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INDEX OF TRANSVERSALLY ELLIPTICD-MODULES

BY STÉPHANE GUILLERMOU

ABSTRACT. – We consider the action of a complex Lie groupG on a complex manifoldX, aG-quasi-
equivariantDX -module,M, and aR-constructible sheaf,F , onX, equivariant for the action of a real form,
GR, of G. Under transversal ellipticity hypothesis on the characteristic varieties ofM andF , we associate
to these data a hyperfunction onGR, by a microlocal product of characteristic classes. We show that ifGR is
compact this hyperfunction corresponds to the generalized trace of the action ofGR in the global solutions
of M⊗ F . This remains true ifGR is a semi-simple Lie group acting on its flag manifold, which gives a
proof of a character formula of Kashiwara. 2001 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Nous considérons l’action d’un groupe de Lie complexeG sur une variété complexeX, un
DX -module,M, G-quasi-équivariant et un faisceauR-constructible,F , surX, équivariant sous l’action
d’une forme réelle,GR, deG. Sous des hypothèses d’ellipticité transverse sur les variétés caractéristiques de
M et F , nous associons à ces données une hyperfonction surGR, par des méthodes de produit microlocal
de classes caractéristiques. Nous montrons que siGR est compact cette hyperfonction correspond à la trace
généralisée de l’action deGR sur les solutions globales deM ⊗ F . Ceci est encore vrai siGR est un
groupe semi-simple agissant sur sa variété des drapeaux, ce qui donne une démonstration d’une formule de
caractères de Kashiwara. 2001 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

We consider the situation of the Lefschetz–Atiyah–Bott formula of [2] (in an analytic
framework), i.e.M is a compact manifold,ϕ :M →M a smooth map,E · an “elliptic complex”
on M and u· :ϕ∗E · → E · a “lifting” of ϕ to E ·; the cohomology groups ofE · are finite-
dimensional and the trace of the morphismΓ(u) induced byu on the cohomology is given
by a fixed points formula. We are interested in deformations ofϕ and u, φ :T ×M →M ,
u′ :φ∗E · → p∗E ·, wherep :T ×M →M is the projection. For eacht ∈ T they restrict to a
mapφt :M →M and a lifting ofφt, u′t :φ

∗
tE · → E ·. It makes sense to consider the function

t �→ trΓ(u′t) onT . In fact, following Atiyah’s idea about transversally elliptic operators (see[1]),
it is possible to weaken the hypothesis of ellipticity onE · (the cohomology is no longer
finite-dimensional) and still get a hyperfunction onT , which corresponds to a trace in a
generalized sense. We do this in the framework ofD-modules and constructible sheaves using
the constructions of the character cycle by Kashiwara in [14] and of the microlocal Euler class
by Schapira and Schneiders in [22]. We are interested in application to equivariantD-modules
and sheaves but our construction is local on the space of parameters, which is not supposed to be
a Lie group (this will be useful in Section 10.2).
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224 S. GUILLERMOU

More precisely, letZ , X be complex analytic manifolds,ZR a real submanifold ofZ whose
Z is a complexification,φ :Z ×X →X a map such that, for eachz ∈ Z , the mapφz :X→X ,
x �→ φ(z, x) is smooth and proper. LetM∈Db

coh(DX), F ∈Db
R−c(CX); we consider “liftings”

of φ for M andF , i.e. u :φ−1M→ p−1M a OZ � DX -linear morphism andv :φ−1F →
CZR

� F (in the above settingX should be a complexification ofM , M = DX ⊗OX E · and
F = CM ). The motivation for these definitions is the example of quasi-equivariantD-modules
and equivariant sheaves, in which case we assume moreover thatZ is a group andu andv are
compatible with the law of the group. However, for the main results of this paper we will not
need thatZ be a group.

For eachz ∈ ZR, the liftings restrict touz :φ−1
z M→M, vz :φ−1

z F → F and induce a
morphism on the global solutions ofM andF :

S(uz, vz) :RHomDX (M⊗ F,OX)−→RHomDX (M⊗ F,OX).

Hence we obtainπi :ZR×ExtiDX
(M⊗ F,OX)→ ExtiDX

(M⊗F,OX). We want to compute
the “generalized trace” ofπi as a hyperfunction onZR. This generalized trace should be
understood as in representation theory. Letπ :G→ End(E) be a continuous representation of
a Lie group; we assume that for each infinitely differentiable formω with compact support on
G the endomorphism ofE, πω :x �→

∫
G
π(g)(x) · ω is trace class and thatχ :ω �→ trπω is a

distribution. Thenχ is called the character ofE. We note that this definition makes sense also if
G is not a group andπ is just a family of endomorphisms ofE.

In our case the vector spacesExtiDX
(M ⊗ F,OX) have in general no natural separated

topology (we will consider also the particular case whenZ is a semi-simple Lie group
and X its flag manifold; for this case Kashiwara and Schmid have proved in [18] that the
ExtiDX

(M⊗ F,OX) are continuous representations ofZR). But RHomDX (M⊗ F,OX) is
well defined in the derived category of Fréchet nuclear spaces and continuous linear maps. We
can build directlyπi in this category if we sendZR into Γc(ZR;B(dZ)

ZR
) by the mapz �→ δz , δz

being the Dirac function atz (we assume thatZR is oriented). Indeed, in Section 4 we will see
thatu andv define a morphism

S(u, v) :Γc(ZR;B(dZ)
ZR

)⊗RHomDX (M⊗ F,OX)−→RHomDX (M⊗ F,OX),

such that forz ∈ ZR, S(uz, vz) = S(u, v)(δz ⊗ ·) and, more generally,πω above corresponds to
S(u, v)(ω⊗ ·).

In Section 2 we show that the notions of nuclear map and trace of a nuclear map extend well to
the derived category (the important point here is the fact that nuclear maps from nuclear spaces
are well behaved with respect to quotient and inclusion).

In Sections 5 and 6 we attach tou and v a hyperfunctionχ(φ,M, F, u, v) on ZR by a
cohomological trace formula and a microlocal product. More precisely, tou we associate its
“kernel” k(φ,M, u) (seeDefinition 5.2) with value in aD-module supported by the graph,Γ, of
φ in Z ×X ×X , and we take its image by a diagonal trace map. We microlocalize alongΓ in
order to keep the information carried by the characteristic variety ofM; we obtain a cohomology
class:

c(φ,M, u) ∈H0
Λ1

(
T∗(Z ×X ×X);µΓ(OZ � δ!ωX)

)
,

whereΛ1 is a subset ofT∗Γ(Z ×X ×X) depending oncharM. ForF andv we obtain also a
kernelk(φ,F, v) and a similar class:

c(φ,F, v) ∈HdZ

Λ2

(
T∗(Z ×X ×X);µΓR

(CZ � δ!ωX)
)
,
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whereΛ2 depends onSS(F ). If Λ1 ∩ Λa2 is contained in the zero-section we can make the
“microlocal product” of the two classes and take the direct image toZ . This construction gives a
microfunction:

χ(φ,M, F, u, v) ∈HdZ

Λ

(
T∗Z;µZR

(OZ)
)
,

whereΛ is a bound expressed in terms of the fixed points ofφ in charM∩SS(F ) (in the case of
a group action it coincides with the bound given by Berline and Vergne in [5]). The condition on
Λ1 andΛ2 has a nice expression onX . Let us introduce the following subset ofT∗X associated
to φ:

Λφ = p3

(
T∗Γ(Z ×X ×X)∩T∗Z×∆(Z ×X ×X)

)
,

wherep3 :T∗Z ×T∗X ×T∗X→ T∗X is the projection to the third factor, and∆ the diagonal
of X×X . Whenφ is a group action,Λφ is the conormal to the orbits. The setΛ1∩Λa2 is included
in the zero-section if the pair(M, F ) is “transversally elliptic”, i.e.

char(M) ∩ SS(F ) ∩Λφ ⊂T∗XX.

In particular, if φR :GR × M → M is a real group action which can be complexified into
φ :G×X →X , then, forF = CM , SS(F ) ∩ Λφ = T∗MX ∩ Λφ can be identified withT∗GR

M .
Hence ifM is associated to an equivariant differential operatorP , the above condition is satisfied
if and only if P is transversally elliptic in the sense of Atiyah.

To make the link betweenχ(φ,M, F, u, v) and the trace ofS(u, v) we will use that
χ(φ,M, F, u, v) is the trace of the microlocal product of the kernelsk(φ,M, u) andk(φ,F, v).
Unfortunately, we need a stronger hypothesis on(M, F ) to make the product of these kernels
because their supports are bigger thanΛ1 andΛ2. We set:

Λ′φ = p3

(
T∗Γ(Z ×X ×X)∩

(
T∗ZZ ×T∗(X ×X)

))
.

In general,Λφ is strictly included inΛ′φ but for a group action they are equal. We say that(M, F )
is strongly transversally elliptic if

char(M) ∩ SS(F ) ∩Λ′φ ⊂T∗XX.

The main result of the paper is Theorem 8.2 which says that ifZR is compact,M is good and
(M, F ) is strongly transversally elliptic then, for an analytic formω on ZR, S(u, v)(ω ⊗ ·) is
nuclear with trace

∫
ZR

ω · χ(φ,M, F, u, v). (In particular, for actions of compact Lie groups, we
obtain in Section 10 that our cohomological index coincides with Atiyah’s index of transversally
elliptic operators.)

The idea of the proof is, roughly speaking, that, if(M, F ) is strongly transversally elliptic,
thenS(u, v)(ω⊗·) can be defined with a “smoothing operator”. We first prove that, forM good,
a morphism fromRHomDX (M⊗ F,OX) to itself induced by a kernel with value in

ΩX×X ⊗LDX×X

(
(M⊗ F )� (DM⊗D′F )

)
(this could be compared to a smoothing operator) is nuclear with trace the cohomological trace
of the kernel. For this we use the realification of aD-module introduced by Schapira and
Schneiders. Now letk be the microlocal product of the kernelsk(φ,M, u) andk(φ,F, v). For an
analytic formω onZR, let kω be the direct image onX ×X of k ·ω. This is a kernel onX ×X
of the kind above; hence it has a well-defined trace. The morphism associated tokω is nothing
butS(u, v)(ω⊗ ·) (seeProposition 6.5) and the theorem follows.
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In Section 9 we assume that the graph ofφ, Γ, is transversal to the diagonal,Z × ∆, of
Z ×X ×X (for a group action this means thatX is homogeneous). In this caseΛφ is included
in the zero-section so that any pair(F,M) is transversally elliptic and the microlocal product is
nothing but the usual cup-product on the zero-section. If we assume moreover thatM arises from
a complex of vector bundles andu from a morphism of complexes, we can show thatc(φ,M, u)
is the image of a holomorphic form on the fixed points manifoldZ̃ = Γ ∩ (Z ×∆). (If Z is a
point this means thatφ :X→X is a map transversal toid and we obtain the Atiyah–Bott formula
of [3] for a “linear” lifting.)

In Section 10 we consider in particular the action of a complex semi-simple Lie group,G, on
its flag manifold,X . Since the action is homogeneous, any pair(M, F ) is strongly transversally
elliptic. For M = DX and F a GR-equivariant sheaf onX (GR being a real form ofG),
our formula forχ(φ,M, F, u, v) is the formula given by Kashiwara in [15]. We prove that
χ(φ,M, F, u, v) has a well-defined restriction to any translate,g · K , of a maximal compact
subgroup,K , of GR. Hence we obtain (Theorem 10.4) thatχ(φ,M, F, u, v) is the character
of GR in RHom(F,OX) (which is a continuous representation ofGR by Kashiwara–Schmid
results), as conjectured in [15] (see[23] for another proof).

Notations
We will mainly follow the definitions and notations of [16]. For a manifoldX , πX :T∗X→X

(or π is there is no risk of confusion) is the projection from the cotangent bundle toX . For a
morphism of manifoldsf :X→ Y , we have the induced maps on the cotangent bundles:

T∗X
tf ′

←−X ×Y T∗Y
fπ−→T∗Y.

If Λ is a closed conic subset ofT∗Y , we say thatf is non-characteristic forΛ if tf ′ is proper
on f−1

π (Λ). We denote byΛa the image ofΛ by the antipodal map ofT∗Y , (y, ξ) �→ (y,−ξ).
We denote byDb(CX) (resp.Db

R−c(CX)) the bounded derived category of sheaves (resp.R-
constructible sheaves) onX .

The topological dualizing complex isωX = a!
C, for a the projection fromX to a point. More

generally, forf :X→ Y , we setωX|Y = f !
CY . ForF ∈Db

R−c(CX), its dual and its naive dual
are:

DF =RHom(F,ωX), D′F =RHom(F,CX).

If M is a submanifold ofX , the conormal bundle toM is denoted byT∗MX and Sato’s
microlocalization functor alongM is denoted byµM . The diagonal ofX ×X is denoted by
∆X or∆. The functorµHom is defined by:

µHom(F,G) = µ∆RHom(q−1
2 F, q!

1G),

whereqi is the projection fromX ×X to theith factor. The micro-support ofF ∈Db(CX) is
denoted bySS(F ).

For a complex analytic manifoldX , we denote bydX its complex dimension, byΩX orO(dX )
X

the sheaf of holomorphic maximal degree forms onX . For a product of complex manifolds we
denote byO(a,b)

X×Y the holomorphic forms of degreea onX andb onY . A DX -module is “good”
if, in a neighborhood of any compact subset ofX , it admits a finite filtration by coherentDX -
submodules, such that each quotient of this filtration can be endowed with a good filtration.
We denote byDb

coh(DX) (resp.Db
good(DX)) the bounded derived category of complexes of

DX -modules with coherent (resp. good) cohomology. Iff :X → Y is a morphism of complex
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analytic manifolds, the inverse and direct images forD-modules are denoted byf−1 andf∗. The
dualizing complex for leftDX -modules is

KX =HomOX (ΩX ,DX)[dX ].

It has two leftDX -module structures. The dual of a leftDX -moduleM is the leftDX -module:

DM=RHomDX (M,KX).

The characteristic variety ofM is denoted bycharM. We say that a map is non-characteristic
for aD-moduleM or a sheafF if it is non-characteristic forcharM or SS(F ). We denote by
� and� the external tensor products for sheaves andD-modules.

2. Nuclear maps in the derived category

We will need a notion of trace for a morphism in the derived category of Fréchet nuclear spaces
(FN -spaces), orDFN -spaces. We prove that the notions of nuclear map and trace of a nuclear
map extend well to the derived category.

We will not recall the definitions of nuclear maps and nuclear spaces; we refer to [10], or
for example to [25] for an exposition. Let us quote some properties that we will need. In the
following we write LCTVS for locally convex topological vector space.

PROPOSITION 2.1. – (i)Let u :E→ F be a continuous linear map between two LCTVS; it

is nuclear if and only if it is the compose of continuous linear mapsE
f→E1

v→ F1
g→ F , where

E1, F1 are Banach spaces andv is nuclear.
(ii) A LCTVSE is nuclear if and only if every continuous linear map ofE into a Banach space

is nuclear.
(iii) A linear subspace of a nuclear space is nuclear; the quotient of a nuclear space modulo a

closed linear subspace is nuclear.

These properties can be found in [10] (remarks after Definition 4 of Chapter I, Remark 6
of Chapter II, Theorem 9 of Chapter II), or in [25] (Proposition 47.2, Theorem 50.1,
Proposition 50.1).

The derived category ofFN -spaces and linear continuous maps is constructed as follows
(see[4] and also [24]). LetCb(FN ) be the category of bounded complexes ofFN -spaces. The
categoryKb(FN ) is obtained fromCb(FN ) by identifying to0 a morphism homotopic to0. The
complexes which are algebraically exact form a null system inKb(FN ). The derived category
Db(FN ) is defined as the localization ofKb(FN ) by this null system. Since the topological
tensor product⊗ is exact on the category ofFN -spaces, it extends to the derived category. The
categoryDb(DFN ) is defined similarly.

In [10] Grothendieck develops a theory of “p-summable” Fredholm kernels and introduces the
nuclear spaces. We give a brief summary of the results we will need. ForG, F two LCTVS and

p a real number such that0 < p � 1 let G
(p)

⊗ F be the set of elements ofG⊗ F which can be
written

∑
i λi xi⊗yi with

∑
i |λi|p <∞ and(xi) (resp.(yi)) in a bounded convex circled subset

A (resp.B) of G (resp.F ) such that the associated normed spaceGA (resp.FB ) be complete.
By [10], Chapter II, Corollary 4 of Theorem 4, we know that for a LCTVS E the natural map

E′
(2/3)

⊗ E → L(E,E) is injective (hereE′ is the strong dual ofE andL(E,E) is the set of
continuous linear maps fromE to itself). Hence a mapu ∈ L(E,E) which belongs to the image
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of E′
(2/3)

⊗ E has well-defined determinant and trace, namely the determinant and trace of its

unique kernel inE′
(2/3)

⊗ E.

Let u ∈ E′
(1)

⊗ E and let ũ be its image inL(E,E). The link between the determinant of
u and the eigenvalues of̃u is explained in [9], Chapter II, Theorem 4. Forλ ∈ C � {0}
setE1/λ =

⋃
p∈N

ker(id−λũ)p. Thenn = dimE1/λ is finite andλ is a zero of ordern of
det(id−zu). Moreover, ifF1/λ = im(id−λũ)n, thenE is the topological direct sum ofE1/λ

andF1/λ, and(id−λũ) :F1/λ→ F1/λ is an isomorphism.

