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ADDITIVE REPRESENTATION IN THIN SEQUENCES, I:
WARING’S PROBLEM FOR CUBES✩

BY JÖRG BRÜDERN, KOICHI KAWADA AND TREVOR D. WOOLEY

ABSTRACT. – In this paper we investigate representation of numbers from certain thin sequences like
the squares or cubes by sums of cubes. It is shown, in particular, that almost all values of an integral cubic
polynomial are sums of six cubes. The methods are very flexible and may be applied to many related
problems.

 2001 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Dans cet article nous étudions la représentation des nombres de certaines suites rares comme
celles des carrés ou des cubes. Il est démontré notamment que presque toutes les valeurs d’un polynôme
de degré trois sont des sommes de six cubes. Ces méthodes, très flexibles, sont applicables à beaucoup de
problèmes analogues.

 2001 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Throughout the history of the additive theory of numbers, the classical version of Waring’s
problem, and most notably problems involving sums of cubes, have provided the examples of
prime importance for assessing the strength of novel methods. We will follow this tradition in the
present communication. While our main objective is to present a widely applicable technique, we
illustrate the latter solely in the context of sums of cubes, deferring to future memoirs discussion
of the cornucopia of applications stemming from the underlying ideas. In advance of a detailed
description of these ideas, it is appropriate first to review the state of the art in the class of
examples we have in mind.

LetRs(n) denote the number of representations ofn as the sum ofs cubes of positive integers.
It is widely believed that all large integers are represented as the sum of four cubes of positive
integers, and indeed a heuristic application of the circle method motivates the conjecture that for
s� 4, one has the asymptotic formula

Rs(n) =
Γ(43 )

s

Γ( s3 )
Ss(n)n

s
3−1 + o

(
n

s
3−1
)
,(1.1)
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where

Ss(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

(
1
q

q∑
r=1

e
(
ar3/q

))s
e(−an/q),

ande(z) = exp(2πiz). It is known that thesingular seriesSs(n) satisfiesSs(n)� 1 for s� 4
(see Theorem 4.5 of Vaughan [17]). Consequently, the validity of formula (1.1) would imply that
all large natural numbers are indeed the sum of four positive integral cubes.

The formula (1.1) has been established fors � 9 by Hardy and Littlewood [11], and by
Vaughan [14] in the additional cases = 8. Although no such asymptotic formula is known
for s � 7, it does at least follow from work of Vaughan [16] thatR7(n) � n4/3, which
is the order of magnitude predicted by (1.1) (this conclusion improves on earlier work of
Linnik [13], Watson [19], and Vaughan [14]). In situations where fewer cubes are employed
in the representation, one must be content with rather weaker results. Whens is a natural
number, denote byEs(N) the number of natural numbers not exceedingN which are not the
sum of s cubes of positive integers. Then Davenport [8], in the first noteworthy contribution
concerning sums of four cubes, established thatE4(N)�N29/30+ε, showing in particular that
almost all natural numbers are the sum of four positive integral cubes. The exponent29/30 has
subsequently been reduced, and it is now known that whenε is a sufficiently small positive
number, then one has

E4(N)�N37/42−ε(1.2)

(this is a consequence of work of Brüdern [2] and Wooley [22]). The work of Vaughan [14]
alluded to above, moreover, shows that formula (1.1) holds whens = 4, for almost alln. The
potential for more refined results along the lines of Davenport’s theorem has recently received
further attention, with work of Brüdern and Watt [7] and Kawada [12] concerning sums of four
cubes in short intervals.

Although for sums of five or six cubes of non-negative integers results analogous to
Davenport’s theorem may be established through similar methods, one would anticipate that
still stronger conclusions should be accessible given the additional variables available. This area
remains, however, undeservedly neglected in the literature. In this context we remark that by
combining use of Weyl’s inequality for the additional cubic exponential sums with the classical
approach leading to the estimate (1.2), one routinely obtains bounds very slightly sharper than

E5(N)�N5/7, E6(N)�N23/42.(1.3)

As is evident from (1.3), these classical estimates fail to show even that the majority of integer
squares are represented as the sum of six positive cubes. Nevertheless, as a consequence of the
methods developed within this paper, it is possible to show that almost all values of a quadratic
polynomial are the sum of six cubes, with an explicit estimate for the size of the exceptional set.
In order to state our result in a precise form, it is convenient henceforth to describe a polynomial
φ∈ Q[t] as being anintegral polynomialif, whenever the parametert is an integer, then the value
φ(t) is also an integer. Whenφ(t) is such a polynomial, denote byEφ(N) the number of integers
n with 1� n�N for whichφ(n) is not the sum of six cubes of positive integers.

THEOREM 1.1. – Letφ be an integral quadratic polynomial with positive leading coefficient.
Then one hasEφ(N)�φ N

19/28.

When the quadratic polynomial is replaced by a cubic polynomial, it is still possible to obtain
a similar conclusion, but with a weaker estimate for the number of exceptions.
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THEOREM 1.2. – Let Φ be an integral cubic polynomial with positive leading coefficient.
Then one hasEΦ(N)�Φ N

255/274.

A trivial variant of the arguments used to establish Theorem 1.2 shows that whenN is a
positive integer, then for almost all integerst with 1� t�N1/3, one has thatN − t3 is the sum
of six positive integral cubes. Thus we have the curious conclusion that not only does one have
thatR7(N)> 0 for all large integersN , but also that one can almost prescribe the value of one
of the seven cubes used to representN .

Our methods offer great flexibility in their application to the study of exceptional sets in
additive number theory. In principle, the proofs of the two theorems above might be regarded
as providing a model for most applications of our method. It therefore seems appropriate to
indulge in some rather abstract discussion concerning our methods, and in particular to describe
their merits relative to classical approaches involving Bessel’s inequality.

We are interested in additive representations of integers. Thus, given a positive integern and
setsA1, . . . ,As of positive integers, we investigate the numberr(n) of representations ofn in
the shape

n= a1 + a2 + · · ·+ as(1.4)

with ai ∈ Ai (1 � i � s). When B ⊆ N we defineEB(X) to be the number of integers
n ∈ [1,X ] ∩ B having no representation in the shape (1.4). There are many circumstances in
which for some fixeds, and an interesting choice ofA1, . . . ,As, one is able to show that almost
all positive integersn possess a representation in the form (1.4), whence

EN(X) = o(X).(1.5)

If, on the other hand, one is able to show that for some thin setB, such as the sequence of squares,
one has

EB(X) = o
(
card(B ∩ [1,X ])

)
,

then one can reasonably assert that more refined information is being provided concerning the
distribution of integers represented in the form (1.4). Such problems form the backbone of this
series of papers.

It is informative to describe the classical approach to estimatingEN(X) in order that its
limitations be evident. Define the generating functions

fi(α) =
∑

x∈Ai∩[1,X]

e(αx) (1� i� s).

Also, define the mean valuerC(n) relative to a measurable setC⊆ [0,1] by

rC(n) =
∫
C

f1(α) · · ·fs(α)e(−αn)dα.(1.6)

Then by orthogonality one hasr(n) = r[0,1](n). The first idea in the classical approach is to
use the Hardy–Littlewood method to estimater(n). Thus one divides the unit interval into
complementary setsM andm, on the first of which one hopes to provide asymptotic formulae
for the fi(α), and on the second we aim to show that the generating functions are on average
suitably small. Under favourable conditions one is able to show that for1

2X < n �X one has
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rM(n)
Υ(X), where

Υ(X) =X−1
s∏
i=1

card(Ai ∩ [1,X ]).(1.7)

Meanwhile, an application of Bessel’s inequality reveals that

∑
n∈Z

|rm(n)|2 �
∫
m

∣∣f1(α) · · ·fs(α)∣∣2 dα.
Once again under suitable conditions, one is able to show that the latter expression is of order
strictly smaller thanXΥ(X)2. On recalling (1.6) and (1.7), therefore, we find that

∑
1
2X<n�X

∣∣∣∣r(n)− rM(n)
rM(n)

∣∣∣∣
2

�Υ(X)−2
∑
n

|rm(n)|2 = o(X).(1.8)

On noting that the summands on the left hand side of (1.8) are equal to 1 wheneverr(n) = 0,
and otherwise are non-negative, we conclude that the right hand side of (1.8) provides an upper
bound forEN(X)−EN(12X). By summing over dyadic intervals, it is therefore evident how, in
principle, one may establish a result of the type (1.5).

