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LOCALLY COMPACT QUANTUM GROUPS

BY JoHAN KUSTERMANS AND STEFAAN VAES *

ABSTRACT. —In this paper we propose a simple definition of a locally compact quantum group in reduced
form. By the word ‘reduced’ we mean that we suppose the Haar weight to be faithful. So in fact we define
and study an arbitrary locally compact quantum group, represented on the L2-space of its Haar weight. For
this locally compact quantum group we construct the antipode with polar decomposition. We construct the
associated multiplicative unitary and prove that it is manageable in the sense of Woronowicz. We define the
modular element and prove the uniqueness of the Haar weights. Following [15] we construct the reduced
dual, which will again be a reduced locally compact quantum group. Finally we prove that the second dual
is canonically isomorphic to the original reduced locally compact quantum group, extending the Pontryagin
duality theorem. © 2000 Editions scientifiques et médicales Elsevier SAS

RESUME. — Dans cet article nous proposons une définition simple des groupes quantiques localement
compacts et réduits. L’adjectif ‘réduit’ exprime 1’hypothese de fidélit€ du poids de Haar. Nous définissons
et étudions des groupes quantiques localement compacts arbitraires représentés sur I’espace L du poids de
Haar. Nous construisons 1’antipode de ce groupe quantique localement compact, ainsi que sa décomposition
polaire. Nous construisons I’unitaire multiplicatif associ€ et nous démontrons qu’il est maniable au sens de
Woronowicz. Nous définissons 1’élément modulaire et démontrons 1’unicité des poids de Haar. En nous
inspirant de [15] nous construisons le dual réduit, qui est de nouveau un groupe quantique localement
compact et réduit. Finalement, nous démontrons que le groupe quantique bidual est isomorphe au groupe
quantique de départ, ce qui constitue une généralisation du théoréme de dualité de Pontryagin. © 2000
Editions scientifiques et médicales Elsevier SAS

Introduction

Historically, the first aim in constructing axiomatizations of ‘quantized’ locally compact
groups was the extension of the Pontryagin duality to non-abelian groups. Because in general
the dual of a non-abelian group will not be a group any more, the quest was for a larger category
which included both groups and group duals. After pioneering work by Tannaka, Krein, Kac and
Takesaki, among others, this problem was completely solved independently by M. Enock and
J.-M. Schwartz (see [15] for a survey) and by Kac and Vainerman [56,55] in the seventies. The
object they defined is called a Kac algebra.

In [73] S.L. Woronowicz constructed a C*-algebra with comultiplication — it was the quantum
SU(2) — which had so many group-like properties that it was justified to consider it as being
a ‘quantum group’. But in this example the antipode had become an unbounded operator in the
C*-algebra, and not any more a *-antiautomorphism as in the case of Kac algebras. Also the
algebraic examples of Drinfel’d and Jimbo showed that the antipode need not to be involutive in
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838 J. KUSTERMANS AND S. VAES

an arbitrary quantum group [13]. So it became clear that the category of Kac algebras was too
small to include all quantum groups, and that it should be enlarged.

The first success in this direction was obtained by Woronowicz who succeeded to define
the compact quantum groups [72,67] in a simple way and who proved, most importantly,
the existence and uniqueness of a Haar state. It was also Woronowicz who made clear that,
following the common paradigm that C*-algebras are quantized locally compact spaces, the C*-
algebra framework would be the most natural to formulate a theory of locally compact quantum
groups [74].

The next success provided us with another approach. In [6], S. Baaj and G. Skandalis made
a study of multiplicative unitaries, which can be considered as an abstract study of the Kac—
Takesaki operator of a locally compact group. With an irreducible and regular multiplicative
unitary they associate two C*-algebras, which are each others dual, with a comultiplication and
a densely defined antipode. In this way they obtain both the compact quantum groups and, in a
certain sense, the Kac algebras. More precisely, their theory includes the C*-Kac algebras, which
are reformulations of Kac algebras to the C*-algebra framework [16,58].

Shortly afterwards S. Baaj discovered that the multiplicative unitary associated with the
quantum E(2) is not regular [3,2]. Hence more and more people got convinced that the
notion of Baaj and Skandalis was too narrow to include all the quantum groups. It was
Woronowicz [68] who proposed an alternative condition on the multiplicative unitaries which
he called manageability, and it seems that all the multiplicative unitaries coming from quantum
groups will satisfy this condition. Nevertheless, manageability is not a weaker notion than
regularity. In fact, manageability is quite strong, but well adapted to quantum groups.