If u ∈E′
(2/3)

⊗ E and(λi)i∈N is the sequence of eigenvalues ofũ, with multiplicities, we have
also (see[10] Chapter II, Corollary 4 of Theorem 4):

det(id−zu) =
∏
i∈N

(1− zλi),
∑
i∈N

|λi|<∞, tru=
∑
i∈N

λi.

These results apply in particular to nuclear maps from nuclear spaces because, by [10],
Chapter II, Corollary 3 of Theorem 11, any bounded map from a nuclear quasi-complete space

E to itself is in the image ofE′
(p)

⊗ E for anyp > 0.
If u :E→G is a nuclear map between two LCTVS andF is a closed subspace ofE such that

u(F ) = {0}, the induced mapE/F →G is in general not nuclear (see[10], Chapter I, Remark 9
after Proposition 16). However, this is true ifE is a nuclear space.

LEMMA 2.2. – Letu :E→G be a nuclear map between two LCTVS and assume thatE is a
nuclear space.

(i) AssumeF is a closed subspace ofE such thatu(F ) = 0. Then the induced map
u′ :E/F →G is nuclear.

(ii) AssumeF is a closed subspace ofG such thatu(E) ⊂ F . Then the induced map
u′′ :E→ F is nuclear.

Proof. –(i) Since u is nuclear it decomposes asE
a→ B1

b→ B2
c→ G, whereB1, B2 are

Banach spaces andb is nuclear, by Proposition 2.1. We can factorc through the quotient of
B2 by ker(c) and hence assume thatc is injective. Thenker(u) = ker(b ◦ a) andu′ decomposes
asE/F

u1→ B2
c→ G. Now E/F is nuclear too and any continuous linear map from a nuclear

space to a Banach space is nuclear by Proposition 2.1. Henceu1, andu′, are nuclear.
(ii) We write u = c ◦ b ◦ a as above. Sinceim(a) ⊂ (c ◦ b)−1(F ) we may replaceB1 by

(c ◦ b)−1(F ) and hence assume thatim(c ◦ b)⊂ F . Thenu′′ decomposes asE
u2→B1

c◦b→ F and
it is nuclear becauseu2 is. ✷

DEFINITION 2.3. – LetE·, F · be objects ofDb(FN ). A morphismu :E·→ F · in Db(FN )
is callednuclearif there exists a morphism of complexesv· :E·→ F · in Cb(FN ) such that all
mapsvi :Ei → F i are nuclear andu = v· in Db(FN ). A nuclear morphism inDb(DFN ) is
defined in the same way.

The following lemma implies that a nuclear morphism inDb(FN ) or Db(DFN ) has a
well-defined trace which depends only on the (purely algebraic) morphism induced on the
cohomology. It is convenient to introduce the following notations and terminology. For an
endomorphismw :G→G of aC-vector space andλ ∈C, we write:

Gλ =
⋃
n∈N

ker(w− λ id)n, λG=
⋂
n∈N

im(w− λ id)n.
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We say thatw has a “naive trace” if, settingmλ = dimGλ, we have:

∀λ∈C
∗, mλ <∞ and

∑
λ∈C∗

mλ · |λ|<∞.

If this is the case we setntrw =
∑

λ∈C∗ mλ · λ.

LEMMA 2.4. –LetE· be a bounded complex of nuclear spaces andu· :E·→E· a morphism
of complexes such that eachui is nuclear. Then, for eachi, Hi(u·) :Hi(E·)→ Hi(E·) has a
“naive trace” and: ∑

i

(−1)i ntrHi(u·) =
∑
i

(−1)i trui.

Proof. –We prove the lemma by induction on the length of the complexE·. If it is of length1
this is a restatement of the properties of nuclear maps in nuclear spaces recalled above, in
particular that they have a “naive trace” equal to the trace of their kernel.

Let us assumeE· is of lengthn (with Ei = 0 for i < 1 andi > n) and the result is true for
complexes of length less thann− 1. Let us consider the truncated complexF · = τ<nE

· and the
endomorphismv· of F · induced byu·. By definition,F i =Ei for i � n− 2, Fn−1 = kerdn−1

E ,
F i = 0 for i � n. By Proposition 2.1, theF i are also nuclear spaces and, by Lemma 2.2,vn−1

is nuclear so that the induction hypothesis applies toF · andv·. By the definition ofF · andv·

we haveHi(F ·) � Hi(E·) andHi(v·) � Hi(u·) for i < n; hence it just remains to prove that
Hn(u·) :En/ imdn−1

E →En/ imdn−1
E has a naive trace and

ntrHn(u·) = trun− trun−1 + trvn−1.

Sinceun, un−1, vn−1 are nuclear maps in nuclear spaces they have a naive trace equal to their
trace as nuclear maps. Hence our lemma will follow from the exactness of the sequence:

0→ Fn−1
λ →En−1

λ →En
λ →

(
En/ imdn−1

E

)
λ
→ 0,

for all λ∈C
∗.

The exactness at the first two terms is obvious. Recall thatEn = En
λ ⊕ λE

n andEn−1 =
En−1
λ ⊕ λE

n−1 and sincedn−1
E commutes withu·, dn−1

E respects this decomposition. Hence
an element ofEn

λ which is in imdn−1
E is in fact the image of an element ofEn−1

λ . This proves
the exactness at the third term. Let us prove the surjectivity at the last term. Letx ∈ En be
such that(un − λ id)k(x) ∈ imdn−1

E . We have to find an element ofEn
λ in the class ofx

moduloimdn−1
E . We may as well assume thatk is great enough so thatim(un − λ id)k = λE

n.
Since(un − λ id)k(x) belongs toλEn ∩ imdn−1

E there existsy ∈ λE
n−1 such thatdn−1

E y =
(un − λ id)k(x) (again becausedn−1

E respects the decomposition ofEn and En−1). We
know that un−1 − λ id : λEn−1 → λE

n−1 is an isomorphism, so that we may writey =
(un−1 − λ id)k(y′) with y′ ∈ λE

n−1 and we have(un − λ id)k(x − dn−1
E y′) = 0. Hence

x′ = x− dn−1
E y′ belongs toEn

λ ∩ (x+ imdn−1
E ) and this proves the surjectivity.✷

DEFINITION 2.5. – Letu :E·→ E· be a nuclear morphism inDb(FN ) or Db(DFN ) and
let v· :E·→E· be a morphism of complexes representingu with thevi nuclear. We call trace of
u the numbertru=

∑
i(−1)i tr vi which only depends onu by the preceding lemma.

Remarks2.6. – 1) Since the trace of nuclear maps between topological vector spaces is
additive, the trace we have defined is also additive.
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2) From the algebraic description of the trace it is easy to see that ifE, F are objects of
Db(FN ) or Db(DFN ) andu :E→ F andv :F → E are two morphisms such thatu ◦ v and
v ◦ u are nuclear thentru ◦ v = trv ◦ u.

3) The lemma implies in particular that ifidE is nuclear for an objectE of Db(FN ) then the
cohomology groups ofE are of finite dimension.

4) If u :E→ E is a nuclear morphism inDb(FN ) and imdiE is closed for a giveni, then
Hi(E) is anFN -space andHi(u) :Hi(E)→ Hi(E) a nuclear map. In particular,Hi(u) has a
trace as a nuclear map andtrHi(u) = ntrHi(u).

5) For three LCTVSE, F , G and two continuous linear mapsu :E → F , v :F → G, the
compositionv ◦ u is nuclear as soon asu or v is nuclear. The same is true in the category
Db(FN ) for our notion of nuclear morphism as will follow easily from the next lemma.

LEMMA 2.7. –LetE·, F ·, G· be objects ofCb(FN ).
(i) Let u· :E· → F ·, ϕ· :E· → G· be morphisms inCb(FN ) such that eachui :Ei → F i

is nuclear andϕ· is a quasi-isomorphism. Then there exists a morphism of complexes
v· :G·→ F · such that eachvi :Gi→ F i is nuclear andv· ◦ ϕ· is homotopic tou·.

(ii) The same with reversed arrows.

Proof. –(i) Let us denote byd·E , d·F , d·G the differentials ofE·, F ·, G·. We consider the
mapping coneM · of ϕ·, i.e.M i =Ei+1 ⊕Gi with differential

diM =
(−di+1

E 0
ϕi+1 diG

)
.

Sinceϕ· is a quasi-isomorphism,M · is (algebraically) exact. The morphismu· induces a
morphismu′

· = (u·,0) from M · to F ·[1], where F ·[1] is the complex with components
F i[1] = F i+1 and differential−d·F . Eachu′i is of course nuclear. We claim that there exists
a homotopysj :M j→ F j such that eachsj is nuclear andu′j =−djF ◦ sj + sj+1 ◦ djM . Since
the complexes are bounded we may prove this by increasing induction. We assume thatsj has
been built forj � i and we constructsi+1. We considera = u′

i + diF ◦ si. Sincea ◦ di−1
M = 0

and imdi−1
M = kerdiM , a factors through a mapb :M i/kerdiM → F i+1, which is nuclear by

Lemma 2.2. By the open mapping theorem (M i andimdiM = kerdi+1
M are Fréchet spaces) the

injectionM i/kerdiM →M i+1 is an isomorphism ofM i/kerdiM onto its image. In this situation
b factors through a nuclear mapsi+1 :M i+1→ F i+1 (see[10] Chapter I, Proposition 16) so that
u′
i =−diF ◦ si + si+1 ◦ diM . Hence we have proved the existence of the homotopy.
Now we decomposesi = (si+1

E , siG) and write the preceding equality in terms of this
decomposition. We obtain:

ui =−diF ◦ si+1
E − si+2

E ◦ di+1
E + si+1

G ◦ϕi+1,(2.1)

0 =−diF ◦ siG + si+1
G ◦ diG.(2.2)

Let us setvi = siG; it is a nuclear map sincesi is. Formula (2.2) shows thatv· :G· → F · is a
morphism of complexes and formula (2.1) shows thatu· andv· ◦ ϕ· are homotopic.

(ii) The proof is similar. We consider the morphism fromF · to the mapping cone ofϕ·

induced byu· and we show that this morphism is homotopic to0 by a nuclear homotopy. This
is done by decreasing induction, using a property of lifting of nuclear maps (see[10] Chapter I,
Proposition 16 or also [22], Proposition 2.3 of the third part):

Let u :A→ B, v :C → B be two morphisms of Fréchet spaces withu surjective andv
nuclear. Then there exists a nuclear mapw :C→A such thatv = u ◦w. ✷
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Now let u :E·→ F ·, v :F · → G· be two morphisms inDb(FN ) and assumeu is nuclear.
Thenu is equal inDb(FN ) to a morphism of complexesu′· :E· → F · such that eachu′i is
nuclear and there exist a complexH· and morphisms of complexesϕ· :H·→ F ·, v′· :H·→G·

such thatϕ is a quasi-isomorphism andv = v′ ◦ ϕ−1. Hencev ◦ u= v′ ◦ ϕ−1 ◦ u′ in Db(FN ).
By the previous lemma there exists a morphism of complexesu·1 :E

·→ H· such that theui1 are
nuclear andu′ is homotopic toϕ ◦ u1. Hencev ◦ u= v′ ◦u1 in Db(FN ). Since the composition
of a nuclear map with a continuous linear map is nuclear this shows thatv ◦ u is nuclear. In the
same way we can prove thatv ◦ u is nuclear ifv is.

3. Review on the microlocalization functor

Since we will make constant use of Sato’s microlocalization functor we recall here some of its
main properties as stated in [16].

Let X be a real manifold,M a closed submanifold ofX . Let i :M →X , j :T∗MX → T∗X
be the inclusions andπX :T∗X →X the projection. The microlocalization alongM , µM is a
functor fromDb(CX) to Db(CT∗

M
X). We will often writeµM for j∗µM . The functorµM has

the following properties (seeParagraph 4.3 of [16]).

PROPOSITION 3.1. – LetF ∈Db(CX). We have:

RπX∗µM (F )� µM (F )|M � i!F,

RπX !µM (F )�RΓM
(
µM (F )

)
|M � i−1F ⊗ ωM|X ,

suppµM (F )⊂ SS(F ) ∩T∗MX.

By the first isomorphism, for any closed conic subsetΛ of T∗MX , we have a morphism:

H0
Λ

(
T∗X ;µM(F )

)
→H0

S(X ;F ),

whereS = πX(Λ). We will call this morphism “projection to the zero-section”. More generally,
for a submanifoldM ′ of X such thatM ⊂ M ′ ⊂ X , we have a morphism, settingT =
T∗MX ∩T∗M ′X :

µM (F )|T →RΓTµM ′(F ).

If L ∈Db(CX) is locally constant thenµM (F ⊗ L) � µM (F ) ⊗ π−1
X L. Microlocalization

behaves well with respect to non-characteristic inverse image as shown in the next proposition.
Let f :Y → X be a morphism of manifolds,N a closed submanifold ofY such that

f(N) ⊂ M . Let us denote bytf ′N and fNπ the restrictions oftf ′ :Y ×X T∗X → T∗Y and
fπ :Y ×X T∗X→T∗X toN ×M T∗MX . The following result is contained in Proposition 4.3.5
and Corollary 6.7.3 of [16].

PROPOSITION 3.2. – LetF ∈Db(CX). We have a commutative diagram:

R tf ′N !f
−1
NπµM (F ) r µN (f−1F )⊗ π−1

Y (ωY |X ⊗ ω−1
N |M )

s

R tf ′N ∗f
!
NπµM (F )⊗ π−1

Y ω−1
N |M µN (f !F )⊗ π−1

Y ω−1
N |M

compatible with the projection to the zero-section. Iff is non-characteristic forF and
f |N :N →M is smooth thenr is an isomorphism.
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Remark3.3. – The compatibility with the projection to the zero-section means the following.
Let πX :T∗X→X , πY :T∗Y → Y , τ :Y ×X T∗X→ Y be the projections. We set for short:

F1 = f−1RΓM (F ), F2 =RΓN
(
f−1F

)
⊗ ωY |X ⊗ ω−1

N |M , F3 =RΓN(f !F )⊗ ω−1
N |M .

The first isomorphism of Proposition 3.1 induces:

a :RπY ∗
(
R tf ′N !f

−1
NπµM (F )

)
→ F1,

b :RπY ∗
(
µN (f−1F )⊗ π−1

Y (ωY |X ⊗ω−1
N |M )

)
→∼ F2,

c :RπY ∗
(
µN (f !F )⊗ π−1

Y ω−1
N |M

)
→∼ F3.

Morphism a is obtained from the morphism of functorsR tf ′N !(·) → R tf ′N∗(·) and the
isomorphismR τ∗f

−1
Nπ(G) � f−1RπX∗(G) for any conic objectG of Db(CT∗X). There is in

general no morphism fromF1 to F2 (this is in fact the reason why we need to microlocalize).
However, we have two natural morphismsF1 → F3 andF2 → F3 described by the following
compositions:

t0 :F1→ (f |N )!RΓM (F )⊗ ω−1
N |M � F3,

s0 :F2→RΓN
(
f−1F ⊗ ωY |X

)
⊗ ω−1

N |M → F3.

The diagram of the proposition is compatible with the projection to the zero-section in the sense
thatRπY ∗(s) = s0 andRπY ∗(s ◦ r) = t0 ◦ a. Roughly speaking,t0 can be factorized through
s0 for sections ofF1 arising from “microlocal sections ofF ” whose support is non-characteristic
for f (seealso Proposition 3.8 below).

The inverse image morphismr induces a morphism on the global sections whose support is in
good position. LetΛ be a closed conic subset ofT∗X . Assume thatf is non-characteristic forΛ.
Thentf ′ is proper onf−1

π (Λ) and, settingΛ′ = tf ′(f−1
π (Λ)), morphismr gives us a morphism:

H0
Λ

(
T∗X ;µM (F )

)
→H0

Λ′
(
T∗Y ;µN (f−1F )⊗ π−1

Y (ωY |X ⊗ω−1
N |M )

)
.(3.1)

Whenf is a diagonal embedding this morphism yields a product between microlocal classes.
This is the way the product of Euler classes is defined in [22]. We will need such a product in the
following situation.

LEMMA 3.4. – Let X be a real manifold,M and N submanifolds ofX , with N ⊂ M .
Let F,G ∈ Db(CX) and letΛ1 and Λ2 be closed conic subsets ofT∗MX . We assume that
Λ1 ∩Λa2 ⊂T∗XX . Then morphism(3.1) induces a “microlocal product”:

H0
Λ1

(
T∗X ;µM (F )

)
×H0

Λ2

(
T∗X ;µN(G)

)
→H0

Λ1+Λ2

(
T∗X ;µN(F ⊗G)⊗ π−1

X ωM|X
)

compatible with the projection to the zero-section in the sense of Remark3.3.

Proof. –The external product defines a morphism from the left hand side to

H0
Λ1×Λ2

(
T∗(X ×X);µM×N (F �G)

)
.