Although successful in investigations concerning exceptional sets of the typeEN(X), the
above method fails to provide strong conclusions for exceptional setsEB(X) whenB is a thin
sequence. The difficulty is that Bessel’s inequality fails to exploit the size of the setB, or indeed
its arithmetic properties, and thus the “trivial” estimate arising from the above method may be
far larger than the obvious upper boundcard(B ∩ [1,X ]) for EB(X).

In this paper we investigate the “sequence of exceptions” directly. DefineE to be the set of
integersn ∈ B having no representation in the shape (1.4). Then by orthogonality it follows
from (1.4) that

∑
n∈E

1
2X<n�X

1∫
0

f1(α) · · ·fs(α)e(−αn)dα= 0.(1.9)

Write

K(α) =
∑
n∈E

1
2X<n�X

e(αn),(1.10)

and note that under the conditions implicit in the classical argument above, one has

∑
n∈E

1
2X<n�X

∫
M

f1(α) · · ·fs(α)e(−αn)dα�Υ(X) card
(
E ∩

(
1
2X,X

])
.(1.11)

But from (1.9) and (1.10) it follows that

∑
n∈E

1
2X<n�X

∫
M

f1(α) · · ·fs(α)e(−αn)dα=−
∫
m

f1(α) · · ·fs(α)K(−α)dα,
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whence by (1.11),

EB(X)−EB
(

1
2X
)
�Υ(X)−1

∫
m

∣∣f1(α) · · ·fs(α)K(α)∣∣dα.(1.12)

In this way, the conclusion of the classical treatment may be recovered by applying Schwarz’s
inequality to the integral on the right hand side of (1.12), since by orthogonality,∫

m

∣∣f1(α) · · ·fs(α)K(α)∣∣dα

�
( 1∫

0

|K(α)|2 dα
)1/2(∫

m

∣∣f1(α) · · ·fs(α)∣∣2 dα
)1/2

�
(
EB(X)−EB

(
1
2X
))1/2(∫

m

∣∣f1(α) · · ·fs(α)∣∣2 dα
)1/2

.

However, the formulation (1.12) offers additional flexibility over the classical treatment
whenever the setB possesses useful arithmetic properties. For example, ifB is the set of integral
squares, then the fourth moment ofK(α) may be estimated non-trivially, and then the upper
bound (1.12) may become effective via an application of Hölder’s inequality. This is essentially
the strategy adopted in the proof of Theorem 1.1. To be specific in the case of squares under
consideration, a straightforward counting argument shows that

1∫
0

|K(α)|4 dα�Xε
(
EB(X)−EB

(
1
2X
))2

,

and (1.12) then yields, via Hölder’s inequality,

EB(X)−EB
(

1
2X
)
�XεΥ(X)−2

(∫
m

|f1(α) · · ·fs(α)|4/3 dα
)3/2

.

There are numerous alternatives to the latter approach which vary in utility according to the
mean value estimates available. It may be useful to consider mixed mean values of the shape

1∫
0

∣∣K(α)fi1(α) · · ·fit(α)∣∣2 dα,
wherein the exponential sumK(α) may, if desired, be replaced by the complete sum

∑
n�X
n∈B

e(αn),

by considering the underlying diophantine equation. A very successful application of this mixed
mean value idea is to problems involving mixed powers, as will be demonstrated in a sequel to
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this paper [6]. Moreover, it is possible to incorporate efficient differencing into this approach, as
will be evident from our proof of Theorem 1.2.

There is an alternative, more classical approach to these problems which we mention before
moving on, and this approach is the one exploited by earlier writers. One can make use of relation
(1.8), but now expanding the central expression in (1.8) to obtain for a general sequenceB in
place ofN,

∑
n∈B

1
2X<n�X

∣∣∣∣r(n)− rM(n)
rM(n)

∣∣∣∣
2

�Υ(X)−2I(X),

where

I(X) =
∫
m

∫
m

f1(α)f1(−β) · · ·fs(α)fs(−β)
∑
n∈B

1
2X<n�X

e
(
(β − α)n

)
dαdβ.(1.13)

As an advantage over our approach sketched above, an exponential sum over all elements ofB in
an interval occurs (a classical Weyl sum), but the disadvantages seem almost always to outweigh
this meagre bonus. As exhibited in (1.12), our approach essentially yields a full exponential sum
corresponding to the exceptional set in each mean value, whereas in (1.13) this exponential sum
arises only once between two mean values, and hence has only half the impact on the ensuing
analysis. This makes our results much harder to obtain, if not inaccessible, by the classical
approach.

The flexibility and scope of the main method having been stressed in the preceding paragraphs,
we end these introductory comments with the remark that further twists and turns may be
introduced into the central technique. Such variants we intend to explore in forthcoming articles
in this series. For example, one may investigate evenkth powers representable by sums of two
primes, and establish an unconditional estimate for the corresponding exceptional set which
is comparable to what was known hitherto under the assumption of the extended Riemann
hypothesis for DirichletL-functions (see [3]). One can also modify the meaning of “exception”.
The general discussion above remains valid if the counting performed byEB(N) refers to
properties other than that the integern is not representable in the shape (1.4). To be more
specific in the framework of Waring’s problem for cubes, one may ask whether the asymptotic
formula (1.1) holds for almost alln whenn varies over the values of a quadratic polynomial.
This is indeed the case whens= 6.

THEOREM 1.3. – Letφ denote an integral quadratic polynomial, and letDφ(N) denote the
number of integersn with 1� n�N for which the asymptotic formula(1.1)fails forR6(φ(n)).
ThenDφ(N)�N/ logN .

We shall not prove this here but refer to another forthcoming article in this series [4] where
amongst other things a stronger version of Theorem 1.3 will be presented. Finally, let it suffice to
mention that there is also a variant of our methods which allows one to conclude, sometimes, that
many (but not necessarily almost all) values of a thin sequence have a representation in a certain
form. Limitations of space do not permit a more precise description of this and other variants,
and we refer the interested reader to other articles in this series [5,6].

Notation. Throughout, the lettersε andη will denote sufficiently small positive numbers.
We takeP to be the basic parameter, a large real number depending at most onε, η, and any
coefficients of implicit polynomials if necessary. We use� and� to denote Vinogradov’s
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well-known notation, implicit constants depending at most onε, η and implicit polynomials.
Sometimes we make use of vector notation. For example, the expression(c1, . . . , ct) is
abbreviated toc. Summations start at 1 unless indicated otherwise. In an effort to simplify our
analysis, we adopt the following convention concerning the parameterε. Wheneverε appears
in a statement, we assert that for eachε > 0 the statement holds for sufficiently large values
of the main parameter. Note that the “value” ofε may consequently change from statement to
statement, and hence also the dependence of implicit constants onε.

2. Exceptional sets for six cubes: the major arcs

Our treatments of the exceptional sets arising from the representation of quadratic and cubic
polynomials as sums of six cubes depend for their success on minor arc estimates of Brüdern [2].
Although the generating function corresponding to the six underlying cubes differs between the
quadratic and cubic cases, there are sufficiently many common features that, at least so far as the
major arcs are concerned, an essentially unified treatment is possible. The latter is the object of
the present section.

Motivated by the notational conventions of Brüdern [2], we make the following definitions.
We takeP to be a large real number, writeη for a sufficiently small positive number depending
at most onε, and consider a real numberR with P η/2 <R� P η. We write

Q= P 6/7, Y = P 1/7,

and define the generating functions

fp(α) =
∑

P<x�2P
p�x

e
(
αx3

)
, g(α) =

∑
Q<y�2Q

e
(
αy3

)
, h(α) =

∑
z∈A(Q,R)

e
(
αz3

)
,(2.1)

whereA(Q,R) = {1 � z � Q: p|z ⇒ p � R}. As a convenient substitute for the generating
function central to the treatment of Brüdern [2], we define also

F(α) =
∑

Y <p�2Y
p≡2 (mod 3)

fp(α)g
(
αp3

)
h
(
αp3

)2
,(2.2)

where the summation is over prime numbers. Finally, we define

f(α) =
∑

P<x�2P

e
(
αx3

)
, t(α) =

∑
x∈A(P,R)

e
(
αx3

)
,(2.3)

and write

S2(α) =F(α)f(α)t(α), S3(α) =F(α)t(α)2.(2.4)

We remark that our proofs of Theorems 1.1 and 1.2 depend, respectively, on the use of the
generating functionsS2(α) andS3(α).

