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INDEX OF TRANSVERSALLY ELLIPTIC D-MODULES

By STEPHANE GUILLERMOU

ABSTRACT. — We consider the action of a complex Lie gratipon a complex manifold, a G-quasi-
equivariantD x -module, M, and aR-constructible sheaf;’, on X, equivariant for the action of a real form,
GRr, of G. Under transversal ellipticity hypothesis on the characteristic varietidd aihd F', we associate
to these data a hyperfunction G, by a microlocal product of characteristic classes. We show tliat is
compact this hyperfunction corresponds to the generalized trace of the actianinthe global solutions
of M ® F'. This remains true it7r is a semi-simple Lie group acting on its flag manifold, which gives a
proof of a character formula of Kashiwara.2001 Editions scientifiques et médicales Elsevier SAS

RESUME. — Nous considérons I'action d’'un groupe de Lie compléxsur une variété complex®, un
Dx-module, M, G-quasi-équivariant et un faisce&@uconstructible,F’, sur X, équivariant sous l'action
d’une forme réelle(zx, deG. Sous des hypotheses d’ellipticité transverse sur les variétés caractéristiques de
M et F', nous associons a ces données une hyperfonctiofisupar des méthodes de produit microlocal
de classes caractéristiques. Nous montrons qGg sist compact cette hyperfonction correspond a la trace
généralisée de l'action dér sur les solutions globales d&f ® F. Ceci est encore vrai kg est un
groupe semi-simple agissant sur sa variété des drapeaux, ce qui donne une démonstration d’'une formule de
caractéres de Kashiwara.2001 Editions scientifiques et médicales Elsevier SAS

1. Introduction

We consider the situation of the Lefschetz—Atiyah—Bott formula of [2] (in an analytic
framework), i.e.M is a compact manifoldy : M — M a smooth map$™ an “elliptic complex”
on M andu :p*¢ — & a 'lifting” of ¢ to £; the cohomology groups of  are finite-
dimensional and the trace of the morphigttu) induced byw on the cohomology is given
by a fixed points formula. We are interested in deformations @&ndu, ¢:T x M — M,
u':¢*E — p*E, wherep: T x M — M is the projection. For eache T they restrict to a
map ¢, : M — M and a lifting of ¢;, u}: ¢;E — £'. It makes sense to consider the function
t— trI'(u}) onT. Infact, following Atiyah’s idea about transversally elliptic operateesd1]),
it is possible to weaken the hypothesis of ellipticity 6n (the cohomology is no longer
finite-dimensional) and still get a hyperfunction @i which corresponds to a trace in a
generalized sense. We do this in the frameworaiodules and constructible sheaves using
the constructions of the character cycle by Kashiwara in [14] and of the microlocal Euler class
by Schapira and Schneiders in [22]. We are interested in application to equivRriaodules
and sheaves but our construction is local on the space of parameters, which is not supposed to be
a Lie group (this will be useful in Section 10.2).
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224 S. GUILLERMOU

More precisely, letZ, X be complex analytic manifold%r a real submanifold o whose
Z is a complexificationg: Z x X — X a map such that, for eache 7, the mapp, : X — X,
z +— ¢(z,z) is smooth and proper. Let! € D" | (Dy), F € DE__(Cx); we consider “liftings”
of ¢ for M and F, i.e.u:¢ M — p~*M a O, K Dx-linear morphism and: ¢~ F —
Cz, X F (in the above settingd should be a complexification d¥/, M = Dx ®0, £ and
F = C,s). The motivation for these definitions is the example of quasi-equivaktamtodules
and equivariant sheaves, in which case we assume moreovef that group and: andv are
compatible with the law of the group. However, for the main results of this paper we will not
need thatZ be a group.

For eachz € Zg, the liftings restrict tou,:¢;'M — M, v,:¢;'F — F and induce a
morphism on the global solutions 8#f andF:

S(uy,v,): RHomp, (M ® F,0Ox) — RHomp, (M ® F,Ox).

Hence we obtain; : Zg x Extl (M ® F,Ox) — Ext (M ® F,Ox). We want to compute
the “generalized trace” ofr; as a hyperfunction or#g. This generalized trace should be
understood as in representation theory. ket — End(FE) be a continuous representation of
a Lie group; we assume that for each infinitely differentiable farwith compact support on
G the endomorphism oF, m,:z — [, 7(g)(z) - w is trace class and that:w — trm, is a
distribution. Theny is called the character df. We note that this definition makes sense also if
G is not a group and is just a family of endomorphisms @f.

In our case the vector spacEB:té,X (M ® F,0x) have in general no natural separated
topology (we will consider also the particular case whgnis a semi-simple Lie group
and X its flag manifold; for this case Kashiwara and Schmid have proved in [18] that the
Ext}, (M ® F,Ox) are continuous representations &f). But R Homp, (M ® F,Oy) is
well defined in the derived category of Fréchet nuclear spaces and continuous linear maps. We
can build directlyr; in this category if we sendy into I'.(Zg; Bgf)) by the mapz — 4., 0.
being the Dirac function at (we assume thafy is oriented). Indeed, in Section 4 we will see
thatu andv define a morphism

S(u,v):Te(Zp: BY'?)) @ RHomp, (M ® F,Ox) — RHomp, (M ® F,Ox),

such that for: € Zg, S(u.,v.) = S(u,v)(d, ® -) and, more generally;,, above corresponds to
S(u,v)(we ).

In Section 2 we show that the notions of nuclear map and trace of a nuclear map extend well to
the derived category (the important point here is the fact that nuclear maps from nuclear spaces
are well behaved with respect to quotient and inclusion).

In Sections 5 and 6 we attach toand v a hyperfunctiony (¢, M, F,u,v) on Zg by a
cohomological trace formula and a microlocal product. More precisely, We associate its
“kernel” k(¢p, M, u) (seeDefinition 5.2) with value in &-module supported by the gragdh,of
¢in Z x X x X, and we take its image by a diagonal trace map. We microlocalize &lang
order to keep the information carried by the characteristic varietylpfve obtain a cohomology
class:

c(¢p, M,u) € HY (T*(Z x X x X); ur(0Oz K owy)),

whereA; is a subset ofl1:(Z x X x X)) depending orhar M. For F' andv we obtain also a
kernelk(¢, F,v) and a similar class:

(¢, F,v) € HYZ (T*(Z x X x X); pir, (Cz K dwy)),
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where A, depends or8S(F). If A; N A§ is contained in the zero-section we can make the
“microlocal product” of the two classes and take the direct imagé.tohis construction gives a
microfunction:

X(¢, M, Fou,v) € HY (T* Z; 7, (07)),

whereA is a bound expressed in terms of the fixed points of char M NSS(F’) (in the case of
a group action it coincides with the bound given by Berline and Vergne in [5]). The condition on
A1 andA, has a nice expression dn. Let us introduce the following subset®f X associated
to ¢:
Ay =p3(TH(Z x X x X)NTy A(Z x X x X)),

whereps : T*Z x T* X x T*X — T*X is the projection to the third factor, antl the diagonal
of X x X. Wheng is a group action) 4 is the conormal to the orbits. The setN A§ is included
in the zero-section if the pa{tM, F') is “transversally elliptic”, i.e.

char(M)NSS(F)NAy, C TYX.

In particular, if gr:Gr x M — M is a real group action which can be complexified into
¢:G x X — X, then, forF" = Cy, SS(F) N Ay = T3, X N A, can be identified withl'z,_ M.
Hence if M is associated to an equivariant differential oper&tpthe above condition is satisfied
if and only if P is transversally elliptic in the sense of Atiyah.

To make the link betweeny(¢, M, F,u,v) and the trace ofS(u,v) we will use that
x(¢, M, F,u,v) is the trace of the microlocal product of the kerne(s, M, u) andk(¢, F,v).
Unfortunately, we need a stronger hypothesig an, F') to make the product of these kernels
because their supports are bigger tharandA,. We set:

Ay =ps3(Tp(Z x X x X)N(T4Z x T*(X x X))).

In general A, is strictly included inAﬁﬁ but for a group action they are equal. We say thiet, F')
is strongly transversally elliptic if

char(M) NSS(F)NA), C T X.

The main result of the paper is Theorem 8.2 which says thég ifs compact,M is good and
(M, F) is strongly transversally elliptic then, for an analytic fowron Zg, S(u,v)(w ® -) is
nuclear with tracefz]R w - x(¢, M, F,u,v). (In particular, for actions of compact Lie groups, we
obtain in Section 10 that our cohomological index coincides with Atiyah’s index of transversally
elliptic operators.)

The idea of the proof is, roughly speaking, that(.#1, F') is strongly transversally elliptic,
thenS(u,v)(w ® -) can be defined with a “smoothing operator”. We first prove thatMbgood,
a morphism fronR Homp, (M @ F, Ox) to itself induced by a kernel with value in

Qxxx @5, (M®F)X(DM® D'F))

(this could be compared to a smoothing operator) is nuclear with trace the cohomological trace
of the kernel. For this we use the realification offamodule introduced by Schapira and
Schneiders. Now let be the microlocal product of the kernéi&s, M, u) andk(¢, F,v). For an
analytic formw on Zg, let k., be the directimage oX x X of k- w. This is a kernel orX x X

of the kind above; hence it has a well-defined trace. The morphism associdtgdstmothing

but S(u,v)(w ® -) (seeProposition 6.5) and the theorem follows.
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In Section 9 we assume that the graph¢ofl’, is transversal to the diagondl, x A, of
Z x X x X (for a group action this means thatis homogeneous). In this cadg is included
in the zero-section so that any péir, M) is transversally elliptic and the microlocal product is
nothing but the usual cup-product on the zero-section. If we assume moreovkt tréges from
a complex of vector bundles amdrom a morphism of complexes, we can show @t M, )
is the image of a holomorphic form on the fixed points manifBle- T N (ZxA).(f Zisa
pointthis meansthat: X — X is a map transversal id and we obtain the Atiyah—Bott formula
of [3] for a “linear” lifting.)

In Section 10 we consider in particular the action of a complex semi-simple Lie gtgugm
its flag manifold,X . Since the action is homogeneous, any pait, F') is strongly transversally
elliptic. For M = Dx and F' a Gg-equivariant sheaf orX (Ggr being a real form ofG),
our formula for x (¢, M, F,u,v) is the formula given by Kashiwara in [15]. We prove that
x(¢, M, F,u,v) has a well-defined restriction to any translage,K’, of a maximal compact
subgroup,K, of Gg. Hence we obtain (Theorem 10.4) thats, M, F,u,v) is the character
of Gr in RHom(F, Ox) (which is a continuous representation@f by Kashiwara—Schmid
results), as conjectured in [15€e[23] for another proof).

Notations

We will mainly follow the definitions and notations of [16]. Foramanifdldrx : T* X — X
(or 7 is there is no risk of confusion) is the projection from the cotangent bundké.tBor a
morphism of manifolds : X — Y, we have the induced maps on the cotangent bundles:

T*x <L X xy T*Y I T*Y:

If Ais a closed conic subset af*Y’, we say thatf is non-characteristic fol if tf’ is proper
on f-(A). We denote by\® the image ofA by the antipodal map ot*Y, (y,&) — (y, —£).
We denote byDP(Cx) (resp.D:__(Cx)) the bounded derived category of sheaves (r&sp.
constructible sheaves) ox.

The topological dualizing complex isx = a'C, for a the projection from¥X to a point. More
generally, forf: X — Y, we setwy|y = f'Cy.ForFe D%_C(Cx), its dual and its naive dual
are:

DF =RHom(F,wx), D'F=RHom(F,Cyx).

If M is a submanifold ofX, the conormal bundle td/ is denoted byI;, X and Sato’s
microlocalization functor alond/ is denoted byu,,. The diagonal ofX x X is denoted by
Ax or A. The functoruHom is defined by:

pHom(F,G) = uaRHom(g; ' F, ¢, G),

whereg; is the projection fromX x X to theith factor. The micro-support of € DP(Cx) is
denoted bySS(F).

For a complex analytic manifold , we denote byl x its complex dimension, b2 x or (9&?)‘)
the sheaf of holomorphic maximal degree formsXnFor a product of complex manifolds we

denote b}Og?ng/ the holomorphic forms of degreeon X andb onY . A Dx-module is “good”

if, in a neighborhood of any compact subset’f it admits a finite filtration by coherer® x -
submodules, such that each quotient of this filtration can be endowed with a good filtration.
We denote byDP | (Dx) (resp.Dgood(DX)) the bounded derived category of complexes of
Dx-modules with coherent (resp. good) cohomologyf 1fX — Y is a morphism of complex
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analytic manifolds, the inverse and direct imagesfamodules are denoted ig‘_y_l andf . The
dualizing complex for leflD x -modules is

ICX = Homox (Qx,Dx)[dx].
It has two leftD x-module structures. The dual of a |é%t,-module M is the leftDx-module:
QM = RHOTTLDX (M,Kx)

The characteristic variety 0¥ is denoted byhar M. We say that a map is non-characteristic
for a D-module M or a sheafF’ if it is non-characteristic focthar M or SS(F'). We denote by
X andX the external tensor products for sheaves Brachodules.

2. Nuclear mapsin the derived category

We will need a notion of trace for a morphism in the derived category of Fréchet nuclear spaces
(FN-spaces), oD FN-spaces. We prove that the notions of nuclear map and trace of a nuclear
map extend well to the derived category.

We will not recall the definitions of nuclear maps and nuclear spaces; we refer to [10], or
for example to [25] for an exposition. Let us quote some properties that we will need. In the
following we write LCTVS for locally convex topological vector space.

PROPOSITION 2.1. — (i)Letu: E — F be a continuous linear map between two LCTWS

is nuclear if and only if it is the compose of continuous linear mEpé By 5 F 2 F, where
E4, Iy are Banach spaces andis nuclear.

(i) ALCTVSE is nuclear if and only if every continuous linear maptfnto a Banach space
is nuclear.

(i) Alinear subspace of a nuclear space is nucjehe quotient of a nuclear space modulo a
closed linear subspace is nuclear.

These properties can be found in [10] (remarks after Definition 4 of Chapter I, Remark 6
of Chapter Il, Theorem 9 of Chapter Il), or in [25] (Proposition 47.2, Theorem 50.1,
Proposition 50.1).

The derived category of'N-spaces and linear continuous maps is constructed as follows
(see[4] and also [24]). LetCP(FN) be the category of bounded complexes¥¥f-spaces. The
categoryK® (FN) is obtained fronCP (FV) by identifying to0 a morphism homotopic t. The
complexes which are algebraically exact form a null systed®& ' FN). The derived category
DP(FN) is defined as the localization &®(FN) by this null system. Since the topological
tensor produck is exact on the category @fN-spaces, it extends to the derived category. The
categoryD”(DFN) is defined similarly.

