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ADDITIVE REPRESENTATION IN THIN SEQUENCES, I:
WARING’S PROBLEM FOR CUBES

By JORG BRUDERN, KoicHI KAWADA AND TREVORD. WOOLEY

ABSTRACT. — In this paper we investigate representation of numbers from certain thin sequences like
the squares or cubes by sums of cubes. It is shown, in particular, that almost all values of an integral cubic
polynomial are sums of six cubes. The methods are very flexible and may be applied to many related
problems.
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RESUME. — Dans cet article nous étudions la représentation des nombres de certaines suites rares comme
celles des carrés ou des cubes. Il est démontré notamment que presque toutes les valeurs d’'un polynéme
de degré trois sont des sommes de six cubes. Ces méthodes, trés flexibles, sont applicables a beaucoup de
problémes analogues.
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1. Introduction

Throughout the history of the additive theory of numbers, the classical version of Waring’s
problem, and most notably problems involving sums of cubes, have provided the examples of
prime importance for assessing the strength of novel methods. We will follow this tradition in the
present communication. While our main objective is to present a widely applicable technique, we
illustrate the latter solely in the context of sums of cubes, deferring to future memoirs discussion
of the cornucopia of applications stemming from the underlying ideas. In advance of a detailed
description of these ideas, it is appropriate first to review the state of the art in the class of
examples we have in mind.

Let R;(n) denote the number of representations @ the sum of cubes of positive integers.

It is widely believed that all large integers are represented as the sum of four cubes of positive
integers, and indeed a heuristic application of the circle method motivates the conjecture that for
s > 4, one has the asymptotic formula

4\s
@) Rom) = 28l &, mynd 1 + o(nd 1),
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where

ande(z) = exp(2wiz). It is known that thesingular series5(n) satisfiesSs(n) > 1 for s >4
(see Theorem 4.5 of Vaughan [17]). Consequently, the validity of formula (1.1) would imply that
all large natural numbers are indeed the sum of four positive integral cubes.

The formula (1.1) has been established fop 9 by Hardy and Littlewood [11], and by
Vaughan [14] in the additional case= 8. Although no such asymptotic formula is known
for s < 7, it does at least follow from work of Vaughan [16] th& (n) > n*/3, which
is the order of magnitude predicted by (1.1) (this conclusion improves on earlier work of
Linnik [13], Watson [19], and Vaughan [14]). In situations where fewer cubes are employed
in the representation, one must be content with rather weaker results. Wisea natural
number, denote by (N) the number of natural numbers not exceedMgvhich are not the
sum of s cubes of positive integers. Then Davenport [8], in the first noteworthy contribution
concerning sums of four cubes, established fgtV) < N29/30+¢ showing in particular that
almost all natural numbers are the sum of four positive integral cubes. The exporigatas
subsequently been reduced, and it is now known that whiena sufficiently small positive
number, then one has

(1.2) Ey(N) < N37/42=¢

(this is a consequence of work of Bridern [2] and Wooley [22]). The work of Vaughan [14]
alluded to above, moreover, shows that formula (1.1) holds whent, for almost alln. The
potential for more refined results along the lines of Davenport’s theorem has recently received
further attention, with work of Briidern and Watt [7] and Kawada [12] concerning sums of four
cubes in short intervals.

Although for sums of five or six cubes of non-negative integers results analogous to
Davenport’s theorem may be established through similar methods, one would anticipate that
still stronger conclusions should be accessible given the additional variables available. This area
remains, however, undeservedly neglected in the literature. In this context we remark that by
combining use of Weyl's inequality for the additional cubic exponential sums with the classical
approach leading to the estimate (1.2), one routinely obtains bounds very slightly sharper than

(1.3) Es(N)< N°7,  Eg(N)< N%/42,

As is evident from (1.3), these classical estimates fail to show even that the majority of integer
squares are represented as the sum of six positive cubes. Nevertheless, as a consequence of the
methods developed within this paper, it is possible to show that almost all values of a quadratic
polynomial are the sum of six cubes, with an explicit estimate for the size of the exceptional set.

In order to state our result in a precise form, it is convenient henceforth to describe a polynomial

¢ € QJt] as being amntegral polynomialf, whenever the parameters an integer, then the value

¢(t) is also an integer. Whe(t) is such a polynomial, denote Wy, (V) the number of integers

n with 1 <n < N for which ¢(n) is not the sum of six cubes of positive integers.

THEOREM 1.1. — Let ¢ be an integral quadratic polynomial with positive leading coefficient.
Then one ha®,(N) <4 N19/28,

When the quadratic polynomial is replaced by a cubic polynomial, it is still possible to obtain
a similar conclusion, but with a weaker estimate for the number of exceptions.
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THEOREM 1.2. — Let @ be an integral cubic polynomial with positive leading coefficient.
Then one ha®ly (N) < N25%/274,

A trivial variant of the arguments used to establish Theorem 1.2 shows that Whisna
positive integer, then for almost all integersith 1 <t < N'/3, one has thalv — ¢? is the sum
of six positive integral cubes. Thus we have the curious conclusion that not only does one have
that R7(IV) > 0 for all large integersV, but also that one can almost prescribe the value of one
of the seven cubes used to repres¥nt

Our methods offer great flexibility in their application to the study of exceptional sets in
additive number theory. In principle, the proofs of the two theorems above might be regarded
as providing a model for most applications of our method. It therefore seems appropriate to
indulge in some rather abstract discussion concerning our methods, and in particular to describe
their merits relative to classical approaches involving Bessel’s inequality.

We are interested in additive representations of integers. Thus, given a positive ingaggr
setsA,,..., A, of positive integers, we investigate the numbgs) of representations of in
the shape

(1.4 n=ay+as+---+as

with a; € A; (1 <i<s). WhenB CN we defineEg(X) to be the number of integers

n € [1,X] N B having no representation in the shape (1.4). There are many circumstances in
which for some fixed, and an interesting choice ofy, ..., A, one is able to show that almost

all positive integers, possess a representation in the form (1.4), whence

(1.5) En(X) = o(X).

If, on the other hand, one is able to show that for some thiBsstich as the sequence of squares,
one has

Ep(X)= o(card(B N [1,X]))7

then one can reasonably assert that more refined information is being provided concerning the
distribution of integers represented in the form (1.4). Such problems form the backbone of this
series of papers.

It is informative to describe the classical approach to estimaBingX) in order that its
limitations be evident. Define the generating functions

fila) = Z e(ar) (1<i<s).

wEAN[,X]

Also, define the mean valug (n) relative to a measurable setC [0, 1] by
(1.6) re(n) :/fl(a)~-~fs(a)e(—om) da.
¢

Then by orthogonality one hagn) = r(o,1j(n). The first idea in the classical approach is to
use the Hardy-Littlewood method to estimatg:). Thus one divides the unit interval into
complementary set®t andm, on the first of which one hopes to provide asymptotic formulae
for the f;(«), and on the second we aim to show that the generating functions are on average
suitably small. Under favourable conditions one is able to show thapﬁr< n < X one has
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ron(n) < T (X), where
(1.7) T(X)=X""! f[card(Ai N[, X]).

