROPOSITION 4.4. - The complex PI,^,...^^ is a fundamental domain for the action of
^ i j2 , . . . j k o n y'

Proof. - Observe that Fij^...^ contains the group Fi^,...,n- It follows that a fundamental
domain for the action of Fij^...^ on y is no larger than 2\2, ...,n- If ^ is an (n— l)-simplex
in V, then there exist g G i\2,...,n, p e S^, and (TO e T such that

a = gpao.

Write p = hn, where h G H and n G N. Then we have the chain of equalities

a = gpao = ghnao.

Since gh lies in Fij^...^, it follows that

a == naomodFij^,.^,

and hence, PI,^,...,^ is a fundamental domain for the action of Fij^...^ on y. D
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5. The homology of Fij^ ...^

We now compute the homology of the various Fij^...^. This will complete the
computation of the J^-term of the spectral sequence (4) since by Proposition 2.3 each
F^,...,^ is isomorphic to some Fij^...^.

We have a split short exact sequence

1 ———^ K ———> FIJ^...^ ———^l,j2,...jfe ———^ 1

where P\^,...^ is a parabolic subgroup of SLn(F).

THEOREM 5.1. - The natural inclusion Pi,^,...,^ —> Fij^,.^ induces an isomorphism

ff.(Pu.,...^,z)—ff.(ri^,...^,z).
Proof. - Since the complex y is contractible, we obtain a spectral sequence converging

to the homology of Fij^...^ satisfying

(11) ^L= © H,{G^
dim o-=p

where G^ is the stabilizer of the p-simplex a in Fi^.,^ (cr c 'DI,^,...,^)-
Recall the filtration V of T (5) defined in Section 3. Define a filtration W9 of

^l,j2,...,Jfc ^ ^^S

W^ == |j pV^, 0 < ; ̂ n -1 .
peN

Note that W(o) == VQ and that the group G^ is precisely Pij^,...j^ Define a coefficient
system ^ on Pi^,...,^ by

^(a)=^(G,).

Then the gth row of the spectral sequence (11) is the chain complex

G,(PlJ2,.,j^^).

On each component of W^ - W^'^, the coefficient system Qq is constant (i.e., the
stabilizers in the translate pT are conjugate to the stabilizers in T and hence have
isomorphic homology). So we may apply Lemma 3.3 to deduce that the inclusion
VQ —> PI^,...,^ induces an isomorphism

H.^Gq)——H.{V^...^Q^.

Now the i^-term of the spectral sequence (11) satisfies

z,2 ^SWu^.^) P=O
M [0 p> 0.

This completes the proof of Theorem 5.1. D
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Remark. - Theorem 3.4 is the special case I\ = SLn(F[t}) and Pi = SLn(F).

Remark. - In the case of I\2,...,n and Pi,2,...,n = Bn{F\ it is not necessary to define
the filtration W* of 2\2,...,n to prove the result. Indeed, Corollary 3.2 implies that each
Ga is homologically equivalent to Bn(F). It follows that the qth row of spectral sequence
(11) is the chain complex

C7.(2\2,.,n,^(B,(F))).

Since Pi,2,...,n is contractible, the homology of the complex vanishes except in dimension
zero, where we get Hq(Bn{F)).

Remark. - When n = 2, we only have the group Fi2. In this case, Theorem 5.1 states that

H.(T^)^H.(B^F)).

This was proved in [12] for fields of characteristic zero by examining the Lyndon-
Hochschild-Serre spectral sequence associated to the extension

1 —— K —— Fi2 —— B^F) —— 1.

The free product decomposition (10) for K allows us to deduce that

Hk(K)= © Hk(sCs-1)^ k>l.
seP^)

Utilizing Shapiro's Lemma and a standard center kills argument, Proposition 4.4 of [12]
shows that

H.WF),Hk(K))=^ k>l.

The n = 2 case of Theorem 5.1 follows easily. In [12], we used the action of B^(F) to
kill the homology of K rather than finding a fundamental domain for the action of Fi2
on y. This approach works well in that case, but fails for n > 3 since we no longer have
the free product decomposition for K.