In [10] Grothendieck develops a theory gf-summable” Fredholm kernels and introduces the
nuclear spaces. We give a brief summary of the results we will needz Fbrtwo LCTVS and

p a real number such that< p <1 letG (eé) F be the set of elements ¢f @ F which can be
written . A; 2; ® y; with Y~ | AP < oo and(z;) (resp.(y;)) in a bounded convex circled subset
A (resp.B) of G (resp.F) such that the associated normed spage(resp.Fg) be complete.

By [10], Chapter I, Corollary 4 of Theorem 4, we know that for a LCTVS E the natural map

(2/3) o . .
E' ® E — L(E,E) is injective (hereE’ is the strong dual off andL(E, E) is the set of
continuous linear maps froif to itself). Hence a map € L(FE, E') which belongs to the image
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(2/3) ' . . .
of B/ ® FE has well-defined determinant and trace, namely the determinant and trace of its
. . (2/3)
unique kernel ine’ @ E.

Letu € E’ (@3 E and leta be its image inL(E, E). The link between the determinant of
u and the eigenvalues af is explained in [9], Chapter Il, Theorem 4. Fare C ~ {0}
setE )y = UpeNker(id—Aﬁ)P. Thenn = dim E, /, is finite and X is a zero of ordem of
det(id —zu). Moreover, if F; /, = im(id —A@)", then E' is the topological direct sum of;
andFyy, and(id —\a) : Fy /), — Fy/, is an isomorphism.

IfueE' (2@/{?) E and()\;);en Is the sequence of eigenvaluesiniwith multiplicities, we have
also 6ee[10] Chapter Il, Corollary 4 of Theorem 4):

det(id —zu) = H(l —zAi), Z |Ai] < o0, tru= Z)‘i‘

€N ieN ieN

These results apply in particular to nuclear maps from nuclear spaces because, by [10],
Chapter Il, Corollary 3 of Theorem 11, any bounded map from a nuclear quasi-complete space

FE to itself is in the image of’ (é) E foranyp > 0.

If u: F — G is a nuclear map between two LCTVS aRAds a closed subspace éfsuch that
u(F) = {0}, the induced maf/ F' — G is in general not nucleas€e[10], Chapter I, Remark 9
after Proposition 16). However, this is truefifis a nuclear space.

LEMMA 2.2. - Letu: E — G be a nuclear map between two LCTVS and assumefhai
nuclear space.
(i) AssumeF is a closed subspace df such thatu(F) = 0. Then the induced map
u': E/F — G is nuclear.
(i) AssumeF is a closed subspace @ such thatu(E) C F. Then the induced map
u”: E — Fis nuclear.

Proof. —(i) Since u is nuclear it decomposes & = B; b, By 5 G, where By, B are
Banach spaces aridis nuclear, by Proposition 2.1. We can factothrough the quotient of
Bs; by ker(c) and hence assume thais injective. Therker(u) = ker(b o a) andu’ decomposes
asE/F“ By 5 G. Now E/F is nuclear too and any continuous linear map from a nuclear
space to a Banach space is nuclear by Proposition 2.1. Henaadu’, are nuclear.

(i) We write u = co b o a as above. Sincém(a) C (c o b)~!(F) we may replaceB; by
(cob)~(F) and hence assume thai(c o b) C F. Thenu” decomposes a& 3 B, ©! F and
it is nuclear because; is. O

DEFINITION 2.3.— LetE", F" be objects oDP(FN). Amorphismu: E* — F in DP(FN)
is callednuclearif there exists a morphism of complexes E- — F" in C*(FN) such that all
mapsv’: E* — F' are nuclear and = v* in D?(FN). A nuclear morphism iD®(DFN) is
defined in the same way.

The following lemma implies that a nuclear morphismI¥(FN) or D*(DFN) has a
well-defined trace which depends only on the (purely algebraic) morphism induced on the
cohomology. It is convenient to introduce the following notations and terminology. For an
endomorphismw : G — G of aC-vector space and € C, we write:

Gr= |J ker(w —Aid)", G = () im(w — Aid)".

neN neN
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We say thatv has a “naive trace” if, settingp, = dim G, we have:

VAEC", ma<oo and Y my-|A <oo.
AeC+

If this is the case we setrw =), .. ma - .

LEMMA 2.4.-LetE" be a bounded complex of nuclear spacesand”” — E° a morphism
of complexes such that eaef is nuclear. Then, for each H'(u'):H(E) — H(E") has a
“naive trace” and:

S (=1)intrH (u) =Y (—1) tru’.

Proof. —We prove the lemma by induction on the length of the comlexf it is of length 1
this is a restatement of the properties of nuclear maps in nuclear spaces recalled above, in
particular that they have a “naive trace” equal to the trace of their kernel.

Let us assumé is of lengthn (with E* =0 for i < 1 andi > n) and the result is true for
complexes of length less than— 1. Let us consider the truncated complex= r,, £ and the
endomorphism of F* induced byu'. By definition, F* = E? fori <n — 2, F"~! =kerdpy ',
Fi =0 for i > n. By Proposition 2.1, thé™ are also nuclear spaces and, by Lemma2:2}
is nuclear so that the induction hypothesis applies't@andv'. By the definition of I and v
we haveH!(F") ~ H'(E") andH'(v') ~ H'(u’) for i < n; hence it just remains to prove that
H"(u): E"/imdy ' — E™/imd} ' has a naive trace and

ntr H" (u') = tru” — tra" "' +tro™ 1t

Sinceu™, v 1, v~ ! are nuclear maps in nuclear spaces they have a naive trace equal to their
trace as nuclear maps. Hence our lemma will follow from the exactness of the sequence:

0—F ' EV Bl — (E"/imd%_l)A —0,

forall A e C*.

The exactness at the first two terms is obvious. Recall Bfat EY @ AE™ and E"~1 =
EY '@ \E"! and sinced; ' commutes withu', d; ' respects this decomposition. Hence
an element of2{ which is inimd’; ' is in fact the image of an element &' ~'. This proves
the exactness at the third term. Let us prove the surjectivity at the last term. £ &t™ be
such that(u” — Aid)*(z) € imd% '. We have to find an element df} in the class ofx
moduloim d%‘l. We may as well assume thais great enough so thah(u” — \id)* = \E™.
Since (u™ — Aid)*(x) belongs to, E™ Nimd}; ' there existy € E"~! such thatd}y 'y =
(u™ — \id)*(z) (again becausel’; ' respects the decomposition &f" and E"~1). We
know thatu™"! — \id:\E"~' — ,E"~! is an isomorphism, so that we may write=
(w1t — Xid)*(y') with v’ € yE"~! and we have(u” — \id)*(z — dy'y’) = 0. Hence
a' =z — dj 'y’ belongs toE} N (x +imd, ') and this proves the surjectivity.O

DEFINITION 2.5.— Letu: E- — E° be a nuclear morphism iD®(FN) or D*(DFN) and
letv : B — E° be a morphism of complexes representingith thev? nuclear. We call trace of
u the numbetru = 3",(—1) trv* which only depends on by the preceding lemma.

Remarks2.6. — 1) Since the trace of nuclear maps between topological vector spaces is
additive, the trace we have defined is also additive.
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2) From the algebraic description of the trace it is easy to see that # are objects of
DP(FN) or D*(DFN) andu: E — F andv: F — E are two morphisms such thato v and
v ow are nuclear thetruov =trvowu.

3) The lemma implies in particular thatiil  is nuclear for an objedt of D®(FN) then the
cohomology groups of; are of finite dimension.

4) If u: E — E is a nuclear morphism i (FN) andim di; is closed for a giver, then
H!(E) is an FN-space andl‘(u): H*(E) — H'(E) a nuclear map. In particulaH(u) has a
trace as a nuclear map andi®(u) = ntr H?(u).

5) For three LCTVSE, F, G and two continuous linear maps. £ — F, v: F — G, the
compositionv o u is nuclear as soon as or v is nuclear. The same is true in the category
DP(FN) for our notion of nuclear morphism as will follow easily from the next lemma.

LEMMA 2.7.-LetE", F', G" be objects oCP(FN).

() Letw :E"— F', ¢ : E* — G" be morphisms irC"(FN) such that each/’: E* — F!
is nuclear andy’ is a quasi-isomorphism. Then there exists a morphism of complexes
v :G" — F" such that each’: G* — F' is nuclear ands' o ¢ is homotopic ta: .

(i) The same with reversed arrows.

Proof. —(i) Let us denote by, d, d the differentials ofE", F*, G'. We consider the
mapping coné\l" of ¢, i.e. M’ = B! @ G* with differential

i+1

dy = ( (ffl (3 ) :

¥ dg

Since ¢ is a quasi-isomorphism)/- is (algebraically) exact. The morphism induces a
morphismu” = (u',0) from M to F'[1], where F'[1] is the complex with components
F[1] = Fi*1 and differential—d},. Eachu’’ is of course nuclear. We claim that there exists
a homotopys’ : M7 — FJ such that eack’ is nuclear and/’’ = —d}, o s + 71 o d},. Since
the complexes are bounded we may prove this by increasing induction. We assusielthst
been built forj < i and we construct’*!. We considen = u'* + d o 5. Sincea o dy,* =0
andimdy,;" = kerd},, a factors through a map: M/ kerdi, — F**', which is nuclear by
Lemma 2.2. By the open mapping theorehi‘(andim d’, = ker dﬁ\jl are Fréchet spaces) the
injectionM*/ ker d}, — M"*! is anisomorphism of/*/ ker d’,, onto its image. In this situation
b factors through a nuclear map™! : M+ — Fi+1 (see[10] Chapter |, Proposition 16) so that

1

u'" =—dj; 05" + 5"t o d} ;. Hence we have proved the existence of the homotopy.
Now we decompose’ = (sgl,sg) and write the preceding equality in terms of this

decomposition. We obtain:

(2.2) u' = —d% o SiEJFl _ SiEJr? o diEJrl + SiC;rl o0t
(2.2) 0=—djposi+sa'ody.

Let us set’ = s&; it is a nuclear map since’ is. Formula (2.2) shows that:G" — F" is a
morphism of complexes and formula (2.1) shows thiandv o ¢* are homotopic.

(i) The proof is similar. We consider the morphism frofi to the mapping cone ap’
induced byu’ and we show that this morphism is homotopid®tby a nuclear homotopy. This
is done by decreasing induction, using a property of lifting of nuclear mege$10] Chapter I,
Proposition 16 or also [22], Proposition 2.3 of the third part):

Letu: A — B, v:C — B be two morphisms of Fréchet spaces wittsurjective andv
nuclear. Then there exists a nuclear mag”’ — A suchthaty =uwow. O

4° SERIE— TOME 34 — 2001 N° 2



INDEX OF TRANSVERSALLY ELLIPTIC D-MODULES 231

Now letu: B — F", v: F" — G" be two morphisms ilD(FN) and assume: is nuclear.
Thenw is equal inDP(FN) to a morphism of complexes : E- — F" such that each/* is
nuclear and there exist a complEx and morphisms of complexes :H — F', v :H — G
such thatp is a quasi-isomorphism and= v’ o ¢~!. Hencevou =v' o o~ o/ in DP(FN).
By the previous lemma there exists a morphism of complexe#” — H' such that the:} are
nuclear and:’ is homotopic top o u;. Hencev o u = v’ o uy in DP(FN). Since the composition
of a nuclear map with a continuous linear map is nuclear this shows thatis nuclear. In the
same way we can prove thab u is nuclear ifv is.

3. Review on the microlocalization functor

Since we will make constant use of Sato’s microlocalization functor we recall here some of its
main properties as stated in [16].

Let X be a real manifold) a closed submanifold oX. Leti: M — X, j: T}, X — T*X
be the inclusions andx : T* X — X the projection. The microlocalization alord, 1, is a
functor fromDP(Cx) to Db((CTRIX). We will often write ups for j.uas. The functoruy, has
the following propertiesqdeeParagraph 4.3 of [16]).

PROPOSITION 3.1. — Let F' € DP(Cy). We have

Rx o ping (F) = png (F)|ar = 'F,
Rrxpns (F) 2RO n (par (F)) v i7" F @ wayx,
supp pa (F) CSS(F)NTh, X.
By the first isomorphism, for any closed conic subsetf T7%, X, we have a morphism:

HR (T7X; o (F)) — Hg (X5 F),

whereS = wx (A). We will call this morphism “projection to the zero-section”. More generally,
for a submanifoldM’ of X such thatM C M’ C X, we have a morphism, settingf =
X NT:, X:
e (F)|r = RTrppr (F).

If L € D*(Cx) is locally constant them,(F @ L) ~ uy (F) @ 7y' L. Microlocalization
behaves well with respect to non-characteristic inverse image as shown in the next proposition.

Let f:Y — X be a morphism of manifoldsN a closed submanifold ot” such that
f(N) C M. Let us denote byf) and fn. the restrictions off":Y x x T*X — T*Y and

fr Y xx T*X —-T*X to N x s T3, X. The following result is contained in Proposition 4.3.5
and Corollary 6.7.3 of [16].

PROPOSITION 3.2. — Let F' € D(Cx). We have a commutative diagram

RYf 5 frmin (F) un(f7IF) @ 1yt (wy|x @ wijar)

| ls

Rtf]'\,*f]!\,ﬂuM(F)®7T{,1w;[|1M uN(f!F)@)ﬂ{,lw;[llM

compatible with the projection to the zero-section. fIfis non-characteristic forF and
fIn: N — M is smooth them is an isomorphism.
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Remark3.3. — The compatibility with the projection to the zero-section means the following.
Letnx :T*X - X,y : T*Y - Y, 7:Y xx T*X — Y be the projections. We set for short:

Fy = f7'RTm(F), FQZRFN(filF)®WY|X®W;{‘1]ua F3:RFN(f!F)®W;f|1M~

The first isomorphism of Proposition 3.1 induces:

a:Ray. (RN fympn (F)) — Fu,
b:Rﬂ'y*(uN(fle) ® W;l(wy|x ®w;[|1M)) =,
c:Rmy, (uN(fIF) ® W;lw;,‘lM) ~ By,
Morphism a is obtained from the morphism of functoi‘fy,(-) — Rtfs,(-) and the
isomorphismR 7. 5+ (G) ~ f~'R7x.(G) for any conic objecty of D" (Cr-x). There is in
general no morphism from; to F; (this is in fact the reason why we need to microlocalize).

However, we have two natural morphisms — F3 and F, — F3 described by the following
compositions:

to: Fi — (fIN)RTm(F) @ wypy = Fs,

SQZFQ —>RI‘N(f71F®wy|X) ®w;,‘1M — F3.

The diagram of the proposition is compatible with the projection to the zero-section in the sense
thatR 7y . (s) = sp andR my (s o r) = tg 0 a. Roughly speaking,, can be factorized through

s for sections off; arising from “microlocal sections af” whose support is non-characteristic

for f (seealso Proposition 3.8 below).