Next we define the major arcs central to the discussion of the present section. We write
L= (logP )1/100, and defineN to be the union of the intervals

N(q, a) =
{
α ∈ [0,1]: |qα− a|� LP−3

}
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with 0 � a� q � L and(a, q) = 1. It is convenient at this stage to discuss the approximants to
various generating functions onN. We define

S(q, a) =
q∑
r=1

e
(
ar3/q

)
, S(q, a, p) = S(q, a)− p−1S

(
q, ap3

)
.(2.5)

Notice that for1� q � L andp > Y one hasp � q, and hence by a change of variables one obtains

S
(
q, ap3

)
= S(q, a).(2.6)

If we now define the multiplicative functionκ(q) on prime powersπl (l ∈ N) by means of the
equations

κ
(
π3l
)
= π−l, κ

(
π3l+1

)
= 2π−l− 1

2 , κ
(
π3l+2

)
= π−l−1,(2.7)

then it follows from Lemmata 4.3–4.5 of Vaughan [17] that wheneverp≡ 2 (mod 3) is a prime,
andq ∈ N anda ∈ Z satisfy(q, a) = 1, one has

q−1|S(q, a)| � κ(q), q−1|S(q, a, p)| � κ(q).(2.8)

We note that the implicit constants in (2.8) are bounded above by2 whenever9 � q. We also
define

v(β) =

2P∫
P

e
(
βγ3

)
dγ, v1(β) =

P∫
0

e
(
βγ3

)
dγ,

w(β) =

2Q∫
Q

e
(
βγ3

)
dγ, w1(β) =

Q∫
0

e
(
βγ3

)
dγ.

Next we define the functionsf∗
p , g

∗
p, t

∗, f∗ andh∗p for α ∈ [0,1] by taking

f∗
p (α) = q

−1S(q, a, p)v(α− a/q), g∗p(α) = q
−1S

(
q, ap3

)
w
(
p3(α− a/q)

)
,(2.9)

t∗(α) = cηq−1S(q, a)v1(α− a/q), h∗p(α) = cηq
−1S

(
q, ap3

)
w1

(
p3(α− a/q)

)
,(2.10)

f∗(α) = q−1S(q, a)v(α− a/q),(2.11)

whenα ∈ N(q, a) ⊂ N, and by taking each of these functions to be zero otherwise. Here we
have writtencη for ρ(η−1), whereρ(t) is the Dickman function (see, for example, §12.1 of
Vaughan [17]). It suffices for our purposes to note that whenη > 0 one hascη > 0. It follows
from Theorem 4.1 of Vaughan [17] that for anyα ∈ R, a ∈ Z, andq ∈ N, and for any prime
p� 2Y , one has

fp(α)− q−1S(q, a, p)v(α− a/q)� q
1
2+ε
(
1+ P 3|α− a/q|

)1/2
,

g
(
αp3

)
− q−1S

(
q, ap3

)
w
(
p3(α− a/q)

)
� q

1
2+ε
(
1+ P 3|α− a/q|

)1/2
,
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and

f(α)− q−1S(q, a)v(α− a/q)� q
1
2+ε
(
1 +P 3|α− a/q|

)1/2
,

whence forα ∈ N one has

fp(α)− f∗
p (α)� L

1
2+ε, g

(
αp3

)
− g∗p(α)� L

1
2+ε, f(α)− f∗(α)� L

1
2 +ε.(2.12)

Further, one may deduce from Lemma 8.5 of Wooley [20] (see also Lemma 5.4 of Vaughan [15]
for a related conclusion) that forα ∈ N one has

t(α)− t∗(α)� P (logP )−1/4, h
(
αp3

)
− h∗p(α)�Q(logP )−1/4.(2.13)

Finally, by partial integration one readily confirms that the bounds

v(β)� P
(
1+ P 3|β|

)−1
, w(β)�Q

(
1 +Q3|β|

)−1
,(2.14)

v1(β)� P
(
1 + P 3|β|

)−1/3
, w1(β)�Q

(
1 +Q3|β|

)−1/3
,(2.15)

hold uniformly forβ ∈ R.

LEMMA 2.1. – Whenj = 2 or 3, one has uniformly for4P 3 �m� 64P 3 the estimate

∫
N

Sj(α)e(−αm)dα�η Y Q
3(logP )−1.

Proof. –The lower bound recorded in the lemma is a simple consequence of standard endgame
technique in the circle method. We will be economical in our presentation of details, though with
later applications in mind we work harder than is necessary for our immediate needs. We begin
by writing

S∗
j (α) =

∑
Y <p�2Y

p≡2 (mod 3)

f∗
p (α)g

∗
p(α)h

∗
p(α)

2t∗(α)j−1f∗(α)3−j (j = 2,3).(2.16)

Then it follows from (2.12) and (2.13) that forα ∈ N one has

Sj(α)−S∗
j (α)� Y P 3Q3(logP )−5/4.

On recalling that the measure ofN isO(L2P−3), we deduce that

∫
N

Sj(α)e(−αm)dα−
∫
N

S∗
j (α)e(−αm)dα� Y Q3(logP )−6/5.(2.17)

Next, on combining (2.16), (2.9)–(2.11), (2.5) and (2.6), we obtain

∫
N

S∗
j (α)e(−αm)dα=

∑
q�L

A(q,m)I∗j
(
m;L/

(
qP 3

))
,(2.18)
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where

A(q,m) =
q∑
a=1

(a,q)=1

q−6S(q, a)6e(−am/q)(2.19)

and, for each positive numberZ ,

I∗j (m;Z) = c
j+1
η

∑
Y <p�2Y

p≡2 (mod 3)

(
1− 1

p

) Z∫
−Z

Vp(β)e(−βm)dβ,(2.20)

where

Vp(β) = v(β)4−jv1(β)j−1w
(
p3β
)
w1

(
p3β
)2
.

On writing

Ij(m) = lim
Z→∞

I∗j (m;Z)

we find from (2.14), (2.15) and (2.20) that for0< ν < 1
2 one has

Ij(m)− I∗j
(
m;L/

(
qP 3

))
� (q/L)νQ3Y (logP )−1.

Then by (2.7), (2.8) and (2.19), we deduce that∑
q�L

∣∣A(q,m)(Ij(m)− I∗j
(
m;L/

(
qP 3

)))∣∣�Q3Y L−ν(logP )−1
∏
p

(
1 + 64pν−2

)
�Q3Y (logP )−1−ν/100.(2.21)

Moreover, also by (2.7), (2.8) and (2.19), we have

∑
q>L

|A(q,m)| �
∞∑
q=1

(q/L)ν |A(q,m)| �L−ν .(2.22)

Finally, by (2.14), (2.15) and (2.20) one finds that

Ij(m)�Q3Y (logP )−1.(2.23)

On combining (2.17), (2.18) and (2.21)–(2.23), we therefore conclude that∫
N

Sj(α)e(−αm)dα=S6(m)Ij(m) +O
(
Q3Y (logP )−1−ν/100),(2.24)

whereS6(m) is the singular series defined in connection with (1.1).
In order to complete the proof of the lemma we have only to note that a standard application

of Fourier’s integral formula (see, for example, Davenport [9]) shows that

Ij(m)�Q3Y (logP )−1

for 4P 3 � m � 64P 3, and that Theorem 4.5 of Vaughan [17] demonstrates thatS6(m)� 1
uniformly inm. Consequently, the desired conclusion follows from (2.24).✷
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Equipped with Lemma 2.1, it is now a simple matter to describe our plan of attack on the
theorems. Letφj ∈ Q[t] be an integral polynomial with positive leading coefficient of degreej,
wherej = 2 or 3. We take

6P 3 = φj(N)(2.25)

and denote byZj(N) the set of integersn with N < n� 2N for which the diophantine equation

φj(n) = x3
1 + x

3
2 + · · ·+ x3

6

has no solution in positive integersxi (1� i� 6). Write

Kj(α) =
∑

n∈Zj(N)

e
(
−αφj(n)

)
.(2.26)

Then it follows from the definition ofZj(N) that

1∫
0

Sj(α)Kj(α)dα= 0.(2.27)

Next writen= [0,1] \N. Then, on noting (2.25), it follows from Lemma 2.1 and (2.26) that∫
N

Sj(α)Kj(α)dα� card
(
Zj(N)

)
Y Q3(logP )−1,

whence by (2.27) we necessarily have∣∣∣∣
∫
n

Sj(α)Kj(α)dα
∣∣∣∣� card

(
Zj(N)

)
Y Q3(logP )−1.(2.28)

Our plan, which we execute in the next two sections, is to provide an upper bound for the integral
on the left hand side of (2.28). As is apparent, an upper bound forcard(Zj(N)) will follow
immediately, and this will lead to the conclusions of Theorems 1.1 and 1.2.