Still one wanted to give a more intrinsic definition of a locally compact quantum group,
with a C*-algebra (or von Neumann algebra) with comultiplication as a starting point. An
essential idea in this direction was put forward by Kirchberg in [19], who proposed to allow
the antipode of a Kac algebra to be deformed by a ‘scaling group’, which should be a one-
parameter group of automorphisms of the underlying von Neumann algebra. Then T. Masuda
and Y. Nakagami formulated the definition of a Woronowicz algebra in [33], generalizing Kac
algebras by introducing this scaling group. They were able to construct the dual within the same
category, and their theory included the known examples, the Kac algebras and the compact
quantum groups in a certain sense. However, there is an objection to their theory and that is
the complexity of the axioms: a Woronowicz algebra is a quintuple consisting of a von Neumann
algebra, a comultiplication, a Haar weight, a unitary antipode and a scaling group, satisfying a
lot of relations. So a lot of nice properties that one would like to have as theorems are included
as axioms. One of these axioms, which is also an axiom of Kac algebras, is the ‘strong left
invariance’. This gives a link between the antipode and the Haar weight (although its name
suggests a link between the comultiplication and the Haar weight). Classically however, in
Hopf algebras and locally compact groups, the axioms of the antipode do not refer to invariant
functionals or measures, and we think this is more natural. In our theory we do not include the
existence of the antipode as an axiom, but we construct it and prove the strong left invariance. We
also give a characterization of the antipode solely in terms of the comultiplication and are hence
close to the classical situation. Such a characterization is also given in [54], by A. Van Daele and
the second author. :

Another objection was already given by Masuda and Nakagami themselves: remembering the
paradigm mentioned above it would be better to use the C*-algebra framework to define locally
compact quantum groups. In this sense a C*-version of the theory of Masuda and Nakagami was
announced by Masuda, Nakagami and Woronowicz in some lectures at the Fields Institute and
at the University of Warsaw in 1995 [34]. They proposed the same complex definition, but this
programme is still not achieved.
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LOCALLY COMPACT QUANTUM GROUPS 839

In this paper we will give a simple definition of a reduced locally compact quantum group
in the C*-algebra framework. We will call a pair (A, A) a reduced locally compact quantum
group when A is a comultiplication on the C*-algebra A, when (A, A) satisfies a certain density
condition and when there exist a left invariant weight and a right invariant weight on (A4, A)
which are faithful and ‘approximately KMS’. This last property is weaker than the usual KMS-
property but sufficient for us.

First notice that we add the predicate ‘reduced’ because we assume the Haar weights to be
faithful. This is of minor importance because the theories of Kac algebras, multiplicative unitaries
or Woronowicz algebras are all ‘reduced’ theories as well. Moreover, a lot of our theory will be
applicable to the non-reduced case as well, about which we will tell more later on. In fact the
difference between the reduced and universal case (see [23]), or between the C*-algebra and von
Neumann algebra case, only lies in the appearance of the same object, represented in different
ways, or closed with respect to different topologies. Next, one should observe that this definition
is in fact even simpler than the definition of a Kac algebra, because we do not assume any kind
of antipode, nor any kind of ‘strong left invariance’.

What will we be able to prove from this definition? First, we will construct the associated
multiplicative unitary. The proof of its unitarity, which is a major problem in [15] as well as
in [33], uses an inversion formula, which makes the proof easier. We will also show that the von
Neumann algebras generated by the left and right Haar weights are isomorphic, which will be
an important technical tool for us. Then we will be able to construct the antipode with its polar
decomposition, and we will prove the strong left invariance. We will also prove the manageability
of our multiplicative unitary. Next we will prove a certain commutation relation between the left
and right Haar weight and hence get hold of the modular function, which will be the Radon—
Nikodym derivative of the right Haar weight with respect to the left Haar weight. Then we will
prove the uniqueness of left and right invariant weights — up to a positive scalar of course.
Finally we construct the dual reduced locally compact quantum group, and we will prove that
the bidual is canonically isomorphic to the original reduced locally compact quantum group. This
generalizes the Pontryagin duality theorem for abelian locally compact groups.

So we think that all the relevant properties of a locally compact quantum group can be proven
from our definition. Because we also believe that an existence proof for a Haar weight is still far
away, our definition seems to be the simplest one can hope for at the moment.

Of course there are a lot of sources of inspiration for the present work. On the algebraic
level a lot of theory has been developed by A. Van Daele. He generalizes the notion of Hopf
algebras to multiplier Hopf algebras in [62] and then imposes the existence of an invariant
functional in [59]. Formally, the starting point of Van Daele looks very much like ours then
and a lot of the nice properties of his theory were a motivation for our theory. In [31], the first
author and A. Van Daele constructed a C*-algebraic quantum group out of an algebraic quantum
group in the sense of [59], and this is a source of techniques adapted to the C*-framework.
Of course the theory of weights is important to us and we rely on the work of J. Verding [65]
and the first author [24]. While constructing the dual we used a lot of the ideas of Baaj and
Skandalis [6], Masuda and Nakagami [33] and most importantly Woronowicz [68] and Enock
and Schwartz [15]. The importance of Woronowicz’ work for us cannot be overestimated: he
learned us to use C*-algebras to tackle the quantum groups [74] and he provided us with many
examples [73,71,38,70,69,64]. He also provided a lot of techniques in his work (e.g. [70]). While
proving unicity results we were inspired a lot by Enock and Schwartz [15].