The inverse image morphisminduces a morphism on the global sections whose supportis in
good position. Lef\ be a closed conic subset®f X. Assume thaf is non-characteristic fok.
Then'f” is proper onf1(A) and, setting\’ = tf’(f-1(A)), morphismr gives us a morphism:

(3.1) HY (T X e (F)) — HY (TY 5w (f 71 F) @ iy (wyx @ wiyag)-

When f is a diagonal embedding this morphism yields a product between microlocal classes.
This is the way the product of Euler classes is defined in [22]. We will need such a product in the
following situation.

LEMMA 3.4.— Let X be a real manifold,A/ and N submanifolds ofX, with N C M.
Let F,.G € Db((CX) and let A; and A, be closed conic subsets @f;, X. We assume that
A1 NA§ C T% X. Then morphisni3.1)induces a “microlocal product’

HY (T*X;pm(F)) x HY, (T*X; 5w (G)) = HY  4oa, (T X un (F @ G) @ ' warx )

compatible with the projection to the zero-section in the sense of Re3rark

Proof. —The external product defines a morphism from the left hand side to
R n, (T7(X % X)s parsy (F R G)).

Leté: X — X x X be the diagonal embedding. The assumpfiom A§ C T% X is equivalent

to the fact that is non-characteristic fak; x As. Hence we may compose the external product
with the morphism (3.1) wher¥, X, N, M, f are replaced by, X x X, N, N x M, ¢. This
gives the desired morphism if we identit;{,lleM ®wx|xxx and(wyx)n. O
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Remark3.5. — This microlocal product is compatible with the inverse image in the following
situation. We keep the notations of Lemma 3.4 and consider moreover a morphism of manifolds
f:X'— X, M’, N’ submanifolds ofX’ such thatN' c M’, f(M') C M and f(N') C N.

We assume thaf is non-characteristic foA; + A, (hence also for\; and A;) and we set
A=t (f-1(A1)), Ay ="' (f-1(Ag)). Let us set for short:

Ar=H}, (T"X;par(F)), Az =HY, (T"X; v (G)),
A=H o\, (T"X;un(F @ G) @ mx'warx),
Ay =HY (T X5 o (f 71 F) @ gt (wxrx © Wigiyag)) s
Ay =H}, (T*X' pne (f 1 G) @t (wixr x @ wity))s
A =HY o, (T X o (FHF @ G)) @ mylw),

wherew = f‘l(wM‘X) Quwxrx ® w;,}lN. Sincef is non-characteristic foA{, Ao, A1 + Ao,
we have inverse image morphisms as (3r1):A; — A}, ra: Ay — A, r: A— A’. Sincef is
non-characteristic foh; + A, andA; N A§ C T% X, we have alsa\| N AL" € T%, X', so that
there exists a microlocal product froAf x A} to A’.

The microlocal products, starting from; x A, and A} x A, commute with the inverse
images; x ro andr. This is a consequence of the fact that the inverse image (3.1) is compatible
with the composition of morphisms of manifolds.

Remark3.6. — We keep the notations of the preceding remark. We set morédver
Ao N'TH,X and A = H‘)\,Q, (T*X; um(G)). SinceN C M we have a morphismls, — A5.
Setting:

A" =HY g (T X5 (F @ G) @ mx wigx),

we have also a morphismt — A” and, since\; N AJ* C T% X, the microlocal product from
Ay x A to A” is well-defined. We obtain a commutative diagram:

A1><A24>A

L

A1 XAgHAN

where the horizontal arrows are microlocal products and the vertical arrows are projections to
T%,X. In view of this diagram it is useless to consider two submanifoldX’ab define the
microlocal product of Lemma 3.4 if we are only interested in the projection of the result to the
zero-section, becausé does not appear in the second line. However, the bound for the support
of the product obtained in the first line is more precise than the bound obtained in the second
line.

Remark3.7.— The microlocal product is related to the cup-product whénis non-
characteristic fo#, i.e. T3, X N SS(F) C T% X. In this case we havé' ® wyx ~>RTy(F)
andsupp pa (F) C T% X so thatry is proper onsupp uas (F) and the projection to the zero-
section gives isomorphisms:

HY, (T*X; par (F)) ~ H (X;RTM(F)) ~ HE, (X; F @ warx),
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whereS; = mx (A;). Let us also identify the sheaves correspondingtoFs, F; of Remark 3.3
in our case. We have:

F=RTy(F)@RIN(G), F,=RIN(F®G)®uwyx, F3=RIN(@(FREG)) @wy.
Since we have alsd’ ~ wy;x ® FF @ RT'n(G), there exists a morphismi; — F, which

factorizes the morphisrty of Remark 3.3. Hence the compatibility of the microlocal product
and the projection to the zero-section gives the commutative diagram:

A1><A2 A

i |

HY (X5 F @wyx) X HE, (X;G) ——=HY 5, (X5 F © G @ wyx),

where the bottom arrow is the usual cup-product.

We will also need a slightly different version of the microlocal product. Eeft”, G, G’ be
objects ofDP(Cy). Letd: X — X x X be the diagonal embedding. We considérom (F, G)
andu hom (G, F'); they are objects dD”(Cr-x) and satisfy

Rm.phom(F,G) ~RHom(F,G), Rm.uhom(G',F')~RHom(G', F').

We have the canonical morphisms:

(3.2)  Hom(F,G)®Hom(G',F') — Hom(RHom(F',F),RHom(G',G)),
(3.3)  Hom(RHom(F',F),G®D'G') — Hom(RHom(F', F),RHom(G',G)).

We are looking for conditions which imply that morphism (3.2) can be factorized through (3.3).
This is the case if the morphisms iom (F,G) and Hom(G’, F’) arise from sections of
phom(F,G) and phom(G’, F') with suitable supports. The following result is contained in
the proof of Proposition 4.4.8 of [16].

PROPOSITION 3.8. — Let A, A’ be closed conic subsets®f X satisfyingA® N A’ C T4 X.
There exists a natural morphism

HY (T*X; phom(F,G)) @ HY, (T* X; p hom(G', F'))
— H} o (T*X; phom(RHom (F', F),G @ D'G"))
— Hom (RHom (F', F),G @ D'G'),

whose composition with morphig8.3) coincides with the composition of the projection to the
zero-section and morphis(8.2).

4. Liftingsand action on global sections

In this section we introduce liftings of an application faPamodule and a constructible sheaf
and define their action on the solutions. In the rest of the paper we will be interested in the trace
of this action.

The general situation will be the following. L&t andZ be complex analytic manifolds. We
consider a family of maps fronX to itself parameterized b¥. By this we mean a morphism of
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manifolds¢: Z x X — X; for z € Z we denote by, : X — Z x X the embedding — (z, )
and we set), = ¢oi,: X — X.We will always make the following hypothesis gn

(4.2) forall z € Z,¢,: X — X is smooth and proper.

We consider also a real analytic submanifdld of Z such thatZ is a complexification of

Zwr. To simplify the exposition we will always assume that is oriented. We denote by
or: Zr X X — X the restriction ofp, by p: Z x X — X andpg: Zg x X — X the projections,

byI'c Z x X x X andI'g C Zg x X x X the graphs ob and¢g.

DEFINITION 4.1.— LetM € D", (Dx), F € D}__(Cx). A liting of ¢ for M is a
morphism:

u € Homo ,mp @_1(/\4),371(/\4)).
A lifting of ¢ for F'is a morphism:

v e Hom(gbﬂgl(F),pﬂgl(F)).

These definitions are motivated by the example of group actions and quasi-equivariant
D-modules. Indeed if a complex Lie group acts on a complex manifolk with action
$:G x X — X, then aDx-moduleM is quasi-equivariant if there is an isomorphigm’ M ~
p~ 1M which is Og X Dx-linear (but in general ndDg « x -linear) and compatible with the
law of the group. In our definition we just forget the fact ti#is a group (and of course the
compatibility with a group law).

We will often considew as a morphism fronp—* (F') to Cz, X F through the isomorphism:

(4.2) Hom (¢ ' (F),pg " (F)) ~Hom (¢~} (F),Cz, K F).

In the same way it will be convenient to change 6l X D x -linear lifting into aDz  x -linear
one through the isomorphism:

(4.3)  RMHomo,mpy (¢ (M),p (M) ~RHomp,, (¢~ (M),KLz R M).

This isomorphism is a particular case of the following one.AMebe aD . x-module which is
a coheren®®; X Dx-module andP a coherenD x-module; then

RHome,gp (N,0z B P)~RHomp,, (N,KzKP).

Itis enough to check this fgP = Dx. Since it is local orZ x X we may take a resolution d¢f’
by finite freeO; X Dx-modules and we are reduced to

Oz KR Dx ~RHomp,, (OzXDx,KzKDx),

which is a consequence BfHomp, (07, Kz) ~ Oz.

For z € Zy the base change by the embedd{ng — Z transformsy~* M into ¢, ' M and
the lifting « into a lifting of ¢, for M, u, € Homp, (¢;* M, M). The inverse image of
by i, gives also a lifting ofg. for F, v, € Hom(¢,'F, F). Fromu, and v, we obtain a
morphism fromR Homp, (M ® F,Ox) to itself as follows. We first remark that we have a
natural morphism:

(44) RHOmDX (£M®¢;1F,Ox)—>RHOH1DX(M®F,O)().
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Indeed, the Cauchy—Kowalevski—Kashiwara theorem (which we may apply ginisesmooth)
and standard adjunction formulas for sheaves give:

RHomp, (¢,' M ® ¢, 'F,Ox) ~RHom (¢, ' F,RHomp, (¢; ' M, Ox))
(4.5) ~RHom (¢, ' F, ¢, 'RHomp, (M, Ox))
~RHom (R¢.,¢; ' F,RHomp, (M, Ox)),

where in the third isomorphism we used! ~ ¢'. Since¢, is proper we have an adjunction
morphism ' — R¢.,¢; ' F. Composing it with (4.5) and using the adjunction between
RHom(-,-) and- ® - we obtain (4.4). The tensor product®of andv, gives a morphism:

RHOHIDX (M & F, Ox) — RHOIIIDX (qbz_lM & ¢;1F, Ox),

whose composition witl4.4) gives:
S(uy,v,): RHomp, (M ® F,Ox) — RHomp, (M F,Ox).

Taking cohomology we obtain morphisms. : Exty, (M ® F,Ox) — Ext} (M ® F,0x)

and lettingz run overZy we obtain mapsr; : Zr x Exty, (M ® F,0x) — Ext), (M ® F,

Ox). We want to say that these maps are continuous in some sense but the topology of the
Ext groups is in general not separated; hence we have to stay in the derived category. Indeed
R Homp, (M ® F, Ox) is well-defined as an object @ (FN) (for example this is a particular

case of Theorem 6.1 of [17]). Lét be a relatively compact subset&g, contained in a compact

subsetK of Zg; we consider the natural embeddifg’/ — Tk (Zg; B(Z‘;Z)), wherej(z) =4, is

the Dirac function at (recall thatZy, is oriented). NowI i ( Zg; B(Z‘;Z)) is also aF'N-space and
we define a morphism:

Sk (u,v) : T (Zp; BS?)) @ RHomp, (M ® F,Ox) — RHomp, (M ® F,Ox),

such that ther; are obtained by taking the cohomology$# (u,v) and compaosing with. We
note thatl' x (Zg; Bgf)) ~ RHomp, (Kz ® Cx,0z)[2dz], and we obtairb k (u, v) similarly
asS(u,v,) by composing a morphism deduced from the tensor producteofdv:

(46) RHOmDZ(ICZ®(CK,OZ)®RHOIHDX(M®F,Ox)[2dz]
%RHOIHDZXX((ICZ EM) & ((CK X F), OZXX)[2dZ]

S (u,v _ _
<) R Homp, , (¢ "M ® ¢~ F ® Crexx, Oz x)[2d 2],

and a natural morphism:
(4.7) RHomp,, (¢ 'M®@¢ 'F&Ckyxx,Ozxx)[2dz] = RHomp, (M ® F,Ox).

The last one is defined as (4.4) by the following sequence of morphisms, where we remark that
¢' ~ ¢~ [2d 7] sinces is smooth, an® ¢ Cx » x ~ R ¢.Cx » x Since¢ is proper onk x X:
RHomp,, (¢ '"M®@¢ 'F®Cxyxx,Ozxx)[2dz]
~ RHom (Cg xx,RHomp,, « (Q_l./\/l ® ¢ ' F,0zxx))[2dz]
~RHom (Cxxx,¢” "RHomp, (M ® F,0x))[2dz]
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~ RHOm(R¢1CKXx,RH0mDX (M R F, Ox))
— RHom(Cx,RHome (M®F, Ox))
~RHomp, (M ® F,Ox).

Forw e Tk (Zg; Bgf)) we denote by

(4.8) S(u,v)(w):RHomp, M ® F,0x) — RHomp, (M ® F,Ox)

the morphism induced b§x (u,v) (it does not depend oRf). Forz € Zg we haveS(u,,v,) =
S(u,v)(6,). The purpose of the paper is to show that, whgnis compact and is an analytic
form onZg, S(u,v)(w) is nuclear with a trace given by a cohomological formula.

If the topological vector spacE = Ext}, (M ® F,Ox) is separated the fact th (u, v)
is well-defined in the derived category of Fréchet nuclear spaces implies the continaity of
Indeedr;: K x E — E is the composition of the continuous maps idz andH! (S (u,v))
and is itself continuous.

Remark4.2. —WhenZ is a group and the data are equivariant EE}Ct%X M ® F,0x)
is separatedsr; is a representation of/g. Under suitable hypothesis this representation
is admissible. The following construction is used to define the character of an admissible
representation of a Lie group. Let be a maximal degre€>-form with compact support in
Zr. We set forx € E, m; ,(z) = sz mi(z,z)w(z). (WhenZg is a semi-simple Lie group and
E is admissiblerr; ,, is trace-class and — tr ; ,, is a distribution onZg, the character of;.)
The definition ofr; ., makes sense without assuming tlatbe a group and we have:

Tiw = S(u,v)(Ww).

Remark4.3. — In the above computations we can repl&8omp, (M & F,0x) by
RHomp, (M,0x @ D'F) and obtain a morphism similar t&(u, v)(w):

S1(u,v)(w):RHomp, (M,O0x @ D'F) — RHomp, (M,0x @ D'F),
which commutes witht (u, v)(w) and the contraction morphism:

RHomp, (M, Ox® D/F) — RHomp, (M ® F, Ox).

5. Cohomology classes associated to a lifting

In this section we will build microlocal cohomology classes framand v. In the next
section we will make the product of these classes, under the assumption that thé i)
is “transversally elliptic”, and obtain a hyperfunction .