3. Values of quadratic polynomials which are not sums of six cubes

In this section we complete the proof of Theorem 1.1. Large parts of the analysis of this section
will be employed also in the next section wherein Theorem 1.2 will be established. We begin with
a preparatory investigation of the block of four cubes lurking within the functionF(α). As might
be expected, our minor arc treatment rests on a good estimate for the sixth moment of suitable
cubic exponential sums.

LEMMA 3.1. – LetU(X) denote the number of solutions of the diophantine equation

x3
1 − x3

2 = y
3
1 + y

3
2 − y3

3 − y3
4 ,

with 1� xi � 2X (i= 1,2) andyj ∈A(X,Xη) (1� j � 4). Then provided thatη is sufficiently
small, one has

U(X)�X
13
4 −2η.
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Proof. –The conclusion of the lemma follows from Theorem 1.2 of Wooley [22].✷
Henceforth we takeη to be a fixed positive number sufficiently small in the context of

Lemma 3.1 and our ensuing argument. As an immediate application of Lemma 3.1, we note
that by considering the underlying diophantine equations, it follows from (2.1) and (2.3) that

1∫
0

∣∣f(α)2t(α)4∣∣dα� P
13
4 −2η,

1∫
0

∣∣g(α)2h(α)4∣∣dα�Q
13
4 −2η.(3.1)

The first of two lemmata concerning the block of exponential sumsF(α) is a simple
modification of a conclusion contained in Brüdern [2], whereas the second is genuinely new.
In order to describe these results we must first set up a Hardy–Littlewood dissection. WhenX
is a real number with1�X � P , we define the set of major arcsM(X) to be the union of the
intervals

M(q, a) =
{
α ∈ [0,1]: |qα− a|�XP−3

}
with 0� a� q �X and(a, q) = 1. We definem(X) = [0,1] \M(X) and for brevity write also

M=M
(
P 3/4

)
, m=m

(
P 3/4

)
.

We first explain how the work of Brüdern [2] leads to the estimate

∫
m(P )

|F(α)|2 dα� Y 2Q6P−19/14,(3.2)

whereF(α) is defined as in (2.2). Estimate (3.2) is essentially contained in the proof of
Proposition 1 of Brüdern [2], but some comments are required in order that the reader is able
easily to follow the necessary route. The mean value on the left hand side of (3.2) occurs
explicitly in Eq. (3.2) of Brüdern [2], and is subsequently estimated therein to the precision
claimed in (3.2), save for an extraneous factor ofP ε. We note that the sequenceA used to
define the exponential sumh(α) in Brüdern [2] differs from our setA(Q,R). However, the
argument of Brüdern [2] does not depend on the specific shape ofA, and indeed it is only the
mean value estimate (3.4) of Brüdern [2] which is vital, and such is available to us in the present
context from (3.1). Moreover, the latter estimate is even a little stronger than the corresponding
estimate (3.4) of Brüdern [2], and this additional strength may be carried through the argument
to remove the offensive factorP ε implicit in Brüdern [2], Eq. (3.2), to which we alluded earlier.

Now define the functionsf∗
p (α) andg∗p(α) via (2.9) forα ∈ M(q, a) ⊂ M(P ), and define

these functions to be zero otherwise. Also write

F1(α) =
∑

Y <p�2Y
p≡2 (mod 3)

f∗
p (α)g

∗
p(α)h

(
αp3

)2
.(3.3)

Then an inspection of the proofs of inequalities (4.6) and (4.7) of Brüdern [2] reveals that

∫
M(P )

∣∣F(α)−F1(α)
∣∣2 dα� Y 2Q6P−19/14.(3.4)
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Here again it is necessary to observe that the arguments of Brüdern [2] make use of the cubes
underlying the exponential sumh(αp3) only through upper bounds on the number of solutions
of auxiliary diophantine equations, and consequently our alternative choice forA does not affect
the argument.

Finally, we inspect the proof of Eq. (4.10) of Brüdern [2], but replace the choiceX = P
4
7−η

therein with the new choiceX = P 3/4. The work of §6 of Brüdern [2] then shows that
inequality (4.10) of Brüdern [2] holds withη = 0, whence we have∫

M(P )\M

|F1(α)|2 dα� Y 2Q6P−19/14.

When combined with (3.2) and (3.4), we may summarise our deliberations thus far in a
convenient form as follows.

LEMMA 3.2. – One has ∫
m

|F(α)|2 dα� Y 2Q6P−19/14

and ∫
M

∣∣F(α)−F1(α)
∣∣2 dα� Y 2Q6P−19/14.

Proof. –The first estimate follows in the manner indicated above, and the second is a trivial
consequence of (3.4).✷

Our next lemma provides an upper bound for the contribution ofF1(α) arising from the major
arcs which is essentially best possible, and this estimate greatly facilitates our subsequent pruning
procedures.

LEMMA 3.3. – Suppose thatX is a real number with1�X �Q. Then∫
M(X)

|F1(α)|dα�XεY Q3P−2(logY )−1.

Proof. –Defineκ(q) via (2.7). Then, for each primep ∈ [Y,2Y ] with p≡ 2 (mod 3), and for
eachα ∈ M(q, a)⊂ M(X), it follows from Eq. (6.5) of Brüdern [2] that

f∗
p (α)g

∗
p(α)� κ(q)2PQ

(
1+ P 3|α− a/q|

)−2
,

and moreover that whenp2|q, one has

f∗
p (α)g

∗
p(α) = 0.

On recalling (3.3), we therefore deduce that

∫
M(X)

|F1(α)|dα� PQ
∑
q�X

κ(q)2
∑

Y <p�2Y

p2�q

∞∫
−∞

q∑
a=1

(a,q)=1

|h(p3(a/q+ β))|2
(1 +P 3|β|)2 dβ.(3.5)
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Let cq(h) be Ramanujan’s sum, which we define by

cq(h) =
q∑
a=1

(a,q)=1

e(ah/q).

Then it follows that

q∑
a=1

(a,q)=1

∣∣h(p3(a/q+ β)
)∣∣2 = ∑

x,y∈A(Q,R)

cq
(
p3
(
x3 − y3

))
e
(
βp3
(
x3 − y3

))
.

The familiar estimate|cq(h)| � (q, h) (noting the convention that(q,0) = q) therefore leads
from (3.5) to the estimate

∫
M(X)

|F1(α)|dα� P−2Q
∑
q�X

κ(q)2
∑

Y <p�2Y

p2�q

∑
1�x,y�Q

(
q, p3

(
x3 − y3

))
.(3.6)

Whenp2 � q, one plainly has

(
q, p3

(
x3 − y3

))
� (p, q)

(
q, x3 − y3

)
.

Observe that whenq �X , p > Y andX � Y one has(p, q) = 1. Meanwhile, whenX > Y one
haslogY �Xε/2. Thus, on applying a familiar estimate for the divisor function, it follows that
whenever1� q �X , one has

∑
Y <p�2Y

(p, q)� Y

logY
+
Xε/2

logY

∑
p|q

Y <p�2Y

p� XεY

logY
.(3.7)

On combining (3.6) and (3.7), we therefore deduce that

∫
M(X)

|F1(α)|dα�XεP−2QY (logY )−1
∑
q�X

κ(q)2
∑

1�x,y�Q

(
q, x3 − y3

)
.(3.8)

Next write ρ(d) for the number of solutions of the congruencex3 ≡ y3 (mod d) with
1 � x, y � d. Then, by sortingx andy into residue classes modulod, it follows that whenever
q �Q, ∑

1�x,y�Q

(
q, x3 − y3

)
�
∑
d|q

d card
{
1� x, y �Q: x3 ≡ y3 (mod d)

}

�
∑
d|q

(
Q

d
+ 1
)2

dρ(d)�Q2
∑
d|q

ρ(d)
d

.(3.9)

For any natural numberr one may writer = r1r
3
3 with r1 cube-free, and this decomposition is

unique. Further, an elementary counting argument shows thatρ(r)� r1+εr3. Consequently, on
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recalling (3.9), ∑
1�x,y�Q

(
q, x3 − y3

)
�Q2qεq3.(3.10)

But in view of (2.7) we haveκ(q)� qεq
−1/2
1 q−1

3 , whence

∑
q�X

κ(q)2q3 �Xε/2
∑

q1q33�X
q−1
1 q−1

3 �Xε.