Meanwhile, an application of Bessel's inequality reveals that

Y Irm(n)P < / |fi(@)-- fo(@)] da.

ne”Z

Once again under suitable conditions, one is able to show that the latter expression is of order
strictly smaller thanX T (X )2. On recalling (1.6) and (1.7), therefore, we find that

(1.8) >

LX<n<X

r(n) —ro(n) |”
ron(n)

<T(X 2Z\rm =o(X).

On noting that the summands on the left hand side of (1.8) are equal to 1 whefeyer 0,

and otherwise are non-negative, we conclude that the right hand side of (1.8) provides an upper
bound forEx(X) — En(3X). By summing over dyadic intervals, it is therefore evident how, in
principle, one may establish a result of the type (1.5).

Although successful in investigations concerning exceptional sets of theAyp&), the
above method fails to provide strong conclusions for exceptionallsetX’) when B is a thin
sequence. The difficulty is that Bessel's inequality fails to exploit the size of thg, setindeed
its arithmetic properties, and thus the “trivial” estimate arising from the above method may be
far larger than the obvious upper bourdd(B N [1, X]) for Ep(X).

In this paper we investigate the “sequence of exceptions” directly. Défitoebe the set of
integersn € B having no representation in the shape (1.4). Then by orthogonality it follows
from (1.4) that

(1.9 /f1 a)e(—an)da=0.
neé
1X<n<X
Write
(1.10) K(a)= Z e(an),
neé
1x<ng<x

and note that under the conditions implicit in the classical argument above, one has

(1.11) > /f1 a)e(—an)da > T(X)card(EN (31X, X]).
neé
1X<n<X

But from (1.9) and (1.10) it follows that

Z /fl —an)da=— /fl K(—a)da,

neé
1 X<n<X
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whence by (1.11),

(1.12) Ep(X) - Ep(3X) < T(X /|f1 (a)K (a)|dov.

In this way, the conclusion of the classical treatment may be recovered by applying Schwarz's
inequality to the integral on the right hand side of (1.12), since by orthogonality,

[ 1@+ @K aa
1 1/2 2 "
< <O/K(Oé)| doz) <n/|f1(a)...fs(a)| da)

< (Bs(X) - Es (X)) </|f1(a)~-~fs(a)!2da>1/2-

However, the formulation (1.12) offers additional flexibility over the classical treatment
whenever the sdf possesses useful arithmetic properties. For exampeisithe set of integral
squares, then the fourth moment Bf(«) may be estimated non-trivially, and then the upper
bound (1.12) may become effective via an application of Holder’s inequality. This is essentially
the strategy adopted in the proof of Theorem 1.1. To be specific in the case of squares under
consideration, a straightforward counting argument shows that

1
/ K (a)|*da < X°(Eg(X) — EB@X))2,
0
and (1.12) then yields, via Hélder’s inequality,
3/2
Es(X)—Ep(3X) < X°Y(X </|f1 4/3da> .

There are numerous alternatives to the latter approach which vary in utility according to the
mean value estimates available. It may be useful to consider mixed mean values of the shape

[ 1K@ @) i da
0

wherein the exponential sufi(«) may, if desired, be replaced by the complete sum

Z e(an),

n<X
neB

by considering the underlying diophantine equation. A very successful application of this mixed
mean value idea is to problems involving mixed powers, as will be demonstrated in a sequel to
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this paper [6]. Moreover, it is possible to incorporate efficient differencing into this approach, as
will be evident from our proof of Theorem 1.2.

There is an alternative, more classical approach to these problems which we mention before
moving on, and this approach is the one exploited by earlier writers. One can make use of relation
(1.8), but now expanding the central expression in (1.8) to obtain for a general sedtience
place ofN,

2

) = rm)|  p(x)21(x),

ron(n)

D

neB
1X<n<X

where

(1.13) I(X)://fl(a)fl(—ﬂ)---fs(oz)fs(—ﬁ) Y e((B-an)dadp.

neB
m m
1X<n<X

As an advantage over our approach sketched above, an exponential sum over all elefi@nts of

an interval occurs (a classical Weyl sum), but the disadvantages seem almost always to outweigh
this meagre bonus. As exhibited in (1.12), our approach essentially yields a full exponential sum
corresponding to the exceptional set in each mean value, whereas in (1.13) this exponential sum
arises only once between two mean values, and hence has only half the impact on the ensuing
analysis. This makes our results much harder to obtain, if not inaccessible, by the classical
approach.

The flexibility and scope of the main method having been stressed in the preceding paragraphs,
we end these introductory comments with the remark that further twists and turns may be
introduced into the central technique. Such variants we intend to explore in forthcoming articles
in this series. For example, one may investigate gstérpowers representable by sums of two
primes, and establish an unconditional estimate for the corresponding exceptional set which
is comparable to what was known hitherto under the assumption of the extended Riemann
hypothesis for Dirichlef.-functions (see [3]). One can also modify the meaning of “exception”.
The general discussion above remains valid if the counting performeBg§y) refers to
properties other than that the integeris not representable in the shape (1.4). To be more
specific in the framework of Waring’s problem for cubes, one may ask whether the asymptotic
formula (1.1) holds for almost alt whenn varies over the values of a quadratic polynomial.
This is indeed the case when= 6.

THEOREM 1.3. — Let ¢ denote an integral quadratic polynomial, and Bt,(N) denote the
number of integers with 1 < n < N for which the asymptotic formuld..1)fails for Rg(¢(n)).
ThenDy(N) < N/logN.

We shall not prove this here but refer to another forthcoming article in this series [4] where
amongst other things a stronger version of Theorem 1.3 will be presented. Finally, let it suffice to
mention that there is also a variant of our methods which allows one to conclude, sometimes, that
many (but not necessarily almost all) values of a thin sequence have a representation in a certain
form. Limitations of space do not permit a more precise description of this and other variants,
and we refer the interested reader to other articles in this series [5,6].

Notation. Throughout, the letters andn will denote sufficiently small positive numbers.

We take P to be the basic parameter, a large real number depending at mestypand any
coefficients of implicit polynomials if necessary. We use and > to denote Vinogradov’s
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well-known notation, implicit constants depending at mosteoriy and implicit polynomials.
Sometimes we make use of vector notation. For example, the expregsion.,c¢;) is
abbreviated ta. Summations start at 1 unless indicated otherwise. In an effort to simplify our
analysis, we adopt the following convention concerning the parame#thenever appears

in a statement, we assert that for each 0 the statement holds for sufficiently large values
of the main parameter. Note that the “value”=ofnay consequently change from statement to
statement, and hence also the dependence of implicit constasts on

2. Exceptional setsfor six cubes: the major arcs

Our treatments of the exceptional sets arising from the representation of quadratic and cubic
polynomials as sums of six cubes depend for their success on minor arc estimates of Bridern [2].
Although the generating function corresponding to the six underlying cubes differs between the
guadratic and cubic cases, there are sufficiently many common features that, at least so far as the
major arcs are concerned, an essentially unified treatment is possible. The latter is the object of
the present section.