Let δ :X→X ×X be the diagonal embedding. The assumptionΛ1 ∩Λa2 ⊂T∗XX is equivalent
to the fact thatδ is non-characteristic forΛ1 ×Λ2. Hence we may compose the external product
with the morphism (3.1) whereY , X , N , M , f are replaced byX , X ×X , N , N ×M , δ. This
gives the desired morphism if we identifyω−1

N |N×M ⊗ ωX|X×X and(ωM|X)N . ✷
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Remark3.5. – This microlocal product is compatible with the inverse image in the following
situation. We keep the notations of Lemma 3.4 and consider moreover a morphism of manifolds
f :X ′→ X , M ′, N ′ submanifolds ofX ′ such thatN ′ ⊂M ′, f(M ′) ⊂M andf(N ′) ⊂ N .
We assume thatf is non-characteristic forΛ1 + Λ2 (hence also forΛ1 andΛ2) and we set
Λ′1 =

tf ′(f−1
π (Λ1)), Λ′2 =

tf ′(f−1
π (Λ2)). Let us set for short:

A1 =H0
Λ1

(
T∗X ;µM (F )

)
, A2 =H0

Λ2

(
T∗X ;µN(G)

)
,

A=H0
Λ1+Λ2

(
T∗X ;µN(F ⊗G)⊗ π−1

X ωM|X
)
,

A′1 =H0
Λ′

1

(
T∗X ′;µM ′(f−1F )⊗ π−1

X′ (ωX′|X ⊗ω−1
M ′|M )

)
,

A′2 =H0
Λ′

2

(
T∗X ′;µN ′(f−1G)⊗ π−1

X′ (ωX′|X ⊗ ω−1
N ′|N )

)
,

A′ =H0
Λ′

1+Λ′
2

(
T∗X ′;µN ′(f−1(F ⊗G))⊗ π−1

X′ ω
)
,

whereω = f−1(ωM|X)⊗ ωX′|X ⊗ ω−1
N ′|N . Sincef is non-characteristic forΛ1, Λ2, Λ1 + Λ2,

we have inverse image morphisms as (3.1):r1 :A1 → A′1, r2 :A2 → A′2, r :A→ A′. Sincef is
non-characteristic forΛ1 +Λ2 andΛ1 ∩Λa2 ⊂ T∗XX , we have alsoΛ′1 ∩Λ′2

a ⊂T∗X′X ′, so that
there exists a microlocal product fromA′1 ×A′2 to A′.

The microlocal products, starting fromA1 × A2 andA′1 × A′2, commute with the inverse
imagesr1× r2 andr. This is a consequence of the fact that the inverse image (3.1) is compatible
with the composition of morphisms of manifolds.

Remark3.6. – We keep the notations of the preceding remark. We set moreoverΛ′′2 =
Λ2 ∩ T∗MX andA′′2 = H0

Λ′′
2
(T∗X ;µM(G)). SinceN ⊂ M we have a morphismA2 → A′′2 .

Setting:

A′′ =H0
Λ1+Λ′′

2

(
T∗X ;µM (F ⊗G)⊗ π−1

X ωM|X
)
,

we have also a morphismA→ A′′ and, sinceΛ1 ∩ Λ′′2
a ⊂ T∗XX , the microlocal product from

A1 ×A′′2 to A′′ is well-defined. We obtain a commutative diagram:

A1 ×A2 A

A1 ×A′′2 A′′

where the horizontal arrows are microlocal products and the vertical arrows are projections to
T∗MX . In view of this diagram it is useless to consider two submanifolds ofX to define the
microlocal product of Lemma 3.4 if we are only interested in the projection of the result to the
zero-section, becauseN does not appear in the second line. However, the bound for the support
of the product obtained in the first line is more precise than the bound obtained in the second
line.

Remark3.7. – The microlocal product is related to the cup-product whenM is non-
characteristic forF , i.e.T∗MX ∩ SS(F )⊂ T∗XX . In this case we haveF ⊗ ωM|X →∼ RΓM (F )
andsuppµM (F ) ⊂ T∗XX so thatπX is proper onsuppµM (F ) and the projection to the zero-
section gives isomorphisms:

H0
Λ1

(
T∗X ;µM (F )

)
�H0

S1

(
X ;RΓM(F )

)
�H0

S1
(X ;F ⊗ωM|X),
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whereSi = πX(Λi). Let us also identify the sheaves corresponding toF1, F2, F3 of Remark 3.3
in our case. We have:

F1 =RΓM (F )⊗RΓN(G), F2 =RΓN (F ⊗G)⊗ωM|X , F3 =RΓN(δ!(F �G))⊗ωM .

Since we have alsoF1 � ωM|X ⊗ F ⊗ RΓN (G), there exists a morphismF1 → F2 which
factorizes the morphismt0 of Remark 3.3. Hence the compatibility of the microlocal product
and the projection to the zero-section gives the commutative diagram:

A1 ×A2 A

H0
S1
(X ;F ⊗ ωM|X)×H0

S2
(X ;G) H0

S1∩S2
(X ;F ⊗G⊗ωM|X),

where the bottom arrow is the usual cup-product.

We will also need a slightly different version of the microlocal product. LetF , F ′, G, G′ be
objects ofDb(CX). Let δ :X→X ×X be the diagonal embedding. We considerµhom(F,G)
andµhom(G′, F ′); they are objects ofDb(CT∗X) and satisfy

Rπ∗µhom(F,G)�RHom(F,G), Rπ∗µhom(G′, F ′)�RHom(G′, F ′).

We have the canonical morphisms:

Hom(F,G)⊗Hom(G′, F ′)→Hom
(
RHom(F ′, F ),RHom(G′,G)

)
,(3.2)

Hom
(
RHom(F ′, F ),G⊗D′G′

)
→Hom

(
RHom(F ′, F ),RHom(G′,G)

)
.(3.3)

We are looking for conditions which imply that morphism (3.2) can be factorized through (3.3).
This is the case if the morphisms inHom(F,G) and Hom(G′, F ′) arise from sections of
µhom(F,G) andµhom(G′, F ′) with suitable supports. The following result is contained in
the proof of Proposition 4.4.8 of [16].

PROPOSITION 3.8. – LetΛ, Λ′ be closed conic subsets ofT∗X satisfyingΛa ∩ Λ′ ⊂ T∗XX .
There exists a natural morphism:

H0
Λ

(
T∗X ;µhom(F,G)

)
⊗H0

Λ′
(
T∗X ;µhom(G′, F ′)

)
→H0

Λ+Λ′
(
T∗X ;µhom(RHom(F ′, F ),G⊗D′G′)

)
→Hom

(
RHom(F ′, F ),G⊗D′G′

)
,

whose composition with morphism(3.3)coincides with the composition of the projection to the
zero-section and morphism(3.2).

4. Liftings and action on global sections

In this section we introduce liftings of an application for aD-module and a constructible sheaf
and define their action on the solutions. In the rest of the paper we will be interested in the trace
of this action.

The general situation will be the following. LetX andZ be complex analytic manifolds. We
consider a family of maps fromX to itself parameterized byZ . By this we mean a morphism of
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manifoldsφ :Z ×X →X ; for z ∈ Z we denote byiz :X → Z ×X the embeddingx �→ (z, x)
and we setφz = φ ◦ iz :X→X . We will always make the following hypothesis onφ:

for all z ∈Z,φz :X→X is smooth and proper.(4.1)

We consider also a real analytic submanifoldZR of Z such thatZ is a complexification of
ZR. To simplify the exposition we will always assume thatZR is oriented. We denote by
φR :ZR×X→X the restriction ofφ, by p :Z×X→X andpR :ZR×X→X the projections,
by Γ⊂ Z ×X ×X andΓR ⊂ZR ×X ×X the graphs ofφ andφR.

DEFINITION 4.1. – LetM ∈ Db
coh(DX), F ∈ Db

R−c(CX). A lifting of φ for M is a
morphism:

u ∈HomOZ�DX

(
φ−1(M), p−1(M)

)
.

A lifting of φR for F is a morphism:

v ∈Hom
(
φ−1

R
(F ), p−1

R
(F )

)
.

These definitions are motivated by the example of group actions and quasi-equivariant
D-modules. Indeed if a complex Lie groupG acts on a complex manifoldX with action
φ :G×X→X , then aDX -moduleM is quasi-equivariant if there is an isomorphismφ−1M�
p−1M which isOG � DX -linear (but in general notDG×X -linear) and compatible with the
law of the group. In our definition we just forget the fact thatZ is a group (and of course the
compatibility with a group law).

We will often considerv as a morphism fromφ−1(F ) to CZR
� F through the isomorphism:

Hom
(
φ−1

R
(F ), p−1

R
(F )

)
�Hom

(
φ−1(F ),CZR

�F
)
.(4.2)

In the same way it will be convenient to change ourOZ �DX -linear lifting into aDZ×X -linear
one through the isomorphism:

RHomOZ�DX

(
φ−1(M), p−1(M)

)
�RHomDZ×X

(
φ−1(M),KZ �M

)
.(4.3)

This isomorphism is a particular case of the following one. LetN be aDZ×X -module which is
a coherentOZ �DX -module andP a coherentDX -module; then

RHomOZ�DX
(N ,OZ �P)�RHomDZ×X (N ,KZ �P).

It is enough to check this forP =DX . Since it is local onZ ×X we may take a resolution ofN
by finite freeOZ �DX -modules and we are reduced to

OZ �DX �RHomDZ×X (OZ �DX ,KZ �DX),

which is a consequence ofRHomDZ (OZ ,KZ)�OZ .
For z ∈ ZR the base change by the embedding{z}→ Z transformsφ−1M into φ−1

z M and
the lifting u into a lifting of φz for M, uz ∈ HomDX (φ−1

z M,M). The inverse image ofv
by iz gives also a lifting ofφz for F , vz ∈ Hom(φ−1

z F,F ). From uz and vz we obtain a
morphism fromRHomDX (M⊗ F,OX) to itself as follows. We first remark that we have a
natural morphism:

RHomDX

(
φ−1
z M⊗ φ−1

z F,OX
)
→RHomDX (M⊗ F,OX).(4.4)
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Indeed, the Cauchy–Kowalevski–Kashiwara theorem (which we may apply sinceφz is smooth)
and standard adjunction formulas for sheaves give:

RHomDX

(
φ−1
z M⊗ φ−1

z F,OX
)
�RHom

(
φ−1
z F,RHomDX (φ

−1
z M,OX)

)
�RHom

(
φ−1
z F,φ−1

z RHomDX (M,OX)
)

(4.5)

�RHom
(
Rφz !φ

−1
z F,RHomDX (M,OX)

)
,

where in the third isomorphism we usedφ−1
z � φ!

z . Sinceφz is proper we have an adjunction
morphism F → Rφz !φ

−1
z F . Composing it with (4.5) and using the adjunction between

RHom(·, ·) and· ⊗ · we obtain (4.4). The tensor product ofuz andvz gives a morphism:

RHomDX (M⊗ F,OX)→RHomDX

(
φ−1
z M⊗ φ−1

z F,OX
)
,

whose composition with(4.4) gives:

S(uz, vz) :RHomDX (M⊗ F,OX)→RHomDX (M⊗F,OX).

Taking cohomology we obtain morphismsπi,z :ExtiDX
(M⊗ F,OX)→ ExtiDX

(M⊗ F,OX)
and lettingz run overZR we obtain mapsπi :ZR × ExtiDX

(M⊗ F,OX)→ ExtiDX
(M⊗ F,

OX). We want to say that these maps are continuous in some sense but the topology of the
Ext groups is in general not separated; hence we have to stay in the derived category. Indeed
RHomDX (M⊗F,OX) is well-defined as an object ofDb(FN ) (for example this is a particular
case of Theorem 6.1 of [17]). LetU be a relatively compact subset ofZR, contained in a compact
subsetK of ZR; we consider the natural embeddingj :U → ΓK(ZR;B(dZ)

ZR
), wherej(z) = δz is

the Dirac function atz (recall thatZR is oriented). Now,ΓK(ZR;B(dZ)
ZR

) is also aFN -space and
we define a morphism:

SK(u, v) :ΓK
(
ZR;B(dZ)

ZR

)
⊗RHomDX (M⊗ F,OX)→RHomDX (M⊗F,OX),

such that theπi are obtained by taking the cohomology ofSK(u, v) and composing withj. We
note thatΓK(ZR;B(dZ)

ZR
)� RHomDZ (KZ ⊗CK ,OZ)[2dZ ], and we obtainSK(u, v) similarly

asS(uz, vz) by composing a morphism deduced from the tensor product ofu andv:

RHomDZ (KZ ⊗CK ,OZ)⊗RHomDX (M⊗ F,OX)[2dZ ](4.6)

−−−−→RHomDZ×X ((KZ �M)⊗ (CK �F ),OZ×X)[2dZ ]
S′

K(u,v)−−−−→ RHomDZ×X (φ
−1M⊗ φ−1F ⊗CK×X ,OZ×X)[2dZ ],

and a natural morphism:

RHomDZ×X

(
φ−1M⊗ φ−1F ⊗CK×X ,OZ×X

)
[2dZ ]→RHomDX (M⊗F,OX).(4.7)

The last one is defined as (4.4) by the following sequence of morphisms, where we remark that
φ! � φ−1[2dZ ] sinceφ is smooth, andRφ!CK×X �Rφ∗CK×X sinceφ is proper onK ×X :

RHomDZ×X

(
φ−1M⊗ φ−1F ⊗CK×X ,OZ×X

)
[2dZ ]

�RHom
(
CK×X ,RHomDZ×X (φ

−1M⊗ φ−1F,OZ×X)
)
[2dZ ]

�RHom
(
CK×X , φ−1RHomDX (M⊗F,OX)

)
[2dZ ]
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�RHom
(
Rφ!CK×X ,RHomDX (M⊗ F,OX)

)
→RHom

(
CX ,RHomDX (M⊗F,OX)

)
�RHomDX (M⊗ F,OX).

Forω ∈ ΓK(ZR;B(dZ)
ZR

) we denote by

S(u, v)(ω) :RHomDX (M⊗ F,OX)→RHomDX (M⊗ F,OX)(4.8)

the morphism induced bySK(u, v) (it does not depend onK). Forz ∈ ZR we haveS(uz, vz) =
S(u, v)(δz). The purpose of the paper is to show that, whenZR is compact andω is an analytic
form onZR, S(u, v)(ω) is nuclear with a trace given by a cohomological formula.

If the topological vector spaceE = ExtiDX
(M⊗ F,OX) is separated the fact thatSK(u, v)

is well-defined in the derived category of Fréchet nuclear spaces implies the continuity ofπi.
Indeedπi :K × E→ E is the composition of the continuous mapsj × idE andHi(SK(u, v))
and is itself continuous.

Remark4.2. – WhenZ is a group and the data are equivariant andExtiDX
(M⊗ F,OX)

is separated,πi is a representation ofZR. Under suitable hypothesis this representation
is admissible. The following construction is used to define the character of an admissible
representation of a Lie group. Letω be a maximal degreeC∞-form with compact support in
ZR. We set forx ∈ E, πi,ω(x) =

∫
ZR

πi(z, x)ω(z). (WhenZR is a semi-simple Lie group and
E is admissible,πi,ω is trace-class andω �→ trπi,ω is a distribution onZR, the character ofπi.)
The definition ofπi,ω makes sense without assuming thatZR be a group and we have:

πi,ω = S(u, v)(ω).

Remark4.3. – In the above computations we can replaceRHomDX (M ⊗ F,OX) by
RHomDX (M,OX ⊗D′F ) and obtain a morphism similar toS(u, v)(ω):

S1(u, v)(ω) :RHomDX (M,OX ⊗D′F )→RHomDX (M,OX ⊗D′F ),

which commutes withS(u, v)(ω) and the contraction morphism:

RHomDX (M,OX ⊗D′F )→RHomDX (M⊗ F,OX).

5. Cohomology classes associated to a lifting

In this section we will build microlocal cohomology classes fromu and v. In the next
section we will make the product of these classes, under the assumption that the pair(M, F )
is “transversally elliptic”, and obtain a hyperfunction onZR.

The method for defining these cohomology classes is taken from [14] and from [22] for
the microlocal aspect. We identify our lifting with the section of a “kernel” and apply a trace
morphism to it. The following general result appears in slightly different form in [22] (seealso [7]
for integral transforms in the framework ofD-modules).

LEMMA 5.1. – Let f :Y → Y ′ be a morphism of complex analytic manifolds and
if :Y → Y × Y ′, y �→ (y, f(y)) the graph embedding off . Let P ∈ Db

coh(DY ), P ′ ∈
Db

coh(DY ′). We set for shortS = RHomDY (P ,OY ) and S′ = RHomDY ′ (P ′,OY ′). If f is
non-characteristic forP ′ we have two natural morphisms:
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RHomDY

(
f−1(P ′),P

)
→ i!f

(
ΩY×Y ′ ⊗LDY ×Y ′ (P �DP ′)

)
[dY ′ − dY ],

i!f
(
ΩY×Y ′ ⊗LDY ×Y ′ (P �DP ′)

)
[dY ′ − dY ]→RHom

(
S, f−1S′

)
,

whose composition coincides with the image by the functorRHomDY (·,OY ).

We note thatf−1S′ � RHomDY (f
−1(P ′),OY ) becausef is non-characteristic forP ′.

WhenY = Y ′, f = id andP = P ′ = DY the morphisms of the lemma are Sato’s morphism
DY →HdY

∆Y
(O(0,dY )

Y×Y ) andHdY

∆Y
(O(0,dY )

Y×Y )→RHom(OY ,OY ).

Proof. –Sincef is non-characteristic forP ′ we have, by the duality isomorphism of [21],
Theorem 3.5.6,Df−1P ′ � f−1DP ′. Let Γf ⊂ Y × Y ′ be the graph off andp2 the projection

from Y × Y ′ to Y ′. Let us setB(a,b)
Γf |Y×Y ′ = O(a,b)

Y×Y ′ ⊗OY ×Y ′ BΓf |Y×Y ′ . SinceDY f→Y ′ �
i−1
f (B(0,dY ′)

Γf |Y×Y ′), we have:

f−1DP ′ � i−1
f

(
B(0,dY ′ )

Γf |Y×Y ′ ⊗Lp−1
2 DY ′

p−1
2 DP ′

)
� i−1

f

(
B(dY ,dY ′)

Γf |Y×Y ′ ⊗LDY ×Y ′ (KY �DP ′)
)
[−dY ].