A short overview of the main results of this paper appeared in [27].
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840 J. KUSTERMANS AND S. VAES

Notations and conventions

For any subset X of a Banach space E, we denote the linear span by (X), its closed linear
span by [X].

If I is set, F(I) will denote the set of finite subsets of J. We turn it into a directed set by
inclusion.

All tensor products in this paper are minimal ones. This implies that the tensor product
functionals separate points of the tensor product (and also of its multiplier algebra). The
completed tensor products will be denoted by ®, the algebraic ones by ®. For the tensor product
of von Neumann algebras, we use the notation ® . The flip operator on the tensor product of an
algebra with itself will be denoted by x.

The multiplier algebra of a C*-algebra A will be denoted by M(A).

Consider two C*-algebras A and B and a linear map p: A — M(B). We call p strict if it
is norm bounded and strictly continuous on bounded sets. If p is strict, p has a unique linear
extension p: M(A) — M(B) which is strictly continuous on bounded sets (see Proposition 7.2
of [25]). The resulting p is norm bounded and has the same norm as p. For a € M(A), we put
pla) = p(a).

Given two strict linear mappings p: A — M(B) and n: B — M(C), we define a new strict
linear map n p: A — M(C) by p = 7j o p. The two basic examples of strict linear mappings are:

— continuous linear functionals on a C*-algebra;

— non-degenerate *-homomorphisms. Recall that a *-homomorphism 7 : A — M(B) is called

non-degenerate < B = [7(a)b|a € A,be B).
All strict linear mappings in this paper will arise as the tensor product of continuous functionals
and/or non-degenerate *-homomorphisms.

For w € A* and a € M(A), we define new elements aw and wa belonging to A* such that
(aw)(z) =w(za) and (wa)(z) =w(azx) for z € A.

We also define a functional @ € A* such that w(z) = w(x*) for all x € A. (Sometimes, @ will
denote the closure of a densely defined bounded functional, but it will be clear from the context
what is precisely meant by @.)

If A and B are C*-algebras, then the tensor product M(A) ® M(B) is naturally embedded in
M(A® B).

We will make extensive use of the leg numbering notation. Let us give an example to illustrate
it. Consider three C*-algebras A, B and C. Then there exists a unique non-degenerate *-
homomorphism §: A ® C - M(A® B® C) such that f(a ® c) =a®1Qcforall a € A
and ¢ € C. For any element € M(A ® C), we define 213 = 0(z) € M(A® B ® C). It will be
clear from the context which C*-algebra B is under consideration.

If we have another C*-algebra D and a non-degenerate *-homomorphism A: D — M(A® C),
we define the non-degenerate *-homomorphism A3 : D — M(A® B ® C) such that Aq3(d) =
A(d)y3 foralld € D.

In this paper, we will also use the notion of a Hilbert C*-module over a C*-algebra A. For an
excellent treatment of Hilbert C*-modules, we refer to [32].

If E and F' are Hilbert C*-modules over the same C*-algebra, L(E, F') denotes the set of
adjointable operators from F into F'. When A is a C*-algebra and H is a Hilbert space, A ® H
will denote the Hilbert space over A, which is a Hilbert C*-module over A.

For the notion of elements affiliated to a C*-algebra A, we refer to [4], [70] and [32] (these
affiliated elements are a generalization of closed densely defined operators in a Hilbert space).
For these affiliated elements, there exist notions of self adjointness, positivity and a functional
calculus similar to the notions for closed operators in a Hilbert space. We collected some extra
results concerning the functional calculus in [26]. Self adjointness will be considered as a part
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LOCALLY COMPACT QUANTUM GROUPS 841

of the definition of positivity. If  is a positive element affiliated to a C*-algebra A, § is called
strictly positive if and only if it has dense range. For such an element 6, functional calculus
allows us to define for every z € C the power 6%, which is again affiliated to A (see Definition 7.5
of [26]).

Let H be a Hilbert space. The space of bounded operators on H will be denoted by B(H ), the
space of compact operators on H by Bo(H ). Notice that M(Bo(H)) = B(H).

Let A and B be C*-algebras and 7 a non-degenerate representation of A on H. Consider also
w € Bo(H)*.

For a € M(A), we will use the notation w(a) := w(m(a)) € C. For z € M(A ® B), we use the
notation (w ® ¢)(z) := (w @ )((r ® ¢)(z)) € M(B).

Consider a Banach space E and denote the set of all isometric vector space isomorphisms on
E by Isom(FE). Consider a mapping o: R — Isom(F) such that:

(1) asar =as4t forallt e R;

(2) we have for all z € F that the function R — E': ¢ — oy () is norm continuous.

Then we call & a norm continuous one-parameter representation on F.

There is a standard way to define for every z € C a closed densely defined linear operator o,
in E. Denote with S(z) the strip {y € C | Imy € [0,Im 2]} and with S(z)° its interior.