Motivated by the notational conventions of Bridern [2], we make the following definitions.
We takeP to be a large real number, writefor a sufficiently small positive number depending
at most ore, and consider a real numb&rwith P"/2 < R < P". We write

Q:P6/7, Y:P1/7,

and define the generating functions

(2.1) fpla) = Z e(az?), g(a) = Z e(ay?), h(a) = Z e(az®),

P<a<2P Q<y<2Q 2€A(Q,R)
piz

where A(Q, R) = {1 < 2 < Q: p|z = p < R}. As a convenient substitute for the generating
function central to the treatment of Briidern [2], we define also

2.2) Flay= Y fla)g(ar®)h(a®)’,
pot P 3)

where the summation is over prime numbers. Finally, we define

(2.3) fla)= Z e(az?), t(a) = Z e(az?),
P<z<2P z€A(P,R)

and write

(2.4) Sa(a) =F(@)f(a)t(e),  Sz(a)=F(a)t(a).

We remark that our proofs of Theorems 1.1 and 1.2 depend, respectively, on the use of the
generating function§s («) andSs(«).

Next we define the major arcs central to the discussion of the present section. We write
L = (log P)'/1%° and defineé to be the union of the intervals

N(q,a) = {Oz €[0,1]: |[ga —a|] < LP73}
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with 0 < a < ¢ < L and(a,q) = 1. It is convenient at this stage to discuss the approximants to
various generating functions &. We define

(2.5) )= e(ar®/q),  S(g.a.p)=S5(q.a) —p~'S(q,ap).
r=1

Notice that forl < ¢ < L andp >Y one ha® ¢, and hence by a change of variables one obtains

(2.6) S(q,ap®) = S(q, a).

If we now define the multiplicative function(q) on prime powersr! (I € N) by means of the
equations

(2.7) /@(7731) =7t n(ﬂ'?’l"H) = 271'_1_%7 /-@(7731""2) S

then it follows from Lemmata 4.3-4.5 of Vaughan [17] that whengver2 (mod 3) is a prime,
andqg € N anda € Z satisfy(¢,a) = 1, one has

(2.8) q 'S(q,a)| <klq), ¢ 'S(q,a,p)| < K(q).

We note that the implicit constants in (2.8) are bounded above Wwheneverd ¢ q. We also
define

2P P
o(B) = / (B dy,  w(B)= / (5% d,
P 0

2Q Q
w(B)=[e(Br’)dy, wi(B)= [e(Br’)dy
Jorn o]

Next we define the functiong;, g, t*, f* andh;;, for a € [0, 1] by taking

29) fi(@)=q'S(q,a,p)v(a—a/q),  gy(a)=q"S(q,ap’)w(p’(a—a/q)),

(2.10) t*(a) =cyq 'S(g,a)vr(a—a/q),  hy(e) =cyqg ' S(q,ap’)wi (p*(a —a/q)),

(2.11) (@) =q*S(q,a)v(a —a/q),

whena € M(q,a) C N, and by taking each of these functions to be zero otherwise. Here we
have writtenc,, for p(n~!), wherep(t) is the Dickman function (see, for example, §12.1 of
Vaughan [17]). It suffices for our purposes to note that when0 one has:, > 0. It follows

from Theorem 4.1 of Vaughan [17] that for anye R, a € Z, andq € N, and for any prime
p<2Y,one has

fol@) — ' S(g,a,p)v(a — a/g) < ¢ (1+ Pla —a/q))"?,

g(ap®) — 75 (g, ap®)w (p* (o — a/q)) < g7 (1+ P*la —a/q|) ">,
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and
(@) — ¢ ' S(q,a)o(a — afq) < g2 (1+ PPla —a/q))"/?,
whence forx € 91 one has
(2.12) fo(a) — fi(@) < L3*, g(ap®) —gi(e) < LEF, f(a) = f*(a) < L3,

Further, one may deduce from Lemma 8.5 of Wooley [20] (see also Lemma 5.4 of Vaughan [15]
for a related conclusion) that fer € 9t one has

(213)  t(a)—t*(a) < P(logP)~'/*,  h(ap®) — hi(a) < Q(log P)~ 1/,
Finally, by partial integration one readily confirms that the bounds

(2.14) v < PA+PB) T, w(f) <Q1+Q%8)

—-1/3 1/3

(2.15) vi(B) < P(1+ P?|3|)
hold uniformly for 5 € R.

wi(8) < Q(1+Q%8])

LEMMA 2.1.—Whenj = 2 or 3, one has uniformly fod P? < m < 64P3 the estimate

/S —am)da >, YQ3(log P)~!

Proof. —The lower bound recorded in the lemma is a simple consequence of standard endgame
technique in the circle method. We will be economical in our presentation of details, though with
later applications in mind we work harder than is necessary for our immediate needs. We begin
by writing

2.16)  Sj(a)= Y fr@g(@hya)*t (@) T (a) T (j=2,3)
pot o 3)

Then it follows from (2.12) and (2.13) that fare 91 one has
Sj(@) = 8 (a) <Y P3Q3(log P) /%

On recalling that the measure %fis O(L? P~3), we deduce that

@1 [ S amdak/f (—am) da < YQ(log P)~°/5.

Next, on combining (2.16), (2.9)—-(2.11), (2.5) and (2.6), we obtain

(2.18) /S]’f(a) —am)da = Z A(g,m (m L/(qPS))
N

q<L
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where
(2.19) Z q~°S(q,a)%e(—am/q)
(a q) 1
and, for each positive numbét,
Z
(2.20) pmn=gt S (11 [v@e-oma
Y <p<2Y p g
p=2 (mod 3)
where
Vo(8) = v(8)* 1 (B~ w(p*B)wn (5°8) .
On writing

Ij(m)= lim I7(m;Z)

Z—00

we find from (2.14), (2.15) and (2.20) that fox v < % one has

Iij(m) — Iy (m; L/ (¢P?%)) < (q/L)" Q%Y (log P)~"

Then by (2.7), (2.8) and (2.19), we deduce that

Z ‘A q,m —1I; (m L/ qP3 ’ <QYL™ (logP)f1 H(l + 64p”72)
g<L P
(2.21) < Q%Y (log P)~1—v/100,

Moreover, also by (2.7), (2.8) and (2.19), we have

(2.22) S (g, m) < 3 (a/L) [ Alg,m)] < L.

q>L q=1

Finally, by (2.14), (2.15) and (2.20) one finds that
(2.23) Ij(m) < Q%Y (log )~

On combining (2.17), (2.18) and (2.21)—(2.23), we therefore conclude that

(2.24) /S —am)da = &¢(m)I;(m) + O(Q*Y (108,;19)—1—11/100)7

whereGg(m) is the singular series defined in connection with (1.1).
In order to complete the proof of the lemma we have only to note that a standard application
of Fourier’s integral formula (see, for example, Davenport [9]) shows that

Ii(m) > Q%Y (log P)~*

for 4P% < m < 64P3, and that Theorem 4.5 of Vaughan [17] demonstrates @&hdin) > 1
uniformly in m. Consequently, the desired conclusion follows from (2.24).
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Equipped with Lemma 2.1, it is now a simple matter to describe our plan of attack on the
theorems. Lety; € Q[t] be an integral polynomial with positive leading coefficient of degree
wherej = 2 or 3. We take

(2.25) 6P = ¢;(N)
and denote byg; (V) the set of integers with N < n < 2N for which the diophantine equation

¢j(n) =] + a5+ + 5

has no solution in positive integers (1 < i < 6). Write

(2.26) Kj(a) = Z 6(—a¢j(n)).

neZ;(N)

Then it follows from the definition o (V) that

1
(2.27) /Sj(a)Kj (a)da=0.
0
Next writen = [0, 1] \ 91. Then, on noting (2.25), it follows from Lemma 2.1 and (2.26) that
/S @) da > card(Z;(N))YQ*(log P) ",
whence by (2.27) we necessarily have

(2.28) ‘/S @) da| > card(Z;(N))Y Q*(log P)~"

Our plan, which we execute in the next two sections, is to provide an upper bound for the integral
on the left hand side of (2.28). As is apparent, an upper boundafei( Z;(N)) will follow
immediately, and this will lead to the conclusions of Theorems 1.1 and 1.2.