The method for defining these cohomology classes is taken from [14] and from [22] for
the microlocal aspect. We identify our lifting with the section of a “kernel” and apply a trace
morphismto it. The following general result appears in slightly different form in [224lso [7]
for integral transforms in the framework &-modules).

LEMMA 5.1.— Let f:Y — Y’ be a morphism of complex analytic manifolds and
ir:Y =Y xY', y— (y,f(y)) the graph embedding of. Let P € D®, (Dy), P’ €
D, (Dy/). We set for shortS = RHomp, (P,Oy) and S’ = RHomp,, (P, Oy"). If fis

non-characteristic fof?’ we have two natural morphisms
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RHomop, (1 (P"),P) =i} (Qyxy' @5, , (PRDP"))[dy —dy],
i (Qyxy @%,__, (PRDP))[dy — dy] = RHom (S, f'S),
whose composition coincides with the image by the fuiRtgomp,, (-, Oy ).
We note thatf~1S’ ~ RHomp, (f'(P’),Oy) becausef is non-characteristic fo’.

WhenY =Y/, f =id andP = P’ = Dy the morphisms of the lemma are Sato’s morphism
Dy — HY (OY:5)) andHY, (01Y)) — RHom (Oy, Oy).

Proof. —Since f is non-characteristic foP’ we have, by the duality isomorphism of [21],
Theorem 3.5.6Df'P' ~ f'DP’. LetT; C Y x Y’ be the graph of andp the projection

fromY x Y’ to Y’'. Let us setBlﬁi’f’;Xy, = ng’;?/, ®0y .y Br,|yxy:. SinceDy Ly, ~
-—1(12(0,dy) .
it (Brf‘;xy,),we have:

-1 1 (p0dy) oL 1
[ DP =iy (Br Wiy @0, P2 DP)
. — dy,dys
~ i (B @k, L, (Ky BDP))[dy].

Composing this isomorphism wilﬁsﬁ,dx‘“{/), —RTr, (Qy xy+)[dy~] we obtain finally:

RHomop, (f7'P",Ky) =iy (Qyxy @5, (Ky RDP'))[dy: — dy].

The tensor product witfly ®e,. P gives the first morphism of the lemma.
For the second one we will in fact build a morphism:

(5.1) Qyxy' @5, (PRDP')—RHom (p; 'S,p; 'S')[dy + dy].

Sincef is non-characteristic faf’ again, we havef ~'S’ ~ f'S’[2dy+ — 2dy] and we deduce
the isomorphism

iRHom (p;'S,p; 'S')[2dy ] = RHom (S, f~'S).

Together with (5.1) this gives the second morphism of the lemmaALbt the left hand side
of (5.1). By adjunction betweeRHom and®, morphism (5.1) corresponds to a morphism from
K @ p;'Stop, 'S'[dy + dy/]. A contraction gives

K®p1_15 — Qy xyr ®é”y, (Oy B DP").
By the Cauchy—Kowalevski—Kashiwara theorem we have the isomorphisms:
Qy xyr ®1L>YXy, (Oy ®DP') ~RHomp, ., (ps P, Oyxy:)[dy +dy/] =~ p; ' S'[dy +dy]
and thus we obtain (5.1).

The fact that the composition of our two morphisms is the application of the functor
RHomp, (-,Oy) can be checked foP = Dy andi’lP’ = Dy (then tensor product wit®

andiflp’ over Dy gives the result in general). But in this case it means that the composition
of the inclusionsDy — HY (OY3)) andHY, (O)) — RHom (Oy, Oy) is given by the
usual action of differential operators ¢h,. O
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We apply this lemma to the situation of Section 4; we keep the notations introduced
there. Because of formula (4.3) we may consider the liftindor M as an element of
Homp,, (¢~ (M), Kz B M). Let us set:

(5.2) Ly =Q2xxxx @, x (Kz ®MEDM)[—dyg].

Lemma5.1 above appliedi6=2 x X,Y' =X, f=¢, P=Kz KM andP’ = M yields a
morphism
(5.3) RHomp,, (¢~ (M), KzBM) — RTr(Lum).

The duality contraction betweett and D.M defines the trace morphism of [22]:

MR DM — §Kx =~ Ba|x xx[dx].
SinceQx « x ®1L>Xxx Bajxxx[dx] ~dwx andBa|x x x is holonomic this gives a morphism
(5.4) Ly — Oz Kowy.

Composing this with (5.3) and taking global sections we obtain from the liftinggcohomology
classinHY (Z x X x X; 0z X §wy). However, we will need the microlocal information carried
by the characteristic variety 0¥1. Hence before we apply the trace morphism, we microlocalize
along the graph of; we have:

(55) RFF(LM)ZRW*ILLF(LM)ZRW*RFAI;LF(LM),
where
A1 =SS(Lm)NTEH(Z x X x X)=(T*Z x char M x char M) N T (Z x X x X).

By Proposition 3.1 we have indeethpp ur(La) C A;. Composing (5.3) and (5.5) and
taking global sections, then applying the contraction (5.4) we obtain finally the following two
morphisms:

(5.6) Homo,gp, (¢ (M),p (M) = HY, (T*(Z x X x X); ur (L))
(5.7)  HY, (T*(Z x X x X);ur(Lam)) — Hy, (T*(Z x X x X); ur(Oz Kowy)),
where
A =41N(T*Z x TA(X x X)).
In the “transversal case$€eSection 9) we will not need to know the suppast. Forgetting the
support is equivalent to the projection to the zero-section:

(5.8) HY (T*(Z x X x X);ur(0z W owx)) — HA(Z x X x X; 07 K owx).

This last group is isomorphic tH%(Z x X;0z Kwx), whereZ is the fixed points set ap,
Z=TnN(Z x Ax).

DEFINITION 5.2.— LetZ and X be complex manifoldsp : Z x X — X a morphism of
manifolds,M € D?_, (Dx). Letu € Home ,mp (Q_I(M),B’l(/\/l)) be a lifting of ¢ for M.

coh
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The image ofu by the morphism (5.6) above will be denoted b, M, u). The image of
k(¢p, M, u) by the morphism (5.7) will be denoted by, M, «) and its projection to the zero-
section by (5.8) will be denoted hy; (¢, M, u).

Remark5.3. — Through formula (4.3) we deduce a structureTdf X Cx-module on
RHomo,mp (qﬁ_l(M),p*l(M)) sinceK z has two structures of lef? ;-module. In the same
way L andOz X dwx also have & z-linear structure. It is immediate from the construction
that the maps — k(¢, M, u) andu — ¢(p, M, u) areDz-linear.

Example5.4. — TheDx-module M = Dx has a natural lifting whose class is related to the
fundamental class of the grapgh,of ¢ in Z x X x X. We have the following isomorphism:

RHomo,mpy (¢ (Dx),p ' (Dx)) 2 RHomp,, ,  (Dzxx-%.x,Kz B Dx)

~Dx? z7xx DO,y x (OgixZ}?))*

d 0,dx,0

ZH[F)]( (O(Zx))((x)){)’
WhereH‘[iF’]‘( ) is the algebraic local cohomology with supporfinThe fundamental class of,
p e HIX (7 x X x X;05%) ), gives by the projectio® ). — 0%4x:0) a canonical
liting, ¢4, of ¢ for Dx. We have alsal yq ~ og)ggf;( [dx] and morphism (5.3) is just the
natural inclusion:

d 0,dx,0) d 0,dx,0)

(5-9) H[F}]( (O(Zx))((xx) —>HFX (O(ZX))((XX)'

The trace map (5. 4;095;3)( [dx] — Oz Kdowx, is decomposed through the restriction to the

diagonal and the ma@ix [dx] — wx:
(5.10) OF 5% dx] = 12, 02 [dx] = 07 B owy,

wherei, is the diagonal embedding &f x X in Z x X x X. SettingZ =T'N(ZxAx), we
have an isomorphism betwedi} (i, 0%:4)) andHg (0L In particularo (¢, M, £,)

is the image of a class TFI%X (og)f;)), but, even ifl’ andZ x Ax are transversal, so thatis

a submanifold o7 x X, this class is not the projection of the fundamental clasg of Z x X
(seeSection 9).

Example5.5. — The preceding example generalizes to the cas®gf-mnodule induced by a
fiber bundle M =Dx ®p, £, where€ is a locally freeOx-module. We have:

Qil(M) ~Dyyxtx Qp-10y ¢ 'E, Q_I(M) ~Dyuxtox p-10y D '€,
RHomOZEDx (?_1(/\4)7871(/\4)) = HomOZxX (¢*57p*5) ®OZ><X H([il‘}]( (Og);d)){(;o))(>

Let us call a lifting of¢ for £ anOz x -linear morphismu’ : ¢*& — p*E. The last isomorphism
says that/ determines a lifting = v’ ® ¢4 of ¢ for the associate® x-module M. We set
F=0zKENXE* so that

i+ F =~ Homo,,  (6°€,p"€) and Ly~ 0L 904, xnx Fldx]

and the morphism (5.3) corresponds to the tensor product of morphism (5.9Fwithe trace
morphism is also just the tensor product of (5.10) and the contragtionia Oz« x.
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Remark5.6. — WhenM is represented by a compléx, Q‘lM andp~' M are represented
by the complexe@‘lj\/‘ andpjlj\/' since¢ andp are smooth. If we assume thais given by
a morphism of complexes :Q‘lj\/‘ — p~'N" we have

C(¢> M7 u) = Z(_l)ic(¢>/\/i7 ul)
A similar construction holds for sheaves. Itis done in [13gdalso [16], Chapter IX), where
the computation of the characteristic class is also explained. We just state the result.

LEMMA 5.7.— Let f:Y — Y’ be a morphism of real manifolds. L&, C Y x Y’ be the
graph of f, which we identify witly". LetG € DY _(Cy), G’ € D}__(Cy~). We have a natural
isomorphism

RHom(f~'G',G) =RTIr,(GRDG').

We apply this to the situation of Section 4, with=Zg x X, Y' = X, f = ¢r, G =Cz, X F,
G’ = F. We microlocalize and take global sections so that we obtain an isomorphism:

Hom (¢ ' (F),pg " (F)) =H(T*(Zp x X x X); ur, (Cz, R F K DF)).

The class associated towill be defined as its image through this isomorphism. But we need to
consider it onT*(Z x X x X), like the class of:, rather than orT*(Zg x X x X). For this

we use the following identification. Létbe the inclusion of/g x X x X in Z x X x X; we
identifyI'g C Zg x X x X with itsimage byi. The inverse image morphisrof Proposition 3.2
applied toi gives the following isomorphism, fa& € D®(Cx«x), A a closed conic subset of
THX x X), N =TyZ x A, N"=T% Zr x A:

HY, (T*(Z x X x X); i (C2 W G)) = HL (T*(Zr x X x X); prg (wz,12 K G)).
SinceZy is oriented we have in factz, |z ~ Cz, [-dz]. There is also a trace morphism Bt
FXDF — dwy.

Let us set:
Lr=C;XFKXDF.
We obtain finally two morphisms:
(5.11) Hom (¢g ' (F),pp " (F)) = HYZ (T*(Z x X x X); pr, (Lr))
(5.12) — HY (T*(Z x X x X); pr,, (Cz Ry )),
where
Ay = (T3 Z x SS(F) x SS(F)*) N Tf, (Z x X x X),

We have also the projection to the zero-section:

(5.18) Hy? (T*(Z x X x X); ur, (Cz Mowx)) — HE? (Z x X x X;Cz Kowx).
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DerINITION 5.8.— With the notations of Section 4, the image of a liftingf ¢ for F by
the morphism (5.11) will be denoted B¢, F, v). The image ofk(¢, F,v) by (5.12) will be
denoted by:(¢, F,v) and its projection to the zero-section will be denoted§yp, F, v).

Remark5.9. — The actiorbx (u, v) defined in Section 4 can be recovered from the “kernels”
k(¢p, M,u) and k(¢, F,v) associated ta, and v in the definitions above. Indeed, I&f(u)
and ko (v) be the projections ok (¢, M,u) andk(¢, F,v) to the zero-section. Theky(u) €
H)(Z x X x X; L) andko(v) € HE? (Z x X x X; Lp). By Lemma 5.7

H{? (Z x X x X;Lp) ~H} (Zp x X x X;Cz, R F R DF) ~Hom (¢3 ' (F), pp ' (F))

and the image ok, (v) by this isomorphism is of course hence we can even recovefrom
k(¢, F,v). We cannot recover from k(¢, M, u) but only its action on the solutions:

u :RHomp,, «(Kz®M,Ozyx) — RHomp,, (Q_l(./\/l), Ozxx)-
Indeed, ko (u) is nothing else than the image ofby (5.3), hence its image by the second

morphism of Lemma 5.1 ia/. Now the data ofu’ and v are sufficient to recover the
morphism (4.6) and hencgx (u,v).

Remark5.10. — Fromk (¢, M, u) andk(¢, F,v) we can also obtain microlocal analogues of
the morphisms andu’ of the preceding remark. Let us set:

G=RHomp,,  (KzRM,0z«x), G' =RHomp, (M, Ox).

Letpio: Zx X x X — Z x X andps: Z x X x X — X be the projections on the first two and
on the third factors. Morphism (5.1) in the proof of Lemma 5.1 yields in fact a morphism:

Ly — RHom (p, G, p; "G’ [2dx].

Letir be the embedding of the graph®fin Z x X x X. By Proposition 4.4.5 of [16] (which
is a consequence of Proposition 3.2), we have, sfnisesmooth:

phom(G, ¢ 'G') = Rt ir, ' (urRHom (p1y G, p3 ' G')) [2dx].
Let us setd] =til(ir; ' (A1)). Hencek (¢, M, u) gives a section ofi hom (G, ¢~ G"),
uy, € Hy, (T*(Z x X); phom(G, 7' G")),

whose projection to the zero-section coincides with
In the same way we have an isomorphism:

phom (¢~ F,p ' F)* ~ R ir; ' (ur(Cz R F R DF)),
where we denote by-)® the inverse image by the antipodal map®f(Z x X). Sincel'r
is a closed subset df we have a morphism of functorpspR(-) — RTpur(-), whereT =
TE (Z x X x X)NTR(Z x X x X). Letus setd, = til(ir; T (A2)). Hencek(¢, F,v) gives
'€ H‘jé (T*(Z x X); whom (¢~ F,p~ ' F)*),
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whose projection to the zero-sectiomis(Note that sincer, A, C Zr x X the projection of
v,, to the zero-section belongs H)%gxx(z x X;RHom (¢~ 1 F,p~1F)) which is isomorphic
to Hom(¢g ' F,pz ' F).) Under geometric hypothesis ehar M andSS(F') we will be able to
make the microlocal product of|, andv;, and this will give another construction 6f(u,v)
showing that it is trace-class in some sense.