Composing this isomorphism withB(dY ,dY ′ )
Γf |Y×Y ′ →RΓΓf

(ΩY×Y ′)[dY ′ ] we obtain finally:

RHomDY

(
f−1P ′,KY

)
→ i!f

(
ΩY×Y ′ ⊗LDY ×Y ′ (KY �DP ′)

)
[dY ′ − dY ].

The tensor product withΩY ⊗OY P gives the first morphism of the lemma.
For the second one we will in fact build a morphism:

ΩY×Y ′ ⊗LDY ×Y ′ (P �DP ′)→RHom
(
p−1
1 S, p−1

2 S′
)
[dY +dY ′ ].(5.1)

Sincef is non-characteristic forS′ again, we havef−1S′ � f !S′[2dY ′ − 2dY ] and we deduce
the isomorphism

i!fRHom
(
p−1
1 S, p−1

2 S′
)
[2dY ′ ]�RHom

(
S, f−1S′

)
.

Together with (5.1) this gives the second morphism of the lemma. LetK be the left hand side
of (5.1). By adjunction betweenRHom and⊗, morphism (5.1) corresponds to a morphism from
K ⊗ p−1

1 S to p−1
2 S′[dY +dY ′ ]. A contraction gives

K ⊗ p−1
1 S →ΩY×Y ′ ⊗LDY ×Y ′ (OY �DP ′).

By the Cauchy–Kowalevski–Kashiwara theorem we have the isomorphisms:

ΩY×Y ′ ⊗LDY ×Y ′ (OY �DP ′)�RHomDY ×Y ′

(
p−1
2 P ′,OY×Y ′

)
[dY +dY ′ ]� p−1

2 S′[dY +dY ′ ]

and thus we obtain (5.1).
The fact that the composition of our two morphisms is the application of the functor

RHomDY (·,OY ) can be checked forP = DY andf−1P ′ = DY (then tensor product withP
andf−1P ′ overDY gives the result in general). But in this case it means that the composition

of the inclusionsDY →HdY

∆Y
(O(0,dY )

Y×Y ) andHdY

∆Y
(O(0,dY )

Y×Y )→RHom(OY ,OY ) is given by the
usual action of differential operators onOY . ✷
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We apply this lemma to the situation of Section 4; we keep the notations introduced
there. Because of formula (4.3) we may consider the liftingu for M as an element of
HomDZ×X (φ

−1(M), KZ �M). Let us set:

LM =ΩZ×X×X ⊗LDZ×X×X
(KZ �M�DM)[−dZ ].(5.2)

Lemma 5.1 above applied toY = Z ×X , Y ′ =X , f = φ, P =KZ �M andP ′ =M yields a
morphism

RHomDZ×X

(
φ−1(M),KZ �M

)
→RΓΓ(LM).(5.3)

The duality contraction betweenM andDM defines the trace morphism of [22]:

M�DM→ δ!KX �B∆|X×X [dX ].

SinceΩX×X ⊗LDX×X
B∆|X×X [dX ]� δ!ωX andB∆|X×X is holonomic this gives a morphism

LM→OZ � δ!ωX .(5.4)

Composing this with (5.3) and taking global sections we obtain from the liftingu a cohomology
class inH0

Γ(Z×X×X ;OZ � δ!ωX). However, we will need the microlocal information carried
by the characteristic variety ofM. Hence before we apply the trace morphism, we microlocalize
along the graph ofφ; we have:

RΓΓ(LM)�Rπ∗µΓ(LM)�Rπ∗RΓA1µΓ(LM),(5.5)

where

A1 = SS(LM)∩T∗Γ(Z ×X ×X) = (T∗Z × charM× charM)∩T∗Γ(Z ×X ×X).

By Proposition 3.1 we have indeedsuppµΓ(LM) ⊂ A1. Composing (5.3) and (5.5) and
taking global sections, then applying the contraction (5.4) we obtain finally the following two
morphisms:

HomOZ�DX

(
φ−1(M), p−1(M)

)
→H0

A1

(
T∗(Z ×X ×X);µΓ(LM)

)
(5.6)

H0
A1

(
T∗(Z ×X ×X);µΓ(LM)

)
→H0

Λ1

(
T∗(Z ×X ×X);µΓ(OZ � δ!ωX)

)
,(5.7)

where

Λ1 =A1 ∩
(
T∗Z ×T∗∆(X ×X)

)
.

In the “transversal case” (seeSection 9) we will not need to know the supportΛ1. Forgetting the
support is equivalent to the projection to the zero-section:

H0
Λ1

(
T∗(Z ×X ×X);µΓ(OZ � δ!ωX)

)
→H0

Γ(Z ×X ×X ;OZ � δ!ωX).(5.8)

This last group is isomorphic toH0

Z̃
(Z ×X ;OZ � ωX), whereZ̃ is the fixed points set ofφ,

Z̃ =Γ∩ (Z ×∆X).

DEFINITION 5.2. – LetZ andX be complex manifolds,φ : Z × X → X a morphism of
manifolds,M∈Db

coh(DX). Let u ∈HomOZ�DX
(φ−1(M), p−1(M)) be a lifting ofφ forM.
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The image ofu by the morphism (5.6) above will be denoted byk(φ,M, u). The image of
k(φ,M, u) by the morphism (5.7) will be denoted byc(φ,M, u) and its projection to the zero-
section by (5.8) will be denoted byc0(φ,M, u).

Remark5.3. – Through formula (4.3) we deduce a structure ofDZ � CX -module on
RHomOZ�DX

(φ−1(M), p−1(M)) sinceKZ has two structures of leftDZ -module. In the same
wayLM andOZ � δ!ωX also have aDZ -linear structure. It is immediate from the construction
that the mapsu �→ k(φ,M, u) andu �→ c(φ,M, u) areDZ -linear.

Example5.4. – TheDX -moduleM=DX has a natural lifting whose class is related to the
fundamental class of the graph,Γ, of φ in Z ×X ×X . We have the following isomorphism:

RHomOZ�DX

(
φ−1(DX), p−1(DX)

)
�RHomDZ×X (DZ×X φ−→X ,KZ �DX)

�DX φ←−Z×X ⊗OZ×X

(
O(dZ ,0)
Z×X

)∗
�HdX

[Γ]

(
O(0,dX ,0)
Z×X×X

)
,

whereHdX

[Γ] (·) is the algebraic local cohomology with support inΓ. The fundamental class ofΓ,

δΓ ∈HdX

Γ (Z ×X ×X ;O(dX)
Z×X×X), gives by the projectionO(dX)

Z×X×X →O(0,dX ,0)
Z×X×X a canonical

lifting, :φ, of φ for DX . We have alsoLM � O(0,dX ,0)
Z×X×X [dX ] and morphism (5.3) is just the

natural inclusion:

HdX

[Γ]

(
O(0,dX ,0)
Z×X×X

)
→HdX

Γ

(
O(0,dX ,0)
Z×X×X

)
.(5.9)

The trace map (5.4),O(0,dX ,0)
Z×X×X [dX ]→OZ � δ!ωX , is decomposed through the restriction to the

diagonal and the mapΩX [dX ]→ ωX :

O(0,dX ,0)
Z×X×X [dX ]→ i∆∗O(0,dX )

Z×X [dX ]→OZ � δ!ωX ,(5.10)

wherei∆ is the diagonal embedding ofZ ×X in Z ×X ×X . SettingZ̃ = Γ∩ (Z ×∆X), we

have an isomorphism betweenHdX

Γ (i∆∗O
(0,dX)
Z×X ) andHdX

Z̃
(O(0,dX )

Z×X ). In particular,c0(φ,M, :φ)

is the image of a class inHdX

Z̃
(O(0,dX )

Z×X ), but, even ifΓ andZ ×∆X are transversal, so that̃Z is

a submanifold ofZ ×X , this class is not the projection of the fundamental class ofZ̃ in Z ×X
(seeSection 9).

Example5.5. – The preceding example generalizes to the case of aDX -module induced by a
fiber bundle,M=DX ⊗OX E , whereE is a locally freeOX -module. We have:

φ−1(M)�DZ×X φ−→X ⊗φ−1OX
φ−1E , p−1(M)�DZ×X p−→X ⊗p−1OX

p−1E ,

RHomOZ�DX

(
φ−1(M), p−1(M)

)
�HomOZ×X (φ

∗E , p∗E)⊗OZ×X HdX

[Γ]

(
O(0,dX ,0)
Z×X×X

)
.

Let us call a lifting ofφ for E anOZ×X -linear morphismu′ : φ∗E → p∗E . The last isomorphism
says thatu′ determines a liftingu = u′ ⊗ :φ of φ for the associatedDX -moduleM. We set
F =OZ � E � E∗ so that

i∗ΓF �HomOZ×X (φ
∗E , p∗E) and LM �O(0,dX ,0)

Z×X×X ⊗OZ×X×X F [dX ]

and the morphism (5.3) corresponds to the tensor product of morphism (5.9) withF . The trace
morphism is also just the tensor product of (5.10) and the contractionF → i∆∗OZ×X .
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Remark5.6. – WhenM is represented by a complexN ·, φ−1M andp−1M are represented

by the complexesφ−1N · andp−1N · sinceφ andp are smooth. If we assume thatu is given by

a morphism of complexesu· :φ−1N ·→ p−1N · we have

c(φ,M, u) =
∑

(−1)ic(φ,N i, ui).

A similar construction holds for sheaves. It is done in [14] (seealso [16], Chapter IX), where
the computation of the characteristic class is also explained. We just state the result.

LEMMA 5.7. – Let f :Y → Y ′ be a morphism of real manifolds. LetΓf ⊂ Y × Y ′ be the
graph off , which we identify withY . LetG ∈Db

R−c(CY ), G′ ∈Db
R−c(CY ′). We have a natural

isomorphism:

RHom(f−1G′,G)→∼ RΓΓf
(G�DG′).

We apply this to the situation of Section 4, withY = ZR×X , Y ′ =X , f = φR, G= CZR
�F ,

G′ = F . We microlocalize and take global sections so that we obtain an isomorphism:

Hom
(
φ−1

R
(F ), p−1

R
(F )

)
→∼ H0

(
T∗(ZR ×X ×X);µΓR

(CZR
�F �DF )

)
.

The class associated tov will be defined as its image through this isomorphism. But we need to
consider it onT∗(Z ×X ×X), like the class ofu, rather than onT∗(ZR ×X ×X). For this
we use the following identification. Leti be the inclusion ofZR ×X ×X in Z ×X ×X ; we
identifyΓR ⊂ ZR×X×X with its image byi. The inverse image morphismr of Proposition 3.2
applied toi gives the following isomorphism, forG ∈Db(CX×X), Λ a closed conic subset of
T∗(X ×X), Λ′ =T∗ZZ ×Λ, Λ′′ =T∗ZR

ZR ×Λ:

H0
Λ′

(
T∗(Z ×X ×X);µΓR

(CZ �G)
)
→∼ H0

Λ′′
(
T∗(ZR ×X ×X);µΓR

(ωZR|Z �G)
)
.

SinceZR is oriented we have in factωZR|Z �CZR
[−dZ ]. There is also a trace morphism forF :

F �DF → δ!ωX .

Let us set:

LF = CZ �F �DF.

We obtain finally two morphisms:

Hom
(
φ−1

R
(F ), p−1

R
(F )

)
→HdZ

A2

(
T∗(Z ×X ×X);µΓR

(LF )
)

(5.11)

→HdZ

Λ2

(
T∗(Z ×X ×X);µΓR

(CZ � δ!ωX)
)
,(5.12)

where

A2 =
(
T∗ZZ × SS(F )× SS(F )a

)
∩T∗ΓR

(Z ×X ×X),

Λ2 =A2 ∩
(
T∗ZZ ×T∗∆(X ×X)

)
.

We have also the projection to the zero-section:

HdZ

Λ2

(
T∗(Z ×X ×X);µΓR

(CZ � δ!ωX)
)
→HdZ

ΓR
(Z ×X ×X ;CZ � δ!ωX).(5.13)
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DEFINITION 5.8. – With the notations of Section 4, the image of a liftingv of φ for F by
the morphism (5.11) will be denoted byk(φ,F, v). The image ofk(φ,F, v) by (5.12) will be
denoted byc(φ,F, v) and its projection to the zero-section will be denoted byc0(φ,F, v).

Remark5.9. – The actionSK(u, v) defined in Section 4 can be recovered from the “kernels”
k(φ,M, u) and k(φ,F, v) associated tou and v in the definitions above. Indeed, letk0(u)
andk0(v) be the projections ofk(φ,M, u) andk(φ,F, v) to the zero-section. Thenk0(u) ∈
H0

Γ(Z ×X ×X ;LM) andk0(v) ∈HdZ

ΓR
(Z ×X ×X ;LF ). By Lemma 5.7

HdZ

ΓR
(Z ×X ×X ;LF )�H0

ΓR
(ZR ×X ×X ;CZR

� F �DF )�Hom
(
φ−1

R
(F ), p−1

R
(F )

)
and the image ofk0(v) by this isomorphism is of coursev; hence we can even recoverv from
k(φ,F, v). We cannot recoveru from k(φ,M, u) but only its action on the solutions:

u′ :RHomDZ×X (KZ �M,OZ×X)→RHomDZ×X

(
φ−1(M),OZ×X

)
.

Indeed,k0(u) is nothing else than the image ofu by (5.3), hence its image by the second
morphism of Lemma 5.1 isu′. Now the data ofu′ and v are sufficient to recover the
morphism (4.6) and henceSK(u, v).

Remark5.10. – Fromk(φ,M, u) andk(φ,F, v) we can also obtain microlocal analogues of
the morphismsv andu′ of the preceding remark. Let us set:

G=RHomDZ×X (KZ �M,OZ×X), G′ =RHomDX (M,OX).

Let p12 :Z ×X ×X→Z ×X andp3 :Z ×X ×X→X be the projections on the first two and
on the third factors. Morphism (5.1) in the proof of Lemma 5.1 yields in fact a morphism:

LM→RHom
(
p−1
12 G,p−1

3 G′
)
[2dX ].

Let iΓ be the embedding of the graph ofφ in Z ×X ×X . By Proposition 4.4.5 of [16] (which
is a consequence of Proposition 3.2), we have, sinceφ is smooth:

µhom
(
G,φ−1G′

)
�Rti′Γ!iΓ

−1
π

(
µΓRHom(p−1

12 G,p−1
3 G′)

)
[2dX ].

Let us setA′1 =
ti′Γ(iΓ

−1
π (A1)). Hencek(φ,M, u) gives a section ofµhom(G,φ−1G′),

u′µ ∈H0
A′

1

(
T∗(Z ×X);µhom(G,φ−1G′)

)
,

whose projection to the zero-section coincides withu′.
In the same way we have an isomorphism:

µhom
(
φ−1F,p−1F

)a �R ti′Γ!iΓ
−1
π

(
µΓ(CZ � F �DF )

)
,

where we denote by(·)a the inverse image by the antipodal map ofT∗(Z × X). SinceΓR

is a closed subset ofΓ we have a morphism of functorsµΓR
(·) → RΓTµΓ(·), whereT =

T∗ΓR
(Z ×X ×X)∩T∗Γ(Z ×X ×X). Let us setA′2 =

ti′Γ(iΓ
−1
π (A2)). Hencek(φ,F, v) gives

v′µ ∈HdZ

A′
2

(
T∗(Z ×X);µhom(φ−1F,p−1F )a

)
,
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whose projection to the zero-section isv. (Note that sinceπ∗A′2 ⊂ ZR ×X the projection of
v′µ to the zero-section belongs toHdZ

ZR×X(Z ×X ;RHom(φ−1F,p−1F )) which is isomorphic
to Hom(φ−1

R
F,p−1

R
F ).) Under geometric hypothesis oncharM andSS(F ) we will be able to

make the microlocal product ofu′µ andv′µ and this will give another construction ofS(u, v)
showing that it is trace-class in some sense.

6. Micro-product of the characteristic classes

In this section we will make the microlocal product (defined in Lemma 3.4) of the cohomology
classesc(φ,M, u), c(φ,F, v) andk(φ,M, u), k(φ,F, v) obtained in Section 5, under geometric
assumptions on the characteristic varieties ofM andF . The product ofc(φ,M, u) andc(φ,F, v)
will give a hyperfunction onZR. The product ofk(φ,M, u) andk(φ,F, v) will give a “kernel”
from which we can recover the morphismS(u, v)(ω) of formula (4.8). It will be used to show
thatS(u, v)(ω) has a trace.

Before we state the result we introduce a subset ofT∗X associated toφ, which corresponds
to the conormal to the orbits whenφ is a group action.

DEFINITION 6.1. – LetZ ,X be complex analytic manifolds andφ : Z×X→X a morphism
of manifolds. We set

Λφ = p3

(
T∗Γ(Z ×X ×X)∩T∗Z×∆(Z ×X ×X)

)
,

wherep3 :T∗Z ×T∗X ×T∗X→ T∗X is the projection to the third factor, and∆ the diagonal
of X ×X . LetM∈Db

coh(DX), F ∈Db
R−c(CX). We say that the pair(M, F ) is transversally

elliptic for φ if

char(M) ∩ SS(F ) ∩Λφ ⊂T∗XX.