3. Valuesof quadratic polynomialswhich are not sums of six cubes

In this section we complete the proof of Theorem 1.1. Large parts of the analysis of this section
will be employed also in the next section wherein Theorem 1.2 will be established. We begin with
a preparatory investigation of the block of four cubes lurking within the funcki¢m). As might
be expected, our minor arc treatment rests on a good estimate for the sixth moment of suitable
cubic exponential sums.

LEmMA 3.1. - LetU(X) denote the number of solutions of the diophantine equation
o} — a3 =yl + s — 3 — vi,

with1 < z; <2X (i =1,2) andy; € A(X,X") (1 <j<4). Then provided tha is sufficiently
small, one has

U(X)< X520
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Proof. —The conclusion of the lemma follows from Theorem 1.2 of Wooley [22}

Henceforth we take) to be a fixed positive humber sufficiently small in the context of
Lemma 3.1 and our ensuing argument. As an immediate application of Lemma 3.1, we note
that by considering the underlying diophantine equations, it follows from (2.1) and (2.3) that

1

1
(3.1) |£(c)2t(c)*|da < P21, o(@)?h(0)"] da < Q-1
/ /

0

The first of two lemmata concerning the block of exponential suRfs) is a simple
modification of a conclusion contained in Briidern [2], whereas the second is genuinely new.
In order to describe these results we must first set up a Hardy—Littlewood dissection.XVhen
is a real number with < X < P, we define the set of major ar@®(X) to be the union of the
intervals

M(q,a) ={a€[0,1]: |ga —a| < XP?}
with 0 < a < ¢ < X and(a, q) = 1. We definem(X) = [0, 1] \ 9(X) and for brevity write also

M=M(P¥*),  m=m(P¥*).

We first explain how the work of Briidern [2] leads to the estimate

(3.2) / ()2 da < Y?QE P19/,

m(P)

where F(«) is defined as in (2.2). Estimate (3.2) is essentially contained in the proof of
Proposition 1 of Brudern [2], but some comments are required in order that the reader is able
easily to follow the necessary route. The mean value on the left hand side of (3.2) occurs
explicitly in Eq. (3.2) of Bridern [2], and is subsequently estimated therein to the precision
claimed in (3.2), save for an extraneous factor/5f. We note that the sequencé used to
define the exponential suf(«) in Bridern [2] differs from our setd(Q, R). However, the
argument of Briidern [2] does not depend on the specific shapk ahd indeed it is only the
mean value estimate (3.4) of Briidern [2] which is vital, and such is available to us in the present
context from (3.1). Moreover, the latter estimate is even a little stronger than the corresponding
estimate (3.4) of Brudern [2], and this additional strength may be carried through the argument
to remove the offensive factdr® implicit in Bridern [2], Eq. (3.2), to which we alluded earlier.
Now define the functiong, (o) and g, (a) via (2.9) fora € M(q,a) C M(P), and define
these functions to be zero otherwise. Also write

(3.3) Fil@)= > fre)gi(@)h(ap®)’.
Y <pL2Y
p=2 (mod 3)

Then an inspection of the proofs of inequalities (4.6) and (4.7) of Bridern [2] reveals that

(3.9) / IF (@) - Fu()| da < Y2Q5 P19/,
Mm(P)
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Here again it is necessary to observe that the arguments of Briidern [2] make use of the cubes
underlying the exponential sum(ap?) only through upper bounds on the number of solutions
of auxiliary diophantine equations, and consequently our alternative choigedoes not affect
the argument.

Finally, we inspect the proof of Eq. (4.10) of Briidern [2], but replace the chiee P77
therein with the new choiceX = P3/4. The work of 86 of Briidern [2] then shows that
inequality (4.10) of Briidern [2] holds with = 0, whence we have

/ |Fi(e)?da < Y2Q0 P~19/14,
M(P)\M

When combined with (3.2) and (3.4), we may summarise our deliberations thus far in a
convenient form as follows.

LEMMA 3.2.-0One has
/ IF (@) da < Y2Q0P~19/1
m
and

/ [F(a) = Fi(a)]” da < Y2Q0 P=19/14,

Proof. —The first estimate follows in the manner indicated above, and the second is a trivial
consequence of (3.4).0

Our next lemma provides an upper bound for the contributiagf@¢) arising from the major
arcs which is essentially best possible, and this estimate greatly facilitates our subsequent pruning
procedures.

LEMMA 3.3. - Suppose thak is a real number with < X < Q. Then
/ |F1(a)|da < XYQ*P%(logY) ™!
M(X)

Proof. —Definex(q) via (2.7). Then, for each primee [Y, 2Y] with p =2 (mod 3), and for
eacha € M(q,a) C M(X), it follows from Eq. (6.5) of Briidern [2] that

fr(@)gy (@) < w(@)* PQ(1+ P*la—a/q) ",
and moreover that whest|q, one has
fp(@)gp(a) =0.
On recalling (3.3), we therefore deduce that

@5 [ 1A@la<Pe Y sa? Y /Z CACTEE

<X Y <p<2Y
M(X) a5 oo
pfq ,q) 1
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Let ¢4(h) be Ramanujan’s sum, which we define by

q

cg(h)= > elah/q).
a=1
(a,q)=1

Then it follows that

q

> @)= Y al @ )@ @ )
(@p=1 2,y€AQ.R)

The familiar estimatdce,(h)| < (¢, h) (noting the convention thaly, 0) = ¢) therefore leads
from (3.5) to the estimate

(3.6) / |F1 ()| da < P72Q Z r(q)? Z Z (0.0° (2° — %))
M(X) q<X Y <p<2Y 1<z,y<Q
p°fq

Whenp? 1 ¢, one plainly has
(0.0°(@® = 9%)) < (p. @) (g2 = °).
Observe that whea < X, p > Y and X <Y one hagp, q) = 1. Meanwhile, whenX > Y one

haslogY < X¢/2. Thus, on applying a familiar estimate for the divisor function, it follows that
wheneverl < ¢ < X, one has

Y X¢e/? XY
3.7 — 4= )
(3.7) Y o< oa7 T log¥ Y o< -~
Y <p<2Y plg
Y <pL2Y

On combining (3.6) and (3.7), we therefore deduce that

(3.8) / Fr(@)]da < X P2QV(logY) " S k(@ S (0,2° - ).