6. Micro-product of the characteristic classes

In this section we will make the microlocal product (defined in Lemma 3.4) of the cohomology
classes(¢p, M, u), c(¢, F,v) andk(¢p, M, u), k(¢, F,v) obtained in Section 5, under geometric
assumptions on the characteristic varietied¢andF. The product of:(¢, M, w) andc(¢, F, v)
will give a hyperfunction orZg. The product ofc(¢, M, u) andk (¢, F,v) will give a “kernel”
from which we can recover the morphisfitu, v)(w) of formula (4.8). It will be used to show
thatS(u,v)(w) has atrace.

Before we state the result we introduce a subsét'oX associated t@, which corresponds
to the conormal to the orbits whehis a group action.

DEFINITION 6.1.— LetZ, X be complex analytic manifolds ard Z x X — X a morphism
of manifolds. We set

Ay =p3(TH(Z x X x X)NTg A(Z x X x X)),

whereps : T*Z x T*X x T*X — T*X is the projection to the third factor, antl the diagonal
of X x X.LetM € D® | (Dx), F € DE__(Cx). We say that the paitM, F) is transversally
elliptic for ¢ if

char(M)NSS(F)NAy, C T X.

Here is a more explicit description dfy:

Ao ={(2.€) €T"X; J2€ Z, ¢(z,2) =, "¢(. 0)(§) = (0,6)}.

If Z is a point andp is the identity map, then, = T*X and (M, F') is transversally elliptic if
it is elliptic in the sense of [22]. The following proposition associates a hyperfuncticfi tm
liftings of ¢ for a transversally elliptic pair.

PROPOSITIONDEFINITION 6.2.— We consider complex analytic manifoldg, X and
¢:Z x X — X a map satisfying4.1). Let Zr be a real, oriented submanifold &f such
that Z is a complexification ofZz. Let M € D, (Dx), F € DE__(Cx) such that(M, F)

coh

is transversally elliptic for¢ and supp(M) N supp(F) is compact. Then the construction of
microlocal classes and the microlocal product define a natural praduct

(6.1) Homo,mp, (¢ (M),p~ " (M)) x Hom (¢g ' (F), pg ! (F)) — HY* (T*Z; 4z, (02)),
with the following bound for the wave front set of the hyperfunction so obtained
A={(z,n) € T3, Z; I(x,§) € char(M) NSS(F)?, ¢(z,2) =z and' (. (&) = (1.€) }.

Letu andv be liftings of¢ for M and F' (seeDefinition4.1). The hyperfunction image 6f, v)
by the previous morphism will be denotedayp, M, F, u, v).
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Proof. —Let us set for shorT” = T*(Z x X x X). The morphisms (5.7) and (5.12) sending a
lifting to a cohomology class already give us a morphism from the left hand side of (6.1) to

A= HOA1 (T/;,U,F(OZ X 5ng)) X Hig (T/Q,UI‘]R(CZ X (51&))()).

Hence we just need to define a morphism frdmto HY” (T*Z; 1z, (Oz)). For this we will
apply the microlocal product of Lemma 3.4 and integrate the result.

The microlocal product is defined if the sets andA$ have no intersection outside the zero-
section of T*(Z x X x X). Recall that

Ay =(T*Z x char M x char M) N TE(Z x X x X) N (T*Z x TA (X x X)),
Ay = (T5Z x SS(F) x SS(F)*) NTE, (Z x X x X)N (T3 Z x TA(X x X)).
Let us setl = char(M) N SS(F'). We see that

AMNASC(T*Zx L* x L)NTHZ x X x X)N (T3 Z x TA(X x X)).

This last set is included in the zero-section if and only.ifi A, C T% X; but this is precisely
the hypothesis of transversal ellipticity. Hence Lemma 3.4 gives us a morphismAfriam

HYZ o, (T 0, (02 B (Swx @ 0wx)) @ 1 twrizxxxx) ~ HYZ o, (T 0y (02 B diwx ).

Letp1: Z x X x X — Z be the first projection. We have a topological integration morphism
Rp1,(0z X 5.wX) — Oz and the compatibility of microlocalization and direct image gives a
map fromH}?, ,, (T"; pr, (02 ®owx)) to HY? (T* Z; 1z, (O)), whereA = p (‘p) ™ (Ar +

As). This gives the construction of morphism (6.1). In order to obtain a more explicit description
of A we notice that:

A1:{(z,m,m,n,f,—f)eT*(ZxX><X) (z,€) € char(M), ¢(z,z) =z,

Pl (&) = (0,6},
Ay = {(z,m,m,O,é, -8 eT(Z x X xX); z€ Zg, (x,8) €SS(F), ¢(z,z) =z,
"Gz, (€) = (0, €) wheren € T}, 7}
and the expression far is easily deduced. O

In order to understang (¢, M, F,u,v) as the trace of a nuclear map we will need also the
microlocal product of:(¢, M, u) andk(¢, F,v). However, this last product is defined only under
a condition stronger than transversal ellipticisgédefinition below). When defined it will yield
a “kernel” with value in

(62) LMF_QZXXXX ®DZ><X><X (ICZ|Z|(M®F) (QM@DF))[—dz]
If Zr is compact this kernel will define a morphism
H(Zg;Q7) ® RHomp, (M @ F,0x) — RHomp, (M,0x @ D'F),

which coincides with the morphisi$i(u, v) of Section 4 on the analytic forms. We will show in
Section 8 that it has a well-defined trace giveniy, M, F, u,v).
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DEFINITION 6.3. — In the situation of Definition 6.1 we set
Ay =ps3(Tp(Z x X x X)N(T5Z x T*(X x X))),
and we say that the paiy, F') is strongly transversally elliptic fap if
char(M) NSS(F)NA), C T X.

For a given point: € X let us denote by.¢: Z — X the functionz — ¢(z,x). We have the
following description ofA;:

6={(=eTX; I(2,y) €Zx X, d(2,y) =2, '(,¢).(€) =0}.

We can see from the definitions thiag C A and in general this inclusion is strict. For example,
if Z is a point, so thap is just a morphism fronX to X, and if we assume that is transversal
to id with a (discrete) set of fixed points, thenAy =5 x x TH X butA;5 =T%X. However, if
¢ is a group action then we will see in Lemma 10.1 thgt= A;, is the conormal to the orbits.

PROPOSITIONDEFINITION 6.4.— In the situation of Propositio.2 we set moreovef =
supp(M) N supp(F). We assume thatM, F') is strongly transversally elliptic fors. The
construction of microlocal kernels and the microlocal product define a morphism

Homo,mpy (¢~ (M),p~ (M) x Hom (¢ ' (F), pg ' (F))
—HI?(Z x X x X; Lm.r),

(6.3)

whereT =Tr N (Z x S x S). For v and v, liftings of ¢ for M and F, we denote by
K (¢, M, F,u,v) the image ofu, v) by this morphism.

Proof. —The proof is the same as that of Proposition 6.2. We can make the product of
k(¢p, M,u) andk(¢, F,v) if A1 N A is included in the zero-sectionl{ and A, are the bounds
for the supports of (¢, M, u) andk (o, F,v) introduced in (5.6) and (5.11)). It is easy to see that
this condition is implied by the strong transversal ellipticity. The result of the product belongs to

H{7 (T*(Z x X x X); pirg (Lam © Le) @ 7 wpjzxxxx)5

where the sef\’ has its projection included . We take the image by the projection to the
zero-section and we remark that

RIT,(Lm ® Lp) @ wrizxxxx 2RI (L, F)-

This gives the product of the propositiono

The tensor product of the duality contractions M, M X DM — §,Kx, and for F,
FXD'F — 6 Cx, define a trace morphism fdra

(6.4) trZLM,F—>Oz|X5!wx.

By functoriality of the microlocal producty (K (¢, M, F,u,v)) coincides with the product of
C(¢? M7 u) andc((?b? F7 U)'
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We want also to recover the action@fndv on the global sections, froli (¢, M, F,u,v).
Let us set:

H=RHomp,, (KzB(MF),0zxx), H' =RHomp, (M,0x @ D'F).

Letpio: Zx X x X — Z x X andps : Z x X x X — X be the projections on the first two and
on the third factors. We have a morphism

(6.5) Lam,r — RHom (py H,p; "H')[2dx],

defined as morphism (5.1) in the proof of Lemma 5.1, by a contraction and an isomorphism:
La,r @pi3 H = Qzuxxx @5, . x (Ozxx (DM@ D'F))[—dg]

~Czux X RHomop, (M, Ox ® D/F)[de].

We have also:
RIr,RHom (piy H,p; "H')[2dx] ~ RT 7.« x xxRIrRHom (py H,p5 ' H')[2d x]
~RT z,xxRHom (H,¢ " H'),
so that, taking global sections, we get:
H97(Z x X x X;Lm,p) — Hom (H ® Czoxx,¢~ " H')[dz].

Through this morphism, a “kernelt H%Z(Z x X x X;Lam,r) yields a morphism from
H ® D'Cgz,«x to¢~LH’. On the global sections we obtain
(66) S/(k) ZRHOIIIDZxX (ICZ E (M & F), OZXX ® D/(CZRXX) [2dz}

— RHomp,, . (Q_lMa Ozxx ® ¢71(D/F)> 2dz].

For Zr compact andv an analytic form of degreéz on Zg, we will show thatSz, (u, v)(w),
defined in Section 4, is nuclear. For this we will comp&tg (u,v) (defined in formula (4.6))
andS’(K (¢, M, F,u,v)); in fact they form a commutative diagram with the natural morphisms

c1 andc, described as follows. The inclusidif (Zg; Q) — HO(ZR;B%Z)) corresponds to a
morphism of contraction of duality:

C1 RF(Z X X;H® D/(CZ]RXX)[QdZ] — RHOm((CZRXx,H)[de].
We have a similar morphism:
c2:RT(Z x X;¢7'H')[2dz] — RHomp,, (¢ (M ®F),0zxx)[2dz].

PROPOSITION 6.5. — We keep the notations and hypothesis of Proposiigh We set for
shortk = K (¢, M, F,u,v). We have with the notations above

(i) trk is the microlocal product of(¢, M, u) andc(o, F,v);

(i)) c208'(k) =Sy (u,v)ocr.

Proof. —The first assertion is a simple consequence of the functoriality of the microlocal
product, applied to the morphisnis,, — Oz K dwx andLr — Cz K fwx.
For the second assertion we keep the notatidng/’ above and we set:
G=RHomp,,  (KzRM,0z«x), G' =RHomp, (M, Ox).
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In Remark 5.10 and formula (6.5) we have already built three similar morphisms, from which we
deduceds?, (u,v) andsS’(k):
Lam — RHom (piy' G, p3 ' G')[2dx],
Lrp = RHom (p§1F7P12 )[2 }
Lam,r — RHom (pry H,p3 "H') [2dx].

We set for shorf” = T*(Z x X x X) andT” =T*(Z x X). When we microlocalize alonb,
we get:

HO, (T (L)) — By, (T phom(G, 671 G")),
HY (T'; pr(Lp)) — HdZ (T” phom(¢~'F,C; K F)),
HY (T ur (L)) — H;lﬁ (T"; whom(H, ¢~ H')),

where A, A} are defined in Remark 5.10{ = A; + A2 and A’ = A} + A} (note thatA)
and A" have a projection included intdg x X). Letu),, v;,, w;, be the images of (¢, M, u)
k(¢, F,v), k by these last three morphisms. The prolectlonugfto the zero-section i$’(k).
By remarks 5.9 and 5.10 the projectionsgfandv;, to the zero-section are

v €H°(Z x X;RHom (G, ¢ 'G')) ~Hom (G, ¢ 'G'),
veHY  (Z x X;RHom(¢ ' F,Cz R F)) ~Hom (¢ 'F,Cz, R F),

whereu’ is the morphism induced by on the solutions. One has to be careful that there are two
ways of making the product of andv:

(6.7) Hom (G, ¢ 'G') x Hom (¢~ 'F,Cz, K F)
— Hom (RHom (Cz, K F,G),RHom(¢™'F,¢'G")),

(6.8) H’(Z x X;RHom(G,¢~'G")) x H  (Z x X;RHom(¢ ' F,Cz R F))
—HY, (Z x X;RHom(G, ¢ 'G') @ RHom (¢~ 'F,Cz K F))
—HY, (Z x X;RHom(RHom(Cz B F,G),RHom(¢~ ' F,¢'G")))
— Hom (RHom (Cz W F,D'Cz, ® G),RHom(¢™ ' F,¢'G")).

The image of v, v) by (6.7) is of courses?,_ (u,v) but its image by (6.8) i$’;_(u,v) o c1.

By functoriality of the microlocal producb,uL is the product ofuu andv The product

on the zero-section corresponding to this microlocal product is (6.8). Hence it follows from
Proposition 3.8 thas’, (u,v) o c; is equal tocy 0 S’ (k). O

Remark6.6. — It should be noted that all the constructions in Sections 5 and 6, in particular
the definitions of:(¢, M, u), c(¢, F,v) and their produck (¢, M, F,u,v), are “local onZ" in
the following sense. Lel/ be an open subset &f and ¢’ the restriction ofp to U x X. The
liftings v andv restrict to liftingsw’ andv’ of ¢'; the pair (M, F) is (strongly) transversally
elliptic for ¢’ if it is for ¢ and we have for example(¢’, M, F,u’,v") = x (¢, M, F,u,v)|y.

7. Restriction to a non-characteristic submanifold

We keep the notations of Sections 4 and 6. We consider moreover a subméfiifofdZy
with a complexificationZ’ in Z. For suitableZ; the pair(M, F') is still transversally elliptic
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with respect taZ’. The following proposition asserts that, in this case, the hyperfungtiam
Zy associated to the restriction of the dataZtois the inverse image of.

More precisely, let¢’: 7/ x X — X andp’:Z’ x X — X be the restrictions of) and
p. The lifting u € Homp, gp (¢~ (M), p~1(M)) of ¢ for M restricts to a liftingu’ €

Home,,mpx (¢ (M),p' " (M)). The restriction of will be denoted similarly by’

PROPOSITION 7.1. — Assume the paifM, F') is transversally elliptic with respect t¢ and
to ¢’. ThenZ’ is non-characteristic for the wave-front set of the hyperfuncién, M, F, u,v)
and the restriction of (¢, M, F,u,v) to Zg is x(¢', M, F,u',v").

Proof. —Letus denote by: Z' — Z andj: Z' x X x X — Z x X x X the inclusions, byl
andI” the graphs ofp and¢’. In morphism (5.7), we gave the following bound for the support
of ¢(¢, M, u):

A1 =(T*Z x char M x char M) NT{(Z x X x X) N (T*Z x TA(X x X)).