Here is a more explicit description ofΛφ:

Λφ =
{
(x, ξ) ∈T∗X ; ∃ z ∈Z, φ(z, x) = x, tφ′(z,x)(ξ) = (0, ξ)

}
.

If Z is a point andφ is the identity map, thenΛφ =T∗X and(M, F ) is transversally elliptic if
it is elliptic in the sense of [22]. The following proposition associates a hyperfunction onZ to
liftings of φ for a transversally elliptic pair.

PROPOSITION-DEFINITION 6.2. – We consider complex analytic manifolds,Z , X and
φ :Z × X → X a map satisfying(4.1). Let ZR be a real, oriented submanifold ofZ such
that Z is a complexification ofZR. LetM∈ Db

coh(DX), F ∈ Db
R−c(CX) such that(M, F )

is transversally elliptic forφ and supp(M) ∩ supp(F ) is compact. Then the construction of
microlocal classes and the microlocal product define a natural product:

HomOZ�DX

(
φ−1(M), p−1(M)

)
×Hom

(
φ−1

R
(F ), p−1

R
(F )

)
→HdZ

Λ

(
T∗Z;µZR

(OZ)
)
,(6.1)

with the following bound for the wave front set of the hyperfunction so obtained:

Λ=
{
(z, η) ∈T∗ZR

Z; ∃(x, ξ) ∈ char(M) ∩ SS(F )a, φ(z, x) = x andtφ′(z,x)(ξ) = (η, ξ)
}
.

Letu andv be liftings ofφ forM andF (seeDefinition4.1). The hyperfunction image of(u, v)
by the previous morphism will be denoted byχ(φ,M, F, u, v).
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Proof. –Let us set for shortT ′ =T∗(Z ×X ×X). The morphisms (5.7) and (5.12) sending a
lifting to a cohomology class already give us a morphism from the left hand side of (6.1) to

A=H0
Λ1

(
T ′;µΓ(OZ � δ!ωX)

)
×HdZ

Λ2

(
T ′;µΓR

(CZ � δ!ωX)
)
.

Hence we just need to define a morphism fromA to HdZ

Λ (T∗Z;µZR
(OZ)). For this we will

apply the microlocal product of Lemma 3.4 and integrate the result.
The microlocal product is defined if the setsΛ1 andΛa2 have no intersection outside the zero-

section ofT∗(Z ×X ×X). Recall that

Λ1 = (T∗Z × charM× charM)∩T∗Γ(Z ×X ×X)∩
(
T∗Z ×T∗∆(X ×X)

)
,

Λ2 =
(
T∗ZZ × SS(F )× SS(F )a

)
∩T∗ΓR

(Z ×X ×X)∩
(
T∗ZZ ×T∗∆(X ×X)

)
.

Let us setL= char(M)∩ SS(F ). We see that

Λ1 ∩Λa2 ⊂ (T∗Z ×La ×L)∩T∗Γ(Z ×X ×X)∩
(
T∗ZZ ×T∗∆(X ×X)

)
.

This last set is included in the zero-section if and only ifL ∩ Λφ ⊂ T∗XX ; but this is precisely
the hypothesis of transversal ellipticity. Hence Lemma 3.4 gives us a morphism fromA to

HdZ

Λ1+Λ2

(
T ′;µΓR

(OZ � (δ!ωX ⊗ δ!ωX))⊗ π−1ωΓ|Z×X×X
)
�HdZ

Λ1+Λ2

(
T ′;µΓR

(OZ � δ!ωX)
)
.

Let p1 :Z ×X ×X → Z be the first projection. We have a topological integration morphism
Rp1!(OZ � δ!ωX)→OZ and the compatibility of microlocalization and direct image gives a
map fromHdZ

Λ1+Λ2
(T ′;µΓR

(OZ�δ!ωX)) toHdZ

Λ (T∗Z;µZR
(OZ)), whereΛ= p1π(

tp′1)
−1(Λ1+

Λ2). This gives the construction of morphism (6.1). In order to obtain a more explicit description
of Λ we notice that:

Λ1 =
{
(z, x, x, η, ξ,−ξ)∈T∗(Z ×X ×X); (x, ξ) ∈ char(M), φ(z, x) = x,

tφ′(z,x)(ξ) = (η, ξ)
}
,

Λ2 =
{
(z, x, x,0, ξ,−ξ)∈T∗(Z ×X ×X); z ∈ ZR, (x, ξ) ∈ SS(F ), φ(z, x) = x,

tφ′(z,x)(ξ) = (η, ξ) whereη ∈T∗ZR
Z

}
and the expression forΛ is easily deduced. ✷

In order to understandχ(φ,M, F, u, v) as the trace of a nuclear map we will need also the
microlocal product ofk(φ,M, u) andk(φ,F, v). However, this last product is defined only under
a condition stronger than transversal ellipticity (seedefinition below). When defined it will yield
a “kernel” with value in

LM,F =ΩZ×X×X ⊗LDZ×X×X

(
KZ � (M⊗ F )� (DM⊗D′F )

)
[−dZ ].(6.2)

If ZR is compact this kernel will define a morphism

H0(ZR;ΩZ)⊗RHomDX (M⊗ F,OX)→RHomDX (M,OX ⊗D′F ),

which coincides with the morphismS(u, v) of Section 4 on the analytic forms. We will show in
Section 8 that it has a well-defined trace given byχ(φ,M, F, u, v).
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DEFINITION 6.3. – In the situation of Definition 6.1 we set

Λ′φ = p3

(
T∗Γ(Z ×X ×X)∩ (T∗ZZ ×T∗(X ×X))

)
,

and we say that the pair(M, F ) is strongly transversally elliptic forφ if

char(M) ∩ SS(F ) ∩Λ′φ ⊂T∗XX.

For a given pointx ∈X let us denote byxφ :Z →X the functionz �→ φ(z, x). We have the
following description ofΛ′φ:

Λ′φ =
{
(x, ξ) ∈T∗X ; ∃ (z, y)∈ Z ×X, φ(z, y) = x, t(yφ)′z(ξ) = 0

}
.

We can see from the definitions thatΛφ ⊂ Λ′φ and in general this inclusion is strict. For example,
if Z is a point, so thatφ is just a morphism fromX to X , and if we assume thatφ is transversal
to id with a (discrete) set of fixed pointsS, thenΛφ = S ×X T∗XX butΛ′φ =T∗SX . However, if
φ is a group action then we will see in Lemma 10.1 thatΛφ =Λ′φ is the conormal to the orbits.

PROPOSITION-DEFINITION 6.4. – In the situation of Proposition6.2 we set moreoverS =
supp(M) ∩ supp(F ). We assume that(M, F ) is strongly transversally elliptic forφ. The
construction of microlocal kernels and the microlocal product define a morphism:

HomOZ�DX

(
φ−1(M), p−1(M)

)
×Hom

(
φ−1

R
(F ), p−1

R
(F )

)
→HdZ

T (Z ×X ×X ;LM,F ),
(6.3)

where T = ΓR ∩ (Z × S × S). For u and v, liftings of φ for M and F , we denote by
K(φ,M, F, u, v) the image of(u, v) by this morphism.

Proof. –The proof is the same as that of Proposition 6.2. We can make the product of
k(φ,M, u) andk(φ,F, v) if A1 ∩Aa

2 is included in the zero-section (A1 andA2 are the bounds
for the supports ofk(φ,M, u) andk(φ,F, v) introduced in (5.6) and (5.11)). It is easy to see that
this condition is implied by the strong transversal ellipticity. The result of the product belongs to

HdZ

Λ′

(
T∗(Z ×X ×X);µΓR

(LM ⊗LF )⊗ π−1ωΓ|Z×X×X
)
,

where the setΛ′ has its projection included inT . We take the image by the projection to the
zero-section and we remark that

RΓΓR
(LM ⊗LF )⊗ ωΓ|Z×X×X �RΓT (LM,F ).

This gives the product of the proposition.✷
The tensor product of the duality contractions forM, M � DM→ δ!KX , and for F ,

F �D′F → δ!CX , define a trace morphism forLM,F :

tr :LM,F →OZ � δ!ωX .(6.4)

By functoriality of the microlocal product,tr(K(φ,M, F, u, v)) coincides with the product of
c(φ,M, u) andc(φ,F, v).
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We want also to recover the action ofu andv on the global sections, fromK(φ,M, F, u, v).
Let us set:

H =RHomDZ×X

(
KZ � (M⊗ F ),OZ×X

)
, H ′ =RHomDX (M,OX ⊗D′F ).

Let p12 :Z×X ×X→Z ×X andp3 :Z ×X ×X→X be the projections on the first two and
on the third factors. We have a morphism

LM,F →RHom
(
p−1
12 H,p−1

3 H ′
)
[2dX ],(6.5)

defined as morphism (5.1) in the proof of Lemma 5.1, by a contraction and an isomorphism:

LM,F ⊗ p−1
12 H→ΩZ×X×X ⊗LDZ×X×X

(
OZ×X � (DM⊗D′F )

)
[−dZ ]

� CZ×X �RHomDX (M,OX ⊗D′F )[2dX ].

We have also:

RΓΓR
RHom

(
p−1
12 H,p−1

3 H ′
)
[2dX ]�RΓZR×X×XRΓΓRHom

(
p−1
12 H,p−1

3 H ′
)
[2dX ]

�RΓZR×XRHom
(
H,φ−1H ′

)
,

so that, taking global sections, we get:

HdZ

T (Z ×X ×X ;LM,F )→Hom
(
H ⊗CZR×X , φ−1H ′

)
[dZ ].

Through this morphism, a “kernel”k ∈ HdZ

T (Z × X × X ;LM,F ) yields a morphism from
H ⊗D′CZR×X to φ−1H ′. On the global sections we obtain

S′(k) :RHomDZ×X

(
KZ � (M⊗ F ),OZ×X ⊗D′CZR×X

)
[2dZ ](6.6)

→RHomDZ×X

(
φ−1M,OZ×X ⊗ φ−1(D′F )

)
[2dZ ].

ForZR compact andω an analytic form of degreedZ on ZR, we will show thatSZR
(u, v)(ω),

defined in Section 4, is nuclear. For this we will compareS′ZR
(u, v) (defined in formula (4.6))

andS′(K(φ,M, F, u, v)); in fact they form a commutative diagram with the natural morphisms

c1 andc2 described as follows. The inclusionH0(ZR;ΩZ)→ H0
(
ZR;B(dZ)

ZR

)
corresponds to a

morphism of contraction of duality:

c1 :RΓ(Z ×X ;H ⊗D′CZR×X)[2dZ ]→RHom(CZR×X ,H)[2dZ ].

We have a similar morphism:

c2 :RΓ
(
Z ×X ;φ−1H ′

)
[2dZ ]→RHomDZ×X

(
φ−1(M⊗ F ),OZ×X

)
[2dZ ].

PROPOSITION 6.5. – We keep the notations and hypothesis of Proposition6.4. We set for
shortk =K(φ,M, F, u, v). We have with the notations above:

(i) trk is the microlocal product ofc(φ,M, u) andc(φ,F, v);
(ii) c2 ◦ S′(k) = S′ZR

(u, v) ◦ c1.

Proof. –The first assertion is a simple consequence of the functoriality of the microlocal
product, applied to the morphismsLM→OZ � δ!ωX andLF → CZ � δ!ωX .

For the second assertion we keep the notationsH , H ′ above and we set:

G=RHomDZ×X (KZ �M,OZ×X), G′ =RHomDX (M,OX).
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In Remark 5.10 and formula (6.5) we have already built three similar morphisms, from which we
deducedS′ZR

(u, v) andS′(k):

LM → RHom
(
p−1
12 G,p−1

3 G′
)
[2dX ],

LF →∼ RHom
(
p−1
3 F,p−1

12 F
)
[2dX ],

LM,F → RHom
(
p−1
12 H,p−1

3 H ′
)
[2dX ].

We set for shortT ′ =T∗(Z ×X ×X) andT ′′ =T∗(Z ×X). When we microlocalize alongΓ,
we get:

H0
A1

(
T ′;µΓ(LM)

)
→H0

A′
1

(
T ′′;µhom(G,φ−1G′)

)
,

HdZ

A2

(
T ′;µΓ(LF )

)
→HdZ

A′
2

(
T ′′;µhom(φ−1F,CZ �F )

)
,

HdZ

A

(
T ′;µΓ(LM,F )

)
→HdZ

A′

(
T ′′;µhom(H,φ−1H ′)

)
,

whereA′1, A′2 are defined in Remark 5.10,A = A1 + A2 andA′ = A′1 + A′2 (note thatA′2
andA′ have a projection included intoZR ×X). Let u′µ, v′µ, w′µ be the images ofk(φ,M, u),
k(φ,F, v), k by these last three morphisms. The projection ofw′µ to the zero-section isS′(k).
By remarks 5.9 and 5.10 the projections ofu′µ andv′µ to the zero-section are

u′ ∈H0
(
Z ×X ;RHom(G,φ−1G′)

)
�Hom

(
G,φ−1G′

)
,

v ∈HdZ

ZR×X
(
Z ×X ;RHom(φ−1F,CZ � F )

)
�Hom

(
φ−1F,CZR

�F
)
,

whereu′ is the morphism induced byu on the solutions. One has to be careful that there are two
ways of making the product ofu′ andv:

Hom
(
G,φ−1G′

)
×Hom

(
φ−1F,CZR

� F
)

(6.7)

→Hom
(
RHom(CZR

� F,G),RHom(φ−1F,φ−1G′)
)
,

H0
(
Z ×X ;RHom(G,φ−1G′)

)
×HdZ

ZR×X
(
Z ×X;RHom(φ−1F,CZ �F )

)
(6.8)

→HdZ

ZR×X
(
Z ×X ;RHom(G,φ−1G′)⊗RHom(φ−1F,CZ � F )

)
→HdZ

ZR×X
(
Z ×X ;RHom(RHom(CZ � F,G),RHom(φ−1F,φ−1G′))

)
→Hom

(
RHom(CZ � F,D′CZR

⊗G),RHom(φ−1F,φ−1G′)
)
.

The image of(u′, v) by (6.7) is of courseS′ZR
(u, v) but its image by (6.8) isS′ZR

(u, v) ◦ c1.
By functoriality of the microlocal product,w′µ is the product ofu′µ and v′µ. The product

on the zero-section corresponding to this microlocal product is (6.8). Hence it follows from
Proposition 3.8 thatS′ZR

(u, v) ◦ c1 is equal toc2 ◦ S′(k). ✷
Remark6.6. – It should be noted that all the constructions in Sections 5 and 6, in particular

the definitions ofc(φ,M, u), c(φ,F, v) and their productχ(φ,M, F, u, v), are “local onZ” in
the following sense. LetU be an open subset ofZ andφ′ the restriction ofφ to U ×X . The
liftings u andv restrict to liftingsu′ andv′ of φ′; the pair(M, F ) is (strongly) transversally
elliptic for φ′ if it is for φ and we have for exampleχ(φ′,M, F, u′, v′) = χ(φ,M, F, u, v)|U .

7. Restriction to a non-characteristic submanifold

We keep the notations of Sections 4 and 6. We consider moreover a submanifoldZ ′
R

of ZR

with a complexificationZ ′ in Z . For suitableZ ′
R

the pair(M, F ) is still transversally elliptic
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with respect toZ ′. The following proposition asserts that, in this case, the hyperfunctionχ′ on
Z ′

R
associated to the restriction of the data toZ ′ is the inverse image ofχ.

More precisely, letφ′ :Z ′ × X → X and p′ :Z ′ × X → X be the restrictions ofφ and
p. The lifting u ∈ HomOZ�DX

(φ−1(M), p−1(M)) of φ for M restricts to a liftingu′ ∈
HomOZ′�DX

(φ′−1(M), p′−1(M)). The restriction ofv will be denoted similarly byv′.

PROPOSITION 7.1. – Assume the pair(M, F ) is transversally elliptic with respect toφ and
to φ′. ThenZ ′ is non-characteristic for the wave-front set of the hyperfunctionχ(φ,M, F, u, v)
and the restriction ofχ(φ,M, F, u, v) to Z ′

R
is χ(φ′,M, F, u′, v′).

Proof. –Let us denote byi :Z ′→ Z andj :Z ′ ×X ×X→ Z ×X ×X the inclusions, byΓ
andΓ′ the graphs ofφ andφ′. In morphism (5.7), we gave the following bound for the support
of c(φ,M, u):

Λ1 = (T∗Z × charM× charM) ∩T∗Γ(Z ×X ×X)∩
(
T∗Z ×T∗∆(X ×X)

)
.

SinceΛ1 is included in the conormal bundle to the graph of a map fromZ×X toX (in our case
φ) it is non-characteristic forj. Moreover, if we setΛ′1 = tj′(j−1

π (Λ1)), we have:

Λ′1 = (T∗Z ′ × charM× charM)∩T∗Γ′(Z ′ ×X ×X)∩
(
T∗Z ′ ×T∗∆(X ×X)

)
,

andΛ′1 is the bound of the support ofc(φ′,M, u′). Let us denote byT andT ′ the cotangent
bundles ofZ×X×X andZ ′×X×X . We have the inverse image morphism of Proposition 3.2
(see(3.1)):

H0
Λ1

(
T ;µΓ(OZ � δ!ωX)

)
→H0

Λ′
1

(
T ′;µΓ′(i−1(OZ)� δ!ωX)

)
.