M(X) q<X 1<z,y<@Q

Next write p(d) for the number of solutions of the congrueneg = y* (mod d) with
1 < x,y < d. Then, by sortinge andy into residue classes modulp it follows that whenever

g<Q,

Z (q,x?’ —y?’) <chard{1 <2,y <Q: 23 =y* (mod d)}

1<z,y<Q dlq
2
(3.9) gZ(% +1) dp(d) <<Q2Z%l).
dlq dlq

For any natural number one may writer = ryr3 with r; cube-free, and this decomposition is
unique. Further, an elementary counting argument showsthat »1+<r;. Consequently, on
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recalling (3.9),

(3.10) > (02" =% < Qs
1<z,y<@Q
But in view of (2.7) we have:(q) < qqul/zqgl, whence

Z k(g)qs < X°/? Z q ta; << XC.
<X ngs<X
On recalling (3.8) and (3.10), therefore, the proof of the lemma is complete.

We require a variant of Lemma 3.3 of simpler type in order to complete the proof of
Theorem 1.1.

LEMMA 3.4.-One has

/\f a)l?da < PHFE.

Proof. ~When1 < ¢ < P?/* and|qa — a| < P94, it follows from (2.8), (2.14) together with
Theorem 4.1 of Vaughan [17] that

(3.11) fla) < k(@) P(1+ PPla—a/q)) " +¢2*.

Since it follows readily from (2.7) that(q) > ¢~'/2, it is easily confirmed that the first term on
the right hand side of (3.11) always dominates the second. Consequently,

® g
/\f Pda<P® 3 w@? [ Y Ite/a+ HP(L+PS) s,
q<P3/4 o , 0=1
(a,q)=1
and a comparison with the expression (3.5) will convince the reader that the proof of the present
lemma may be completed by applying the argument of the proof of the previousnoitetjs
mutandis O

We pause before launching our campaign proper to add a further simple estimate to our arsenal
of mean values. By employing Weyl’s inequality in the form given by Vaughan [14], Lemma 1,
one has

sup | f(a)] < P%“7

aem

and in combination with (3.1) we obtain the estimate

(3.12) /\f a)|*da < PT0,

Our starting point for the proof of Theorem 1.1 is the lower bound (2.28). As a first step in
obtaining a corresponding upper bound we remove the contribution to the integral on the left
hand side of (2.28) arising from the set 91. Note first that)t = M(L), and son N M is
contained in the union of the sets

R(X) =M(2X) \ Mm(X),
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where we putX = 2'L, and take the union witli > 0 satisfying 2'L < P/%. Next, on
recalling (2.7) and (3.11), we find that f&f < P3/4, one has

sup |f(e)| < PX /3.
a€R(X)

Consequently, on making use of the trivial bouti@d)| < P, we infer from Lemma 3.3 that for
X < P3/4 one has

/\fl(a)f(a)t(a)ma<<P2x-1/3 / |Fi(e)|da < QY X V4 (logY) ™!
A(X) M(2X)

On summing over the aforementioned valueg @fe find that the total contribution arising from
the union of the arc§(2' L) yields the upper bound

(3.13) / |Fi(a) f(@)t(a)|da < QY L™ 4 (logy)~*
nNM

Next, applying Schwarz’s inequality in combination with Lemmata 3.2 and 3.4, we obtain

/ [(F(0) ~ (@) f(0)H(e)] o
c(fr-nir) o)

< (Y2Q6P719/14) E (P1+6) E < Q3YP71/6'
We therefore find from (3.13) and (2.4) that

/ |So ()| da < Q*Y L™ Y4 (log V) !
nNM

whence the trivial bounts(a)| < card Z2(N), in combination with (2.28), reveals that

(3.14) / 1Sz () K2 ()| da > Y Q3 (log P) ™! card Z5(N).

We provide an upper bound for the mean value on the left hand side of (3.14) via Hoélder’s
inequality, obtaining from (2.4) the estimate

1/2 1/4
(3.15) /|$2 ) Ko )da<J1/4</|}" |2da> </f |4da) ,

where

1
J= / |Ko(a)|* da.
0
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But on considering the underlying diophantine equation, one finds/tisequal to the number
of solutions of the equation

$2(n1) + ¢2(n2) = pa(ns) + d2(n4)

with n; € Z3(N) (1 < j < 4). By completing the square in the quadratic polynongiat),

one recognises easily that it suffices to bound the nundb€E) of solutions of the simpler
equationz? + 23 = 22 + 27, with 2; € Z (1 <i < 4), in which Z is a set of integers of the same
cardinality asZ, (V). On separating diagonal solutions, an elementary estimate for the divisor
function readily shows that

(3.16) J < P#(card 25(N))*.

Then by (3.15), (3.16), Lemma 3.2 and the upper bound (3.12), we derive the estimate

(3.17) / |S2 () K2 ()] da < (card Z5(N)) %YQSP%*%".

The proof of Theorem 1.1 is now readily completed. On combining (3.14), (3.17) and (2.25), we
obtain

card Zo(N) < P57/%6 « N19/28

and the desired conclusion follows by summing over dyadic intervals.

4. Values of cubic polynomialswhich arenot sums of six cubes

Although the treatment of quadratic polynomials in the previous section provides many of
the tools required in the application of our methods in the cubic situation, in order to achieve
the bound claimed in Theorem 1.2 we require still more sophisticated weaponry. Much of this
section will be devoted to the proof of a mean value estimate based on efficient differencing with
certain variables restricted to thin sets.

Before describing our differencing lemma we require some additional exponential sums to be
defined. We first extend the definition (2.3), writing for each positive nurher

(4.2) t(a;U) = Z e(az?).

z€A(U,R)
We taked to be a parameter with < 0 < = 1 , to be chosen later, and write
(4.2) M=P?, Q1 =PM™!, H=NM3.

Here we recall that in the present circumstance wheje#, Eq. (2.25) ensures thaf < P.
Finally, we write

4.3) Gi(a)= Z Z Z e(am™ (¢3(z + hm®) — ¢3(2))).
M<m<MRhSN/m3 2€Z23(N
z+hm? GZg(N)
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LEMMA 4.1. — For each positive number, one has

1 1
/ | K3()*t(ey; P)4| da < PP M?R* card Z3(N) + M3+5R3/ |G1(a)t(a; Q1)4| da.
0 0
Proof. —On considering the underlying diophantine equations, an inspection of the proof of

Lemma 2.2 of Wooley [21] reveals that with trivial modifications, the latter argument establishes
the upper bound

1

wa) [ 1Kstott0: Pt de < (5, + PAIS, + (MRS,
0
where
1
(4.5) 51:/\K3(a)2t(a;M)4\da,
0
1
(4.6) Szz/\Kg(a)Qt(a;P)dea,

0
andsS3 denotes the number of solutions of the diophantine equation

(4.7 ¢3(z1) +w’ (uf +ud) = d3(z2) +w? (uf + uf),
with

(48) M<w<MR, U j EA(Ql,R),

(4.9) 21,22 € Z5(N), 21 =29 (mod w3).

