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QUASIFLATS IN HADAMARD SPACES

BY URS LANG AND VIKTOR SCHROEDER

ABSTRACT. - Let X be a simply connected, complete geodesic metric space which is nonpositively curved in the
sense of Alexandrov. We assume that X contains a fc-flat F of maximal dimension and consider quasiisometric
embeddings f:^ -^ X whose distance function from F satisfies a certain asymptotic growth condition. We prove
that if X is locally compact and cocompact, then the Hausdorff distance between /(IR^) and F is uniformly
bounded. This generalizes a well-known lemma of Mostow on quasiflats in symmetric spaces of noncompact type.

RESUME. - Soit X un espace metrique geodesique complet et simplement connexe courbe de maniere non-
positive au sens d'Alexandrov. Nous supposons que X contient un fc-plat F de dimension maximale et considerons
des quasi-plats / : IR^ —^ X tels que les fonctions mesurant la distance a partir de F verifient une certaine
condition de croissance lineaire. Nous demontrons que la distance de Hausdorff entre /(IR^) et F est uniformement
bornee lorsque X est localement compact et cocompact. Ceci generalise un lemme bien connu de Mostow sur les
quasi-plats des espaces symetriques de type non-compact.

Introduction

Quasiflats, i.e. quasiisometrically embedded euclidean spaces, play an important role in
the theory of nonpositively curved manifolds. A striking example is Mostow's proof of the
rigidity theorem for locally symmetric spaces which, in the case of higher rank, largely relies
on the interplay between flats and quasiflats. More precisely, let X^X be two symmetric
spaces of noncompact type and rank fc, and let p: F' —^ F be an isomorphism between
discrete groups of isometries acting cocompactly on X' and X respectively. A fc-flat F ' in
X' is called F'-compact if its stabilizer Y ' p , in T ' acts cocompactly on F'. Given such F',
there exists a unique F-compact fc-flat F in X with stabilizer Tp = ^(F^/), cf. [Mo, 13.1].
A key step in Mostow's argument is the following uniform estimate, cf. [Mo, 13.2].

THEOREM A (Mostow). - Let f ' . X ' —^ X be a quasiisometric map equivariant with
respect to p. Then there exists a constant D >_ 0 such that the following holds. If F ' is a
T'-compact k-flat in X ' , and if F is its unique companion in X as described above, then
the Hausdorff distance between f { F ' ) and F satisfies Hd^F'^F) < D.

This result then gives rise to a homeomorphism between the Furstenberg boundaries of
X' and X, which by a theorem of Tits is induced, after suitable renormalization, by a
p-equivariant isometry of X' and X.
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340 U. LANG AND V. SCHROEDER

In Theorem A, the assumptions on F ' and F clearly imply that Hd^F'), F) < oo. One
may ask the following question: If a single quasiflat f'.^-^X lies within finite distance
of a fc-flat F in X, does this already imply that Hd^R^), F) is bounded above by some
constant depending only on X and the quasiisometry constants of /? In this paper we show
that this holds true in an even more general context. We consider quasiflats /: R^ —^ X,
where X is a Hadamard space in the sense of Alexandrov, i.e. a simply connected, complete
geodesic space all of whose geodesic triangles satisfy the CAT(O) inequality, cf. Section 1.
Moreover, X is assumed to be locally compact and cocompact. We prove:

THEOREM B. - Let (X^ d) be a locally compact and cocompact Hadamard space containing
a k-flat but no (k + ^}-flat, where k > 1. Then for all L > 0 and C > 0 there exists
D > 0 such that the following holds. Let FcX be a k-flat, f: R^ -> X an {L, C)-
quasiisometric map (cf. 1.1), and for r > 0 define a(r) := sup{d(/(a;), F) : \x\ <^ r}. If
limsup,_^a(r)/r < L-1, then Hd^R^F) < D.

The constant L~1 bounding the linear growth of a(r) is optimal, as is shown by the
following simple example. Let F be a geodesic line in the hyperbolic plane H2, and let
/:R -> H2 be a geodesic of speed L-1 with /(R) ^ F (and hence Hd(/(R),F) = oo).
Then / is an (L, 0)-quasiisometric map as defined in 1.1, and it is easily seen that in
this case, a{r)/r —> L~1 for r —^ oo. By taking products H2 x R^"1, similar examples
are obtained for all k > 1.

In the case where f:^ —^ X is an isometric map, and hence F ' := /(R^) is a fc-flat
in X, the upper limit considered in Theorem B is actually a limit and can be interpreted
in terms of the angle metric Z on the boundary at infinity X(oo) of X, cf. 5.1. Let Hd^
denote the Hausdorff distance induced by Z, and let F(oo) and F'(oo) be the boundaries
at infinity of F and F ' respectively. Then Theorem B yields the following dichotomy.

THEOREM C. - Let X and k be given as in Theorem B, and let J71, F ' be two k-flats in X.
Then either Hd^I^oo^F^oo)) > 7T/2, orRd^F^.F^oo)) = 0 ( a n d F , F / lie within
uniformly bounded distance from each other).