On recalling (3.8) and (3.10), therefore, the proof of the lemma is complete.

We require a variant of Lemma 3.3 of simpler type in order to complete the proof of
Theorem 1.1.

LEMMA 3.4. – One has ∫
M

|f(α)t(α)|2 dα� P 1+ε.

Proof. –When1� q � P 3/4 and|qα−a| � P−9/4, it follows from (2.8), (2.14) together with
Theorem 4.1 of Vaughan [17] that

f(α)� κ(q)P
(
1+ P 3|α− a/q|

)−1 + q
1
2+ε.(3.11)

Since it follows readily from (2.7) thatκ(q)� q−1/2, it is easily confirmed that the first term on
the right hand side of (3.11) always dominates the second. Consequently,

∫
M

|f(α)t(α)|2 dα� P 2
∑

q�P 3/4

κ(q)2
∞∫

−∞

q∑
a=1

(a,q)=1

|t(a/q+ β)|2
(
1 + P 3|β|

)−2 dβ,

and a comparison with the expression (3.5) will convince the reader that the proof of the present
lemma may be completed by applying the argument of the proof of the previous one,mutatis
mutandis. ✷

We pause before launching our campaign proper to add a further simple estimate to our arsenal
of mean values. By employing Weyl’s inequality in the form given by Vaughan [14], Lemma 1,
one has

sup
α∈m

|f(α)| � P
3
4 +ε,

and in combination with (3.1) we obtain the estimate∫
m

|f(α)t(α)|4 dα� P
19
4 −η.(3.12)

Our starting point for the proof of Theorem 1.1 is the lower bound (2.28). As a first step in
obtaining a corresponding upper bound we remove the contribution to the integral on the left
hand side of (2.28) arising from the setn ∩ M. Note first thatN =M(L), and son ∩ M is
contained in the union of the sets

K(X) =M(2X) \M(X),
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where we putX = 2lL, and take the union withl � 0 satisfying 2lL � P 3/4. Next, on
recalling (2.7) and (3.11), we find that forX � P 3/4, one has

sup
α∈K(X)

|f(α)| � PX−1/3.

Consequently, on making use of the trivial bound|t(α)| � P , we infer from Lemma 3.3 that for
X � P 3/4 one has∫

K(X)

|F1(α)f(α)t(α)|dα� P 2X−1/3

∫
M(2X)

|F1(α)|dα�Q3Y X−1/4(logY )−1.

On summing over the aforementioned values ofl, we find that the total contribution arising from
the union of the arcsK(2lL) yields the upper bound∫

n∩M

|F1(α)f(α)t(α)|dα�Q3Y L−1/4(logY )−1.(3.13)

Next, applying Schwarz’s inequality in combination with Lemmata 3.2 and 3.4, we obtain∫
M

∣∣(F(α)−F1(α)
)
f(α)t(α)

∣∣dα

�
(∫

M

|F(α)−F1(α)|2 dα
)1/2(∫

M

|f(α)t(α)|2 dα
)1/2

�
(
Y 2Q6P−19/14

) 1
2
(
P 1+ε

) 1
2 �Q3Y P−1/6.

We therefore find from (3.13) and (2.4) that∫
n∩M

|S2(α)|dα�Q3Y L−1/4(logY )−1,

whence the trivial bound|K2(α)| � cardZ2(N), in combination with (2.28), reveals that∫
m

|S2(α)K2(α)|dα� Y Q3(logP )−1 cardZ2(N).(3.14)

We provide an upper bound for the mean value on the left hand side of (3.14) via Hölder’s
inequality, obtaining from (2.4) the estimate

∫
m

|S2(α)K2(α)|dα� J1/4

(∫
m

|F(α)|2 dα
)1/2(∫

m

|f(α)t(α)|4 dα
)1/4

,(3.15)

where

J =

1∫
0

|K2(α)|4 dα.
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But on considering the underlying diophantine equation, one finds thatJ is equal to the number
of solutions of the equation

φ2(n1) + φ2(n2) = φ2(n3) + φ2(n4)

with nj ∈ Z2(N) (1 � j � 4). By completing the square in the quadratic polynomialφ2(t),
one recognises easily that it suffices to bound the numberJ0(Z) of solutions of the simpler
equationz2

1 + z
2
2 = z

2
3 + z

2
4 , with zi ∈ Z (1� i� 4), in whichZ is a set of integers of the same

cardinality asZ2(N). On separating diagonal solutions, an elementary estimate for the divisor
function readily shows that

J � P ε
(
cardZ2(N)

)2
.(3.16)

Then by (3.15), (3.16), Lemma 3.2 and the upper bound (3.12), we derive the estimate

∫
m

|S2(α)K2(α)|dα�
(
cardZ2(N)

) 1
2Y Q3P

57
112−

1
5η.(3.17)

The proof of Theorem 1.1 is now readily completed. On combining (3.14), (3.17) and (2.25), we
obtain

cardZ2(N)� P 57/56 �N19/28,

and the desired conclusion follows by summing over dyadic intervals.

4. Values of cubic polynomials which are not sums of six cubes

Although the treatment of quadratic polynomials in the previous section provides many of
the tools required in the application of our methods in the cubic situation, in order to achieve
the bound claimed in Theorem 1.2 we require still more sophisticated weaponry. Much of this
section will be devoted to the proof of a mean value estimate based on efficient differencing with
certain variables restricted to thin sets.

Before describing our differencing lemma we require some additional exponential sums to be
defined. We first extend the definition (2.3), writing for each positive numberU ,

t(α;U) =
∑

x∈A(U,R)

e
(
αx3

)
.(4.1)

We takeθ to be a parameter with0< θ < 1
3 , to be chosen later, and write

M = P θ, Q1 = PM−1, H =NM−3.(4.2)

Here we recall that in the present circumstance whereinj = 3, Eq. (2.25) ensures thatN 
 P .
Finally, we write

G1(α) =
∑

M<m�MR

∑
h�N/m3

∑
z∈Z3(N)

z+hm3∈Z3(N)

e
(
αm−3

(
φ3

(
z + hm3

)
− φ3(z)

))
.(4.3)
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LEMMA 4.1. – For each positive numberε, one has

1∫
0

∣∣K3(α)2t(α;P )4
∣∣dα� P 2+εM2R4 cardZ3(N) +M3+εR3

1∫
0

∣∣G1(α)t(α;Q1)4
∣∣dα.

Proof. –On considering the underlying diophantine equations, an inspection of the proof of
Lemma 2.2 of Wooley [21] reveals that with trivial modifications, the latter argument establishes
the upper bound

1∫
0

∣∣K3(α)2t(α;P )4
∣∣dα� P ε

(
S1 + PMS2+ (MR)3S3

)
,(4.4)

where

S1 =

1∫
0

∣∣K3(α)2t(α;M)4
∣∣dα,(4.5)

S2 =

1∫
0

∣∣K3(α)2t(α;P )2
∣∣dα,(4.6)

andS3 denotes the number of solutions of the diophantine equation

φ3(z1) +w3
(
u3

1 + u
3
2

)
= φ3(z2) +w3

(
u3

3 + u
3
4

)
,(4.7)

with

M <w �MR, uj ∈A(Q1,R),(4.8)

z1, z2 ∈Z3(N), z1 ≡ z2
(
mod w3

)
.(4.9)

Observe first that the solutions of (4.7) counted byS3 satisfyingz1 = z2, u1 = u3 andu2 = u4

number

�M(P/M)2 cardZ3(N),

whence

(MR)3S3 � P 2M2R3 cardZ3(N).(4.10)

Next, on estimating the exponential sumt(α;M) trivially via (4.1), we find from (4.5) that

S1 �M4

1∫
0

|K3(α)|2 dα�M4 cardZ3(N),

by Parseval’s identity, whence by making use of our hypothesis thatM3 � P , one has

S1 � PM cardZ3(N)� (MR)3S3.(4.11)
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Finally, it follows from (4.6) by orthogonality thatS2 is equal to the number of solutions of the
diophantine equation