Observe first that the solutions of (4.7) countedigysatisfyingz; = 2o, u; = ug andug = uy
number

> M(P/M)?card Z5(N),
whence
(4.10) (MR)?S3 > P2M?R3 card Z3(N).
Next, on estimating the exponential sufw; M) trivially via (4.1), we find from (4.5) that

1
51<M4/|K3(a)|2da<M4cardzg(N),
0

by Parseval’s identity, whence by making use of our hypothesisiia. P, one has
(4.11) Sy < PM card Z3(N) < (M R)3Ss.
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Finally, it follows from (4.6) by orthogonality thaf, is equal to the number of solutions of the
diophantine equation

(4.12) ¢3(21) — B3(22) = v§ — 03,

with z1, z9 € Z5(N) andvy,ve € A(P, R). The number of such solutions of (4.12) with= 2z,

is plainly O(P(card Z5(N))). Fix a choice ofzy, 2z, € Z5(N) with z; # 25, and consider a
solutionwy, vo of (4.12). Sincev; — vo is a divisor of the non-zero integeét (z1) — ¢3(z2), it
follows from an elementary estimate for the divisor function that the number of possible choices
for v1 — v is O(P¢). But given a fixed choice of; — vo, one finds that, + v, is determined
essentially uniquely by (4.12), whence alsQu.. Thus we conclude that the number of solutions

of (4.12) counted implicitly bySy with 21 # z5 is at mostO( P (card Z3(N))?). Consequently,

Sy < Pcard Z5(N) + P*(card Z3(N))* < P card Z5(N),

whence by (4.10),
(4.13) PM S, < P***M card Z3(N) < P*(MR)?Ss.
On combining (4.4), (4.11) and (4.13) we may conclude thus far that

1
(4.14) / |K3(a)?t(c; P)*| dov < P*(MR)*8Ss.
0

Next we establish an upper bound f8y. Observe that wher, andz, are elements oE3(N)
satisfying (4.9) andt; > 25, then one may write, = z andz; = z + hw?® with z € Z3(N),
1<h < N/w?andM < w < MR. Then, by isolating the diagonal contribution with = 2,
in (4.7), and considering the underlying diophantine equations, one finds from (4.8) and (4.3)
that

(4.15) S3 << S84+ S5,
where
1
(4.16) Sy = MR(card Z3(N)) / It(: Q1)[* da
0
and
1
(4.17) S5 = / |Gr(@)t(a; Q1) | da.

0
But it follows from Hua’s Lemma (see, for example, Vaughan [17], Lemma 2.5) that

1

/ t(a; Q1)|* do < Q77°,

0

whence by (4.16) one has
(4.18) Sy < (card Z3(N)) MRQ5™.
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Thus, collecting together (4.14), (4.15), (4.17) and (4.18), and recalling (4.2), we complete the
proof of the lemma. O

Our understanding of the behaviour of the exponential gurtw) is weak, since the latter
depends heavily on the s& (V). We therefore engineer a metamorphosis which facilitates our
subsequent analysis. To be precise at this stage we must be explicit regarding the polygomial
We write the latter in the shape

(4.19) o3(t) = A (at® +bt* + ct + d),

for suitable integers, b, c,d, A. Write alsoA = 12aA and B = 12ac — 4b?. Further, we define
the exponential sumg; (o) andG; (o) associated witlps by

(4.20) Fi(a)= > > > e(ah(y®+3a’h*m° + B))

M<m<MR h<H y<2AN

and

(4.21) Gila)= > > > elam™®(gs(z+hm?®) — ¢3(2))).

M<m<MR h<H z€Z3(N)

Finally, we define the mean value
1
(4.22) J= / |Fy ()G (Aa)t(Aa; Q12 da

LEMMA 4.2.-0One has

1

1/2
/’G1 (o Q1) ‘da<<j1/2 </|t(a;Q1)|6da> :

0
Proof. —By Schwarz’s inequality, one has

1

1/2
/’G1 t(a; Q1) ‘da<<71/2</|t(a;Q1)|6da> ;

0

where

(4.23) 7= / |G ()20 Q)] da.
0

Itis evident, therefore, that the lemma will follow from the bousid< 7 which we now prove.
Observe first that by (4.19) one has

m=3 (f3(z + hm3) — ¢3(2)) = ((3a(2z + hm?) + 2b)2 +3a?h*mS + (12ac — 4b2)).

12aA
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Then on considering the underlying diophantine equation, it follows from (4.23).has
bounded above by the number of integral solutions of the equation

ha

mi? (3 (2 + him?) — ¢3(z)) — 92X

(y2 + 3a%h3m§ + B) =ud —u3,

with
Ul,UQEA(QhR), M <mi,mes < MR, 2623(N),

1<h17h2<H7 1<y<2AN7

and satisfying the property thaRaA|ho(y? + 3a>h3m$ + B). On recalling definitions (4.1),
(4.20), (4.21), and considering the underlying diophantine equation, it therefore follows from
orthogonality that

1
< / Fi(~a)Gi(Aa)[t(Aa; Q1)[* da,
0
and the desired conclusion thd < 7 is immediate from (4.22). O

We estimate the mean valyg by using the Hardy-Littlewood method, but this will entail
some preparation. We define the major &t be the union of the intervals

PB(g,a) = {a €[0,1]: |ga —a| < NQl_?’}

with 0 < a < ¢ < N and(a,q) = 1. We then writep = [0, 1] \ 3 for the minor arcs. The analysis
of the minor arcs requires several auxiliary mean value estimates, which we presently discuss.

LEMMA 4.3.—-0One has

1
(4.24) / |F(a)da < N* ™" HMR
0
and
1
(4.25) / |G ()| da < N*HM Rcard Z3(N).
0

Proof. —On recalling (4.20) it follows from orthogonality that the mean value (4.24) is equal
to the number of integral solutions of the equation

(4.26) h (33 +3(ahym?3)? + B) = ha(y2 + 3(aham3)” + B),
with
(427) ]\/[<77’L17’r7’12<A7\41%7 lghl,hggH, lgyl,yQQZAN

Observe that given a fixed choicef, ho, m4 satisfying (4.27), one has
(ahgmg)2 > M°®>|B|,
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and thus the right hand side of (4.26) is a non-zero intéggrfollows that there are at most
O(N¥¢) possible choices fay,, b1, mq satisfying (4.26) and (4.27). Faér is a divisor ofl, and
an elementary estimate for the divisor function shows that there are atiidstsuch. Fix any
one such choice, and consider the equation

l
U2+3U2:h—1—B.

Familiar estimates for the number of representations of an integer by a binary quadratic form
(see, for example, Estermann [10]) show that the number of solutions of the latter equation in
andvis O((I/hy — B)®) if I/hy — B > 0, and zero otherwise. Our earlier assertion now follows.
Thus the number of solutions of (4.26) satisfying (4.27){sV!*< H M R). This completes the
proof of (4.24).

We treat the mean value (4.25) in a similar fashion. On recalling (4.21) and the argument of
the proof of Lemma 4.2, we find that the mean value (4.25) is bounded above by the number of
integral solutions of the equation

h1 ((3a(221 + hlm‘;’) + 2b)2 + 3(ah1m‘;’)2 + B)

(4.28) = ha((3a (222 + ham3) +2b)” + 3(aham3)” + B)
with
(429) M <mi,me< MR, 1<h1,h2<H, 21,22623(N).