The paper is divided into five short sections. In the first section we fix the terminology
and prove a basic approximation lemma. Sections 2 and 3 contain several results on maps
between quasiflats and flats. In Section 4 we prove Theorem B. In the last section we
discuss the special case where F ' is itself a flat in X.

After finishing this paper we learned that Bruce Kleiner had announced a result very
similar to Theorem B in summer 1995, before the completion of our work. The proofs rely
on different methods. Another result in the same spirit is proved in [KL, Section 4].

1. Preliminaries

We briefly recall some basic notions and results from the theory of nonpositively curved
metric spaces in the sense of Alexandrov. The general references are [Ba], [BGS], and
the forthcoming book [BH].

4° SfiRIE - TOME 30 - 1997 - N° 3



QUASIFLATS IN HADAMARD SPACES 341

Let (X, d) be a metric space. A continuous map a: I -^ X from a connected subset I
of R into X is said to be a minimizing geodesic if it is isometric up to a constant factor,
L^. if there exists v > 0 such that d(o(r),o(,s)) = v r — s\ for all r, s G J. Then v is
called the speed of a. More generally, the curve a is said to be a geodesic if there is
v > 0 such that a is locally minimizing and of speed v. A geodesic segment is a geodesic
defined on a compact interval. A geodesic triangle A in X is a triple (01,0-2,03) of
geodesic segments o^:^ —^ X, the 57^5' of A, whose endpoints match in the usual way.
A euclidean comparison triangle A for A is a corresponding triple of geodesic segments
cri: Ii -^ R2 such that o^ has the same length as o^, i = 1, 2,3, and such that the endpoints
of 01,02,03 match in the same way as those of 01,02,03. Then A is said to satisfy the
CAT(O) inequality if A as above exists and if d(o^(r),o^(5)) <^ |o^(r) ~o:j(s)\ whenever
r G I^ s G I j , and ij <E {1,2,3}.

A metric space (X, d) is called a geodesic space if for all re, ?/ G X there exists a
minimizing geodesic o: [0,1] ̂  X with o(0) = x and o(l) == y . Note that for a geodesic
triangle A in X with minimizing sides, a euclidean comparison triangle A exists (and is
unique up to isometry). Throughout the paper, (X, d) is assumed to be a simply connected,
complete geodesic space all of whose geodesic triangles satisfy the CAT(O) inequality.
We will refer to X simply as a Hadamard space. A fundamental feature of these spaces is
that for all re, y G X there is a unique geodesic from x to y (whose image we denote by
[re,?/]), and hence all geodesies in X are minimizing. Moreover, for all pairs of geodesies
oi, 02:1 —^ X, the function mapping t G I to d(oi(t), 02 (t)) is convex. We will often use
the nearest point projection TT: X —^ F from X onto a closed convex subset F of X. This
map is well-defined and Lipschitz with constant 1, cf. [Ba, 1.5.6]. In many of our proofs
the assumptions on X are only used through these convexity properties.

Next we state the definition of quasiisometric maps between metric spaces.

DEFINITION 1.1. - Let L > 0 and C > 0. A map f:X' -^ X between two
metric spaces {X^d') and (X, d) is called (L, C7)-quasiisometric if for all x , y G X ' ,
L^d^x^y) -C < d(f(x)^f(y)) < Ld\x,y) + C7.

It is often necessary to approximate general quasiisometric maps by continuous ones.
The argument proving the following lemma is well-known, but an appropriate reference
does not seem to be available in the literature.

LEMMA 1.2. - Let B be a closed convex subset of Rk, X a Hadamard space, L > 0,
C > 0, and f: B -> X a map satisfying d(f(x), f{y)) < L x - y\ + C for all x, y G B.
Then for every A > 0 there exists a map f'.B —> X "which is Lipschitz. with constant
Vk(L + X^C) and satisfies d(f(x), f{x)) < VkXL + C for all x € B. If moreover f is
(£, C)-quasiisometric, then d(f(x), f(y)) ^ L-1 x-y\-(2Vk\L+3C)for all x,y <E B.

Proof. - Let TV: ̂  —^ B denote the nearest point projection. We replace / by
/ o TT: R^ —^ X and call this map f again. Then / satisfies d(f{x)^ f(y)) < L\x — y\ + C
for all x,y G Rk.

For i = 0 ,1 , . . . , k let Si denote the closed ^-skeleton of the canonical subdivision of
ff^ into cubes of edge length A. On So = (AZ)^, put /' := /. Then for i = 1 , . . . , fc,
assuming that // is already defined on 5^_i, we extend // to Si as follows. Let e i , . . . , e/,
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342 U. LANG AND V. SCHROEDER

be the canonical basis of IR^, and let x G 6^\5i_i. Let j = j{x) G { 1 , . . . , k} be the
maximal index such that there exists z = z(x) G 5^_i with x G [ z , z + Xej}. Then /'(^r)
is determined by defining f ' \ [ z ^ z + Xej] to be a geodesic.