— The domain of «,, is by definition the set of elements z € E such that there exists a function

f from S(z) into E satisfying:
(1) f is continuous on S(z);
(2) f is analytic on S(z)°;
(3) we have that o (x) = f(¢) for every t € R.
— Consider z in the domain of o, and f the unique function from S(z) into F such that:
(1) f is continuous on S(z);
(2) fis analytic on S(2)%;
(3) we have that oy (x) = f(¢) for every ¢t € R.
Then we have by definition that o, (z) = f(2).

If A is a C*-algebra, a norm continuous one-parameter group & on A is a norm continuous
one-parameter representation on A such that oy is a *-automorphism on A for every ¢t € R. It
is then easy to prove that the mapping R — M(A):t +— «ay(a) is strictly continuous whenever
a € M(a).

The mapping c, is closable for the strict topology in M(A) and we define the strict closure of
o, in M(A) by @,. For a € D(&;), we put a,(a) := @,(a).

Using the strict topology on M(A), &, can be constructed from the mapping R —
Aut(M(A)):t — a; in a similar way as o, is constructed from a. (See [25] or [12], where
they used the results in [9] to prove more general results.)

If M is a von Neumann algebra, then a strongly continuous one-parameter group (and its
extension to the complex plane) is defined in a similar way as a norm continuous one-parameter
group but you have to replace the norm topology by the strong topology.

1. Weight theory on C*-algebras

In this section, we will collect some necessary information and conventions about weights. All
weights in this paper will be assumed to be non-zero, densely defined and lower semi-continuous.
These weights will be called proper weights.
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842 J. KUSTERMANS AND S. VAES

1.1. Weights on C*-algebras

In this first section, we give some information about weights. The standard reference for lower
semi-continuous weights is [11]. A substantial number of results are collected in [24]. We start
off with some standard notions concerning lower semi-continuous weights.

DEFINITION 1.1.— Consider a C*-algebra A and a function p: AT — [0, 00| such that:
(D) p(z+y) =p(x) +p(y) forall z, y € A™;
(2) o(rz) =rp(z) forallr e Rt andz € A™.

Then we call ¢ a weight on A.

Let ¢ be a weight on a C*-algebra A. We will use the following standard notations:

o Mf={aecAT|p(a) < oo}

o Ny,={acA|p(a*a) < oo};

o M, =span M$ = NN,
where NN, = span {y*z |z, y € N, }.

Condition 1 in Definition 1.1 implies that ¢(z) < (y) for all z, y € A* such that = < y.
Therefore Mjg is a hereditary cone in AT and N, is a left ideal in M(A). So we see that
M, € N,,. We also have that M., is a sub*-algebra of A and M = M, N A*.

It is not so difficult to see that there exists a unique linear map % : M, — C such that
Y(x) = @(z) forall z € M. For every z € M, we put p(z) = ().

Also the following terminology is standard:

e we say that ¢ is densely defined < M is dense in AT & M, is dense in A & N, is

dense in A;

e the weight ¢ is called faithful & [Va € AT: ¢(a) =0=a =0].

Quite often we will need help from the modular theory (see e.g. [46]) and so we will work also
with weights on von Neumann algebras. We will use the abbreviation n.f.s. weight for a normal,
faithful and semifinite weight on a von Neumann algebra.

The role of the L2-space of a measure is taken over by the GNS-construction for a weight:

DEFINITION 1.2. — Consider a weight ¢ on a C*-algebra A. A GNS-construction for ¢ is by
definition a triple (H,,7,, A,) such that:
e H,, is a Hilbert space;
e A, is alinear map from NV, into H,, such that:
(1) Ap(N,,) is dense in H,;
(2) we have for every a,b € N, that (A,(a), A, (b)) = p(b*a);
e T, is a representation of A on H, such that 7,(a) A, (b) = A, (ab) for every a € A and

beN,.

It is not difficult to construct such a GNS-construction for any weight (c¢f. the GNS-
construction for a positive functional) and it is unique up to a unitary transformation.

When we use one of the notations H,, 7, or A, without further comment, we implicitly fixed
a GNS-construction for ¢.

The following sets play a central role in the theory of lower semi-continuous weights.

DEFINITION 1.3. - Consider a weight (o on a C*-algebra A. Then we define the sets
Fo={we A} |w(z) <p(z) forz e AT}
and

Go={aw|weF,, acl0,1[} C F,.
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On F,,, we use the order inherited from the natural order on A% . The advantage of G, over F,
lies in the fact that G, is a directed subset of F,: for every w1, wa € G, there exists an element
w € G, such that wy, wy < w. This implies that G, can be used as the index set of a net.

A proof of this fact can be found in [39] or [65]. We also included a proof in Section 3 of [24].