6. The ^-map

Having completed the computation of the i^-term of the spectral sequence (4), we
now turn our attention to the differential, d1. Unfortunately, the computation of this map
is rather difficult as it depends upon computing the maps induced on homology by the
various inclusions Pj —> Pj, where Pj and Pj are parabolic subgroups of SLn(F).
To get a feel for the oddities which may occur, we present the following two results.
Recall that for a field F, we denote by B^(F) the subgroup of SL^(F) consisting of
upper triangular matrices.
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PROPOSITION 6.1. (Dupont-Sah[8]) - The natural map

ff2(W)) —. H^SW))

is surjective. n
The following result and its proof were communicated to me by J. Yang.

PROPOSITION 6.2. - If F is a number field, then the natural map

j : ff2(W),Q) — H,{SL,(F)^)

is trivial. D

Proof. - If F is a number field, then the group K^(F) is torsion. Since the map
H^B^F),!) -^ H^SL^F),!) factors through the map H^B^(F),1) -^ K^F), it
follows that after tensoring with Q, the map j is trivial. D

In light of these results, it seems to be a difficult question to compute the map

Hk{Pi) -^ Hk{Pj)

in general. Still, we are able to compute some special cases. In particular, we shall
compute the maps d\ ̂  and d\ ̂ .

6.1. The q = 0 case

Since the group Ho(T^) = 1 for each simplex a of C, the q = 0 row of the spectral
sequence (4) is simply the simplicial chain complex S»(C). Since the simplex C is
contractible, we have

1 p=Q
^'° ~ \0 p > 0.<o = [

6.2. The q = 1 case

Because we can find explicit representatives for elements of the various ffi(r^), we are
able to compute the map d\ p We begin by writing down the map explicitly.

Consider the group Fij^...^. By Theorem 5.1, we have

Hi{Tij^,...jk) ̂  ffi(-PiJ2,...,jfc)-

By Corollary 3.2, the group Pi ̂ 2,...,^ has the same homology as its reductive part
^i,j2,-,jfc- T^ group £i^,...,jfc has the form

<Bi 0 \
B^

0 B k ]
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where each B, = GL^-^{F) (see section 2). Now, for each %, H^(Bi) = i^ (via the
determinant map) and hence by the Kunneth formula, ffi(Bi x B ^ x • • • x Bk} = {FX)k.
It follows that

Hl{L^.^)^(FX)k-\

via the map

/A! ° \
A2

(de tAi ,de tA2 , . . . , de tAfe_ i ) .

\ 0 Afc/

Since each F^...^ is conjugate to some r\^...^, it follows that

rr /-p \ r^ / T 7 t X \ f c — l-"iHn,...,zj == (^ )

Denote the simplex with vertices % i , % 2 ? • • • ^k by o'^...^. We now compute the map

ffi(r^...^)—ffi(r^

induced by the face map cr^...^ —> a.
z \ - " z r - - i k

LEMMA 6.3. - L^r o'i^...ik be a (k — l)-simplex in C and suppose that a. <- . is a
face of a^..,^. r/z^n the map

H,(T^)-. H,(T^ ^

is the map

/pX\k-l ___^ /FX\k-2

defined by

( (0:2,03,... ,ak-i) I == 1
(a i , . . . , afc-i) »-> { (a i , . . . , a^-ia^ a;, . . . , Ofe-i) 2 < ^ < k - 2

( a l , a2 , . . . ,Q / f c -2 ) l = k - l .

Proof. - To compute the map, we must chase elements around the following diagram:
(for 2 < I < k - 1)

^l^^-zi+l),...^^-^^!)rZl,...,Zfc

I
r!, (^2-ii+l), ...,(ifc-ii+l)

r - ^ r — - > £ - —
^.••^^•••^fc l,...,(^-ii+l),...,(zfc-»i+l) l,...,(^-ii+l),...,(ifc-ii+l)

... -^ (FX)^-l

(^
X\k-2
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Consider first the case 2 < I < k - 2. Here the first maps are the same in each row. We
follow elements around the diagram. In the first row, we have

In the

f £1 Vu Vis
tV2i L2 V23
tVsi tV32 £3

\tVk+l,l tVk+1,2 tVk+1,3 • • •

t L-i ¥23 Vu
tV32 Ls ¥34

tVu tV43 ^4

t—> ^

tVk,2 tVk,3 tVk,4
tVk+1,2 tVk+1,3 tVk+1,4

\ tVl-2 tVi3 tVu

/L2

L3

[—->

V o
t-^ (det 1/2, det £3,..., det £^).