Consider the following assertion A(z'): for all pairs { j ^ z ) = (j(rr)^(rr)) with
^ G ^\5i_i, d(f(z),f(z + Ae^)) < AL + C, and for each z-plane P,c5^, f|P, is
Lipschitz with constant \/~i{L-\-\~1 C). Clearly A(l) holds. We show that for i = 2 , . . . , k,
A(z-l) implies A(i). Given {j,z) = (j(rr),^(.r)) with x G 5,\^_i, there exist p, g E ^-2
such that z € [p,g] and both /^[p^] and f'\\p + Ae^,^ + Aey] are geodesies. Moreover,
A(z - 1) implies that d{f\p)J\p + Ae,)), d{f\q)J\q + Ac,)) ^ A£ + C. Thus by
convexity,

W^J^+Ae^^AL+C.

It suffices to prove the claimed Lipschitz property for f^Qz, where Qi ^ [0,A]' is an
z-cell of the given cubical subdivision of Rk. Let x ^ x / G Qi, and let [ z ^ z + Xej] and
[z^ z ' 4- Ae^] be the segments in Qi containing x and x/ respectively, where j is maximal.
Let y E [ z ^ z + Ae^] be the point closest to x ' . Since / 'l^,^ + Ae^] is a geodesic of
length at most XL + C7,

W^J^^+A-1^-^.

On the other hand, A(i - 1) asserts that d(f\z), f\z1)}, d{f(z + Xej), j\z' + A<^)) <
v/% - 1(L + A"^)]^ - ^/ , hence

d(f(y)^ f\x')) < Vi~^l{L + X-^^y - x'\

by convexity. Combining these estimates we see that

d(f(:r),W))2 ^ [d(r^)J/(^))+ri(f(^J/(^))]2

< zd(r(^), r^))2 + i{z - ir^u^y). rw
^^L+A-1^)2!^-^!2 ,

proving A(%). In particular, we have shown that /' is Lipschitz with constant ^/fc(Z/+A-lC7).
Given x G (R f c , le tyc(AZ)A ;be the set of vertices of a cube of edge length A containing x.

Then f maps V into the metric ball with center f{x) and radius VkXL + C. By the above
construction, f ' { x ) is contained in the convex hull of f(V). Since metric balls in a
Hadamard space are convex, it follows that d(f\x), f(x)) < VkXL + C. Finally, if / is
(L, (7)-quasiisometric on B, we see that

L-^x -y\-C< d(f{x)^ f(y)) < d(f\x)^f\y)) + 2{VkXL + C)

for all x^ y € B.
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QUASIFLATS IN HADAMARD SPACES 343

2. Continuous quasiflats

In this section we prove two independent results applying to continuous quasiflats
/: R^ — X, where X is a general Hadamard space containing a fc-flat F for some k > 1.
We emphasize that here k need not be maximal as in Theorem B.

We start with a simple topological lemma. For r > 0 and z 6 R^ we define
Bk(z,r) := [x € R^ : |rr - z\ ^ r} and ^-^r) := [x <£ R^" : \x - z = r}.
Instead of Bk(0,r) and ^^(O^) we write B^r) and S^^r) respectively.

LEMMA 2.1. - L^ fc > 1, r > 0, and let f: Bk{r} —> Rk be a continuous map satisfying
f(x) / f(y) for all x,y G B^r) with \x\ + \y\ = \x - y\ = r. TT^n f^-1^) is not
contractible (i.e. homotopic to a constant map) in R^-j^O)}.

Proof. — Assume the contrary. Then there exists a continuous map f'.B^^^r) —>
^{/(O)} with /l^-^r) - /l^-^r). Define /^B^r) -^ ^-^l) by

M.)^-^0).
|/(^)-/(0)|

For a: C S'^'^r'l and 0 < t < 1, the denominator of

ht(x)
f((l - t/2)x) - f{(-t/2)x)
|;((1_ t / 2 ) x ) -f((-t/2)x)\

is nonzero. The map /ii: Sffc- l(r) —^ 5A'-1(1) defined this way is homotopic to hQ\Sk~l{r)
and can thus be extended to a continuous map h'i:Bk(r) —^ Sk~l(l). Finally, since
^^(—a;) = —h-^(x) for x € 5fc-l(r), /ii gives rise to a continuous map from 5^(1) into
gk-i^ preserving antipodes, in contradiction to the Borsuk-Ulam theorem, cf. [Ma]. D

For the statement of the next lemma the following definition is useful.

DEFINITION 2.2. - Let k >_ 1 and 8 > 0. We call a continuous map f: Rk —> R^
^-expanding if for all 0 < 8 < 8, the following condition is satisfied for r > 0 sufficiently
large (depending on 8): \f(x) - J(0)| > 8r for x <E S^-1^), anJ f^^r) is not
contractible in R^V^O)}.