Notation 1.4. - Consider a weight ¢ on a C*-algebra A and a GNS-construction (H,, 7y, Ay,)
of p. Letw € F,.
o We define T, as the element in B(H,) N7, (A)" with 0 < T,, < 1 such that

(TwAy(a),Ap(b)) =w(b*a) fora,beN,.

o There exists a unique element §,, € H,, such that Tw% Ay(a) =mp(a)é, fora e N,.

In order to make weights manageable, we have to impose a continuity condition on them. It
turns out that the usual lower semi-continuity is a useful continuity condition.

DEFINITION 1.5. — Consider a weight ¢ on a C*-algebra A. Then ¢ is lower semi-continuous

& We have for every A € R that the set {a € AT | p(a) < A} is closed.

& If (z;)ier isanetin AT and z € AT such that (z;);er — z, then ¢(z) < liminf(p(x;))ier.

Notice that the last condition resembles the result in the classical lemma of Fatou. It implies
also easily the next dominated convergence property:

Consider z € A" and (;);cr a netin AT such that z; < x for i € I and (z;);e; — x. Then
the net (¢(z;))icr converges to ¢(z).

The most important result concerning lower semi-continuous weights is the following one
(proven in [11] by F. Combes).

THEOREM 1.6. — Consider a lower semi-continuous weight @ on a C*-algebra A. Then we
have for every x € A™ that

¢p(z) =sup{w(z) |we Fo}-

By writing any element of M., as a sum of elements in M;, we get immediately that the net
(w(z))weg, convergesto p(x) for every x € M,,.

Using this theorem, it is not hard to prove the following properties about a GNS-construction
for a lower semi-continuous weight.

PROPOSITION 1.7. — Consider a lower semi-continuous weight go on a C*-algebra A and a
GNS-construction (Hy,, 7y, Ay) for . Then:

e the mapping Ay, : N, — H,, is closed,

e the *-homomorphism Ty :A — B(H,,) is non-degenerate;

o the net (T,)ucg, converges strongly to 1.

From now on, we will only work with proper weights, i.e. weights which are non-zero, densely
defined and lower semi-continuous.
1.2. Extensions of lower semi-continuous weights to the multiplier algebra

Consider a C*-algebra A. Recall that every w € A* has a unique extension @ to M(A) which
is strictly continuous and we put w(x) = @(x) for every z € M(A).
This implies immediately that any proper weight has a natural extension to a weight on M(A).
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844 J. KUSTERMANS AND S. VAES

DEFINITION 1.8. — Consider a proper weight  on a C*-algebra A. Then we define the weight
@ on M(A) such that

?(z) =sup{w(z) |w e Fp}
for every x € M(A)™. Then P is an extension of ¢ and we put p(z) = p(z) forall z € M(A)*.

We will use the following notations: ﬁ: =ME, My=Mgzand N, = N5.

For any z € M, we put o(z) = (x). It is then clear that the net (w(z))weg, converges to
().

The GNS-construction for a proper weight has a natural extension to a GNS-construction for
its extension to the multiplier algebra (see e.g. Definition 2.5 and Proposition 2.6 of [24]).

PROPOSITION 1.9.— Consider a proper weight o on a C*-algebra A and a GNS-
construction (Hy, 7, Ay) for . Then the mapping Ay, : N, — H, is closable for the strict
topology on M(A) and the norm topology on H,. We denote this closure by A,. Then
(Hy, Ay, T,) is a GNS-construction for .

In particular, we have that D(A,,) = N, and we put A, (a) = A, (a) for every a € N,.

Consider a e N - Then there exists a net (a;);cr in N, such that:

e |lai]| < |la| fori e I;

e (a;);c1 converges strictly to a;

o (Ay(ai))icr convergesto Ay(a).

This follows immediately by taking an approximate unit in A and multiplying each element of
the approximate unit by a from the right.

Let w be a functional in F,,. Then it is easy to check that, using the definitions of Notation 1.4,
the following holds:

o (T,A,(a), Ay (b)) =w(b*a) fora, be Ny;

. T“,%Aw(a) =7y,(a)é, fora € N,.

1.3. KMS weights on a C*-algebra

Although a C*-algebra is generally non-commutative, we would like to have some control
over the non-commutativity under the weight. Therefore we will introduce the class of KMS
weights. For full details, we refer to [24].

DEFINITION 1.10.— Consider a C*-algebra A and a weight ¢ on A. We say that ¢ is a KMS
weight on A & ¢ is a proper weight on A and there exists a norm continuous one-parameter
group o on A satisfying the following properties:

(1) ¢ isinvariant under o: p oy = ¢ for every t € R;

(2) We have for every a € D(0 ;) that p(a*a) = @(a% (a)o
The one-parameter group o is called a modular group for .

(@)").

i
2

If the weight ¢ is faithful, then the one-parameter group o is uniquely determined and is called
the modular group of .

This is not the usual definition of a KMS weight on a C*-algebra (see [10]), but we prove in
[24] that this definition is equivalent with the usual one. More precisely,

PROPOSITION 1.11. — Consider a proper weight v on a C*-algebra A with GNS-construction
(Hyp, Ty, Ay). Let 0 be a norm continuous one-parameter group on A such that @ o =  for all
t € R. Then the following conditions are equivalent.