second row, we have

/ Li Vi2 Vis • • •
tV^l 2.2 ^23

tV^i tV^ Ls

V^fc+1,1 ^+1,2 ^4+1,3 • • •

/ 1/2 ^23 ^24

^32 LS V34

^42 ^43 ^4

\—>

Li-i O
0 Li

tVkft tVk,3 tVkA
tVk+1,2 tVk+1,3 t^fc+1,4

\ tVu tVi3 tVu

Vi,k r^i.fc+i^
^2,fc ^A^l

V3,k ^3,fc+l

tVk+\,k Lk

• • • Lk
• • • tVk+i,k
• • • tV^k

Lk+i V
Vi,k+i

Vi,k t-^k+i \
V2,k ^2,A;+1

^3,fc ^3,fc+l

tVk+l,k L

• • • Lk
• • • tVk+l,k

• • • tV,,k

+1 /
V2,k+l V21 \

^3,fc+l ^31

V^k+1 ^41

Vk,k+i Vk,i
Lk+1 ^4+1,1

Vi,k+i Li /
0 \

'fc+1,1
Ll 1

fc+1 /
^2,fc+l ^21 \

V3,fc+l ^31

^4^+1 ^41

Vkw V^i
Lfc+i ^4+1,1
^i,fe+i Li /
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0 \

L,

Li-i Vi,i,i
0 LI

Lk+l Vk+1,1

Vi,k+i Li )

,detLk)(det-L2,. . . ,det 'Lt-i Vi.i,
0 Li

= (detL2,.. . ,detL;_idet-L;,det£;+i,. . . ,det-Lfc).

So we see that the map (FX)'•:~1 —> (^x^fc-2 ^ gjyg^ ^y

(Q-l, . . . , Ctk-l) ̂  (Oil, . . . , Q:(_lQ!;, Sl, . . . , Ctk-l).

Next, consider the case I = k - 1. Here the map in the second row is as follows:

/ L,
tV^
tV3l

^12

L-i
^32

^13

^23

LS

v^ rlyl,fc+l\
V2,k V^k+l

Vs^k ^3,fc+l

V^4+l,l tVk+lft tVk+1,3 • •

{ L^ V23 ^24

tVs2 La 134
tV42 tV^ £4

* k̂+l,k Lk+1 /

^2,fe+l

^.fc+l

V4,k+l

V21 \

Vsi
^41

tVk,2 tVk,3 tVk,4 • • • Lk Vk,k+l Vk,l

tVk+ift tVk+i,3 ^+1,4 • • • tVk+i^k Lk+i Vk+i,i
\ tVi2 tV^ tVu • • • tVik Vik+i Li )
/^2 \

Ls

Lk-i

( Lk Vk,k+i Vk,i
0 Lk+i ^4+1,1

V 0 Vi,k+i Li ) )
(detZ,2,- - .det£fc_i) .

So, the map (F> > {FX)k 2 is simply

(0:1, . . . , 0'fc-l) 1-̂  (»!, . . . , Q.k-2)-
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Finally, consider the case ; = 1. In this case, we are omitting the first vertex %i . Thus,
we use different conjugation maps in the isomorphisms

I\,...,^ ——^ I\(^_^-(-l^...^-zi+l)

and
1- Z2,...,lfc >

Now the second row of the
/ Li Vi2

/

i—>

\ ^23

(^ \

I——>

tV21 2.2

tVsi tVs2

W+1,1 tVk+1,2 tVk+l

Ls

tV^

tVk,3

tVk+1,3

tV^

2.4

^ ^+1 ^4+1,1 ^fe+1,2 \

Vi,k+i Li
L T7- T/"