SinceA; is included in the conormal bundle to the graph of a map ffom X to X (in our case
) it is non-characteristic fof. Moreover, if we set\] = t5/(j-1(A;)), we have:

A} = (T*Z" x char M x char M) NTf (Z' x X x X)N (T*Z' x TA(X x X)),

and A} is the bound of the support ef¢’, M,w’). Let us denote by andT” the cotangent
bundlesofZ x X x X andZ’ x X x X.We have the inverse image morphism of Proposition 3.2
(see(3.1)):

H9\1 (T; ,U,F(OZ X 5!wx)) — Holl (T’; ur- (iil(OZ) X 5!wx)) .

Let us denote by, the composition of this morphism with the map' (Oz) — Oz . The same
reasoning forF' yields a similar morphismy, (A2 is also non-characteristic for because

it is contained inT},Z x T*(X x X)). In view of Remark 3.5 on the compatibility of the
microlocal product with the inverse image, the proposition will be proved if we showjthat
is non-characteristic fak; + A, and

el (c(d), M, u)) =c(¢', M, ), ro (c(qﬁ, F, v)) =c(¢', F,v").

Let us show thaf is non-characteristic fak; +Aq. Letp € Z/ x X x X and¢; € 7~ 1(p)NA4,
& e mY(p) N Az be such thatj’ (&1 + &) = 0. Thentj’(¢;) = —t5/(£2) belongs taA} N AL°.
But this last set is contained in the zero-section becéideF) is transversally elliptic fog’
and we havej’(&) = '5/(&) = 0. Sincej is non-characteristic foA; and A, this implies
& =& = 0. This proves thaj is non-characteristic fak; + As.

Now we show that; (c(¢, M, u)) = c(¢', M, u’) (the proof forr, is similar). We set as in
formula (5.2):

Lyt =Qzxxxx @b, . (Kz RMEDM)[—dz],
e (Kz RMX DM)[—dz].
Sincekz has two structures of lefd,-module,L ,, is a leftD;-module and we have:

/ L
LM = QZ’><X><X ®Dz/

1 L '71 ~
Dyt y ®i*1Dz] LM—L//M

In particular, the tensor product with the canonical sectigrof Dz %, gives a morphism
'L — L',. The construction of(¢, M, u) is in three steps. First we use morphism (5.3),
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then we microlocalize with the isomorphism
RIT(Lm) =2 RmRT 4, pr (L),
and finally we apply the trace morphisin, — Oz K §wx. The trace morphism commutes

obviously with the inverse image by, the microlocalization also in view of Proposition 3.2.
Hence it remains to prove that we have a commutative diagram:

JT RHomp, (¢~ (M), Kz BM) —— j~'RTr(Lm)

|

RHomp,, (¢ '(M),Kz BM)

R (L.

But in this diagram the vertical arrows are just “taking tensor product Wwjta Dz, % 2" and
they commute with the functorial morphisms described in the proof of Lemma 5.1 to obtain
morphism (5.3). O

8. Theindex asatrace

In this section we will interpret the index built in Section 6 as a generalized trace on
R Homp, (M ® F,Ox), when(M, F) is strongly transversally ellipticM € D _(Dx) and

good
Zg is compact. More precisely, we will show that, for an analytic fesran Zg, the morphism

Sz, (u,v)(w) (defined in Section 4), froR Homp, (M ® F, Ox) toitself, is nuclear, with trace
fw : X(d),M,F,U,’U)-
8.1. Traceof kernels

We consider the action of a “kernel” in the solution space @f-enodule and show that it is
nuclear, with trace, the trace of the kernel. Bebe a complex analytic spacéf € D . (Dx),

good
FeDp_(Cx).We set

Kpmpr=%xxx @, (M@F)R (DM@ D'F))
(this corresponds to the notatidmw, r of formula (6.2) withZ = {pt}). We have the trace
morphism (6.4)tr: Ky r — diwx. We denote also byr the morphism induced on the global
sections, fronH(X x X; K r) to HO(X;wx). Setting
S= }{7{()WQZ)X-(/N4 ® F, C)){) and &' = f‘?{()ﬂ@l)x-(1\4, Ox ® l)’j?)7
we have a morphism induced by (6.5) (f6r= {pt}) on the global sections:
RT:(X x X; Ky, p) —» RHom (RT(X;S),RI(X;S8)).
In particular a “kernel’k € HY(X x X; Ky, r) defines

T(k):RHomp, (M ® F,0x) — RHomp, (M,Ox @ D'F).
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We have also the contraction morphism:
c¢:RHomp, (M,0x @ D'F) — RHomp, (M ® F,Ox).

The following proposition identifies the trace Bfk) o ¢ and the trace of.

PROPOSITION 8.1. — Let X be a complex analytic spac#/ € Dgood(DX), FeDh (Cx).
We assume thatupp M N supp F' is compact. With the notations above, foe H°(X x X;
K am,r), the morphismg’(k) o ¢ and ¢ o T'(k) are nuclear morphismén the sense of Defin-
ition 2.3) respectively inD(DFN) and DP(FN). They have the same tra¢a the sense of
Definition2.5)and

tr(T(k)oc) =tr(coT(k)) = /tr(k).
X

Proof. —In the proofCx (resp Ax) is the sheaf of infinitely differentiable (resp. real analytic)
functions onX, C( 2 (resp. AX ) is the sheaf of forms of degréen X with coefficients inCx
(resp.Ax) and, for a product of mamfolds',);ix is the sheaf of forms of degréen the first
factor andj in the second factor.

In order to represent the kernielnd its action we need resolutionsiéfi, » by soft sheaves.
For this we will use the “realification” of @-module introduced in [22]. Let us recall some of
their definitions and results. We denote By= the sheaf of real analytic differential operators,
i.e. Dyr = (Dy %)l x=, whereX is the conjugate manifold aX and X® is the real analytic
manifold underlyingX, identified with the diagonal ok x X . The realification of &y -module
M is the sheaiMr = Ax ®0, M with a structure ofDyr-module defined as follows. For
a, f € Ax, me M we set:

da
07;

- 2 O (aom)=
0z; 0z; 0z; i 07; awm)=

f-(a®@m)=fa®@m.

(a@m)=

®m,

The reason for introducingUy is that, for M € Dgood(DX), Mg has a finite global
resolution by finite fre€ y=-modules, in a neighborhood of any compact subset ¢éee[22]
Proposition 3.1).

The links between the de Rham complex, the sheaf of solutions, the didlafid Mg are
explained as follows. We havedeLemmas 3.3-3.4 of [22]):

2d

(81) Qx ®éx M :C& x) ®%XR MR[_dX]’
(8.2) RHomp, (M,Ox) ~RHomp _, (Mg,Cx).
We setlC xr = Hom (A(2dX) Dx=) where the structure ofl x-module ofD y= is defined by

multiplication on the right. ThellCx= has two compatible structures of l&fty=-module. We
have:

(8.3) (DM)g ~ RHomp (Mg, Kxr)[2dx].
In view of these formulas we have:
S ~RHomp , (Mg ® F,Cx), S’:RHomDX]R(MR,CX@D’F),

Kmr~CEX" Y 0p . (M ® F)BRHomp , (Mg, Kx= ® D'F)).
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The morphism frorRT'(X x X; Ky ) to RHom(RT'(X;S),RT'(X;S’)) generalizes imme-
diately toD x=-modules as follows. Led/1, N> be inDP | (Dx=), Fi, F> inDE_ (Cx) and let
us set:

K=Cy™™ op . (W@ Fy) BRHomp (N, Kx= @ D'F)).

If supp N1 Nsupp F is compact, our morphism is given by the composition of a contraction and
a relative integration:

RI(X x X;K)®RHomp _, (M ® Fy,Cx)

(84) —RT.(X x X;Ccd2) ol (Cx ®RHomp _, (N2, Kx= © D'F)))

(X x x)R
(8.5) — RHomp_ ,(N2,Cx ®D'Fy).
Note that the integration morphism

HO(X;C8) @k | Cx) ~ B2 (X;Cx) — C

is nothing butv ® ¢ — [w - ¢ for a formw and a functionp.
Now, up to shrinkingX to a suitable neighborhood efipp M N supp F', we may take a
global resolution\V* of My of the form N = D)]\(['ﬁg. By (8.3) we havd DM)gr ~ N, where

N = fcN2ax = . Hence, by (8.1)Qx «x x ®DXXX MK DM is quasi-isomorphic to a complex

XR
. . . . dx,0) pj 2d x,0)
L of sheaves of matrices with entriesaiy, ™, L' =D, , ,—; Matn, xn_, (cax0.

Now we need a resolution of' X D'F. By Proposition 3.10 of [22], anjR-constructible
sheaf has a bounded resolutiéh with G* = EBUEL_ Cy, wherel; is a locally finite family of
relatively compact open subséfsof X such thaR’Homc,, (Crr, Cx) ~ C. Up to shrinkingX
once more we may assume tliahas such a resolution, for which the familigsare finite. Hence
F X D'F is quasi-isomorphic to a complék, wherel? =@, .. @y ver . Cuyv

With the resolutionsC” andH' we can represent the global sectionsfof r ~ £ ® H'.
Indeed, soft sheaves are acyclic for the fun&tak x X; (-),,,.v7), whereU, V' are open subsets
of X. Hence we obtain a representatife of RT'(X x X; K aq ) with

K'= P r(X xX;£' o).
itj=¢t

We have:
D(X x X; £ @HY) = P Maty, v, (DX x X35 (C55%") o))

where the sum runs over the couples of intederg) such thatp + ¢ = ¢, and the couples of
opens setgU, V) € U, , ., I x I_,. In particular, the kernet admits a representative in

K", which we assume fixed in what follows. Note that a sectioR(@f x X; (Cx xx )y .7) IS

represented by a function defined@n« W for W a neighborhood of’, with supportinC x W
for C' a compact subset @f.

Using the same resolutions fdrir and F' and isomorphism (8.2) we obtain resolutig$isof
RT(X;8)andS” of RT'(X;S’) of the form:

- Procy =@ @ e

p+r=i Uel_, p+r=i Uel_,
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In view of these resolutions, it just remains to describe morphisms (8.4) and (8.5) when
N1 =DYLfin], No = D2 i), Fi = Cu, [j1], Fo = Cuy, [j2] With i1 — ia + j1 — jo = 0. In this
case we have:

2dx,0
RT(X x X; K) ~ Maty, n, (T(X x X5 (€505%7) 1 7.)):
RHomp , (M ® F1,Cx) =~ L(Uy;Cx) ™M =iy — fa,
RHOmDXR (NQ,CX ® D/Fg) ~ F(UQ;CX)NQ[—Z.Q —jg].

Let A be a matrix inH?(X x X; K), ¢ € H*(Uy;Cx)™*. Then morphism (8.4) sends® ¢ to
© - A which is anN»-vector with entries il (X x X; (Cg‘i’)‘(’o))wxm) and morphism (8.5)

integratesy - A with respect to the first variable (recall that has support inC' x U, for

C a compact subset df;). This gives aN,-vector,¢’, with entries inI'(Us;Cx ). The map

@ — ¢’ is nuclear. Its compositions with the restriction maps, which send functions defined in
a neighborhood of/; or U, to their restrictions td/, or U,, are also nuclear. IN; = N3 and

Fy = F; they have the same trace:

Z/Aii|Ax7
X

which is the image ofd by the morphismr.
Summing over the components.&f andG" we obtain the proposition. O

8.2. Theindex asa generalized trace

In this paragraph we consider the situation described in Sectioh: 4; x X — X is a

morphism of complex manifolds satisfying condition (4.4}, € Dgood(DX), FeDb (Cx).

We assume thatipp M Nsupp F' is compact and moreover th&k is compact. We still denote
by u a lifting of ¢ for M andv a lifting of ¢ for F.
SinceZg is compact we may consider the morphism

Sz (u,v):T'(Zg; B%Z)) ® RHomp, (M ® F,0x) — RHomp,, (M ® F,0x),
defined in Section 4. We show that, fore I'(Zg;Qz), S(u,v)(w) (defined in (4.8)) is nuclear
with trace the evaluation of the index an

Let us setk = K(¢, M, F,u,v) for short. Composing the morphist’(k) defined in
formula (6.6) and the natural morphism

RHomp,, (¢~ 'M,0zxx ® ¢~ 'D'F)[2dz] - RHomp, (M,Ox ® D'F)
defined similarly as (4.7), we obtain
S(k):T(Zr;Qz) ® RHomp, (M ® F,0x) — RHomp, (M,O0x @ D'F).

For w € T'(Zg;Q2z) we denote byS(k)(w) the morphism fromR Homp, (M ® F,Ox)
to RHomp, (M,0x ® D'F) induced by S(k). Let ¢ be the inclusion of'(Zg;€z) in
I'(Zg; Bgf)) andc the contraction morphism:

c¢:RHomp, (M,0x ® D'F) — RHomp, (M ® F,Ox).
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As an immediate consequence of Proposition 6.5 we have:
coS(k) =Sz, (u,v) o (i®id).

Hence we only need to show th&{k)(w) is nuclear; in fact we will see that it is defined
by a kernel as in the preceding paragraph. Recall thista section ofL o r, where Ly, p

is defined by formula (6.2). We may multiply by w € T'(Zg;€2z) and integrate along the
projection toX x X. We obtain a kernet,, € H(X x X; K r), WhereK v r is defined in
the preceding paragraph. From the definitions ¢¥) andT'(k,,) we see thab (k)(w) = T' (k).
By Proposition 8.1 this implies thato S(k) is nuclear with tracef, tr(k,,). But the trace
morphismgr: Ly p — Oz Kdwx andtr: Ky, p — diwx commute with the integration along
the projection;: Z x X x X — X x X; hencetr(k,) = fq tr(k) - w. Now, denoting by, the
microlocal product, we have by Proposition 6.5:

/ tr(k) w= / (C(¢7M,u) *Mc(gb,F,v)) ~w:/x(gb,M,F,u,v)~w.
ZxXXxX ZxXXxX Z
Finally, we have obtained the desired result:

THEOREM 8.2. — We consider complex analytic manifolds, X and¢: Z x X — X a map
satisfying(4.1). Let Zr be a real, oriented submanifold &f such thatZ is a complexification of
Zg. Let M e Dy, 4(Dx), F € Dy_ (Cx); letu be a lifting of¢ for M andwv a lifting of ¢
for F'.

We assume thdtM, F') is strongly transversally elliptic in the sense of Definiti®:3, that
supp(M) Nsupp(F') is compact and thak is compact.

Then for any fornw € I'(Zg; Q1) the morphisn{4.8):

S(u,v)(w):RHomp, (M Q F,0x) — RHomp, (M ® F,0x)
in DP(FN) is nuclear and its trace in the sense of Definit@bis:
tr(S(u,v)(w)) = /w -X(¢, M, F,u,v).
Zr
9. Transversal case

In this section we will make additional hypothesis on the mag@g x X — X and then on the
lifting w of ¢ for M, in order to compute more easily the hyperfunctigip, M, F, u,v). We
denote as before the diagonal®fx X by Ax.