The definition is independent of the choice of basepoints. Clearly 2.1 implies that every
continuous map /: R^ —^ R^ satisfying \f(x) — f(y)\ > L~^\x —y\—C for some constants
L > 0, C > 0 is L~1 -expanding. In particular, it follows that f is surjective, a fact which
was proved in [Mo, 10.1]. More generally, the following holds.

LEMMA 2.3. - Let X be a Hadamard space containing a k-flat F for some k > 1, and
let TT: X —> F be the nearest point projection. Let L > 0, C > 0, and let f: R^ — X
be a continuous map satisfying d(f(x)^f(y)) > L~^\x — y\ — C for all x , y G R^. For
r > 0 define a(r) := sup{d(/(rr),F) : x\ < r}. If a := limsupy,_^ a(r)/r < L~1, then
h := TT o /:R f c -—> F ^ R^ ^ (£~1 — ~a)-expanding.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



344 U. LANG AND V. SCHROEDER

Proof. - For all e > 0 there exists r^ > 0 such that a(r)/r < a + e for r > r^. Then
for x , y ^ Bk(r) with |:r| + |?/| = |.r — y\ = r,

d(/(^ F) + d{f{y)^ F) + rf(/^), /^)) > d(/(^ /(^))

> L^r - C.

In case \x , |,/| > r,, we have d(f(x), F) + d{f(y), F) < (a + £)(|.r| + |^|) = (a + ^)r.
In case \x < r^ or \y\ < r^, we see that

d(f{x\ F) + d{f{y\ F) < (a + ^)(r + r,) < (a + ^)(1 + e)r

for r > r , / e . Thus d(^(rr), fe(^)) > [L-1 - (a + s:)(l + ^)]r - G, and the claim follows
from 2.1. Q

The definition of the Hausdorff distance of two subsets A,Af of X reflects the fact that
there are two ways of measuring distances between these sets: Hd(A,A') := sup{a,a /},
where a := sup^./^/ d{x'\ A) and a' := sup^^ d(x, A'). The following lemma shows, in
particular, that if A = F and A' = /(H^ are (quasi-)flats in X, then a is bounded above
in terms of a'. More generally, the statement is adapted to the hypotheses of Theorem B.

LEMMA 2.4. - Let X be a Hadamard space containing a k-flat F for some k > 1,
and let z G F be some basepoint. Let L, L' > 0, C > 0, and let f'.^ —> X be a map
satisfying L-^x - y\ - C <_ d(f{x),f(y)) < L'\x - y\for all x,y e Rk. For r > 0 define
a(r) := sup{d(/(^F) : \x\ < r} and a\r) := sup{dQ/J(^)) : y e F, d { y , z ) ^ r}.
If a := limsup^_^a(r)/r <_L~1, then for all 0 < /? < (1 - aL)/2/ there exists r^ > 0
such that a(/5r) < La\r) + C for r > r^ where ~L := 5LL' + l a n J C := LL'C.

Proof. - Let 7 r : J f ^ F denote the projection, and let h := TT o f. Without loss of
generality we may assume that z = h{0).

For fixed r > 0 we define a map ^:£^(r) -^ (R^ as follows. First, by the properties
of /, we can associate to each x G B^r) a point x G tR^ with

d(/(^ /,(^)) = d(/,^), /(R^)) =: 6(^).

Note that b{x) < a(r) and, since d{h(x),z) ^ d{f(x),f(0)) ^ L'\x\ < L ' r ,
b(x) < a ' { L ' r ) . Moreover,

\x-x <L[d(f(x)^f(x))+C]
< L[d{f(x), h{x)) + d(h(x), f(x)) + C}
<L[^)+a(r)+C].

We define g(x) to be the point m Bk (x, L[a(r)-}-C}) closest to x', then \g(x)-x\ < Lb{x).
Hence, for x ^ y G ^^(r),

1^) - 9{y)\ < L[b(x) + b{y)] + |̂  - ^1
< L[b{x) + 6(^) + d(f{x)^f(y)) + G]

< L[26(^) + 2b(y) + d(^(rr), ft(^)) + C]

<W{L'r)^Ll\x-y\^C}.
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QUASIFLATS IN HADAMARD SPACES 345

Let A > 0. The procedure carried out in the proof of 1.2 yields a continuous map
gf:Bk{r) -^ R^ which satisfies

\g\x) - g(x)\ < L[\fk\L1 + 4a/(L/r) + C}

for all x G Bk(r) and coincides with g on (AZ)^ H ̂ (r).
We claim that the image of g ' contains B^r - L[a{r) + C] - 2\/fcA) =: B'. Let

T/ G B^r - V^cA), and let V C (AZ)^ H B^r) denote the set of vertices of a cube of edge
length A containing y. For x G V, \g(x) -y\< \g(x) - x\ + \x - y\ < L[a{r) + C} + V^fcA.
Hence, by the definition of g ' ,

\g{y) -y\< L[a{r) + C} + Vk\

for all y ^ Bk{r - Vk\). Now the claim follows easily from the fact that there is no
retraction Bk{l) -> ^-^l).