diagram looks like
^13

^23

LS

Vs4

L^

tVk,4

tVk-\-i^
tVu
tV^

Lk

^1, {i3 -1-2+1), •••,( l fc -^2+1) •

• • • Vi,fe
• • • V^k
• • • V3,k

^3 • • • tVk+l,k

• • • • • • Vs^k+i
• • • • • • V^k+i

Lk Vk,k+l

Lk+i
Vi,k+i
V2,k+l

r^fc+i^
V2,k+l

^3,fe+l

Lk+1 /

V31 ^32

V^ V42

,̂,1 Vk,2

^fc+1,1 ^4+1,2

£
^21 -^2 /

^12
r / /

\

1 ^12

' Lfc+i ^4+i,i ^4+i,2
V^l Ll ^12

<^2,fc+l ^21 L S / /

i-̂  (det ^3, . . . , det L/c).
Hence, the map (FX)k-l —— (F^^-2 is given by

(Oi, . . . , Ofc-i) 1-̂  (02, . . . , O^A—l)-

This completes the proof of Lemma 6.3. D
Denote the element (a i , . . . , a^-i) of ffi(I\,...,,J by cr^...^ (g) [o;i,... o^-i]. Then the

c^-map is given by the formula

(12) d1 : o^...^ ^ [o- i , . . . ,a fc- i ]
i-̂  a^...^ ^ [^2, • • • ^fe-i]

fe-i
7. -- . (g) [ai, . . . ,ai-^ai,ai,... ,0^-1]^i •"'?•(" '^fc+E(-1)^-1(T..

/=2

+ (-l)^1^...^, 0 [Oi, . . . Ofe-2].
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Let A be an abelian group (written additively). Denote by Q^ the chain complex
defined as follows. To each (k - l)-simplex cr^...^ of C we assign the group Ak~l. The
boundary map d : Q^ —> Q^ is given by formula (12) above. We will compute the
homology of Q.^ for any abelian group A. Taking A = Fx we obtain the terms E^
of the spectral sequence (4).

To compute the homology of the complex Q^\ we realize Q^ as a quotient of another
complex C.^. We shall then compute H.f^C.^) and use this along with a long exact
homology sequence to obtain H.{Q^).

Construct the chain complex C^ by assigning to each (k - l)-simplex cr^...^ ofC the
group A^. Define the boundary map 9 by

k

(13) 0 : ai,...,, 0 (a i , . . . , afc) ̂  I^-1/"1 .̂..̂  0 ( a i , . . . , a i , . . . , a^).
^=1

Observe that for each n > 2, C.^ is a subcomplex of C.^^.
Denote by B,n) the standard simplicial chain complex for C with coefficients in A.

Embed the complex B,̂  into C,̂  via

(T^...^ (g) a i-̂  cr^...^ 0 (a , . . . , a).

Then we have the following.

LEMMA 6.4. - The quotient complex C^/B.^ is isomorphic to the complex Q^.

Proof. - Denote the quotient complex by D^\ In D^\ we have assigned to each
simplex cr^...^ the group Ak/A • (1 , . . . , 1) ^ A^. We need only check that the boundary
map is the same as that for Q^. We take our isomorphism A^/A • (1 , . . . , 1) ^ A^"1

to be the map

(a i , . . . , a^ ) i-̂  (a2 - ai,a3 - 02, . .^^ - a^-i).

To compute the boundary map in D^\ we lift elements to C^, apply 9, and then
project back to D^\ Denote the projection map C^ —> D^ by TT. Then we have

7T : CT^...^ 0 (0, Oi, Oi + 02, . . . , Oi + a2 + • • • + Ofc_i)

•-̂  ^h-ik ^ [ a i , . . . , a fc - i ]

and

9 : ̂ r.-zfc 0 (0, Oi, Ol + 02, . . . , Ol + 02 + - • • + Ofc-i)
A;

^ £(-l)^-lc^^l...^...^, ^ (0, a i , . . . , ai + .^7+ ^_ i , . . . , ai + ... + Ofc-i).
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Applying TT to the right hand side of this equation, we see that the boundary map in
D.^ is the map

^r-zfc 0 [a i , . . . ,0 fc- i ]
1-̂  ^-ik ^ [a2 , . . -^fc- l ]

k-l

+ ^(-l)^~la^l...^...^, (g) [a^ • • ^ ̂ -1 + a^ a^ • • ̂  ̂ -l]
^=2

+ (-l)^-1^...^ (g) [a i , . . . , afc_2].

It follows that jD,^ is isomorphic to Q.^. D
We now have a short exact sequence of chain complexes

0 —, B,̂  —> C^ —> 0.n) —> 0.