(1) We have that p(a*a) = cp(a% (a) a%(a)*)for alla€ D(o;).

i
2
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(2) There exists a non-degenerate *-antihomomorphism 0 : A — B(H,,) such that we have for
allz € Ny and a € D (o) that za belongs to N, and A, (za) = 0(03(a)) Ay (2).
(3) Forall a,be Ny NN, there exists a function f:S(i) — C such that:
e f is continuous and bounded on S(i);
o f is analytic on S(7)°;
o f(t)=p(ot(b)a)and f(t+1i)=p(ao(b)) fort e R.

PROPOSITION 1.12.— Let ¢ be a KMS weight on a C*-algebra A, with GNS-construction
(Hyp, Ty, Ay). Then the following properties hold:

(1) there exists a unique anti-unitary operator J on H, such that JA,(x) = A, (o i ()*) for
every z € N, N D(J%);

(2) leta € D(a%) and © € N,. Then za belongsto N, and A, (za) = Jmp(aé (@))*J Ap();

(3) let a € D(o—;) and x € M. Then az and zo_;(a) belong to M, and p(ax) =
p(zo_i(a));

(4) consider x € Ny NN and a € N N D(0—;) such that o_;(a) € Ny,. Then p(ax) =
p(zo—i(a))-

The anti-unitary operator J will be called the modular conjugation of ¢ in the GNS-
construction (H,,7,,A,). We also have a strictly positive operator V in H, such that
V#Ay(a) = Ay(oi(a)) for ¢ € R and a € N,,. The operator V will be called the modular
operator of ¢ in the GNS-construction (H,, 7, Ay).

Although the definition of the modular conjugation and the modular operator depend on o,
they only depend on the weight :

There exists a densely defined closed operator T’ from within H, into H, such that
Ay (Np NN;) is acore for T and T'A,(a) = Ay (a*) for a € Ny NN,

Then V =T*T and T = JV% = V~3J. Also, notice that JV*J = V~* and JV**.J = V*
forteR.

The above proposition can be easily extended to elements in the multiplier algebra by using
the extensions ¥ and &. We will not hesitate to use this extension.

If we have a proper weight n which agrees with a KMS weight ¢ on the intersection
M;,' N J\/I;7F and such that the proper weight 7 is invariant under a modular group of ¢, then
¢ = n. For a proof, we refer to Corollary 1.15 of [30].

PROPOSITION 1.13.— Consider a KMS weight ¢ on a C*-algebra A with modular group
0. Let n be a proper weight on A such that noy = n for t € R and n(x) = ¢(z) for all
€ MENMF. Thenn= .

1.4. Absolutely continuous KMS weights

In the first part of this subsection, we fix a C*-algebra A and a KMS weight ¢ on A with
modular group o. Let (H, 7, A) be a GNS-construction for .

We will also consider a strictly positive element ¢ affiliated with A (in the C*-algebra sense)
such that there exists a strictly positive number A > 0 such that 04 (6) = \!§ forall t € R.

Then it is natural to look for a good definition for a weight which is formally equal to
w(6 3.6 %). If A\ # 1, the method of defining this weight in [36] is not applicable anymore.
Instead we will work with an inverse GNS-construction. This was done in full detail in Section 8
of [24] and we give a short overview of the main results of it in the first part of this subsection.

We need some extra terminology. Let T" be an element affiliated with A and a € M(A). Then:

(1) we say that a is a left multiplier of T' <> There exists an element b € M(A) such that

aT(c)=bcforce D(T). In this case, we puta T = b;
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(2) we say that a is a right multiplier of T < a A C D(T). In this case, there exists a unique
element b € M(A) such that T(ac) =bc for c€ Aand we put T'a =b.
It is not so difficult to show that a is a left multiplier of 7" < a™ is a right multiplier of 7*. If this
is the case, then (a T)* = T*a*.
Define the following subspace of A:

N = {a € A| a is aleft multiplier of § % and 62 belongs to ./\ﬁp}.

Then N is a dense left ideal of A and the mapping N — H :a+— A(ad %) is closable. We define
As to be the closure of the mapping N — H :a +— A(ab?).

PROPOSITION 1.14.— There exists a unique KMS weight ps on A such that (H, 7, As) is a
GNS-construction for ps.

It should be noted that s is faithful < ¢ is faithful.

Define the norm continuous one-parameter group o’ on A such that o} (a) = 6§ o4(a) 6= for
t € Rand a € A. Then ¢’ is a modular group for ¢s. Also notice that o} (§) = \! § for t € R.

We have moreover for every ¢ € R that o o} = A ¢ and @5 0 = A~ .