φ3(z1)− φ3(z2) = v3
1 − v3

2 ,(4.12)

with z1, z2 ∈ Z3(N) andv1, v2 ∈A(P,R). The number of such solutions of (4.12) withz1 = z2
is plainly O(P (cardZ3(N))). Fix a choice ofz1, z2 ∈ Z3(N) with z1 �= z2, and consider a
solutionv1, v2 of (4.12). Sincev1 − v2 is a divisor of the non-zero integerφ3(z1)− φ3(z2), it
follows from an elementary estimate for the divisor function that the number of possible choices
for v1 − v2 isO(P ε). But given a fixed choice ofv1 − v2, one finds thatv1 + v2 is determined
essentially uniquely by (4.12), whence alsov1, v2. Thus we conclude that the number of solutions
of (4.12) counted implicitly byS2 with z1 �= z2 is at mostO(P ε(cardZ3(N))2). Consequently,

S2 � P cardZ3(N) + P ε
(
cardZ3(N)

)2 � P 1+ε cardZ3(N),

whence by (4.10),

PMS2 � P 2+εM cardZ3(N)� P ε(MR)3S3.(4.13)

On combining (4.4), (4.11) and (4.13) we may conclude thus far that

1∫
0

∣∣K3(α)2t(α;P )4
∣∣dα� P ε(MR)3S3.(4.14)

Next we establish an upper bound forS3. Observe that whenz1 andz2 are elements ofZ3(N)
satisfying (4.9) andz1 > z2, then one may writez2 = z andz1 = z + hw3 with z ∈ Z3(N),
1 � h � N/w3 andM < w � MR. Then, by isolating the diagonal contribution withz1 = z2
in (4.7), and considering the underlying diophantine equations, one finds from (4.8) and (4.3)
that

S3 � S4 + S5,(4.15)

where

S4 =MR
(
cardZ3(N)

) 1∫
0

|t(α;Q1)|4 dα(4.16)

and

S5 =

1∫
0

∣∣G1(α)t(α;Q1)4
∣∣dα.(4.17)

But it follows from Hua’s Lemma (see, for example, Vaughan [17], Lemma 2.5) that

1∫
0

|t(α;Q1)|4 dα�Q2+ε
1 ,

whence by (4.16) one has

S4 �
(
cardZ3(N)

)
MRQ2+ε

1 .(4.18)
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Thus, collecting together (4.14), (4.15), (4.17) and (4.18), and recalling (4.2), we complete the
proof of the lemma. ✷

Our understanding of the behaviour of the exponential sumG1(α) is weak, since the latter
depends heavily on the setZ3(N). We therefore engineer a metamorphosis which facilitates our
subsequent analysis. To be precise at this stage we must be explicit regarding the polynomialφ3.
We write the latter in the shape

φ3(t) =∆−1
(
at3 + bt2 + ct+ d

)
,(4.19)

for suitable integersa, b, c, d,∆. Write alsoA= 12a∆ andB = 12ac− 4b2. Further, we define
the exponential sumsF1(α) andG̃1(α) associated withφ3 by

F1(α) =
∑

M<m�MR

∑
h�H

∑
y�2AN

e
(
αh
(
y2 + 3a2h2m6 +B

))
(4.20)

and

G̃1(α) =
∑

M<m�MR

∑
h�H

∑
z∈Z3(N)

e
(
αm−3

(
φ3

(
z + hm3

)
− φ3(z)

))
.(4.21)

Finally, we define the mean value

J =
1∫

0

∣∣F1(α)G̃1(Aα)t(Aα;Q1)2
∣∣dα.(4.22)

LEMMA 4.2. – One has

1∫
0

∣∣G1(α)t(α;Q1)4
∣∣dα�J 1/2

( 1∫
0

|t(α;Q1)|6 dα
)1/2

.

Proof. –By Schwarz’s inequality, one has

1∫
0

∣∣G1(α)t(α;Q1)4
∣∣dα�J 1/2

1

( 1∫
0

|t(α;Q1)|6 dα
)1/2

,

where

J1 =

1∫
0

∣∣G1(α)2t(α;Q1)2
∣∣dα.(4.23)

It is evident, therefore, that the lemma will follow from the boundJ1 �J which we now prove.
Observe first that by (4.19) one has

m−3
(
φ3

(
z + hm3

)
− φ3(z)

)
=

h

12a∆
((
3a(2z + hm3) + 2b

)2 + 3a2h2m6 +
(
12ac− 4b2

))
.
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Then on considering the underlying diophantine equation, it follows from (4.23) thatJ1 is
bounded above by the number of integral solutions of the equation

m−3
1

(
φ3

(
z + h1m

3
1

)
− φ3(z)

)
− h2

12a∆
(
y2 + 3a2h2

2m
6
2 +B

)
= u3

1 − u3
2,

with

u1, u2 ∈A(Q1,R), M <m1,m2 �MR, z ∈ Z3(N),

1� h1, h2 �H, 1� y � 2AN,

and satisfying the property that12a∆|h2(y2 + 3a2h2
2m

6
2 + B). On recalling definitions (4.1),

(4.20), (4.21), and considering the underlying diophantine equation, it therefore follows from
orthogonality that

J1 �
1∫

0

F1(−α)G̃1(Aα)|t(Aα;Q1)|2 dα,

and the desired conclusion thatJ1 �J is immediate from (4.22). ✷
We estimate the mean valueJ by using the Hardy–Littlewood method, but this will entail

some preparation. We define the major arcsP to be the union of the intervals

P(q, a) =
{
α ∈ [0,1]: |qα− a|�NQ−3

1

}
with 0� a� q �N and(a, q) = 1. We then writep= [0,1] \P for the minor arcs. The analysis
of the minor arcs requires several auxiliary mean value estimates, which we presently discuss.

LEMMA 4.3. – One has
1∫

0

|F1(α)|2 dα�N1+εHMR(4.24)

and

1∫
0

|G̃1(α)|2 dα�NεHMR cardZ3(N).(4.25)

Proof. –On recalling (4.20) it follows from orthogonality that the mean value (4.24) is equal
to the number of integral solutions of the equation

h1

(
y2
1 +3

(
ah1m

3
1

)2 +B)= h2

(
y2
2 + 3

(
ah2m

3
2

)2 +B),(4.26)

with

M <m1,m2 �MR, 1� h1, h2 �H, 1� y1, y2 � 2AN.(4.27)

Observe that given a fixed choice ofy2, h2,m2 satisfying (4.27), one has

(
ah2m

3
2

)2 �M6 > |B|,
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and thus the right hand side of (4.26) is a non-zero integerl. It follows that there are at most
O(Nε) possible choices fory1, h1,m1 satisfying (4.26) and (4.27). Forh1 is a divisor ofl, and
an elementary estimate for the divisor function shows that there are at mostO(lε) such. Fix any
one such choice, and consider the equation

u2 + 3v2 =
l

h1
−B.

Familiar estimates for the number of representations of an integer by a binary quadratic form
(see, for example, Estermann [10]) show that the number of solutions of the latter equation inu
andv isO((l/h1 −B)ε) if l/h1 −B � 0, and zero otherwise. Our earlier assertion now follows.
Thus the number of solutions of (4.26) satisfying (4.27) isO(N1+εHMR). This completes the
proof of (4.24).

We treat the mean value (4.25) in a similar fashion. On recalling (4.21) and the argument of
the proof of Lemma 4.2, we find that the mean value (4.25) is bounded above by the number of
integral solutions of the equation

h1

((
3a
(
2z1 + h1m

3
1

)
+ 2b

)2 + 3(ah1m
3
1

)2 +B)
= h2

((
3a
(
2z2 + h2m

3
2

)
+ 2b

)2 + 3(ah2m
3
2

)2 +B)(4.28)

with

M <m1,m2 �MR, 1� h1, h2 �H, z1, z2 ∈ Z3(N).(4.29)

Given a fixed choice ofz2, h2,m2 satisfying (4.29), it again follows that the right hand side
of (4.28) is a non-zero integer. A comparison between Eqs. (4.26) and (4.28) reveals that one may
apply the argument of the preceding paragraph to show that there are at mostO(Nε) possible
choices forz1, h1,m1 satisfying (4.28) and (4.29). Thus the number of solutions of (4.28) and
(4.29) is

�NεHMR cardZ3(N).