Let us denote byr1 the composition of this morphism with the mapi−1(OZ)→OZ′ . The same
reasoning forF yields a similar morphism,r2 (Λ2 is also non-characteristic forj because
it is contained inT∗ZZ × T∗(X × X)). In view of Remark 3.5 on the compatibility of the
microlocal product with the inverse image, the proposition will be proved if we show thatj
is non-characteristic forΛ1 +Λ2 and

r1
(
c(φ,M, u)

)
= c(φ′,M, u′), r2

(
c(φ,F, v)

)
= c(φ′, F, v′).

Let us show thatj is non-characteristic forΛ1+Λ2. Letp ∈ Z ′×X×X andξ1 ∈ π−1(p)∩Λ1,
ξ2 ∈ π−1(p) ∩ Λ2 be such thattj′(ξ1 + ξ2) = 0. Thentj′(ξ1) =−tj′(ξ2) belongs toΛ′1 ∩ Λ′2

a.
But this last set is contained in the zero-section because(M, F ) is transversally elliptic forφ′

and we havetj′(ξ1) = tj′(ξ2) = 0. Sincej is non-characteristic forΛ1 andΛ2 this implies
ξ1 = ξ2 = 0. This proves thatj is non-characteristic forΛ1 +Λ2.

Now we show thatr1(c(φ,M, u)) = c(φ′,M, u′) (the proof forr2 is similar). We set as in
formula (5.2):

LM =ΩZ×X×X ⊗LDZ×X×X
(KZ �M�DM)[−dZ ],

L′M =ΩZ′×X×X ⊗LDZ′×X×X
(KZ′ �M�DM)[−dZ′ ].

SinceKZ has two structures of leftDZ -module,LM is a leftDZ -module and we have:

DZ′ i→Z ⊗Li−1DZ
j−1LM � L′M.

In particular, the tensor product with the canonical section1i of DZ′ i→Z gives a morphism
j−1LM→ L′M. The construction ofc(φ,M, u) is in three steps. First we use morphism (5.3),
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then we microlocalize with the isomorphism

RΓΓ(LM)�Rπ∗RΓA1µΓ(LM),

and finally we apply the trace morphismLM →OZ � δ!ωX . The trace morphism commutes
obviously with the inverse image byj, the microlocalization also in view of Proposition 3.2.
Hence it remains to prove that we have a commutative diagram:

j−1RHomDZ×X (φ
−1(M),KZ �M) j−1RΓΓ(LM)

RHomDZ′×X
(φ′−1(M),KZ′ �M) RΓΓ′(L′M).

But in this diagram the vertical arrows are just “taking tensor product with1i ∈ DZ′ i→Z ” and
they commute with the functorial morphisms described in the proof of Lemma 5.1 to obtain
morphism (5.3). ✷

8. The index as a trace

In this section we will interpret the index built in Section 6 as a generalized trace on
RHomDX (M⊗ F,OX), when(M, F ) is strongly transversally elliptic,M∈Db

good(DX) and
ZR is compact. More precisely, we will show that, for an analytic formω onZR, the morphism
SZR

(u, v)(ω) (defined in Section 4), fromRHomDX (M⊗F,OX) to itself, is nuclear, with trace∫
ω · χ(φ,M, F, u, v).

8.1. Trace of kernels

We consider the action of a “kernel” in the solution space of aD-module and show that it is
nuclear, with trace, the trace of the kernel. LetX be a complex analytic space,M∈Db

good(DX),
F ∈Db

R−c(CX). We set

KM,F =ΩX×X ⊗LDX×X

(
(M⊗ F )� (DM⊗D′F )

)
(this corresponds to the notationLM,F of formula (6.2) withZ = {pt}). We have the trace
morphism (6.4),tr :KM,F → δ!ωX . We denote also bytr the morphism induced on the global
sections, fromH0(X ×X ;KM,F ) to H0(X ;ωX). Setting

S =RHomDX (M⊗ F,OX) and S′ =RHomDX (M,OX ⊗D′F ),

we have a morphism induced by (6.5) (forZ = {pt}) on the global sections:

RΓc(X ×X ;KM,F )→RHom
(
RΓ(X ;S),RΓ(X ;S′)

)
.

In particular a “kernel”k ∈H0
c(X ×X ;KM,F ) defines

T (k) :RHomDX (M⊗ F,OX)→RHomDX (M,OX ⊗D′F ).
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We have also the contraction morphism:

c :RHomDX (M,OX ⊗D′F )→RHomDX (M⊗ F,OX).

The following proposition identifies the trace ofT (k) ◦ c and the trace ofk.

PROPOSITION 8.1. – LetX be a complex analytic space,M∈Db
good(DX),F ∈Db

R−c(CX).
We assume thatsuppM∩ suppF is compact. With the notations above, fork ∈ H0(X ×X ;
KM,F ), the morphismsT (k) ◦ c and c ◦ T (k) are nuclear morphisms(in the sense of Defin-
ition 2.3) respectively inDb(DFN ) and Db(FN ). They have the same trace(in the sense of
Definition2.5)and:

tr
(
T (k) ◦ c

)
= tr

(
c ◦ T (k)

)
=

∫
X

tr(k).

Proof. –In the proofCX (resp.AX ) is the sheaf of infinitely differentiable (resp. real analytic)
functions onX , C(i)

X (resp.A(i)
X ) is the sheaf of forms of degreei onX with coefficients inCX

(resp.AX ) and, for a product of manifolds,C(i,j)
X×X is the sheaf of forms of degreei in the first

factor andj in the second factor.
In order to represent the kernelk and its action we need resolutions ofKM,F by soft sheaves.

For this we will use the “realification” of aD-module introduced in [22]. Let us recall some of
their definitions and results. We denote byDXR the sheaf of real analytic differential operators,
i.e.DXR = (DX×X)|XR , whereX is the conjugate manifold ofX andXR is the real analytic

manifold underlyingX , identified with the diagonal ofX×X . The realification of aDX -module
M is the sheafMR = AX ⊗OX M with a structure ofDXR -module defined as follows. For
a, f ∈AX , m ∈M we set:

∂

∂zi
(a⊗m) =

∂a

∂zi
⊗m+ a⊗ ∂

∂zi
m,

∂

∂z̄i
(a⊗m) =

∂a

∂z̄i
⊗m,

f · (a⊗m) = fa⊗m.

The reason for introducingMR is that, for M ∈ Db
good(DX), MR has a finite global

resolution by finite freeDXR -modules, in a neighborhood of any compact subset ofX (see[22]
Proposition 3.1).

The links between the de Rham complex, the sheaf of solutions, the dual ofM andMR are
explained as follows. We have (seeLemmas 3.3–3.4 of [22]):

ΩX ⊗LDX
M�C(2dX)

X ⊗LDXR
MR[−dX ],(8.1)

RHomDX (M,OX)�RHomD
XR

(MR,CX).(8.2)

We setKXR =HomAX (A
(2dX)
X ,DXR) where the structure ofAX -module ofDXR is defined by

multiplication on the right. ThenKXR has two compatible structures of leftDXR -module. We
have:

(DM)R �RHomD
XR

(MR,KXR)[2dX ].(8.3)

In view of these formulas we have:

S �RHomD
XR

(MR ⊗ F,CX), S′ �RHomD
XR

(MR,CX ⊗D′F ),

KM,F � C(2dX ,2dX)
X×X ⊗LD(X×X)R

(
(MR ⊗ F )�RHomD

XR
(MR,KXR ⊗D′F )

)
.
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The morphism fromRΓ(X×X ;KM,F ) toRHom(RΓ(X ;S),RΓ(X ;S′)) generalizes imme-
diately toDXR -modules as follows. LetN1,N2 be inDb

coh(DXR), F1, F2 in Db
R−c(CX) and let

us set:

K = C(2dX,2dX)
X×X ⊗LD(X×X)R

(
(N1 ⊗ F1)�RHomD

XR
(N2,KXR ⊗D′F2)

)
.

If suppN1∩ suppF1 is compact, our morphism is given by the composition of a contraction and
a relative integration:

RΓ(X ×X ;K)⊗RHomD
XR

(N1 ⊗ F1,CX)

→RΓc
(
X ×X ;C(2dX,2dX)

X×X ⊗LD(X×X)R
(CX �RHomD

XR
(N2,KXR ⊗D′F2))

)
(8.4)

→RHomD
XR

(N2,CX ⊗D′F2).(8.5)

Note that the integration morphism

H0
c

(
X ;C(2dX)

X ⊗LD
XR
CX

)
�H2dX

c (X ;CX)→C

is nothing butω⊗ ϕ �→
∫
ω · ϕ for a formω and a functionϕ.

Now, up to shrinkingX to a suitable neighborhood ofsuppM∩ suppF , we may take a
global resolutionN · of MR of the formN i = DNi

XR . By (8.3) we have(DM)R �N ′·, where

N ′j =KN2dX−j

XR . Hence, by (8.1),ΩX×X ⊗LDX×X
M�DM is quasi-isomorphic to a complex

L· of sheaves of matrices with entries inC(2dX ,0)
X×X , Li =

⊕
p+q=iMatNp×N−q(C

(2dX ,0)
X×X ).

Now we need a resolution ofF � D′F . By Proposition 3.10 of [22], anyR-constructible
sheaf has a bounded resolutionG· with Gi =

⊕
U∈Ii

CU , whereIi is a locally finite family of
relatively compact open subsetsU of X such thatRHomCX (CU ,CX)�CU . Up to shrinkingX
once more we may assume thatF has such a resolution, for which the familiesIi are finite. Hence
F �D′F is quasi-isomorphic to a complexH·, whereHj =

⊕
r+s=j

⊕
U∈Ir , V ∈I−s

CU×V .
With the resolutionsL· andH· we can represent the global sections ofKM,F � L· ⊗ H·.

Indeed, soft sheaves are acyclic for the functorΓ(X×X ; (·)U×V ), whereU , V are open subsets
of X . Hence we obtain a representativeK · of RΓ(X ×X ;KM,F ) with

K- =
⊕
i+j=-

Γ
(
X ×X ;Li ⊗Hj

)
.

We have:

Γ
(
X ×X ;Li ⊗Hj

)
=

⊕
MatNp×N−q

(
Γ
(
X ×X ;

(
C(2dX ,0)
X×X

)
U×V

))
,

where the sum runs over the couples of integers(p, q) such thatp+ q = i, and the couples of
opens sets(U,V ) ∈

⋃
r+s=j Ir × I−s. In particular, the kernelk admits a representativek0 in

K0, which we assume fixed in what follows. Note that a section ofΓ(X ×X ; (CX×X)U×V ) is

represented by a function defined onU ×W for W a neighborhood ofV , with support inC×W
for C a compact subset ofU .

Using the same resolutions forMR andF and isomorphism (8.2) we obtain resolutionsS· of
RΓ(X ;S) andS′· of RΓ(X ;S′) of the form:

Si =
⊕
p+r=i

⊕
U∈I−r

Γ(U ;CX)N−p , S′
i =

⊕
p+r=i

⊕
U∈I−r

Γ(U ;CX)N−p .
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In view of these resolutions, it just remains to describe morphisms (8.4) and (8.5) when
N1 = DN1

XR [i1], N2 =DN2
XR [i2], F1 = CU1 [j1], F2 = CU2 [j2] with i1 − i2 + j1 − j2 = 0. In this

case we have:

RΓ(X ×X ;K)�MatN1×N2

(
Γ
(
X ×X ;

(
C(2dX ,0)
X×X

)
U1×U2

))
,

RHomD
XR

(N1 ⊗F1,CX)� Γ(U1;CX)N1 [−i1− j1],

RHomD
XR

(N2,CX ⊗D′F2)� Γ(U2;CX)N2 [−i2 − j2].

Let A be a matrix inH0(X ×X ;K), ϕ ∈H0(U1;CX)N1 . Then morphism (8.4) sendsA⊗ ϕ to

ϕ · A which is anN2-vector with entries inΓ(X ×X ; (C(2dX,0)
X×X )U1×U2

) and morphism (8.5)

integratesϕ · A with respect to the first variable (recall thatA has support inC × U2 for
C a compact subset ofU1). This gives aN2-vector,ϕ′, with entries inΓ(U2;CX). The map
ϕ �→ ϕ′ is nuclear. Its compositions with the restriction maps, which send functions defined in
a neighborhood ofU1 or U2 to their restrictions toU1 or U2, are also nuclear. IfN1 =N2 and
F1 = F2 they have the same trace: ∑

i

∫
X

Aii|∆X ,

which is the image ofA by the morphismtr.
Summing over the components ofN · andG· we obtain the proposition.✷

8.2. The index as a generalized trace

In this paragraph we consider the situation described in Section 4;φ :Z × X → X is a
morphism of complex manifolds satisfying condition (4.1),M∈Db

good(DX), F ∈Db
R−c(CX).

We assume thatsuppM∩ suppF is compact and moreover thatZR is compact. We still denote
by u a lifting of φ forM andv a lifting of φR for F .

SinceZR is compact we may consider the morphism

SZR
(u, v) :Γ

(
ZR;B(dZ)

ZR

)
⊗RHomDX (M⊗ F,OX)→RHomDX (M⊗ F,OX),

defined in Section 4. We show that, forω ∈ Γ(ZR;ΩZ), S(u, v)(ω) (defined in (4.8)) is nuclear
with trace the evaluation of the index onω.

Let us setk = K(φ,M, F, u, v) for short. Composing the morphismS′(k) defined in
formula (6.6) and the natural morphism

RHomDZ×X

(
φ−1M,OZ×X ⊗ φ−1D′F

)
[2dZ ]→RHomDX (M,OX ⊗D′F )

defined similarly as (4.7), we obtain

S(k) :Γ(ZR;ΩZ)⊗RHomDX (M⊗ F,OX)→RHomDX (M,OX ⊗D′F ).

For ω ∈ Γ(ZR;ΩZ) we denote byS(k)(ω) the morphism fromRHomDX (M ⊗ F,OX)
to RHomDX (M,OX ⊗ D′F ) induced byS(k). Let i be the inclusion ofΓ(ZR;ΩZ) in

Γ(ZR;B(dZ)
ZR

) andc the contraction morphism:

c :RHomDX (M,OX ⊗D′F )→RHomDX (M⊗ F,OX).
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As an immediate consequence of Proposition 6.5 we have:

c ◦ S(k) = SZR
(u, v) ◦ (i⊗ id).

Hence we only need to show thatS(k)(ω) is nuclear; in fact we will see that it is defined
by a kernel as in the preceding paragraph. Recall thatk is a section ofLM,F , whereLM,F

is defined by formula (6.2). We may multiplyk by ω ∈ Γ(ZR;ΩZ) and integrate along the
projection toX ×X . We obtain a kernelkω ∈H0(X ×X ;KM,F ), whereKM,F is defined in
the preceding paragraph. From the definitions ofS(k) andT (kω) we see thatS(k)(ω) = T (kω).
By Proposition 8.1 this implies thatc ◦ S(k) is nuclear with trace

∫
X tr(kω). But the trace

morphismstr :LM,F →OZ � δ!ωX andtr :KM,F → δ!ωX commute with the integration along
the projectionq :Z ×X ×X →X ×X ; hencetr(kω) =

∫
q tr(k) · ω. Now, denoting by∗µ the

microlocal product, we have by Proposition 6.5:∫
Z×X×X

tr(k) · ω =
∫

Z×X×X

(
c(φ,M, u) ∗µ c(φ,F, v)

)
· ω =

∫
Z

χ(φ,M, F, u, v) · ω.

Finally, we have obtained the desired result:

THEOREM 8.2. – We consider complex analytic manifolds,Z , X andφ :Z ×X→X a map
satisfying(4.1). LetZR be a real, oriented submanifold ofZ such thatZ is a complexification of
ZR. LetM∈Db

good(DX), F ∈Db
R−c(CX); let u be a lifting ofφ for M andv a lifting of φR

for F .
We assume that(M, F ) is strongly transversally elliptic in the sense of Definition6.3, that

supp(M)∩ supp(F ) is compact and thatZR is compact.
Then for any formω ∈ Γ(ZR;ΩZ) the morphism(4.8):

S(u, v)(ω) :RHomDX (M⊗ F,OX)→RHomDX (M⊗ F,OX)

in Db(FN ) is nuclear and its trace in the sense of Definition2.5 is:

tr
(
S(u, v)(ω)

)
=

∫
ZR

ω · χ(φ,M, F, u, v).

9. Transversal case

In this section we will make additional hypothesis on the mapφ :Z×X→X and then on the
lifting u of φ for M, in order to compute more easily the hyperfunctionχ(φ,M, F, u, v). We
denote as before the diagonal ofX ×X by ∆X .

9.1. Transversal case

Until the end of the section we assume that the graphΓ of φ and the graphZ ×∆X of the
projectionp :Z×X→X are transversal inZ ×X ×X (if φ is a group action this is the case if
and only if the action is homogeneous). This is equivalent to

Λφ ⊂T∗XX,

whereΛφ is the subset ofT∗X introduced in Definition 6.1. Hence any pair(M, F ) with
M∈Db

good(DX), F ∈Db
R−c(CX) is transversally elliptic, so that no microlocal information
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on F andM is needed to build the hyperfunctionχ(φ,M, F, u, v). In this paragraph we will
give a construction without using the microlocalization functor.