In the first part of this subsection, we concentrated on KMS weights on C*-algebras (which
was covered in [24]). The same discussion can be easily translated to the level of faithful semi-
finite normal weights on von Neumann algebras by replacing the norm topology by the o-
strong* topology. A slightly different route can be followed by using the theory of left Hilbert
algebras. This approach is developed in [52], where the construction is even further generalized
by allowing A to be a certain well-behaved strictly positive operator.

For the sake of completeness, we will also repeat the definitions in this framework. This time,
we consider a von Neumann algebra M acting on a Hilbert space K and a faithful semi-finite
normal weight ¢ on M with modular group . Let (H, 7, A) be a GNS-construction for .

Again, we will also consider a strictly positive element ¢ affiliated with M (in the von
Neumann algebra sense this time) such that there exists a strictly positive number A > 0 such
that 04 (6) = X' 6 forall t € R.

Before getting to the definition, we want to make the following remarks. Consider an element
T affiliated with M (in the von Neumann algebra sense) and @ € M. Using unitary elements in
the commutant of M, we get easily the following results.

e If aT is bounded, then a T' belongs to M.

e If aK C D(T), then T a belongs to M.

Now we define the following subspace of M:

N ={a€ M |aé? is bounded and a 6% € N, }.

Then N is a o-strongly* dense left ideal in M.

This time, the mapping N — H:a +— A(ad 3 ) is o-strong* closable and we denote the o-
strong* closure by As.

PROPOSITION 1.15.— There exists a unique n.f.s. weight @5 on M such that (H, 7, \s) is a
GNS-construction for ps.

Define the strongly continuous one-parameter group o’ on M such that o} (z) = 6% o4 (x) 6%
for t € R and x € A. Then ¢’ is the modular group for ¢s. Also notice that o} (§) = \*§ for
teR.

We have moreover for every ¢ € R that o o} = \* ¢ and s 0y = A~t 5.
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In [52], the second author generalizes considerably the usual Radon-Nikodym theorem for
n.f.s. weights on von Neumann algebras due to Pedersen and Takesaki (see [36]). We will only
need the following special case (Proposition 5.5 of [52]). This theorem is one of the major
advantages of n.f.s weights on von Neumann algebras over KMS weights on C*-algebras.

THEOREM 1.16. — Consider a von Neumann algebra M and two n.f.s. weights ¢ and v on M
with modular groups o and o’ respectively. Consider also a number A > 0. Then the following
statements are equivalent.

(1) po,=NpforalteR,

2) Yo =X "ty forallt R,

(3) there exists a strictly positive operator § affiliated with M such that o,(8) = X' 6 fort € R

and Y = ps.

1.5. Slicing with weights

Fix two C*-algebras A and B together with a proper weight ¢ on B. An important tool in
the theory of C*-algebraic quantum groups is the slice map ¢ ® . If A and B would arise from
locally compact spaces, ¢ is implemented by a regular Borel measure 4 and ¢ ® ¢ would integrate
out the second variable with respect to .

In this section, we will define ¢ ® ¢ and mention some properties concerning this slice map.
For full details, we refer to Section 3 of [30].

DEFINITION 1.17.— We will use the following notations:
e we define the set

ﬂj_&a ={zeM(A®B)" | thenet ((+® w)(x)) g s strictly convergent in M(A) };

€g

e for z € HZL@LP, we define (¢ ® ¢)(z) to be the element in M(A) such that the net

((t ® w)(x))weg, converges strictly to (¢ ® @)(x).

Using the uniform boundedness principle, one can prove (and it is not very difficult) a slightly
different characterization of ﬂj® o

PROPOSITION 1.18.— Consider © € M(A ® B)™. Then x belongs to ﬂj&p & we have for
all a € A that the net (a* (1 ® w)(x)a)weg,, is convergent in A.

RESULT 1.19. - The slice ¢ @ o satisfies the following algebraic properties.

(1) We have for z,y € ﬂj@p that © +y € ﬂj&o and (L ® p)(z +y) = (L ® p)(z) +
(oRw). -

(2) We have for x € Mg, and X € R that \x € M, g, and (1 @ p)(Ax) = A (1 ® @) ().

(3) Consider y € ﬂ:r@(p and © € M(A ® B)T such that © < y. Then x € H;@@
(t@p)(@) < (L@ P)(y)- . .

(4) We have for a € M(A)* andbe M, thata® b€ Mg, and (1 ® ¢)(a @ b) = ap(b).

and

As for ordinary weights, this allows us to extend ¢ ® ¢ to a linear mapping defined on a
subalgebra of M(A ® B):

Notation 1.20. — The following notations will be used.
o We define M, ., as the linear span of M:L&P in M(A® B). Then M, g, is a sub-*-algebra
of M(A ® B) such that _/WT@M = M,g, "M(A® B)*.
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e There exists a unique linear map F': M,g, — M(A) such that F(z) = (1 ® p)(z) for
ze Mg,
For every & € M, g, we put (¢ ® ¢)(z) = F(x).

e We define N,g, = {z € M(A® B) | z*z € HT&I,}. Then N,g, is a left ideal in
M(A ® B) such that M, g, = N:@p N.igp-

Then we have immediately the following natural properties concerning M, g,

LEMMA 1.21. — The following properties hold.

o Let x € M,gy,. Then the net ((t ® w)(x))weg, converges strictly to (1 ® p)(x).

e We have for a € M(A) and b € M, thata ® b EZ/t_L@W, and (L ® ©)(a ®b) = ap(b).
o We have for a € M(A) andbe N, thata®@b e N .