Let y e B ' . Then there exists x G B^r) with ^'(rr) == ^/, hence

d{f(y)^F) ̂  d{f(y), f(x)) + d(f(x)^ h{x))
<L'[|^(rr)-^)|+b(rr)-^|]+^)

< L'L^kXL' + 5a/(L/r) + C] + ̂ (L'r).

Since this holds for all A > 0, using the continuity of / we obtain

d{f{x\F)<Ta\L'r)^C

for all x G B^r-L^M+C]), where! := 5L'L+1 and C := L'LG. Let £^ 0. Then for
r sufficiently large, a(r) < (a+£)r and C < er. Thus a(r - L[a+ 2e]r) < La\L'r) + C7,
and replacing r by r/L' we get the desired result, n

3. A basic area estimate

In [Mo, 6.4], Mostow proved an estimate for the fc-dimensional Jacobian of the normal
projection TT:X -^ F onto a fc-flat FcX, where X is a nonpositively curved symmetric
space of rank k. Our aim is to deduce a non-infinitesimal analogue of this result applying to
flats of maximal dimension in a Hadamard space X. Here now we assume X to be locally
compact and cocompact, where the latter condition means that there exists a compact
subset K of X such that the translates of K by the isometry group of X cover X.

First we establish a diameter estimate for certain subsets of X.

LEMMA 3.1. - Let X be a locally compact and cocompact Hadamard space containing
a k-flat but no (k + l)-flat, where k > 1. Then there exist s,m > 0 such that the
following holds. Let FcX be a k-flat, TT:X -> F the projection, and let QcF be a
closed k-dimensional euclidean cube of edge length 3s. Let q ^ , . . . , Qv be the vertices ofQ,
where v := 2^. For i = 1, . . . , v let QiCQ denote the k-cube of edge length s containing qi.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



346 U. LANG AND V. SCHROEDER

If V is a subset ofX such that 7r(V) meets each Qi, and if d(V, F) > s, then the diameter
of V satisfies diamV ^ s + md(V, F).

Proof. - By the assumptions on X there exists s > 0 such that X does not contain
a closed convex set isometric to a (k + 1)-dimensional euclidean cube of edge length s,
cf. [Br, 3.1]. For i = l,...,v pick x, G V with Tr(^) G <%, and let ^ G [^,7r(^)]
be the point with d(x^F) = s. First we show that there are ij G { 1 , . . . ,v} such that
d(x^x^ > d{7r(xi),7v(xj)). If not, then d(x^x^ = d(7r(^),7r(^)) for all ij since TT is
Lipschitz with constant 1. The convexity of the distance function on X x X then implies
that the segments [x^Tr(xi)} and [x^Tr(xj)} are at constant distance from each other. As
in [Ba, 1.5.9] it follows that the convex hull of U^i^71'^)] ls isometric to the product
of the convex hull of {7r(a ; i ) , . . . ,7r(^)} and [0, s}. Thus X contains an isometric copy
of a (fc + 1)-dimensional euclidean cube of edge length s, contrary to the choice of s.
Using the cocompactness ofX again, we see that in fact d{x'^x'^) > \d{7v{xi),Tv(xj)) for
some i,j e { 1 , . . . , ^ } and for some A > 1 depending only on X and s (but not on the
particular choice of F, Q and V). Hence by convexity,

d(x^x,) > [1 + (A - l^-^ F)]d(7r(^ 7r(^))
^+(A-l)d(y,F).

Thus the lemma holds for m == A — 1. D
Together with the coarea formula, 3.1 leads to the desired analogue of [Mo, 6.4]. For

0 < i < k we denote by 7-f the ^-dimensional Hausdorff measure on R^.

PROPOSITION 3.2. - Let X, k, s, and m be given as in 3.1. Let FcX be a k-flat, TT: X -. F
the projection, and let QcF be a closed k-dimensional cube of edge length 3s. Let f be
an L-Lipschitz, map from a compact ball Bc^ into X, and let h = TT o /. Assume that
h(9B) H Q = 0 and that h\QB is not contractible in F\Q. Ifd :== df.f^-1^)], F) > s,
then n^h-^Q)) ^ s^^s + md)/L\

Proof. - Let v = C2k. Using induction on k one shows that the vertices ^ i , . . . ,^ of
Q can always be ordered in such a way that for % = 1 , . . . , v - 1, [q^ q^] is an edge
of Q. Then let P = U^fc^+iL and let R denote the union of all fc-cubes Q'cQ of
edge length s meeting P. Define the cubes QiCR as in 3.1, and denote by Z the common
(fc - l)-face of R and Qi isometric to [O^]^"1. For k = 3 the situation is illustrated in
Figure. We define a 1-Lipschitz retraction (f)- R—> Z such that each fiber P^ := (^)~l{z} is
a connected polygonal arc lying at constant distance from P. Let h = TT o /; then of) oh is
Lipschitz with constant L. Now the coarea formula [Fe, 3.2.22] yields

/ H\h-\P^} d^-^z) < L^H^h-^R)) .
J z

We claim that for each z in the relative interior Z ' of Z there exists a connected component
Cz of /^(P^) such that h(C^) meets each Qi. With this at hand one can proceed as follows.
By 3.1, diam/(C^) > s + md. Since Cz is connected, and since / is L-Lipschitz, we get

H^h-^P,)) ^^(C,) >diamC, > ( s - ^ - m d ) / L .
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The proof of 3.2.