The homology of B^ is easily computed (since C is contractible). We now compute
the homology of (7»\

PROPOSITION 6.5. - The complex C^ is contractible. Hence, H.{C^) = 0.

Proof. - If n is even, we define a contracting homotopy h for C^ by

h :cr^...^ (g) (a i , . . . ,0fc)
zi-i

^ ̂  ̂ ...^ 0 (0, (-l)11^^ (-l)^^ f+ la2,.. . , (-ly^^a,)
/=!
12-1

- S ^^...^^((-l)'1^1^^^-!)42^1^,...^-!)^^1^)
f=ii+l

+ . . .

n

+(-1)' E ^.^^((-l)11^1^^-.^-!)^^1^^).
^=^+1

If n is odd, then n - 1 is even. So if a^...^ is a simplex in C with ^ < n, then we
may view o-^...^ 0 (ai , . . . ,0^) as belonging to the subcomplex C ^ ^ . Thus, we may
use the formula above. We extend h to simplices with %^ = n as follows. If ijc-i < n — 1,
then we define h to be

-̂ '' ^...ik-in ̂  (ai,...,0fc)

- E ̂ ...^n 0 (0, (-l)-1-^1^ . . . , (-l)714-^)
f=l
12-1

— V^ (T- r • (9) ^—-lyi+^+l^ 0 /< 1V2+^+1/ . / l^n+f+1 \7 ^ u^lh2...^k-ln^ \{ ^) ai^U^—lJ 02, . . . ^—1; Ok)
<==ii+l

4-. . .
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n-1

+(-1)'-1 E ^^-^^((-l)^lwa^...^(-l)n^+lak)
l=ik-i+l

zi-1

-^a^.. , ,_^0(0,. . . ,0,(-iyafc)
^==1

t2-l

+ ^ ^^..,,_^0(0,...A(-1)^)
Z=^+l

+...
n-2

+(-1)^ ^ ^,..^n0(0,...,0,(-l)^).

/=Zfc-l+l

If ^_^ = n — 1, then

^ '' ^i^...ik-2,n-l,n ̂  (^1, ' • • ̂ k)
H-l

^ ̂  ̂ ,.,,_^_i,, 0 (0, (-l)11^1^ . . . , (-l)^^^)

^=1
12-1

- ̂  ̂ ^..,,_^_i,, 0 ((-l)^+^ai, 0 , . . . , (-l)-^1^)
Zl+l

+...
n-2

4-(_1^-2 ^ (7^...^_,^_i^

4-2+1

^ ( (_ iy i+^+i^^ . . ̂  o, (-l)^-1)^1^-!, (-i)^^)
zi-l

- ̂  ^i...z,_2,n-l,n 0 (0, . . . , 0, (-1)^^)

Z=l
12-1

+ S ^i^2.. .4-2,n-l ,n^(0^-^0.(-l)^fc)
Z=Zl+l

+...
n-2

+ (-l)^1 ^ ^...i.-2^-l,n ^ (0, . . . , 0, (-l)^fc).
f===Zfc_2+l

One checks that 9h + ft9 = identity. This completes the proof of the proposition. D

COROLLARY 6.6. - The homology of the complex Q, ' is given by

pr ,fn(^h - J A fc = 1
^HV. ) - ^ Q ^1

Proof. - Since C7, 7 is contractible, the long exact homology sequence implies that

H^Q^^Hk-^B^).
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The result follows since

W^)-^ ^S. D

Taking A = F^ we obtain the following.

COROLLARY 6.7. - The spectral sequence (4) satisfies

E - f ^ p=l n,2 f ^ P = ^ -
'^ \ 0 p / 1.

6.3. The second homology and cohomology groups

COROLLARY 6.8. - There is an exact sequence

0 -^ coker{d^ : E^ -. E^} -^ H^SL^F[t^t-1})) -^ Fx -^ 1.

Pwo/. - Since E^o = ,̂1 = 0 for p > 1, we have ^3 = ^o^- The g^P ^,2 is

precisely the cokernel of d1 : E^ —^ £'^2' since ^^i = F x ^ the result ^lows. D

COROLLARY 6.9. - L^r F be a number field and denote the number of real embeddings
of F by ri. Then

H^SL^F[^t-1])^) ̂  (F>< 0Q)eQ 2 r l .