9.1. Transversal case

Until the end of the section we assume that the grgpf ¢ and the graptZ x Ax of the
projectionp: Z x X — X are transversal i x X x X (if ¢ is a group action this is the case if
and only if the action is homogeneous). This is equivalent to

A¢, CT}X,

where A, is the subset off* X introduced in Definition 6.1. Hence any pdiM, F) with

MeDp (Dx), F e Dp_ (Cx) is transversally elliptic, so that no microlocal information
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on F and M is needed to build the hyperfunctior{¢, M, F,u,v). In this paragraph we will
give a construction without using the microlocalization functor.

In Definitions 5.2 and 5.8 we introduced the following cohomology classes associated to
liftings of ¢; they are the projections of ¢, M, u) andc(o, F,v) to the zero-section:

Co(¢7M,U) € HIQ‘(Z x X X X,OZ |X|6!WX)7
co(¢, Fyv) €HY (Z x X x X;Cz R dwy),
whereS =TrN(Z xsupp F x supp F) N (Z x Ax). Let

Z:FH(ZXAX):{(Z,I)GZXX; d(z,x) =z}

be the “fixed points set” ab; by the transversality hypothesis this is a submanifold of X' x X
of dimensiond> =dz. Letq: Z — Z be the projection. We have canonical isomorphisms (note

thatS c 2):

(91)  HR(Zx X x X;07Réwx) ~HL(Z x X;0;Rwx) ~H(Z;¢'0y),

(9.2) H¥(Zx X x X;C;Rowx) ~HE (Z x X;C; Ruwy) ~HY (Z;C3).

Letd (u) € H(Z;¢'Oz) andd (v) € HYZ (Z; C) be the images afy(¢, M, u) andcg (¢, F,v)

by these isomorphisms. The cup-productdi:) and¢’(v) belongs tngZ(Z; ¢'Oz). We can
integrate it along the projectiapusing the morphismi ¢i¢' — id.

LEMMA 9.1. - If the graph,I', of ¢ is transversal taZ x Ax in Z x X x X, we have, with
the notations above

x(¢, M, F,u,v) = /c'(u) ud(v).

Proof. —The lemma is in fact just a consequence of the commutativity of the diagram in
Remark 3.7. We set for shdit = T*(Z x X x X). In view of Remark 3.6 the micro-product
of ¢(¢, M, u) ande(g, F,v) is also obtained by first sending

c(¢p, Fv) € H?é (T'; pry (Cz M oiwx))

to ng (T’; ur(Cz Rwx)) by the natural morphism associated to the inclugigrc T'. By the
transversality hypothesis is non-characteristic fo€ z X §iwx so that Remark 3.7 applies and
tells us that the projection of the micro-product to the zero-section is equal to the cup-product of
' (u) andc (v), after the identification

HE (T'; ur (Cz M éwyx)) ~HE (Z x X x X;(Cz Mowx) ® wrizxxxx)
~H{(Z x X x X;C5)
~ HdSZ(Z; C3).
This identification is the same as (9.2) and integration alpyiglds the lemma. O

9.2. Liftinginduced by afiber bundle morphism

In this paragraph we still make the hypothesis of transversality. We want to describe the class
d(u) € HY(Z;4'Oz). In particular, we will show that it is related to the fundamental clasg of
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in Z x X. For a morphism of complex manifolgs Y — Y’ we have the integration morphism
o:R fiQy[dy] — Qy-[dy/] which givesr: fiQy — HdY{/_dY(Qy/) (this morphism is used to
define the fundamental class, for example in [16], Definition 11.1.5).

We would like to substitute the comple¥0; for something easier to describe. We remark that
if ¢ is a local diffeomorphism theq' O ~ Oz, butin general there is no natural map between
q'0y and(’)g. However, the choice of a volume formon Z gives an identificatio®, ~ Q
and the integration morphismz:Rq; — Q7 gives by adjunction a natural morphism
05— ¢'Qz. It is natural to ask whether (u) arises from a sectior, (u) € HO(Z;QE)
by the composition:

HO(Z;05) 2 HY(Z;4'0,) 225 HO(Z:6' 02),

where we write, by abuse of notations, for H’(¢,) or HO(Z; o'y). For this we assume that
the D-module M arises from a “differential complex of fiber bundles”, i.e.

M:...HDX@)OXEZ’LDX@OXEH-IH...7

where theg? are locally freeO x-modules and the differentiats are Dx-linear. We assume
moreover that the lifting: of ¢ for M is induced byO z . x-linear morphisms/* : *£* — p*&?
as explained in example 5.5. In this case we know from Remark 5.6 that

co(¢, M,u) = Z(—l)ico (¢, Dx ®oy g’ ®Ly),

where/, is the natural lifting ofDx . Hence we are reduced 1ol = Dx ®o, £, wheref is a
fiber bundle and:. = v’ ® ¢,, for a lifting u’ of ¢ for £.
We setF = Oz X E X E*; we haveifF ~ Homo,, « (¢*E,p*E). Letip, ia, i be the

embeddingsof, Z x Ax, ZinZxXxX. By examples 5.5 and 5.4 we know thétu) is the
image ofu by e o d, whered ande are the compositions (tensor products betwé&emodules
are taken ove©):

d:HPX (OG0 © F) = B (ia.05:%)) = HX (07:%)),
B:H%X (Og)’xd;{‘)) —>H%((’)Z &wx) 1>H0(q!(’)z),

where the first morphism id is induced by the contractioR — i, Oz« x. We areNinterested in
the image ofu by d; in particular, we ask if it is related to the fundamental clasg af Z x X.
But we have to be careful that the morphisms induced by the fundamental clagsasdf

ir.Ozxx — HP¥ (OF%) and i,0;— 3 (02X

do not commute withd and the restrictionr, Oz« x — i*(’)g (indeed the second morphism
could be zero). However the next lemma says that the corresponding morphisms with maximal
degree forms or¥ fit into a commutative diagram. We consider the morphisms defining the
fundamental classes dfandZ:

mir. (057F)) © F — B (05758 © F),

. . d
T — ZA*ng(QZxX)>
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whererr is the integration morphism associated with tensored b)(Og)’XO)’?f)){)* ® F. We
recall that the canonical lifting4, of Dx is defined (Example 5.4) as the projection of the
fundamental class df. In view of the definition of the fundamental class we have also, for a
dz-formwonZ andforF =0z« xx x:

w®ly=1r(w).

“ d ,0,0 ” “ d 70,0 ”,
Letd' be “d® 0570 " ande’ be “e @ 05729 ™

d - HEX (O(;XZ)’?Q‘}?) ® F) HiA*HquX(QZxX%
eliiA*H(’iZVX(QZxX)_)HO(Q!QZ)‘

By definition of T we haves!, = ¢’ o T Writing Z as the transversal intersection bfand

Z x Ax, we obtain also a map fromir*(OgXZ)’?)) to .. Indeed, we have the composition of

isomorphisms:
(9.3) 0805 2 ir.Qzxx ®inQzxx O Vg xxx
, dz,0) o - dz,d " dz,dx,0)\*
2ZF*0(ZXZX)®ZA*(O(ZXZXX)®1A(O(ZXZX5X)) )

)

. (dz,0 .
~ir, Oz x @iaOzxx.

The contractiort — ia Oz« x composed with (9.3) yields
(9.4) agir, 0570 @ F — i.Q5.

For the link betwee¢ and the inverse image of forms see Remark 9.5.

LEMMA 9.2. —We assume thdtandZ x A x are transversal irZ x X x X and€ is a locally
free O x-module. We sef = O, X £ X £*. With the notations above we have a commutative
diagram

. dz,0 ag . _
ZF*(O(ZXZX))®OZ><X><X F Z*QZ

|- |

/

d dz,dx,0 P
HFX(O(Zin(X) ®0sxxxx ) > ZA*ng(QZXX)'

Proof. —By the definitions ofage and d’ it is enough to show that the same diagram, with
in(Ozxx) instead ofF, is commutative. We introduce the following sheaf dnx Ay,
Qrel = Qzxay @ADL vy x- SinceZ is the transversal intersection Bfand Z x Ax, the
integration morphisms associated; tandir are related by the commutative diagram:

irsQzxx @ iaQrel ——— 825

| |

Qzxxxx[dx] ®ia e — = in,Qzxx[dx].

Since(l, is canonically isomorphic tﬁg(@?f}’?fg{)*, we have also the isomorphisms:
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- , N n(dz0)
ZF*QZXX@)ZA*Qrcl?ZF*O(ZXx ®Rind(Ozxx),

; ~ (dz,dx,0) o -
Qzxxxx @insa 20,7655 ®ind(Ozxx).

We conclude with the remark that the compositionb—! coincides withae. O

Now we can write”/ (u) as the image of a form off. Letw be a volume form orZ. We have
d(u) - weH(Z;¢'Qy).
ForM =Dx Qo € andu =u' ® {4 as abovew ® u is the image of
weu €ir, 0570 ® F ~ip, (0570 @ Hom (¢*€,p*E))
by 7 and we have, by Lemma 9.2:
d(u) - w=(od om)(wau)=(or;0ae)(wau)= (07 0as)(weu).

If M is given by a comple” we sum over the components.

ProPOSITION 9.3. — With hypothesis and notations of Lemral we assume thai\
is given by a complex of fiber bundles/ ~ Dx ®p, £, and v by morphismsu’* €
Homop,,  (¢*E% p*EY). Then, for a volume forne on Z we have

d(u) w=0l (Z(—niagi (we u)) .

%

Let us set/,(u) = 3 (—1)ag: (w ® u'"); this is a section of2. For S C Z such thay]s is
proper, we denote also g&; the integration morphism frongZ (Z; Q3)to Hg(zs) (Z;Qz). With
the help of Lemma 9.1 and Proposition 9.3 we obtain finally the hyperfungtionM, F, u, v)

as the direct image of a form o

COROLLARY 9.4.— With hypothesis and notations of Lem®4 and Proposition9.3 we
have

xX(o, M, Fyu,v)-w= /cfd(u) uc (v).
q
Remark9.5. — Here is the link between the morphisp, of (9.4) and the inverse image
by the projectionq:Z — Z (recall thatag is just the product otvp,, and the contraction

F —in0zxx). Letp: Z x X — Z be the projection and a maximal degree form o#.
We setw = ap, (p*w); the formsw and ¢*w are related as follows. For€ Z we denote by

¢.: X — X the maps — ¢(z,z). If (z,2) € Z, theng, (z) = z and¢’, () is an endomorphism
of T, X so that it makes sense to consider the funcitfn, x) = det(id — ¢, (x)) on Z. A local
computation gives:

(9.5) ¢w=D(z,z) @.
In particular, if Z is a point andp: X — X is “transversal tad”, the class
/ d ~
c,(u) € HZX (Qx) ~ EBN(C
rEZ
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is given by a complex number at each fixed pointpofWith the notations above for a lifting
induced by fiber bundles morphisms, this number is, at a fixed point

i
, trau/

¢ (1), = XZX—WM'

This is the Atiyah—Bott formula (Theorem 4.12 of [3]) for a “linear” liftinggealso [11] for an
expression in the framework of “elliptic pairs”).

10. Group action case

In this section we consider the previous results in the case of a group action. Our marigold
assumed to be a complex Lie group and we denoted@hy: G x X — X is a group action. The
condition (4.1) is clearly satisfied. We denotedthe neutral element a7, by G a real form
of G, by g andgr the Lie algebras off andGr. Forg € G, x € X we denote byp,: X — X
the mapy — g -y, by »¢: G — X the maph — h - z and bym, : G — G the multiplication on
therighth — h - g.

We consider a3-quasi-equivariant goo® x-module, M. This means that there exists an
O¢ X Dx-linear isomorphism: from ¢~ (M) to p~* (M) compatible with the multiplication
of G (this compatibility with the product is in fact not used for the definition of the index).

In the same way we consideiG&-equivarianfR-constructible sheaf’' on X, i.e. we have an
isomorphismv from qsﬂgl(F) to pﬂgl(F) compatible with the product affx. Hence we are in
the situation of Section 4. Recall the subsetd'di associated t@, A4 andAj, introduced in
Definitions 6.1 and 6.3:

Ap={(2,§) €T*X; JgeG, g-z ==, "¢, 1 (&) = (0,§)},
b={(2,)eT"X;3(g.9) EGx X, g-y=u, “(40),(£) =0}.

We have already noticed thaf, C A;ﬁ. For a group there is also the conormal to the orbits defined
as follows. Lety: T*X — g* be the moment map of* X. By definition, for (z,¢) € T*X,
w(z, &) =" (+0).(€). The conormal to the orbits is

TeX = (0) = {(2,6) € T*X; " (.¢)L(€) = 0.

We see on this formula thdty, X C Aj,.

LEMMA 10.1.-If ¢:G x X — X is a group action we have
TEX = Ay = Ag.

Proof. —(i) We first show that\; C T X. Let (z,€) € Aj,. By definition there existg € G
such that, setting/ = g~' - 2, we have®(,¢),(¢) = 0. Then ¢ = ;¢ o my and *(,¢), =
t(myg), o' (,9),. Hence we also have, ), (£) = 0, so that(x,§) € T X.

(i) We show thafl'y, X C Ay. Let(z,§) € TEX, sothat(,¢).(€) = 0. Itis sufficient to show
that'¢(, ,,(€) = (0,£). But, in general, we have

"Hlg.a) (€)= ("(a0)5(€), " (0g)2(€))-
Sinceg. is the identity morphism oX the result follows. O
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From this lemma the paitM, F) is transversally elliptic if and only if
char(M)NSS(F)NTLX C TxX

and this is equivalent to the strong transversal ellipticity. Until the end of the section we
assume thatM, F') is transversally elliptic and thatupp(M) N supp(F') is compact.
Hence the hypotheses of Proposition 6.2 are satisfied and we can consider the hyperfunction
x(¢, M, F,u,v). Itis invariant by conjugation because of the equivariance of the data. Indeed,
let h € Gg; the conjugation by:, ¢, : G — G, g — h - g - h~! and the actior;, of h on X make

the following diagram commute:

GXXLX

Chx¢hl \Lcﬁh

Gx X "> x.

We setM’ = ¢, ' M, F' = ¢, ' F and we letu’, v’ be the inverse images af, v. We have
x(¢, M, Fyu,v) = ¢ (x(¢, M/, F',u',v")), becauser, and ¢, are diffeomorphisms. But, by
equivariance M’ ~ M, F' ~ F and«/, v' coincide withu, v, so thaty(¢, M, F,u,v) =
¢ (x(6, M, F,u,v)).