Together with the above integral estimate and the fact that RcQ this yields the desired
result.

It remains to show that for each z ^ Z / there exists a connected component Cz of
h~^(Pz) such that h(Cz} meets each Qz. Suppose this is false for some z G Z ' . Every
connected component C of h~^{Pz) is mapped by h to a connected subarc of Pz. Denote
by G the union of those components C with h(C) n Qi 7^ 0. Then h(G) n Q^ == 0. Note
also that both G and P^\G are compact. For e > 0 let U^ := {re e /^(P) : d(^, G) < s}.
We can choose e such that [7g D h~l(Pz) = G and, since h is L-Lipschitz, such that h(U^)
intersects the boundary of R (relative to F) only in Z. Our aim is to construct a continuous
map h: B —> F that coincides with h on B\Us and maps G to {^}. For y G Z and x ^ Py
let a(:r) denote the length of the subarc of Py with endpoints ^ and x. Then for ^ ^ 0 let
^(a;) be the point on Py with a((f)t(x)) = max{0, o^a;) — t}. For x ^ U^ define

t(a;) ^HI-S-^^G)),

where ? is the length of P^. Finally, set h(x) := (f)t^x}{h{x}) for x ^Ue and fa(rc) := fa(rc)
for a: € B\Us. Clearly fa is a continuous map with h\QB = h\QB, and it is not difficult
to see that h omits the set (P^\{z}) H Qi. It follows that h\9B is contractible in F\Q,
contrary to the assumption. D

4. Main result

In this section we prove our main result. We use the following elementary fact.

LEMMA 4.1. - Let a: (0, oo) —> [0, oo) be a function with limsupy,_^ a(r)/r < oo. Then
for all 0 < e ' < e < 1 there exists an unbounded sequence 0 < TI < r^ < . . . such that
e'a^Ti) < a(eri) for all i.
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Proof. - Assume first that for all r-o > 0 there exists r > ro with a(r)/r >
a := limsupy.^^ a(r)/r. Then one easily finds 0 < TI < r^ < ... such that
^(^)/^z < ^(^)/(^i) for all i. Thus e'a^ri) <_ ea(ri) < a(eri).

On the other hand, if a(r)/r <, a for r > TQ > 0 say, then one may pick ro < r-i <
r2 < . . . such that a(eri)/{eri) ^ {e' /e)a for i ^ 1, hence e'a(ri) <_ e'~dri <_ a^eri).

We restate Theorem B for convenience.

THEOREM 4.2. - Let (X, d) be a locally compact and cocompact Hadamard space
containing a k-flat but no (k + l)-flat, where k >_ 1. Then for all L > 0 and C > 0
r/z^ 6?.m^ D ^ 0 ^MC/Z that the following holds. Let FcX be a k-flat, f:^ —> X an
(£, C)-quasiisometric map, and for r > 0 define a(r) := sup{d(/(rc),I7') : |rc| < r}. If
limsup,^a(r)/r < L-1, ^n Hd(/(^),F) ^ D.

Proof. - According to 1.2 there exists a map / ' r lR^ —^ X satisfying

L-^x - y\ - C' ^ d{f\x\ f\y)) ̂  L'\x - y\

and d(f(x), f(x)) < C" for all x , y G R\ where £' := Vk(L + C), C77 := 2VkL + 3C7,
and C" := VkL + C7. Redefining a(r) := sup{d(/ /(^),F) : \x\ <, r}, we still have

a := limsupa(r)/r < L~1.
r—>oo

Let 7r:X -^ F denote the projection, h := TT o /', and F ' := / '(IR^). For z e F and r > 0
define B^r) := {^/ G F : d(j/^) ^ r} and a'(r) := sup{d(^,F /) : y G 5^(^(0)^)}.
Fix 0 < 6 < L~1 — a, and let (3 := 6 L / L ' ' . From 2.4 we know that for r sufficiently large,
a(/3r) <; La'(r) + (?, where Z := 5LL' + 1 and <7 := L L ' C ' . Replacing r by ^r we see
that a{er) < La\6r) + C for e := ^2L/£/. Finally, by 4.1 and 2.3, we get the existence
of an unbounded sequence 0 < TI < r ' z < . . . such that for all %,

a(r,) ^-^Za'O^+C]

(say) and /^B^r,)) contains Bp^O), 8^). We pick ^ G B^(fa(0), ^r,) with d(^, F') =
a'(8ri). Then we choose zi G Bk(ri) such that

^ G A := B^ (h{z,), ̂ a\Sr,)} CB^(fa(0), ̂ )

(since a1 (Sri) < 6ri + ^(^(O),^) we may assume that a\6ri) < 4^ for all %). For
x G ^ := h-^Di) H B^r,) we have

L-^-^i-c^^r^u'^))
<d(^),^))+2a(r,)

/I .-\< Q+4£- lL')a /(^)+4£- lG.
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Hence, denoting by o^ the volume of the unit ball in R^, we see that

^TO ^ ̂  \(- + 4£-lZ')a/(^) + 4£-1C + C'l .