In Definitions 5.2 and 5.8 we introduced the following cohomology classes associated to
liftings of φ; they are the projections ofc(φ,M, u) andc(φ,F, v) to the zero-section:

c0(φ,M, u)∈H0
Γ(Z ×X ×X ;OZ � δ!ωX),

c0(φ,F, v) ∈HdZ

S (Z ×X ×X ;CZ � δ!ωX),

whereS =ΓR ∩ (Z × suppF × suppF ) ∩ (Z ×∆X). Let

Z̃ =Γ∩ (Z ×∆X) =
{
(z, x) ∈ Z ×X ; φ(z, x) = x

}
be the “fixed points set” ofφ; by the transversality hypothesis this is a submanifold ofZ×X×X
of dimensiond

Z̃
= dZ . Let q : Z̃→ Z be the projection. We have canonical isomorphisms (note

thatS ⊂ Z̃):

H0
Γ(Z ×X ×X ;OZ � δ!ωX)�H0

Z̃
(Z ×X ;OZ � ωX)�H0(Z̃; q!OZ),(9.1)

HdZ

S (Z ×X ×X ;CZ � δ!ωX)�HdZ

S (Z ×X;CZ � ωX)�HdZ

S (Z̃;C
Z̃
).(9.2)

Let c′(u) ∈H0(Z̃; q!OZ) andc′(v) ∈HdZ

T (Z̃;C
Z̃
) be the images ofc0(φ,M, u) andc0(φ,F, v)

by these isomorphisms. The cup-product ofc′(u) andc′(v) belongs toHdZ

S (Z̃; q!OZ). We can
integrate it along the projectionq using the morphismR q!q

!→ id.

LEMMA 9.1. – If the graph,Γ, of φ is transversal toZ ×∆X in Z ×X ×X , we have, with
the notations above:

χ(φ,M, F, u, v) =
∫
q

c′(u) ∪ c′(v).

Proof. –The lemma is in fact just a consequence of the commutativity of the diagram in
Remark 3.7. We set for shortT ′ =T∗(Z ×X ×X). In view of Remark 3.6 the micro-product
of c(φ,M, u) andc(φ,F, v) is also obtained by first sending

c(φ,F, v) ∈HdZ

Λ2

(
T ′;µΓR

(CZ � δ!ωX)
)

toHdZ

S (T ′;µΓ(CZ � δ!ωX)) by the natural morphism associated to the inclusionΓR ⊂ Γ. By the
transversality hypothesisΓ is non-characteristic forCZ � δ!ωX so that Remark 3.7 applies and
tells us that the projection of the micro-product to the zero-section is equal to the cup-product of
c′(u) andc′(v), after the identification

HdZ

S

(
T ′;µΓ(CZ � δ!ωX)

)
�HdZ

S

(
Z ×X ×X ; (CZ � δ!ωX)⊗ωΓ|Z×X×X

)
�HdZ

S (Z ×X ×X ;C
Z̃
)

�HdZ

S (Z̃;C
Z̃
).

This identification is the same as (9.2) and integration alongq yields the lemma. ✷
9.2. Lifting induced by a fiber bundle morphism

In this paragraph we still make the hypothesis of transversality. We want to describe the class
c′(u) ∈H0(Z̃; q!OZ). In particular, we will show that it is related to the fundamental class ofZ̃
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in Z ×X . For a morphism of complex manifoldsf :Y → Y ′ we have the integration morphism
σ :Rf!ΩY [dY ]→ ΩY ′ [dY ′ ] which givesτ :f!ΩY → HdY ′−dY

f(Y ) (ΩY ′) (this morphism is used to
define the fundamental class, for example in [16], Definition 11.1.5).

We would like to substitute the complexq!OZ for something easier to describe. We remark that
if q is a local diffeomorphism thenq!OZ �OZ̃ , but in general there is no natural map between
q!OZ andO

Z̃
. However, the choice of a volume formω onZ gives an identificationOZ � ΩZ

and the integration morphismσZ :R q!ΩZ̃ → ΩZ gives by adjunction a natural morphism

σ′Z :Ω
Z̃
→ q!ΩZ . It is natural to ask whetherc′(u) arises from a sectionc′ω(u) ∈ H0(Z̃;Ω

Z̃
)

by the composition:

H0(Z̃;Ω
Z̃
)
σ′

Z−→H0(Z̃; q!ΩZ)
⊗ω−1

−−−−→H0(Z̃; q!OZ),

where we write, by abuse of notations,σ′Z for H0(σ′Z) or H0(Z̃;σ′Z). For this we assume that
theD-moduleM arises from a “differential complex of fiber bundles”, i.e.

M� · · ·→DX ⊗OX E i
di−→DX ⊗OX E i+1→ · · · ,

where theE i are locally freeOX -modules and the differentialsdi areDX -linear. We assume
moreover that the liftingu of φ forM is induced byOZ×X -linear morphismsu′i :φ∗E i→ p∗E i
as explained in example 5.5. In this case we know from Remark 5.6 that

c0(φ,M, u) =
∑

(−1)ic0
(
φ,DX ⊗OX E i, u′

i ⊗ :φ
)
,

where:φ is the natural lifting ofDX . Hence we are reduced toM=DX ⊗OX E , whereE is a
fiber bundle andu= u′ ⊗ :φ for a lifting u′ of φ for E .

We setF = OZ � E � E∗; we havei∗ΓF � HomOZ×X (φ
∗E , p∗E). Let iΓ, i∆, i be the

embeddings ofΓ, Z×∆X , Z̃ in Z×X×X . By examples 5.5 and 5.4 we know thatc′(u) is the
image ofu by e ◦ d, whered ande are the compositions (tensor products betweenO-modules
are taken overO):

d :HdX

Γ

(
O(0,dX ,0)
Z×X×X ⊗F

)
→HdX

Γ

(
i∆∗O

(0,dX )
Z×X

)
→∼ HdX

Z̃

(
O(0,dX )
Z×X

)
,

e :HdX

Z̃

(
O(0,dX)
Z×X

)
→H0

Z̃

(
OZ �ωX

)
→∼ H0

(
q!OZ

)
,

where the first morphism ind is induced by the contractionF → i∆∗OZ×X . We are interested in
the image ofu by d; in particular, we ask if it is related to the fundamental class ofZ̃ in Z ×X .
But we have to be careful that the morphisms induced by the fundamental classes ofΓ andZ̃

iΓ∗OZ×X →HdX

Γ

(
O(0,dX ,0)
Z×X×X

)
and i∗OZ̃ →HdX

Z̃

(
O(0,dX)
Z×X

)
do not commute withd and the restrictioniΓ∗OZ×X → i∗OZ̃ (indeed the second morphism
could be zero). However the next lemma says that the corresponding morphisms with maximal
degree forms onZ fit into a commutative diagram. We consider the morphisms defining the
fundamental classes ofΓ andZ̃ :

τΓ : iΓ∗
(
O(dZ ,0)
Z×X

)
⊗F →HdX

Γ

(
O(dZ ,dX ,0)
Z×X×X ⊗F

)
,

τ
Z̃
: i∗ΩZ̃→ i∆∗H

dX

Z̃
(ΩZ×X),
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whereτΓ is the integration morphism associated withiΓ, tensored by(O(0,0,dX)
Z×X×X)

∗ ⊗ F . We
recall that the canonical lifting,:φ, of DX is defined (Example 5.4) as the projection of the
fundamental class ofΓ. In view of the definition of the fundamental class we have also, for a
dZ -form ω onZ and forF =OZ×X×X :

ω⊗ :φ = τΓ(ω).

Let d′ be “d⊗O(dZ ,0,0)
Z×X×X ” ande′ be “e⊗O(dZ ,0,0)

Z×X×X ”:

d′ :HdX

Γ

(
O(dZ ,dX ,0)
Z×X×X ⊗F

)
→ i∆∗H

dX

Z̃
(ΩZ×X),

e′ : i∆∗H
dX

Z̃
(ΩZ×X)→H0(q!ΩZ).

By definition of τ
Z̃

we haveσ′Z = e′ ◦ τ
Z̃

. Writing Z̃ as the transversal intersection ofΓ and

Z ×∆X , we obtain also a map fromiΓ∗(O(dZ ,0)
Z×X ) to i∗ΩZ̃ . Indeed, we have the composition of

isomorphisms:

i∗ΩZ̃ � iΓ∗ΩZ×X ⊗ i∆∗ΩZ×X ⊗Ω∗Z×X×X(9.3)

� iΓ∗O
(dZ ,0)
Z×X ⊗ i∆∗

(
O(dZ ,dX)
Z×X ⊗ i∗∆

(
O(dZ ,dX ,0)
Z×X×X

)∗)
� iΓ∗O

(dZ ,0)
Z×X ⊗ i∆∗OZ×X .

The contractionF → i∆∗OZ×X composed with (9.3) yields

αE : iΓ∗O
(dZ ,0)
Z×X ⊗F → i∗ΩZ̃ .(9.4)

For the link betweenαE and the inverse image of forms see Remark 9.5.

LEMMA 9.2. – We assume thatΓ andZ×∆X are transversal inZ×X×X andE is a locally
freeOX -module. We setF = OZ � E � E∗. With the notations above we have a commutative
diagram:

iΓ∗(O
(dZ ,0)
Z×X )⊗OZ×X×X F

αE

τΓ

i∗ΩZ̃

τ
Z̃

HdX

Γ (O(dZ ,dX ,0)
Z×X×X ⊗OZ×X×X F)

d′ i∆∗H
dX

Z̃
(ΩZ×X).

Proof. –By the definitions ofαE andd′ it is enough to show that the same diagram, with
i∆∗(OZ×X) instead ofF , is commutative. We introduce the following sheaf onZ × ∆X ,
Ωrel = ΩZ×∆X ⊗ i∗∆Ω

∗
Z×X×X . SinceZ̃ is the transversal intersection ofΓ andZ ×∆X , the

integration morphisms associated toi andiΓ are related by the commutative diagram:

iΓ∗ΩZ×X ⊗ i∆∗Ωrel
∼
a

i∗ΩZ̃

ΩZ×X×X [dX ]⊗ i∆∗Ωrel
∼

i∆∗ΩZ×X [dX ].

SinceΩrel is canonically isomorphic toi∗∆(O
(0,0,dX )
Z×X×X)

∗, we have also the isomorphisms:
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iΓ∗ΩZ×X ⊗ i∆∗Ωrel→
b

∼ iΓ∗O
(dZ ,0)
Z×X ⊗ i∆∗(OZ×X),

ΩZ×X×X ⊗ i∆∗Ωrel �O(dZ ,dX ,0)
Z×X×X ⊗ i∆∗(OZ×X).

We conclude with the remark that the compositiona ◦ b−1 coincides withαE . ✷
Now we can writec′(u) as the image of a form oñZ . Letω be a volume form onZ . We have

c′(u) · ω ∈H0(Z̃; q!ΩZ).

ForM=DX ⊗OX E andu= u′ ⊗ :φ as above,ω⊗ u is the image of

ω⊗ u′ ∈ iΓ∗O
(dZ ,0)
Z×X ⊗F � iΓ∗

(
O(dZ ,0)
Z×X ⊗Hom(φ∗E , p∗E)

)
by τΓ and we have, by Lemma 9.2:

c′(u) · ω = (e′ ◦ d′ ◦ τΓ)(ω⊗ u′) = (e′ ◦ τ
Z̃
◦ αE)(ω⊗ u′) = (σ′Z ◦αE)(ω ⊗ u′).

If M is given by a complexE · we sum over the components.

PROPOSITION 9.3. – With hypothesis and notations of Lemma9.1 we assume thatM
is given by a complex of fiber bundles,M � DX ⊗OX E ·, and u by morphismsu′i ∈
HomOZ×X (φ∗E i, p∗E i). Then, for a volume formω on Z̃ we have:

c′(u) · ω = σ′Z

(∑
i

(−1)iαEi

(
ω⊗ u′

i))
.

Let us setc′ω(u) =
∑

(−1)iαEi(ω ⊗ u′
i); this is a section ofΩ

Z̃
. ForS ⊂ Z̃ such thatq|S is

proper, we denote also by
∫
q the integration morphism fromHdZ

S (Z̃;Ω
Z̃
) toHdZ

q(S)(Z;ΩZ). With
the help of Lemma 9.1 and Proposition 9.3 we obtain finally the hyperfunctionχ(φ,M, F, u, v)
as the direct image of a form oñZ :

COROLLARY 9.4. – With hypothesis and notations of Lemma9.1 and Proposition9.3 we
have:

χ(φ,M, F, u, v) · ω =
∫
q

c′ω(u)∪ c′(v).

Remark9.5. – Here is the link between the morphismαOX of (9.4) and the inverse image
by the projectionq : Z̃ → Z (recall thatαE is just the product ofαOX and the contraction
F → i∆∗OZ×X ). Let p :Z × X → Z be the projection andω a maximal degree form onZ .
We setω̃ = αOX (p∗ω); the formsω̃ andq∗ω are related as follows. Forz ∈ Z we denote by
φz :X→X the mapx �→ φ(z, x). If (z, x) ∈ Z̃ , thenφz(x) = x andφ′z(x) is an endomorphism
of TxX so that it makes sense to consider the functionD(z, x) = det(id−φ′z(x)) on Z̃. A local
computation gives:

q∗ω =D(z, x) · ω̃.(9.5)

In particular, ifZ is a point andφ :X→X is “transversal toid”, the class

c′ω(u) ∈HdX

Z̃
(ΩX)�

⊕
x∈Z̃

C
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is given by a complex number at each fixed point ofφ. With the notations above for a lifting
induced by fiber bundles morphisms, this number is, at a fixed pointx:

c′ω(u)x =
∑
i

(−1)i tru′i

det(id−φ′(x)) .

This is the Atiyah–Bott formula (Theorem 4.12 of [3]) for a “linear” lifting (seealso [11] for an
expression in the framework of “elliptic pairs”).

10. Group action case

In this section we consider the previous results in the case of a group action. Our manifoldZ is
assumed to be a complex Lie group and we denote it byG; φ :G×X→X is a group action. The
condition (4.1) is clearly satisfied. We denote bye the neutral element ofG, by GR a real form
of G, by g andgR the Lie algebras ofG andGR. For g ∈ G, x ∈X we denote byφg :X →X
the mapy �→ g · y, by xφ :G→X the maph �→ h · x and bymg :G→G the multiplication on
the righth �→ h · g.

We consider aG-quasi-equivariant goodDX -module,M. This means that there exists an
OG �DX -linear isomorphismu from φ−1(M) to p−1(M) compatible with the multiplication
of G (this compatibility with the product is in fact not used for the definition of the index).

In the same way we consider aGR-equivariantR-constructible sheafF onX , i.e. we have an
isomorphismv from φ−1

R
(F ) to p−1

R
(F ) compatible with the product ofGR. Hence we are in

the situation of Section 4. Recall the subsets ofT∗X associated toφ, Λφ andΛ′φ, introduced in
Definitions 6.1 and 6.3:

Λφ =
{
(x, ξ) ∈T∗X ; ∃g ∈G, g · x= x, tφ′(g,x)(ξ) = (0, ξ)

}
,

Λ′φ =
{
(x, ξ) ∈T∗X ; ∃ (g, y) ∈G×X, g · y = x, t(yφ)′g(ξ) = 0

}
.

We have already noticed thatΛφ ⊂ Λ′φ. For a group there is also the conormal to the orbits defined
as follows. Letµ :T∗X → g∗ be the moment map ofT∗X . By definition, for (x, ξ) ∈ T∗X ,
µ(x, ξ) = t(xφ)′e(ξ). The conormal to the orbits is

T∗GX = µ−1(0) =
{
(x, ξ) ∈T∗X ; t(xφ)′e(ξ) = 0

}
.

We see on this formula thatT∗GX ⊂ Λ′φ.

LEMMA 10.1. – If φ :G×X→X is a group action we have:

T∗GX =Λ′φ =Λφ.

Proof. –(i) We first show thatΛ′φ ⊂ T∗GX . Let (x, ξ) ∈ Λ′φ. By definition there existsg ∈G

such that, settingy = g−1 · x, we havet(yφ)′g(ξ) = 0. Then xφ = yφ ◦ mg and t(xφ)′e =
t(mg)′e ◦ t(yφ)′g . Hence we also havet(xφ)′e(ξ) = 0, so that(x, ξ) ∈T∗GX .

(ii) We show thatT∗GX ⊂ Λφ. Let (x, ξ) ∈T∗GX , so thatt(xφ)′e(ξ) = 0. It is sufficient to show
thattφ′(e,x)(ξ) = (0, ξ). But, in general, we have

tφ′(g,x)(ξ) =
(
t(xφ)′g(ξ),

t(φg)′x(ξ)
)
.

Sinceφe is the identity morphism ofX the result follows. ✷
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From this lemma the pair(M, F ) is transversally elliptic if and only if

char(M)∩ SS(F ) ∩T∗GX ⊂T∗XX

and this is equivalent to the strong transversal ellipticity. Until the end of the section we
assume that(M, F ) is transversally elliptic and thatsupp(M) ∩ supp(F ) is compact.
Hence the hypotheses of Proposition 6.2 are satisfied and we can consider the hyperfunction
χ(φ,M, F, u, v). It is invariant by conjugation because of the equivariance of the data. Indeed,
let h ∈GR; the conjugation byh, ch :G→G, g �→ h · g ·h−1 and the actionφh of h onX make
the following diagram commute:

G×X
φ

ch×φh

X

φh

G×X
φ

X.