The estimate (4.25) follows immediately.✷
One may provide an estimate for the sumF1(α) mirroring bounds for analogous sums

provided by Vaughan [14], [15]. By Cauchy’s inequality, one has

|F1(α)|2 �D(α)E(α),(4.30)

where

D(α) =
∑
h�H

∣∣∣∣ ∑
y�2AN

e
(
αhy2

)∣∣∣∣
2

and

E(α) =
∑
h�H

∣∣∣∣ ∑
M<m�MR

e
(
3a2αh3m6

)∣∣∣∣
2

.(4.31)

LEMMA 4.4. – One has

sup
α∈p

|D(α)| �N1+εH.
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Moreover, whena ∈ Z, q ∈ N, (a, q) = 1 andα ∈P(q, a)⊂P, one has

D(α)�N2+εH
(
q +Q3

1|qα− a|
)−1

.

Proof. –The conclusions of the lemma are immediate consequences of the argument of the
proof of Lemma 3.1 of Vaughan [15].✷

Rather than follow the trail laid down by Vaughan [15] in our analysis ofE(α) we instead
make use of mean value estimates which lead to sharper conclusions. In this context we define
the exponential sum

E∗(α) =
∑
h�H

∑
M<m2<m1�MR

e
(
αh3

(
m6

1 −m6
2

))
,(4.32)

and note that by (4.31) one has

E(α)�HMR+
∣∣E∗(3a2α

)∣∣.(4.33)

LEMMA 4.5. – Whenj = 1 or 2, one has

1∫
0

|E∗(α)|2j

dα� P εH2j−j(MR)2
j+1−2.(4.34)

Proof. –We imitate the well-known proof of Hua’s Lemma, noting that for any positive integer
l, as an easy exercise in estimates for the divisor function, one has that the number of integral
solutions of the equationm6

1 −m6
2 = l isO(lε).

Next, in view of (4.32), whenj = 1 we find by orthogonality that the integral on the left hand
side of (4.34) is equal to the numberI1 of integral solutions of the equation

h3
1

(
m6

1 − n6
1

)
= h3

2

(
m6

2 − n6
2

)
,(4.35)

with

1� hi �H, M < ni <mi �MR (i= 1,2).(4.36)

Given a fixed choice ofh2,m2, n2 satisfying (4.36), writel = h3
2(m6

2 − n6
2). Then, for any

solutionh1,m1, n1 of (4.35) counted byI1, one has thath1 andm6
1 − n6

1 are each divisors
of the positive integerl. On noting our opening discussion, elementary estimates for the divisor
function therefore show thatI1 � P εH(MR)2, which confirms (4.34) whenj = 1.

By Cauchy’s inequality, it follows from (4.32) that

1∫
0

|E∗(α)|4 dα� (MR)2
1∫

0

E∗
1 (α)|E∗(α)|2 dα,

where

E∗
1 (α) =

∑
M<m2<m1�MR

∣∣∣∣ ∑
h�H

e
(
αh3

(
m6

1 −m6
2

))∣∣∣∣
2

.
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On isolating the diagonal contribution, it follows by considering the underlying diophantine
equations that

1∫
0

|E∗(α)|4 dα�H(MR)4
1∫

0

|E∗(α)|2 dα+ (MR)2I2,(4.37)

whereI2 denotes the number of integral solutions of the equation

h3
1

(
m6

1 − n6
1

)
− h3

2

(
m6

2 − n6
2

)
=
(
g3
1 − g3

2

)(
m6

3 − n6
3

)
,(4.38)

with g,h,m,n satisfying (4.36) and

1� g2 < g1 �H, M < n3 <m3 �MR.

Given a fixed choice ofh1, h2,m1,m2, n1, n2 satisfying (4.36), write

l= h3
1

(
m6

1 − n6
1

)
− h3

2

(
m6

2 − n6
2

)
.

Then, for any solutiong1, g2,m3, n3 of (4.38) counted byI2, one hasl �= 0, and moreover the
integersg1 − g2, g2

1 + g1g2 + g2
2 andm6

3 − n6
3 are each divisors ofl. On recalling our opening

discussion again, therefore, we find thatI2 � P εH2(MR)4. The estimate (4.34) whenj = 2 is
therefore confirmed on recalling (4.37), together with the estimate (4.34) in the casej = 1. This
completes the proof of the lemma.✷

LEMMA 4.6. – One has

1∫
0

∣∣F1(α)2E∗(3a2α
)4∣∣dα� P εH5(MR)11.(4.39)

Proof. –Note first that by Cauchy’s inequality, one has

|F1(α)|2 �H(MR)2
∑
h�H

∣∣∣∣ ∑
y�2AN

e
(
αhy2

)∣∣∣∣
2

.

Thus, on considering the underlying diophantine equations, one has the upper bound

1∫
0

∣∣F1(α)2E∗(3a2α
)4∣∣dα�H(MR)2J,(4.40)

whereJ denotes the number of integral solutions of the equation

h
(
y2
1 − y2

2

)
= 3a2

(
h3

1

(
m6

1 − n6
1

)
+ h3

2

(
m6

2 − n6
2

)
− h3

3

(
m6

3 − n6
3

)
− h3

4

(
m6

4 − n6
4

))
,(4.41)

with

1� h�H, 1� hi �H, M < ni <mi �MR (1� i� 4),
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1� y1 � 2AN, 1� y2 � 2AN.
Let J1 be the number of solutions of (4.41) counted byJ in which y1 = y2, and letJ2 be the
corresponding number of solutions withy1 �= y2. Then

J = J1 + J2.(4.42)

On considering the underlying diophantine equations, one has

J1 �HN

1∫
0

∣∣E∗(3a2α
)∣∣4 dα,

whence by making an obvious change of variable, it follows from Lemma 4.5 that

J1 �N1+εH3(MR)6 � P εH4(MR)9.(4.43)

Consider next a solutionh, y,h,m,n of Eq. (4.41) counted byJ2. Since nowy1 �= y2, the integer
on the right hand side of (4.41) must be non-zero. Fix any one of theO(H4(MR)8) possible
choices ofh,m,n with the latter property. Thenh, y1 − y2 andy1 + y2 are each divisors of
the fixed integer on the right hand side of (4.41), whence an elementary estimate for the divisor
function shows that

J2 �NεH4(MR)8.(4.44)

On combining (4.40) and (4.42)–(4.44), the conclusion (4.39) is immediate.✷
Before launching our first major offensive on the minor arcs, we record here the estimate

1∫
0

|t(α;Q1)|5 dα�Q
44
17−δ
1 ,(4.45)

which follows from the proof of Theorem 1.2 of Wooley [22] withδ = 10−4.

LEMMA 4.7. – Suppose that0< θ � 1
6 . Then

∫
p

∣∣F1(α)G̃1(Aα)t(Aα;Q1)2
∣∣dα�N

1
2+εMR2H

7
5Q

88
85−

2
5 δ

1

(
cardZ3(N)

) 1
2 .

Proof. –Write

J2 =

1∫
0

|F1(α)|1/5
∣∣G̃1(Aα)t(Aα;Q1)2

∣∣dα(4.46)

and

J3 =

1∫
0

|F1(α)|1/5
∣∣E∗(3a2α

)∣∣2/5∣∣G̃1(Aα)t(Aα;Q1)2
∣∣dα.(4.47)

Then by (4.30) and Lemma 4.4, one has for eachα ∈ p the estimate

|F1(α)| �Nε(NH)1/2|E(α)|1/2,
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whence by (4.33) one finds that forα ∈ p one has

|F1(α)|4/5 �Nε(NH)2/5
(
(HMR)2/5 +

∣∣E∗(3a2α
)∣∣2/5).

Thus we obtain∫
p

∣∣F1(α)G̃1(Aα)t(Aα;Q1)2
∣∣dα�Nε(NH)2/5

(
(HMR)2/5J2 +J3

)
.(4.48)

We first estimateJ2, noting that by Hölder’s inequality together with a change of variable, one
has from (4.46) the bound

J2 �
( 1∫

0

|F1(α)|2 dα
)1/10( 1∫

0

|G̃1(α)|2 dα
)1/2( 1∫

0

|t(α;Q1)|5 dα
)2/5

.