On the other hand, for x G Ki,
d{f\x\F)>d{f\x)^-d{h(x}^

> a'(^) - Ja'(^)

- j^(^).

Let n(z) be the maximal number of pairwise disjoint fc-cubes of edge length 3s fitting into
Di, where s > 0 is the constant given by 3.1. We may assume that ^a\8ri) > 3^ks,
then clearly n(i) > ak[^a'{6ri) — 3^/ks}1^ / { ' 3 s ) k . According to 2.3 we may apply 3.2 to
each of these cubes, thus we deduce that

^(^) > n(^-1 ( s + ^ma^Sr,)} / L
\ z )

^ ak [^(^) - Vks\ (l + ̂ ma^Sr,)} I L1

^( T^ \ ̂  ^(.•\^k-l( „ i L ̂ l ( K^ \\ I T^

'f^\ ./7:J ^ , ls-lma/(8r^'\/L/k,

Combining the two estimates for 7^(A^), we obtain an upper barrier for a'(^). Since
d(^i} <: 2e~l[La/(8ri) + C], it follows that Hd^', F) is bounded above by some constant
which, however, still depends on the choice of 8 G (0, L~1 — a) and hence on a. But now
the argument can be repeated with a = 0, which then yields a estimate in terms of L, C,
fc, 5, and m. Finally, since d(f{x), f(x)) ̂  C" = VkL + C for all x G ^fc, the theorem
follows. D

As mentioned in the introduction, the constant L~1 given in the theorem is optimal.
Moreover, if for a concrete Hadamard space X a pair of numbers s^m satisfying 3.1
is known, then the present method allows, in principle, to determine D explicitly as a
function of the quasiisometry constants L and C.

5. Pairs of flats

In this section we specialize the statement of Theorem 4.2 to the case where f:Rk—>•X
is an isometric map, i.e. Ff := /(IR^) is a fc-flat in X. In this case, the upper limit
a := lim sup^^Q a(r)/r considered in the theorem is actually a limit and can be interpreted
in terms of the angle metric Z on the boundary at infinity X(oo) of X, as explained below.
(See [Ba, Ch. II] for the definition of the metric space (^T(oo), Z).) For illustration, consider
two intersecting straight lines F, F ' in IR2. Then clearly a correspondingly defined a would
just be equal to the sine of the angle between F and F 1 ' . More generally, for two flats F, F '
of possibly distinct dimension in a Hadamard space X, define an asymptotic angle by

Z^F:= sup Z(^F(oo)),
^^(oo)
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where F(oo) and F'((X)) denote the boundaries at infinity of F and F7, respectively. By
compactness, the supremum is attained at some point ^ G F'(oo). The Hausdorff distance
between F(oo) and F^oo) with respect to Z is defined by

Rd^F(oo),F\oo)) ̂ n^Z^F^F'}.

Now Theorem C in the introduction is a direct consequence of Theorem B and the following
proposition. Note that everything stated below remains true if F is replaced by a locally
compact, closed convex subset of X containing a geodesic ray.

PROPOSITION 5.1. - Let (X, d) be a Hadamard space containing two flats F, F ' (of possibly
distinct dimensions). Pick z € F ' , and for r > 0 define a(r) := sup{d(x,F) : x G F1,
d(rr, z} < r}. Then the limit a := lim^oo a(r)/r exists (and is independent of the choice
of z). Moreover a G [0,1], and a = 1 if and only if L p ' F > Tr/2. // L p ' F < Tr/2, then
sin(Zj?/F) = a.

We need several lemmas.

LEMMA 5.2. -The function defined by ao(r) := [a(r) - a(0)] / ' r for r > 0 is nondecreasing,
and 0 ^ ao < 1. In particular the limit a := lim^oo a(r)/r exists and a G [0,1].

Proof. - Clearly a(0) <, a(r) < r 4- a(0), thus 0 ^ ao < 1. Let 0 < ri < r^
Since re ^ d { x ^ F ) is a convex function on F ' ' , a(ri) == d { x ^ ^ F ) for some x\ G F '
with d ( x ^ ^ z ) = ri. Let a:[0,oo) —^ F' be the unit speed ray with a(0) = z and
(7(n) = x\, and let &: [0,oo) —^ R be the convex function defined by b(r) := d(a(r),-F).
Then 6(0) = a(0), &(ri) = a(r-i), and 6(r) ^ a(r) for all r > 0. By convexity,
[b(r^) - 6(0)] /r-2 > [b(r^ - 6(0)] /ri, which implies the result.