Given a fixed choice ots, ho, mo satisfying (4.29), it again follows that the right hand side

of (4.28) is a non-zero integer. A comparison between Eqs. (4.26) and (4.28) reveals that one may
apply the argument of the preceding paragraph to show that there are ab(@65} possible
choices forzy, hy,m; satisfying (4.28) and (4.29). Thus the number of solutions of (4.28) and
(4.29)is

< N°*HM Rcard Z3(N).
The estimate (4.25) follows immediatelyc
One may provide an estimate for the sufa(«) mirroring bounds for analogous sums
provided by Vaughan [14], [15]. By Cauchy’s inequality, one has
(4.30) |1 ()* < D(a) E(a),

where
2

D(a) = Z Z e(ahy?)

h<H ' y<2AN
and
2
(4.31) E(a) = Z Z e(3a*ah®m®)
h<H'M<m<MR

LEMMA 4.4.—-One has

sup|D(a)| < N H.
acp
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Moreover, whem € Z, ¢ € N, (a,q) = 1 anda € B(q,a) C B, one has

D(a) < N**H(q + Q%|qa — a\)fl.
Proof. —The conclusions of the lemma are immediate consequences of the argument of the
proof of Lemma 3.1 of Vaughan [15].0

Rather than follow the trail laid down by Vaughan [15] in our analysi¢f) we instead
make use of mean value estimates which lead to sharper conclusions. In this context we define
the exponential sum

(4.32) B ()= > e(ah®(mf—m$)),

h<H M<ma<mi<MR

and note that by (4.31) one has
(4.33) E(a) < HMR+ |E*(3a*a)|.

LEMMA 4.5.—-Whenj =1 or 2, one has

1
(4.34) / |E*()|? da < PH? ~I(MR)
0

20+1_9o

Proof. —We imitate the well-known proof of Hua’s Lemma, noting that for any positive integer
[, as an easy exercise in estimates for the divisor function, one has that the number of integral
solutions of the equatiom$ — m$ =1 is O(l°).

Next, in view of (4.32), wherj = 1 we find by orthogonality that the integral on the left hand
side of (4.34) is equal to the numbArof integral solutions of the equation

(4.35) h(m§ —nf) = h3(m§ —nj),
with
(436) 1<h;<H, M<n,<m;<MR (i:1,2).

Given a fixed choice ofiy, ma,ny satisfying (4.36), writel = h3(m$ — nS). Then, for any
solution hy,my,n; of (4.35) counted byl;, one has that; andm$ — n¢ are each divisors
of the positive integef. On noting our opening discussion, elementary estimates for the divisor
function therefore show thdt{ < P°H (M R)?, which confirms (4.34) whepj= 1.

By Cauchy’s inequality, it follows from (4.32) that

/ |E*(a)[* da < (MR)? / E(a)|E* (o) da,
0 0

where
2

Z e(ah3 (m? — mg))

h<H

Bi)= Y

M<ma<mi<MR
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On isolating the diagonal contribution, it follows by considering the underlying diophantine
equations that

1 1
(4.37) /\E*(a)\4da < H(MR)4/|E*(a)|2da+(MR)2[2,
0 0

wherel; denotes the number of integral solutions of the equation
(4.38) B3 (m} —nf) — h3(m§ —nS) = (g7 — g3) (m§ — nj),
with g, h, m, n satisfying (4.36) and

1<g2<g1 < H, M <n3<mz< MR.
Given a fixed choice ok, ho, m1, mo, n1, ne satisfying (4.36), write

[=hi(m] = nf) = h3(m —n3).

Then, for any solutionyy, g2, m3, n3 of (4.38) counted by, one had # 0, and moreover the
integersg; — ga, g5 + g192 + g5 andm§ — n§ are each divisors df On recalling our opening
discussion again, therefore, we find that< P H?(M R)*. The estimate (4.34) whej= 2 is

therefore confirmed on recalling (4.37), together with the estimate (4.34) in the easeThis
completes the proof of the lemman

LEMMA 4.6.—One has
1
(4.39) / |Fi(a)?E" (3a%a) | da < P*H? (M R)™.
0

Proof. —Note first that by Cauchy'’s inequality, one has

Z e (ozhyz)

y<2AN

2
|Fi(a)? < HMR)* >
h<H

Thus, on considering the underlying diophantine equations, one has the upper bound

1
(4.40) / |Fi(e)’E* (3a2a)4| da < H(MR)?J,
0

whereJ denotes the number of integral solutions of the equation
(4.42) h(y% — y%) = 3a? (h‘;’ (m? — n?) + h3 (mg — ng) —h3 (mg — ng) —h3 (mg — ng)),

with

1<h<H, 1<h;<H, M<n<mi<MR (1<i<4),
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1<y <2AN, 1<y2 <2AN.
Let J1 be the number of solutions of (4.41) counted.byn which y; = y», and letJ, be the
corresponding number of solutions wigh # y-. Then
(4.42) J=J1+ Jo.

On considering the underlying diophantine equations, one has
1
J1 < HN/ ’E* (3a2a) ’4 do,
0

whence by making an obvious change of variable, it follows from Lemma 4.5 that
(4.43) Ji < N'"°H3(MR)® < PPH*(MR)®.

Consider next a solutioh, y, h, m, n of Eq. (4.41) counted by,. Since nowy; # y-, the integer

on the right hand side of (4.41) must be non-zero. Fix any one oOtt#é*(M R)®) possible
choices ofh, m,n with the latter property. Theh,y; — y» andy; + y2 are each divisors of

the fixed integer on the right hand side of (4.41), whence an elementary estimate for the divisor
function shows that

(4.44) Jo < N°H*(MR)®.
On combining (4.40) and (4.42)—(4.44), the conclusion (4.39) is immediate.

Before launching our first major offensive on the minor arcs, we record here the estimate

1

(4.45) / H0: Q1) da < QFF )

0

which follows from the proof of Theorem 1.2 of Wooley [22] with= 10~4.
LEMMA 4.7.— Suppose thal < § < . Then

[N

/|F1(a)é1 (Aa)t(Aa; Q1)?|da < N%+EMR2H%Q§—?‘§5(cardzg(N)) .
P

Proof. —Write
1
(4.46) T / P ()] 3]G (Aa)t(Aas Q)% da
0
and
1
(4.47) jg:/\Fl(a)|1/5|E* (3a20) [*°|Gh (Aa)t(Aa; Q1)?| da.

0
Then by (4.30) and Lemma 4.4, one has for eachp the estimate

|[Fi(a)] < N*(NH)'2|B(a)|'/?,
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whence by (4.33) one finds that farc p one has
Py ()5 < NS (NH)?/5 (HMR)?® + | E* (3a2a) [*/°).

Thus we obtain

(4.48) / |Fy(0)Cr (Aa)t(Ac; @1)2| da < N*(NH)2/5 (HMR)/5 7, + 73).
p

We first estimateg/,, noting that by Holder’s inequality together with a change of variable, one
has from (4.46) the bound

1 1/10 , 1 1/2 , 1
7 < ( / F1<a>|2da> ( / él<a>|2da> ( / t(a;czl)%a)
0 0 0

It therefore follows from Lemma 4.3 and (4.45) that

2/5

(4.49) Js < NS (NMHR)Y™ (MRH card Z5(N)) /> (QF ~°)*/".