We setM′ = φh
−1M, F ′ = φ−1

h F and we letu′, v′ be the inverse images ofu, v. We have
χ(φ,M, F, u, v) = c∗h(χ(φ,M′, F ′, u′, v′)), becausech andφh are diffeomorphisms. But, by
equivariance,M′ � M, F ′ � F and u′, v′ coincide withu, v, so thatχ(φ,M, F, u, v) =
c∗h(χ(φ,M, F, u, v)).

We have also a better expression for the boundΛ of the wave-front set ofχ(φ,M, F, u, v)
given in Proposition 6.2. Forg ∈G let us identifyT∗eG= g∗ andT∗gG throughmg ; this gives an
isomorphismT∗G�G× g∗. Let x, y ∈X andg ∈G be such thatx= g · y. For ξ ∈ T∗xX we
have:

tm′g
(
t(yφ)′g(ξ)

)
= t(xφ)′e(ξ) = µ(x, ξ).

Hence with the isomorphismT∗G � G × g∗ we obtaint(yφ)′g(ξ) = (g,µ(x, ξ)). We say that
(x, ξ) ∈T∗X is fixed byg ∈G if g · x= x andt(φg)′x(ξ) = ξ (the second equality makes sense
becausex is fixed byg). We denote byg⊥

R
⊂ g∗ the orthogonal ofgR in g∗. We have the following

expression for the boundΛ of the wave-front set ofχ(φ,M, F, u, v):

Λ=
{
(g, η) ∈GR × g⊥R ; ∃ (x, ξ) ∈ charM∩ SS(F )a(10.1)

(x, ξ) is fixed byg andη = µ(x, ξ)
}
.(10.2)

This bound coincides with the one given in [5] in the case of a compact group.

Example10.2. – LetG be a complex Lie group with a compact real formGR. We letG operate
onX =G by multiplication on the left. We consider the action ofGR on Γ(GR;AGR

), i.e. we
considerM=DX which is naturallyG-quasi-equivariant, with liftingu= :φ, andF = CGR

the
constant sheaf onGR ⊂X which is also naturallyGR-equivariant, with liftingv = idF . SinceX
is homogeneous we are in the setting of paragraph 9.2 (M being associated to the trivial bundle
onX). We need to determine the formc′ω(:φ) of Corollary 9.4, for a volume formω onG. It is
the image ofω by the morphismαOX defined by formula (9.4). The fixed points set of the action
of G onX is G̃= {e}×X viewed as a subset ofG×X , and we identifyG̃ with G=X by the
projectionG × X → X . If we chooseω to be invariant we can see, with this identification,
that c′ω(:φ) = ω as a form onG̃. We have to determine also the classc′(v); it belongs to
HdG

S (G̃;C
G̃
), whereS = (GR × suppF ) ∩ G̃. With our identificationG̃ = X = G we have

S = GR, HdG

S (G̃;C
G̃
) � H0(GR;CGR

) � C andc′(v) = 1. Finally, χ(φ,M, F, u, v) · ω is the
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direct image ofω|S through the projectionq : G̃→G sendingG̃ to {e}. Henceχ(φ,M, F, u, v)
is the Dirac function on{e}.

10.1. Real compact Lie group

In this paragraph we show that the hyperfunctionχ(φ,M, F, u, v) coincides with the character
of transversally elliptic operators given by Atiyah in [1]. LetGR be a real compact Lie group,
acting on a real analytic manifoldM , F1, F2 be equivariant fiber bundles onM andQ be an
equivariant differential operator from the sections ofF1 to the sections ofF2. We assume this
situation can be complexified, i.e. we assume that there exist a complex Lie groupG, with GR

as a real form, acting on a complexification,X , of M , andG-equivariant fiber bundlesE1, E2 on
X endowed with aG-equivariant differential operatorP , such thatE1, E2, P restrict toF1, F2,
Q onM . We setF = ωM|X and

M= 0→DX ⊗OX E∗2 →DX ⊗OX E∗1 → 0.

If we choose an identification betweenSS(F ) = T∗MX andT∗M we have

T∗GR
M �T∗GX ∩T∗MX.

Let σQ :π∗F1→ π∗F2 be the principal symbol ofQ (hereπ is the projectionT∗M →M ). We
have also with the identificationT∗MX �T∗M :

{
(x, ξ); σQ(x, ξ) is not an isomorphism

}
= charM∩T∗MX.

Recall thatQ is transversally elliptic in the sense of Atiyah ifσQ is an isomorphism on
T∗GR

M �T∗MM . HenceQ is transversally elliptic if and only if(M, F ) is transversally elliptic
in the sense of Definition 6.1.

We want to show that the hyperfunctionχ(φ,M, F, u, v) agrees with Atiyah’s index, which
is defined as the trace of the groupGR on the virtual representationkerQ − cokerQ, where
Q acts on the infinitely differentiable sections ofF1 andF2. The equality of this index with
χ(φ,M, F, u, v) is nearly an immediate consequence of Theorem 8.2 except that we deal with
analytic or hyperfunction sections. We haveRHom(F,OX)�BM andD′F ⊗OX �AM . Let
C∞M be the sheaf of infinitely differentiable functions onM . Let us set for short:

A=RHomDX (M,AM ), C =RHomDX (M,C∞M ), B =RHomDX (M,BM ).

We have natural morphismsA
f→ C

g→ B, and for an analytic formω on GR we have,
by Section 4, morphisms commuting withf and g, say SA(ω) :A → A, SC(ω) :C → C,
SB(ω) :B → B. But in fact we know by Proposition 6.5 that they are compositions off , g
and a morphismS(ω) :B→ A. This implies thatSA(ω), SB(ω), SC(ω) have the same “naive
trace” (in the sense of Section 2) and hence the same trace.

PROPOSITION 10.3. –Let GR be a real compact Lie group acting on a real compact mani-
fold M and let Q be a transversally elliptic operator onM . Assume thatGR, M , Q can
be complexified inG, X , P and letM be theDX -module associated toP as above. Then
χ(φ,M, ωM|X , u, v) is equal to the analytic index ofQ defined in[1].
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10.2. Semi-simple Lie group

In this paragraphG is a connected, semi-simple, complex Lie group,GR a real form ofG,
X the flag manifold ofG. We considerM = DX which is canonicallyG-quasi-equivariant,
with lifting :φ, and is in fact associated to the trivial line bundle onX ; we consider also aGR-
equivariantR-constructible sheafF on X with lifting denoted byv. The action ofG on X
is homogeneous; hence we are in the setting of Paragraph 9.2 and we can apply the results of
Corollary 9.4. In this case the fixed points set is the following subset ofG × X , whereX is
identified with the set of Borel subgroups ofG:

G̃=
{
(g,B) ∈G×X ; g ∈B

}
.

Letω ∈ Γ(G;ΩG). The formω̃ = c′ω(:φ) ∈ Γ(G̃;Ω
G̃
) of Corollary 9.4 is given by formula (9.5):

ω̃ =
1

det(id−φ′g(x))
· q∗ω,

whereq : G̃→ G is the projection andφ′g(x) is the derivative ofφg at the fixed pointx ∈ X .
Note that, ifg is in a maximal torusH ⊂G andx corresponds to a BorelB ⊃H determined by
a set of positive roots∆+, the determinant is the Weyl denominator (seefor Example [3]):

det
(
id−φ′g(x)

)
=

∏
α∈∆+

(
1− e−α

)
(g).

Indeed, we may identifyTxX with g/b �
⊕

α∈∆+
g−α, whereb is the Lie algebra ofB and

g−α the eigenspace for−α, andφ′g(x) acts ong−α by e−α(g).
On the other hand, with the notations of paragraph 9.1, the classc′(v) is the characteristic

cycle introduced by Kashiwara in [14]. It belongs toHdG

S (G̃;C
G̃
), whereS = q−1(suppF ) ⊂

q−1(GR). The subsetq−1(GR) of G̃ is the fixed points set ofGR in X . But GR has finitely
many orbits inX , sayO1, . . . ,On. Let us denote bỹGi the fixed points set ofGR in Oi, i.e.
G̃i = (GR ×Oi) ∩ G̃. ThenG̃i is a real smooth submanifold of̃G of real dimensiondG. Hence
q−1(GR) =

⊔
G̃i is the union of finitely many submanifolds of̃G of real dimensiondG. By

Corollary 9.4 the index is

χ(φ,DX , F, :φ, v) =
∫
q

c′(v) ∪ ω̃(10.3)

and is in fact the sum of direct images of a multiple ofω̃ on eachG̃i. This formula coincides
with the one given in [15] (seealso [14] and [23]).

From the results of [18] we know that the complex

RHomDX (DX ⊗ F,OX)�RHom(F,OX)

is strict and that the resultingFN -spaces representations ofGR,

πi :GR → End
(
Exti(F,OX)

)
,

are admissible. This implies in particular that they have generalized characters. Let us denote
by χi the character ofπi; for a maximal degreeC∞-form ω with compact support onGR,
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the morphismπi,ω :Exti(F,OX) → Exti(F,OX), x �→
∫
GR

πi(g)(x) · ω is trace-class and,
by definition,〈χi, ω〉 = trπi,ω . Now we can prove that the character

∑
(−1)iχi is given by

formula (10.3). This was conjectured in [15], Paragraph 6.3, and proved in [23]. (Up to the
Matsuki correspondence (see[19] and [18]) a similar character formula was also given in [14]
and proved in [20], by a comparison method between the character and Kashiwara’s formula,
using a decomposition on Schubert cells and the Osborne conjecture.)

THEOREM 10.4. – Let G be a connected, semi-simple, complex Lie group,GR a real form
of G, F an R-constructibleGR-equivariant sheaf on the flag manifoldX of G. Let χi be the
character of the representationExti(F,OX) and c′ the characteristic cycle ofF . With the
notations above, for a volume formω onG and the associated volume form̃ω on G̃, we have:

∑
(−1)iχi · ω =

∫
q

c′ ∪ ω̃.

Proof. –We have to show thatχ(φ,DX , F, u, v) =
∑

(−1)iχi. This would be a particular case
of Theorem 8.2 ifGR were compact. In fact we prove the result on all translates of a maximal
compact subgroup ofGR.

Let us set for shortχ= χ(φ,DX , F, u, v) andχ′ =
∑
(−1)iχi. We know thatχ′ is a central

eigendistribution. Forχ we remark that:φ itself is annihilated by the image inDG of the
augmentation idealZ+(g) of Z(g). Indeed, forP ∈ U(g) let PG andPX be its images inDG
andDX ; it is well-known (seefor example [6]) that ifP ∈ Z+(g), thenPX = 0. Hence the
claim follows fromPG · :φ = :φ · PX . This implies thatPG(χ) = 0 for P ∈ Z+(g) because the
construction ofχ(φ,M, F, u, v) isDG-linear; henceχ is also a central eigendistribution.

Since bothχ and χ′ are central eigendistributions onGR, by the results of Harish-
Chandra [12], they are determined by their restrictions to the open subset of regular semi-simple
elements ofGR, sayGRreg. Moreover, these restrictions toGRreg are analytic functions which
are locallyL1 in GR (notice that forχ this is also a consequence of formula (10.3)). Hence we
only need to show thatχ= χ′ onGRreg. Let K be a maximal compact subgroup ofGR. Let us
denote byKC the complexification ofK , by k andkC the Lie algebras ofK andKC. In fact we
will show thatχ andχ′ have well-defined restrictions to any translateg ·K of K and that these
restrictions coincide. This implies clearly thatχ= χ′ onGRreg and then thatχ= χ′.

Let us begin with the existence of the restrictions. Formula (10.1) gives the following bound
for the wave-front set ofχ:

Λ=
{
(g, η) ∈GR × g⊥R ; ∃ (x, ξ) ∈T∗X, (x, ξ) is fixed byg andη = µ(x, ξ)

}
.

In fact, if q : G̃→G is the projection we haveΛ = qπ(tq′
−1(T∗

G̃
G̃)). In [13] it is shown that a

central eigendistribution with trivial central character is solution of theDG-moduleq∗OG̃. Since
charq∗OG̃ is contained inΛ, it is a bound for the wave-front set ofχ′ too and the existence of
the restrictions ofχ andχ′ to g ·K is a consequence of Lemma 10.5 below.

Now we need a description of the restrictions ofχ andχ′. Forχ we will apply Proposition 7.1
and Theorem 8.2. We fixg ∈ GR and we consider the restriction ofφ to g · KC, say
ψ : g · KC × X → X . By Lemma 10.6 belowΛ′ψ ∩ SS(F ) is contained in the zero-section.
SinceΛψ ⊂ Λ′ψ the pair (DX , F ) is transversally elliptic with respect toψ and it follows
from Proposition 7.1 thatχ|g·K = χ(ψ,DX , F, :ψ, v

′), wherev′ is the restriction ofv. Now,
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Theorem 8.2, together with the fact that the complexRHomDX (M⊗F,OX) is strict, says that
for ω ∈ Γ(g ·K;Ωg·KC

) we have

〈χ|g·K , ω〉=
∑

(−1)i trπ′i,ω ,

whereπ′i is the restriction ofπi to g ·K andπ′i,ω is the endomorphism ofExti(F,OX) defined
by x �→

∫
g·K πi(k)(x) · ω(k).

Hence we will haveχ|g·K = χ′|g·K if we show that

〈χi|g·K , ω〉= trπ′i,ω.

This is proved in [8] (forK , not g · K , but the proof adapts immediately). For the reader
convenience we restate their result in Lemma 10.7. (Note thatπ′i,ω(x) = πi(g)(

∫
K πi(k′)(x) ·

ω(g · k′)) to agree with the notations of the lemma.)✷
LEMMA 10.5. – With the notations of the proof of Theorem10.4we have for anyg ∈GR:

Λ∩T∗g·KC
G⊂T∗GG.

Proof. –The boundΛ is contained in

Λ′ =
{
(g, η) ∈GR × g⊥R ; ∃ (x, ξ) ∈T∗X, η = µ(x, ξ)

}
=GR ×

(
g⊥R ∩ µ(T∗X)

)
.

Up to the identification ofg andg∗ through the Killing form, the image ofT∗X by the moment
map is the nilpotent cone,N , of g; henceΛ′ = GR × (g⊥

R
∩ N ). Let kC be the Lie algebra of

KC. With the identificationT∗G =G× g∗, we haveT∗g·KC
G = g ·KC × k⊥

C
and the lemma is

reduced toN ∩ k⊥
C
∩ g⊥

R
= {0}. ✷

LEMMA 10.6. – With the notations of the proof of Theorem10.4we have:

Λ′ψ ∩ SS(F )⊂T∗XX.

Proof. –Recall that

Λ′ψ =
{
(x, ξ) ∈T∗X ; ∃ (z, y)∈ g ·KC ×X, z · y = x andt(yψ)′z(ξ) = 0

}
.

Heret(yψ)′z :T
∗
xX→T∗z(g ·KC) is the composition oft(yφ)′z :T

∗
xX→T∗zG and the projection

T∗zG→T∗z(g ·KC). With the identificationT∗zG= g∗, we haveT∗z(g ·KC) = k∗
C

andt(yψ)′z is
the moment mapµKC

:T∗xX → k∗
C

with respect to the action ofKC. HenceΛ′ψ = µ−1
KC

(0) =
T∗KC

X . On the other hand, sinceF is GR-equivariant its micro-support is contained inT∗GR
X .

Since the orbits ofKC andGR are transversal (seefor example [19], Lemma 1.3) we have
T∗KC

X ∩T∗GR
X ⊂T∗XX and the lemma follows. ✷

LEMMA 10.7 (Lemma A.5 (3) of [8]). –Let GR be a semi-simple connected Lie group and
K a maximal compact subgroup. Letπ :GR → End(E) be an admissible representation ofGR

with trivial infinitesimal character, with characterχ. LetπK be the restriction ofπ to K . Then
for g ∈GR, χ has a well-defined restriction tog ·K and for a density,α, onK we have:〈

χ|g·K , :∗g−1α
〉
= tr

(
π(g) ◦ πKα

)
,

where:g−1 is multiplication on the left byg−1 andπKα (x) =
∫
K
πK(k)(x) · α(k).
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Proof. –Forω a density with compact support onGR we set as beforeπω(x) =
∫
GR

π(g)(x) ·
ω(g). If X and Y are two submanifolds ofGR such that the multiplicationX × Y → G,
(x, y) �→ x · y, is a diffeomorphism and ifα (resp.β) is a density onX (resp.Y ) with compact
support, we have by Fubini identityπα⊗β = πα ◦ πβ (by abuse of notations we use the same
notations forα, β, α⊗ β and their direct images onGR).

Let B be a subgroup ofGR such thatK ×B→GR, (k, b) �→ k · b is a diffeomorphism. Then
the mapg · K × B → GR, (k′, b) �→ k′ · b is also a diffeomorphism. Letα be aC∞-density
on K such thatπKα has finite rank (suchα are dense among the densities onK). Let βi be a
sequence ofC∞-densities onB, with compact supports decreasing to{e}, such that

∫
B
βi = 1.

The distributionχ has a restriction tog ·K and we have

〈
χ|g·K , :∗g−1α

〉
= lim

i

〈
χ, :∗g−1α⊗ βi

〉
.

But 〈
χ, :∗g−1α⊗ βi

〉
= tr

(
π-∗

g−1α⊗βi

)
= tr

(
π-∗

g−1α
◦ πβi

)
= tr

(
π(g) ◦ πα ◦ πβi

)
.

Sinceβi tends to the Dirac function at{e}, πβi tends toidE and sinceπα has finite rank
tr(π(g) ◦ πα ◦ πβi) tends totr(π(g) ◦πα). By definitionπα = πKα and the lemma is proved.✷
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