LEMMA 5.3. - Let a: [0, oo) -^ X be a unit speed ray -with a(oo) ==: ^, and for r > 0 ̂ ^n^
fc(r) := d(a(r), F). T/i^6 := lim^oo &(r)/r ^x^^, 6 6 [0,1], anJ Z(^ F(oo)) > arcsinS.

Proq/l - The existence of b G [0,1] follows as in 5.2.
Assume first that b < 1. We may replace a by an asymptotic ray and therefore assume

without loss of generality that a(0) G F. Let T] G F(oo) be an arbitrary point, and let
p:[0,oo) -^ F be the ray of speed (1 - b2)172 from a(0) to 77. Consider the convex
function defined by c(r) := d(a{r),_p(r)) for r ^ 0. Clearly b(r) < c(r) :< 2r, thus
c := lim^^oo c(r)/r exists and c ^ b. By [Ba, II.4.4], ^.(^rj) equals the angle opposite
to the side of length c in a euclidean triangle with sides of length 1, (1 - &2)172, and c.
Since c > b it follows that Z(<^^) > arcsin6.

An obvious limit argument yields the claim for b = 1. D

LEMMA 5.4. - Let a, ^, 6, and b be given as in 5.3. Ifb < 1 then there exists a point
rj € F(oo) with ^.(^r]) = arcsin& < Tr/2.

Proof. - As in the proof of 5.2 we may assume that a(0) € F. For r > 0 we consider
the geodesic triangle with vertices a(0), a(r), g(r), where q(r) is the point in F closest to
a(r). We may further assume that 6(r) = d{a(r),q(r)) > 0, and since b(r) <: rb < r, we
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also have d(r) := d(a(0),g(r)) > 0. Then it is easily seen that Z^)(a(0),a(r)) > Tr/2,
thus <^(r) := Z,(,)(<r(0)^(r)) < Tf/2.

We claim furthermore that cos 0(r) ^ & for all r > 0. To see this, consider for small
s > 0 the geodesic triangle As in X with vertices cr(r),a(r - s^.ps, where ps_is the
point on [a(r), g(r)] with d(ps, a(r)) = 5. Since 6 is convex, 6(r) - b{r - s2) < s2b, thus

d{a(r - 52),^) ^ &(r - s2) - b{r) 4- s ^ s - s2!).

Let Ag be the euclidean comparison triangle for As. The angle at the vertex of As
corresponding to a(r) is at least as large as the angle subtendedj)y two sides of length
1 and s~1 in a euclidean triangle with third side of length s~1 -b. For 5 - ^ 0 this angle
converges to arccosfc. This proves the claim.

By the cosine inequality [Ba, I.5.2(ii)] it follows that r2 ^ d(r)2 + &(r)2 and
d(r)2 > r2 + b(r)2 - 2rb(r)b, hence

,_W^^M!f_^.
w»2 /v2 (y»^ iy*

Since lim^oo b{r)/r = b we see that Hindoo d(r)/r = (1 - P)172.
Let pr: [0, r] -^ F be the geodesic of speed d{r)/r with py.(0) = cr(0) and p^(r) = q{r).

Consider the convex function defined by Cr(t} := d(a(t), pr{t)) for t € [0,r]. We have
c,(0) = 0 and c^(r) = 6(r), thus Cr(t) <, tb(r)/r for all t G [0,r]. Let p: [O^oo) -^ F
be an accumulation ray of the family (pr)r>o. This is a ray of speed (1 - 62)172, and
d(a(t),p(t)) <, tb for all t > 0. Let c := lim^oo d{(r{t),p{t))/t_ and ^ := p(oo).
As in the proof of 5.3 we apply [Ba, 11.4.4] which, since c < 6, this time yields
Z(^) ^ arcsin6 < Tr/2. Together with 5.3 this gives the result. D

Now we are ready to prove Proposition 5.1.

Proof of Proposition 5.1. - Lemma 5.2 shows that a G [0,1] exists.
It is not difficult to see that there exists a sequence of rays ai:[0,oo) -^ F ' with

lim^A = a, where b, := lim,-^ d(a,(r),F)/r. By 5.3, ZF'F > Z(a,(oo),F(oo)) >
arcsin^, hence L p ' F > arcsina. In particular, a = 1 implies that Z^/F > ?r/2.

Now assume that a < 1. Pick ^ G F^oo) with Z(^_F(oo)) = Zp/F, and let cr: [0, oo) -^
F' be the unit speed ray from z to ^. Then clearly b :=Jim^oo d ( a ( r ) , F ) / r ^ a < 1.
By 5.4 there exists 7? e F(oo) with Z(^y^) = arcsin6, thus L p ' F = Z(^,F(oo)) <
arcsinft < arcsina < 7T/2.

These arguments also show that sin(Z^/F) = a if Zp/F <, 7T/2. D
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