Meanwhile, on applying Holder’s inequality to (4.47), we find that

1 1/10 , 1 1/2 , 1 2/5
T3 <K (/ |F1(a)E*(3a2a)z|2da> (/él(a)|2 da> </|t(a;Q1)5 da) .
0 0

0
By making use of Lemmata 4.3 and 4.6, therefore, we deduce from (4.45) that

44
=90

(4.50) Js < N (HY(MR)'™)'* (MRH card 25(N)) /> (QF ~°)*°.

On recalling (4.48), we conclude from (4.49) and (4.50) that

/ |F1(0)Gh (Aa)t(Aa; Q1)%|da < N3+ MRHT/SQF ™ (card 25 (N))/*(1 4 w),
p
where
w < (MR)*/SN—1/10,

Consequently our hypothesis thilag % ensures that < R*/°, and the conclusion of the lemma
follows immediately. O

A further mean value estimate is necessary before dispatching the contribution of the major
arcs.

LEMMA 4.8. - One has

/D(a)|t(Aa; Q1)|?da < N**T*HQ .
RY
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Proof. —It follows from Lemma 4.4 that

/D(a)|t(Aa;Q1)\2da<<N2+EH/D*(oz)\I/(oz) da,

where fora € (¢, a) C P one has

" _ -1
D*(a)=q "1+ Qf|a—a/ql) ",
and where we define

U(a)=[t(A; Q)P = D ¢ne(ah).

|h|<2A4Q3

Here ¢, denotes the number of solutions of the equatior A(z$ — z3) with z1,22 €

A(Q1, R). As an immediate consequence of Lemma 2 of Briidern [1], we have

/D )t(Ac; Q1))? da < N°Q7 <Pwo+Z|wh> <K N°Qy (PQ1+Q1)
h#0
and the conclusion of the lemma follows immediatelys

LEMMA 4.9.— Suppose thal < § < ;. Then

1

/|F1 Gl(AOt) (AOé Ql |d0é
0

< N H2M2R2Q2 + N3+ MR2HFQF *° (card 25(N)) /.

Proof. —Note that[0, 1] is the disjoint union of andp. Therefore, if one has

/|F1(a)él(Aa)t(Aa;Q1)2|da2/|F1(a)él(Aa)t(Aa;Q1)2|da
B

then
1

/’Fl Gl(AOé) (Aa Ql ’dOé /’Fl Gl(AOé) (Aa Ql ’dOé
0 p

and the conclusion of the lemma is immediate from Lemma 4.7. In the contrary case, the same
argument, followed by an application of Schwarz’s inequality, yields

/ |y (0)G1 (Aa)t(Aa; Q)2| da

(4.51) <2/yFl(a)él(Aa)t(Aa;Q1)2yda<2(K1K2)1/2,
B
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where

(4.52) K1=/\F1(a)t(AOé;Q1)|2da
B

and
1

(4.53) Ky = / |G1 (Aa)t(Aa, Qy))? da.
0

Observe first that on considering the underlying diophantine equations, one may apply the
argument leading from (4.23) to the conclusion of Lemma 4.2 in order to establish that

1
Kgg/’Fl(a)él(Aa)t(Aa;Q1)2’da.
0

Thus it follows from (4.51)—(4.53) that

1
(4.54) /’F1(a)él(Aa)t(Aa;Q1)2’da <</\F1(a)t(Aa;Q1)\2da.
0 RY

Next, on making use of (4.30) together with a trivial estimateA¢s), we obtain

/|F1(0z)t(Aoz;Q1)\2da<H(MR)2/D(a)\t(Aa;Ql)PdOz,
B B

whence by Lemma 4.8 we may conclude that

(4.55) / |F1(a)t(Aa; Q1))? da < N*TeH*(MR)?*Q; 2.
B

The proof of the lemma is completed by substituting (4.55) into (4.54).

Having now vanquished the difficult aspects of estimating the central auxiliary mean value,
we set up camp by collecting together our conclusions in the form of the following lemma.

LEMMA 4.10. - Suppose thatard Z3(N) > N78/8_ Then, withr = 106, one has

o
©

)

73

1
/ | K3 ()2t (a; P)Y| da < N T8 ~7 (card Z3(N))
0

Proof. ~We choosé by takingM = P? and solving the equation

_ 102
373

M = P56 =27 (card Z3(N))
On making use of our hypothesis thatrd Z5(N) > N78/8% we find thatP'/? < M < P'/6,
and hence that the estimate of Lemma 4.9 holds. Moreover, our hypothesis on the cardinality of
Z3(N) also ensures that the estimate of Lemma 4.9 may be simplified to
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1
/‘F1(a)él(Aa)t(Aa;Q1)2‘ dov
0

(4.56) < N3+ MR2HEQF 5 (card 25(N)) .

On recalling the estimate

1

/|t<a;c21>\6da<<cz?*

0

46

from Theorem 1.2 of Wooley [22], we deduce from Lemma 4.2 and (4.56) that

1
/ |G1()t(e; Q1) |da < Ni+EM1/2RH7/1OQF%72§ (card Z3(N))
0

1/4

On inserting the latter estimate into Lemma 4.1, and taking account of our choité, af
modicum of computation will yield the conclusion of the lemma wheneyés sufficiently
small. O

Having achieved the modest victory recorded above, we manoeuvre our forces to outflank the
obstacles on the major arcs by means of a pruning argument. Given the work of the previous
section, this turns out to be routine. We start once again with the lower bound (2.28), and
investigate the contribution to the left hand side of (2.28) arising from the @ebt. Recalling
the notation of 83, we apply Lemmata 7.2 and 8.5 of Vaughan and Wooley [18] to conclude that
for X < P3/4 one has

sup [t(a)] < PX /8,
a€R(X)

Then it follows from Lemma 3.3 that fak' < P3/4 one has
| F1(e)t()* Ks(a) | dex
K(X)

«PXVE(0) [ IFi@)lda
M(2X)

< QY X Y3(logY) !card Z3(N).

On summing over the contributions of the s&t&' L) with [ > 0 and2'L < P3/4, we obtain the
upper bound

/ | Fi(a)t(@)? K3(a)| da < Q*Y L™ /?(logY) ! card Z5(N).
nNIM

On recalling (2.28), we may conclude thus far that
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/|f(a)t(a)2K3(a)| da + / [(F(a) = Fi(a)) (@)’ Ks(a)| da
m m

(4.57) > Q%Y (logY) ! card Z3(N).

On applying Schwarz’s inequality next to (4.57), and making use of Lemmata 3.2 and 4.10, we
find that whenevetard Z3(N) > N78/85 one has the estimate

1/2
Q%Y (logY) ™! card Z3(N) < (/f \Qda—k/\f 1(04)|2da>

</|K3 t(o; P)* da) -

<<(y2Q6P—19/14)1/2( 2a5e )1/ (card Z3(N)) "

o
©

N
ol

It follows that
card Z3(N) < N1~ 050,

and the conclusion of Theorem 1.2 follows from a trivial computation.
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