Proof. - By Borel-Yang [3], we have

H^SL^F)^q)=qrl.

It follows that E^ = Q2^. By Proposition 6.2, the map d1 : E\^ —^ E^^ is trivial.
Hence, we have an exact sequence

0 —— Q2'1 —— H^SL^F[t, t-1}), Q) —— Fx 0 Q —— 0. D

We now investigate the map d\^.

PROPOSITION 6.10. - If n > 3, then the cokernel of the map d\^ : E\^ —> E^^ is
isomorphic to H^{SLn(F),I.).

Proof. - The term E^ is equal to

n

©WO.
i=l

Since each Fi is conjugate to SLn{F[t}) in GLn{F[t,t~1}), by Theorem 3.4 we have

E^^H^SL^F}^.
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Consider the map

p : H^SL^F\ 1)^ —. H^SL^F)^ 1)

defined by

p(ai,... ̂ n) = y a i >
n

[^a,
1=1

The map p is surjective with kernel consisting of those elements of

H^SL^F)^

whose entries sum to zero. We show that the image of d\ 3 coincides with the kernel of p.
Given a pair of integers i^j with 1 < i < j < n, we have maps

H^,) -^ H^Ti) and H^,) -^ H^T,)

induced by inclusion. The map d\ 3 is the alternating sum of these maps. To compute the
image of d\ 3 as a subgroup of H^{SLn{F}^ Z)071, we make use of the diagrams

H^) -^ ^(r\,_,+i) —^ H^r,)
\ T"

^(r.-.+i)
to see that the image of H^T^) in H^Ti) is isomorphic (via the identifications F^ ^ Fi) to
the image of H^(Tij) in H^(Tj). Since d\ 3 maps H^Tij) to H^ (r^) with a negative sign
and to H^(Tj) with a positive sign, we see that the image of d\ ̂  in H^SLn^F)^)^
lies in the kernel of p.

To see that the image is all of the kernel, we use a result of Hutchinson [10, p. 200]
which states that if F is an infinite field, then the map

H,{T^ —. ̂ (Fi)

is surjective for n >_ 3. It follows that the maps

ff2(r\,+i) -^ H^F,) and ^OW) -^ ^2(^+1)

are surjective for % = 1, . . . , n— 1. Thus, the image of d\ 3 contains all elements of the form

(-a,a,0, . . . ,0) , (0 , -a ,a ,0 , . . . ,0 ) , . . . , (0 , . . . ,0, -a,a)

and it follows that the image of d\ 3 coincides with the kernel of p. D

COROLLARY 6.11. - If F is an infinite field, then for n > 3,

H^SLn(F[t, r1]), Z) = H^SLn(F)^ Z) e Fx.
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Proof. - The spectral sequence (4) gives an exact sequence

0 —^ H^SLn(F)^l) ̂ H^SLn(F[t^-1})^) -^ F>< ̂  0.

Observe that the map p : E\^ —> E^ is split by inclusion onto the first factor. It
follows that the map 0 is induced by the canonical inclusion SLn(F) —> SLn{F[t,t~1}).
Observe that this map is split by the map

SLn^t-^^SW).

It follows that H^SLn{F}, Z) is a direct summand of H^SL^F[t, r1]), Z). This proves
the corollary. ^

Remark. - Since K^(F[t,t-1}) = K^F) 9 Ki{F) and since

K^{F) = H^SL^F^T} n > 3 ,

Corollary 6.11 implies that H^SLn(F[t,t~1}),!) stabilizes at n = 3; ie,, for n > 3 we
have an isomorphism

H,(SL^F[t^t-1})^) ^ K^F[t^t-1}).

COROLLARY 6.12, - If n > 3, then

H^SL^F^ t-1}), Z) ^ H^SL^F), Z) 0 Homz^, Z).

Proof. - By the Universal Coefficient Theorem,

H\SL^F[t, t-1]), Z) ^ Homz(ff2(5£,(F[t, r1]), Z), Z)
eExtz(ffl(5L,(F[t,r l]),Z),Z)

^ Homz(ff2(5L,(F), Z), Z) C Homz(F><, Z) C 0
^ H^SL^F)^ Z) ® Homz^, Z). D
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