It therefore follows from Lemma 4.3 and (4.45) that

J2 �Nε(NMHR)1/10
(
MRH cardZ3(N)

)1/2(
Q

44
17−δ
1

)2/5
.(4.49)

Meanwhile, on applying Hölder’s inequality to (4.47), we find that

J3 �
( 1∫

0

∣∣F1(α)E∗(3a2α)2
∣∣2 dα

)1/10( 1∫
0

|G̃1(α)|2 dα
)1/2( 1∫

0

|t(α;Q1)|5 dα
)2/5

.

By making use of Lemmata 4.3 and 4.6, therefore, we deduce from (4.45) that

J3 �Nε
(
H5(MR)11

)1/10(
MRH cardZ3(N)

)1/2(
Q

44
17−δ
1

)2/5
.(4.50)

On recalling (4.48), we conclude from (4.49) and (4.50) that

∫
p

∣∣F1(α)G̃1(Aα)t(Aα;Q1)2
∣∣dα�N

1
2+εMRH7/5Q

88
85−

2
5 δ

1

(
cardZ3(N)

)1/2(1 + ω),
where

ω� (MR)3/5N−1/10.

Consequently our hypothesis thatθ� 1
6 ensures thatω�R3/5, and the conclusion of the lemma

follows immediately. ✷
A further mean value estimate is necessary before dispatching the contribution of the major

arcsP.

LEMMA 4.8. – One has∫
P

D(α)|t(Aα;Q1)|2 dα�N3+εHQ−2
1 .
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Proof. –It follows from Lemma 4.4 that

∫
P

D(α)|t(Aα;Q1)|2 dα�N2+εH

∫
P

D∗(α)Ψ(α)dα,

where forα ∈ P(q, a)⊂ P one has

D∗(α) = q−1
(
1+Q3

1|α− a/q|
)−1

,

and where we define

Ψ(α) = |t(Aα;Q1)|2 =
∑

|h|�2AQ3
1

ψhe(αh).

Here ψh denotes the number of solutions of the equationh = A(x3
1 − x3

2) with x1, x2 ∈
A(Q1,R). As an immediate consequence of Lemma 2 of Brüdern [1], we have

∫
P

D∗(α)|t(Aα;Q1)|2 dα�NεQ−3
1

(
Pψ0 +

∑
h �=0

|ψh|
)
�NεQ−3

1

(
PQ1 +Q2

1

)
,

and the conclusion of the lemma follows immediately.✷
LEMMA 4.9. – Suppose that0< θ � 1

6 . Then

1∫
0

∣∣F1(α)G̃1(Aα)t(Aα;Q1)2
∣∣dα

�N3+εH2M2R2Q−2
1 +N

1
2+εMR2H

7
5Q

88
85−

2
5 δ

1

(
cardZ3(N)

)1/2
.

Proof. –Note that[0,1] is the disjoint union ofP andp. Therefore, if one has

∫
p

∣∣F1(α)G̃1(Aα)t(Aα;Q1)2
∣∣dα�

∫
P

∣∣F1(α)G̃1(Aα)t(Aα;Q1)2
∣∣dα

then
1∫

0

∣∣F1(α)G̃1(Aα)t(Aα;Q1)2
∣∣dα� 2

∫
p

∣∣F1(α)G̃1(Aα)t(Aα;Q1)2
∣∣dα,

and the conclusion of the lemma is immediate from Lemma 4.7. In the contrary case, the same
argument, followed by an application of Schwarz’s inequality, yields

1∫
0

∣∣F1(α)G̃1(Aα)t(Aα;Q1)2
∣∣dα

� 2
∫
P

∣∣F1(α)G̃1(Aα)t(Aα;Q1)2
∣∣dα� 2(K1K2)1/2,(4.51)
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where

K1 =
∫
P

|F1(α)t(Aα;Q1)|2 dα(4.52)

and

K2 =

1∫
0

|G̃1(Aα)t(Aα,Q1)|2 dα.(4.53)

Observe first that on considering the underlying diophantine equations, one may apply the
argument leading from (4.23) to the conclusion of Lemma 4.2 in order to establish that

K2 �
1∫

0

∣∣F1(α)G̃1(Aα)t(Aα;Q1)2
∣∣dα.

Thus it follows from (4.51)–(4.53) that

1∫
0

∣∣F1(α)G̃1(Aα)t(Aα;Q1)2
∣∣dα�

∫
P

|F1(α)t(Aα;Q1)|2 dα.(4.54)

Next, on making use of (4.30) together with a trivial estimate forE(α), we obtain∫
P

|F1(α)t(Aα;Q1)|2 dα�H(MR)2
∫
P

D(α)|t(Aα;Q1)|2 dα,

whence by Lemma 4.8 we may conclude that∫
P

|F1(α)t(Aα;Q1)|2 dα�N3+εH2(MR)2Q−2
1 .(4.55)

The proof of the lemma is completed by substituting (4.55) into (4.54).✷
Having now vanquished the difficult aspects of estimating the central auxiliary mean value,

we set up camp by collecting together our conclusions in the form of the following lemma.

LEMMA 4.10. – Suppose thatcardZ3(N)>N78/85. Then, withτ = 10−6, one has

1∫
0

∣∣K3(α)2t(α;P )4
∣∣dα�N

5216
1865−τ

(
cardZ3(N)

) 169
373 .

Proof. –We chooseθ by takingM = P θ and solving the equation

M = P
743
1865−2τ

(
cardZ3(N)

)− 102
373 .

On making use of our hypothesis thatcardZ3(N) > N78/85, we find thatP 1/9 <M < P 1/6,
and hence that the estimate of Lemma 4.9 holds. Moreover, our hypothesis on the cardinality of
Z3(N) also ensures that the estimate of Lemma 4.9 may be simplified to
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1∫
0

∣∣F1(α)G̃1(Aα)t(Aα;Q1)2
∣∣dα

�N
1
2+εMR2H

7
5Q

88
85−

2
5 δ

1

(
cardZ3(N)

)1/2
.(4.56)

On recalling the estimate

1∫
0

|t(α;Q1)|6 dα�Q
13
4 −4δ

1

from Theorem 1.2 of Wooley [22], we deduce from Lemma 4.2 and (4.56) that

1∫
0

∣∣G1(α)t(α;Q1)4
∣∣dα�N

1
4+εM1/2RH7/10Q

1457
680 −2δ

1

(
cardZ3(N)

)1/4
.

On inserting the latter estimate into Lemma 4.1, and taking account of our choice ofM , a
modicum of computation will yield the conclusion of the lemma wheneverη is sufficiently
small. ✷

Having achieved the modest victory recorded above, we manoeuvre our forces to outflank the
obstacles on the major arcs by means of a pruning argument. Given the work of the previous
section, this turns out to be routine. We start once again with the lower bound (2.28), and
investigate the contribution to the left hand side of (2.28) arising from the setn ∩ M. Recalling
the notation of §3, we apply Lemmata 7.2 and 8.5 of Vaughan and Wooley [18] to conclude that
for X � P 3/4 one has

sup
α∈K(X)

|t(α)| � PX−1/8.

Then it follows from Lemma 3.3 that forX � P 3/4 one has∫
K(X)

∣∣F1(α)t(α)2K3(α)
∣∣dα

� P 2X−1/4K3(0)
∫

M(2X)

|F1(α)|dα

�Q3Y X−1/5(logY )−1 cardZ3(N).

On summing over the contributions of the setsK(2lL) with l� 0 and2lL� P 3/4, we obtain the
upper bound

∫
n∩M

∣∣F1(α)t(α)2K3(α)
∣∣dα�Q3Y L−1/5(logY )−1 cardZ3(N).

On recalling (2.28), we may conclude thus far that
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∫
m

∣∣F(α)t(α)2K3(α)
∣∣dα+ ∫

M

∣∣(F(α)−F1(α)
)
t(α)2K3(α)

∣∣dα

�Q3Y (logY )−1 cardZ3(N).(4.57)

On applying Schwarz’s inequality next to (4.57), and making use of Lemmata 3.2 and 4.10, we
find that whenevercardZ3(N)>N78/85, one has the estimate

Q3Y (logY )−1 cardZ3(N)�
(∫

m

|F(α)|2 dα+
∫
M

|F(α)−F1(α)|2 dα
)1/2

×
( 1∫

0

|K3(α)2t(α;P )4|dα
)1/2

�
(
Y 2Q6P−19/14

)1/2(
N

5216
1865−τ

)1/2(cardZ3(N)
) 169

746 .

It follows that

cardZ3(N)�N1− 2801
40390 ,

and the conclusion of Theorem 1.2 follows from a trivial computation.
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