We have also a better expression for the boandf the wave-front set ok (¢, M, F, u,v)
given in Proposition 6.2. Fgr € G let us identifyT;G' = g* and TG throughm,; this gives an
isomorphismI*G ~ G x g*. Letz, y € X andg € G be such that =g -y. For{ € TX X we
have:

g ("(y0)g(€)) =" (@) (§) = (=€)

Hence with the isomorphisii“G ~ G x g* we obtain®(,¢); (§) = (g, u(z,&)). We say that
(x,8) e T*X isfixed byg € G if g -2 =z and®(¢,),(£) = £ (the second equality makes sense
because is fixed byg). We denote by:: C g* the orthogonal ofiz in g*. We have the following

expression for the bountl of the wave-front set of (¢, M, F, u, v):

(10.1) A={(g,n) € Gr x gg; 3 (x,&) € char M N SS(F)*
(10.2) (z,€) is fixed byg andn = pu(x,€) }.
This bound coincides with the one given in [5] in the case of a compact group.

Example10.2. — LetG be a complex Lie group with a compact real foffa. We letG operate
on X = G by multiplication on the left. We consider the action@t onT'(Gg; Agy), i.€. we
considertM = Dx which is naturallyG-quasi-equivariant, with lifting. = ¢, andF' = C¢, the
constant sheaf oigx C X which is also naturallyzg-equivariant, with liftingv = id . SinceX
is homogeneous we are in the setting of paragraph/®1bging associated to the trivial bundle
on X). We need to determine the forefy(¢,,) of Corollary 9.4, for a volume forrv onG. It is
the image ofv by the morphismuo . defined by formula (9.4). The fixed points set of the action
of GonX isG = {e} x X viewed as a subset 6f x X, and we identifyG with G = X by the
projectionG x X — X. If we choosew to be invariant we can see, with this identification,
that ¢/,(¢,) = w as a form onG. We have to determine also the clagév); it belongs to
H%G(é;(C&«), whereS = (Gg x supp F) N G. With our identificationG = X = G we have
S = Gg, H (G;C5) ~ H(Gr; C,) ~ C andc'(v) = 1. Finally, x(¢, M, F,u,v) - w is the
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directimage ofv| s through the projection: G — G sendingG to {e}. Hencey (¢, M, F, u,v)
is the Dirac function o{e}.

10.1. Real compact Liegroup

In this paragraph we show that the hyperfunctign, M, F, u,v) coincides with the character
of transversally elliptic operators given by Atiyah in [1]. L&k be a real compact Lie group,
acting on a real analytic manifoldl/, F;, F, be equivariant fiber bundles o and@ be an
equivariant differential operator from the sections7fto the sections ofF>. We assume this
situation can be complexified, i.e. we assume that there exist a complex Lie Grouvith Gr
as a real form, acting on a complexification, of M, andG-equivariant fiber bundles;, £ on
X endowed with az-equivariant differential operatd?, such that,, &, P restrict toF;, Fz,
Q on M. We setF' = w,; x and

M:0—>DX ®Ox 5; —>DX ®Ox gik—>0
If we choose an identification betweBf(F') = T%,X andT*M we have
G M =T X NThHyX.

Letoq : m*F1 — n* F» be the principal symbol of) (herer is the projectioril* M — M). We
have also with the identificatiofi}, X ~ T*M:

{(2,€); og(x,£) is not an isomorphistn= char M N T}, X.

Recall that@ is transversally elliptic in the sense of Atiyahdf, is an isomorphism on
T¢., M ~\ T}, M. HenceQ is transversally elliptic if and only if M, ") is transversally elliptic
in the sense of Definition 6.1.

We want to show that the hyperfunctignio, M, F, u,v) agrees with Atiyah’s index, which
is defined as the trace of the groGfx on the virtual representatidter Q — coker ), where
@ acts on the infinitely differentiable sections 1 and 7. The equality of this index with
x(¢, M, F,u,v) is nearly an immediate consequence of Theorem 8.2 except that we deal with
analytic or hyperfunction sections. We hae{om (F,Ox) ~ By, andD'F @ Ox ~ Ay;. Let
Cj; be the sheaf of infinitely differentiable functions &#. Let us set for short:

A=RHomp, (M, An), C =RHomp, (M,C37), B =RHomp, (M, Bu).

We have natural morphismd Los B, and for an analytic formw on Gg we have,
by Section 4, morphisms commuting with and g, say Sa(w): A — A, S¢(w):C — C,
Sp(w): B — B. But in fact we know by Proposition 6.5 that they are compositiong,of
and a morphisn$(w) : B — A. This implies thatS4 (w), Sp(w), Sc(w) have the same “naive
trace” (in the sense of Section 2) and hence the same trace.

PrROPOSITION 10.3. —Let Gx be a real compact Lie group acting on a real compact mani-
fold M and let@Q be a transversally elliptic operator od/. Assume thatGg, M, @ can
be complexified inG, X, P and let M be theDx-module associated t& as above. Then
x (¢, M, wx,u,v) is equal to the analytic index @} defined in[1].
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10.2. Semi-simpleLiegroup

In this paragrapltz is a connected, semi-simple, complex Lie groGf, a real form ofG,
X the flag manifold ofG. We considetM = Dx which is canonicallyG-quasi-equivariant,
with lifting ¢4, and is in fact associated to the trivial line bundleXdnwe consider also &r-
equivariantR-constructible sheat’ on X with lifting denoted bywv. The action ofG on X
is homogeneous; hence we are in the setting of Paragraph 9.2 and we can apply the results of
Corollary 9.4. In this case the fixed points set is the following subsét of X, where X is
identified with the set of Borel subgroups@f

é:{(g,B)GGXX; g € B}.
Letw € T'(G; Q). The formw = ¢, (¢,) € (G, Q) of Corollary 9.4 is given by formula (9.5):

1

~ *

Y det(id—gy(x)) 1

whereq: G — G is the projection anay () is the derivative ofp, at the fixed pointr € X.
Note that, ifg is in a maximal torudf C G andz corresponds to a Boré? O H determined by
a set of positive roota  , the determinant is the Weyl denominatseéfor Example [3]):

det(id—¢(x)) = J[ (1=e"*)(9)

aEA

Indeed, we may identifyf’, X with g/b ~ EBaeA+ g_«, Whereb is the Lie algebra ofB and
9o the eigenspace fora, and¢), (=) acts ong_, by e=“(g).

On the other hand, with the notations of paragraph 9.1, the eléssis the characteristic
cycle introduced by Kashiwara in [14]. It beIongsIﬁiG (@;(C&«), whereS = ¢~ !(supp F) C
¢ L(Gr). The subset;~1(Gg) of G is the fixed points set offz in X. But Gg has finitely
many orbits inX, sayOs,...,0,. Let us denote byﬁvi the fixed points set of7g in O, i.e.
@7— =(Gr X O;)N G. ThenCTi is a real smooth submanifold 6f of real dimensionls. Hence

¢ '(Gr) = | |G; is the union of finitely many submanifolds af of real dimensionlc. By
Corollary 9.4 the index is

(10.3) X(6.Dx, Foto) = [ ¢(0) U5
q

and is in fact the sum of direct images of a multiplecobn eachG;. This formula coincides
with the one given in [15]geealso [14] and [23]).
From the results of [18] we know that the complex
RHomp, (Dx ® F,Ox)~RHom(F,Ox)
is strict and that the resultingN -spaces representations@,

mi:Gr — End(Exti(F7 OX)),

are admissible. This implies in particular that they have generalized characters. Let us denote
by x; the character ofr;; for a maximal degre€>°-form w with compact support oit-g,
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the morphismr; , : Ext'(F,Ox) — Ext'(F,Ox), = — [ mi(g)(z) - w is trace-class and,

by definition, (x;,w) = trm; ... Now we can prove that the characfel(—1)%y; is given by
formula (10.3). This was conjectured in [15], Paragraph 6.3, and proved in [23]. (Up to the
Matsuki correspondencséde[19] and [18]) a similar character formula was also given in [14]
and proved in [20], by a comparison method between the character and Kashiwara’s formula,
using a decomposition on Schubert cells and the Osborne conjecture.)

THEOREM 10.4. — Let G be a connected, semi-simple, complex Lie gratip,a real form
of G, F' an R-constructibleGgr-equivariant sheaf on the flag manifoki of G. Let x; be the
character of the representatioBxt’(F,Ox) and ¢ the characteristic cycle of’. With the
notations above, for a volume formon G and the associated volume fofion &, we have

> (=D w_/c'u@.

q

Proof. —We have to show that(¢, Dx, F,u,v) = Y_(—1)*x;. This would be a particular case
of Theorem 8.2 ifGgr were compact. In fact we prove the result on all translates of a maximal
compact subgroup dafg.

Let us set for shork = x(¢, Dx, F,u,v) andx’ = > (—1)"y;. We know thaty’ is a central
eigendistribution. Fory we remark that/, itself is annihilated by the image i of the
augmentation idea¥_ (g) of Z(g). Indeed, forP € U(g) let Pz and Px be its images iD¢g
andDy; it is well-known seefor example [6]) that ifP € Z, (g), then Px = 0. Hence the
claim follows fromPg - £4 = {4 - Px. This implies thatPs(x) = 0 for P € Z(g) because the
construction ofy(¢, M, F,u,v) is Dg-linear; hencey is also a central eigendistribution.

Since bothy and x’ are central eigendistributions of'g, by the results of Harish-
Chandra [12], they are determined by their restrictions to the open subset of regular semi-simple
elements ofGgr, sayGr,.,. Moreover, these restrictions @g,., are analytic functions which
are locallyL! in G (notice that fory this is also a consequence of formula (10.3)). Hence we
only need to show that = x’ on G, Let K be a maximal compact subgroup@t. Let us
denote byK ¢ the complexification ofy, by £ andtc the Lie algebras ol and K¢. In fact we
will show thaty andy’ have well-defined restrictions to any translateK of K and that these
restrictions coincide. This implies clearly that= x’ on Gg,., and then thak = x'.

Let us begin with the existence of the restrictions. Formula (10.1) gives the following bound
for the wave-front set of:

A={(g,n) € Gz x g ; I(z,€) € T*X, (z,¢) is fixed byg andn = u(z,£)}.

In fact, if ¢: G — G is the projection we hava = ¢, (¢ ’_I(Tgé)) In [13] it is shown that a
central eigendistribution with trivial central character is solution offle moduleq .05 Since
charg O is contained in\, it is a bound for the wave-front set qf too and the existence of
the restrlct|0ns of andy’ to g - K is a consequence of Lemma 10.5 below.

Now we need a description of the restrictiongaadnd’. Forxy we will apply Proposition 7.1
and Theorem 8.2. We fiyy € Gr and we consider the restriction @f to g - K¢, say
Y:g9- Kc x X — X. By Lemma 10.6 below;, N SS(F') is contained in the zero-section.
Since Ay C A}, the pair (Dx, F) is transversally elliptic with respect t¢ and it follows
from Proposition 7.1 thak|,.x = x(¢, Dx, F,{y,v"), wherev' is the restriction ofv. Now,
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Theorem 8.2, together with the fact that the comfté&omp, (M ® F, Ox) is strict, says that
forweI(g- K;Qq4.x.) We have

(Xlgr,w) =Y (~1)'trm,,

wherer; is the restriction ofr; to g - K andx; , is the endomorphism dixt’(F,Ox) defined

by z — fg'K mi(k)(z) - w(k).
Hence we will have(|,. k = x|,k if we show that

<XZ|GK7 w> =tr ﬂ—z/',w'

This is proved in [8] (forK, not g - K, but the proof adapts immediately). For the reader
convenience we restate their result in Lemma 10.7. (Noterthatz) = m;(g)( [, (k') (z) -
w(g- k")) to agree with the notations of the lemmadp

LeEmMA 10.5. —With the notations of the proof of Theordih.4we have for any; € Gg:

ANTS

g

k.G CTEG.
Proof. —=The boundA is contained in
N ={(g.n) €Gr x g ; I(x,8) € T*X, n=p(x,€)} = Gr x (gg Npu(T*X)).

Up to the identification ofy andg* through the Killing form, the image of* X by the moment
map is the nilpotent coney’, of g; henceA’ = Gr x (gg NN). Let éc be the Lie algebra of
Kc. With the identificationl™* G = G x g*, we haveT? ;. G =g - Kc x & and the lemma is
reducedtoV Nned Ngg ={0}. O

LEMMA 10.6. — With the notations of the proof of Theordf.4we have
Ay NSS(F) C T X.
Proof. —Recall that
p={@8eTX;3(2,y)€9-Kcx X, z-y=wand'(,1).(¢) =0}.

Here®(,4), : T:X — T%(g- K¢) is the composition of(,¢), : T X — T:G and the projection
TG — T%(g - Kc). With the identificatiod:G = g*, we haveT (g - K¢) = ¢ and®(,¢))., is
the moment mapu. : T; X — € with respect to the action oKc. HenceA;, = uf}i(o) =
T%.X. On the other hand, sinck is Gg-equivariant its micro-support is containedlrg, X.

Since the orbits ofK¢ and Gr are transversalseefor example [19], Lemma 1.3) we have
Tk . X NTg X C Ty X and the lemma follows. O

LEMMA 10.7 (Lemma A.5 (3) of [8]). —Let Gk be a semi-simple connected Lie group and
K a maximal compact subgroup. Let Gg — End (F) be an admissible representation @k
with trivial infinitesimal character, with charactey. Letw® be the restriction ofr to K. Then
for g € Gg, x has a well-defined restriction t¢- K and for a densitye, on K we have

(Xl ly-10) = tr(m(g) o),
wherel,-. is multiplication on the left by ! and = (z) = [, 7% (k) () - (k).
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Proof. —Forw a density with compact support @i we set as before,, (z) = fG]R 7w(g)(x) -
w(g). If X andY are two submanifolds ofsx such that the multiplicationrX x Y — G,
(z,y) — z -y, is a diffeomorphism and i (resp.53) is a density onX (resp.Y’) with compact
support, we have by Fubini identity,gs = 7 © g (Dy abuse of notations we use the same
notations fory, 5, o ® B and their direct images o@g).

Let B be a subgroup offg such thatk’ x B — Gg, (k,b) — k - b is a diffeomorphism. Then
the mapg - K x B — Gg, (k',b) — k' - b is also a diffeomorphism. Let be aC>°-density
on K such thatr® has finite rank (suclx are dense among the densities Igi). Let 3; be a
sequence of *°-densities onB, with compact supports decreasing{to}, such tha‘g[B Gi=1.
The distributiony has a restriction tg - K and we have

<X\9_K7€;,1oz> = lilm <X,€;,1a ® ﬂl>

But
<X,£;,1a ® B;) = tr(ﬂg}l 0®8i) = ‘51‘(775;71 aoms,) =tr(m(g)oma 0oms,).

Since §; tends to the Dirac function afe}, 7, tends toidg and sincer, has finite rank
tr(m(g) o ma 0 g, ) tends totr(7(g) o, ). By definitionm, = 7% and the lemmais proved.o
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