The next Fubini-like proposition is an easy consequence of the definitions above.

PROPOSITION 1.22.— Consider z € M,g, and 0 € A*. Then (0 ®1)(z) belongs to M, and

p((0®1)(2) =0((® ¢)(@))-

Using Dini’s theorem, it is possible to prove the following converse. It follows immediately
from Lemma A.4 (a result we borrowed from [43]).

PROPOSITION 1.23.— Consider x € M(A ® B)* and a € M(A)" such that (0 ® 1)(x)
belongs to MI and ¢((0 ® v)(x)) = 0(a) for all 6 € A%. Then x belongs to Mfm and
(t®p)(z) =a.

In this setting of ‘C*-valued weights’, the Cauchy—Schwarz inequality is generalized in the
following way. A proof can be found in Proposition 3.15 of [30].

PROPOSITION 1.24.— Let x,y € N . Then

(@) (¥*2) (@) (¥ D) <@ ) H* NI ® p)(z*z).

This follows easily by approximating (¢ ® ¢)(y*z) by (« ® w)(z*y) for w € G, and using a
Hilbert C*-module estimate in the KSGNS-construction for ¢ ® w.

In the next part of this section, we provide a KSGNS-construction for t ® p on A® H, as a
generalization of a GNS-construction for weights. From now on, we will fix a GNS-construction
(Hyp,myp, Ay) for .

RESULT 1.25.— Consider x € N ,g, and v € Hy,. Then there exists a unique element
g € M(A) such that 6(q) = (A, ((0 ® 1)(x)),v) for § € A*.

We included a proof of this fact in Subsection A.1 of Appendix A. This is also the case for the
next proposition in which we introduce a KSGNS-construction for the ‘C*-valued weight’ + ® ¢:

PROPOSITION 1.26. — There exists a unique linear map A :N@(p — L(A, A® H,,) such that
A@)* (a®Ap(b)) = (1 ® p) (z*(a ® b))

forac A, beN, andxeﬁ@w.
For x € N g, we put (1 ® A,)(z) = A(z). Then we have the following properties:
o we have forall z,y € NL®¢I_/1at (@A) W) (@A) (z) = (L@ @) (y*x);
e consider a € M(A) andbe N, then (1@ Ay)(a®b) =a® Ay (b);
e we have for t € M(A® B) and y € N g, that (1 ® Ay)(zy) = (1 ® 7,) () (¢ ® Ay) ().
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1.6. Partial GNS-construction for the tensor product of two lower semi-continuous
weights

Throughout this section, we will fix C*-algebras A and B, a proper weight ¢ on A and a
proper weight 1) on B. At the same time, we fix a GNS-construction (H,,7,,A,) for ¢ and a
GNS-construction (Hy, 7y, Ay) for 3.

In this subsection we will quickly say something about the tensor product of ¢ and ¢ and a
partial GNS-construction for this tensor product. We refer to Section 4 of [30] for full details.

DEFINITION 1.27.— We define the tensor product weight ¢ ® 1) on A ® B in such a way that
(p®Y)(z) =sup{(w®0)(z) |we F,,0 € Fy}

forevery z € (A® B)™. Then ¢ ® v is a proper weight on A ® B.

Notice that the family {w ® 0 |w € G, 0 € Gy} is upwardly directed. This will imply that the
map ¢ ® 1 above is additive.

The defining formula for ¢ ® 1 can be easily extended to the multiplier algebra of the tensor
product: we have for all z € M(A ® B)* that

(p@1)(z) =sup{(w@0)(z) |w € Fy,0 € Fy}.

This will imply immediately the following results:

o M, ® My C Mygy and (¢ ® 9)(a ®b) = p(a)1(b) fora € M, and b € My;

o Ny ONy CNopgy.

Although the space H, ® Hy is in general (possibly) too small to serve as a GNS-space for
 ® 1, we still can find interesting elements which can be suitably represented in H, ® Ho.

First, we introduce a special subset of AV, oy consisting of all elements which can be properly
represented in H, ® Hy.

DEFINITION 1.28. — We define the following objects:

e we define NV (ip, 7)) as the set of elements z € N g, such that there exists v € H, ® Hy,
such that [[v]|* = (¢ ® ¥)(z"z) and (v, Ap(a) ® Ay (b)) = (¢ ® P)((a* ® b") z) for all
a €N, ,be ./V;p;

e also define V(p,9) =N (p,9%) N (A® B);

e we define the mapping A, ® Ay : N (9, %) — H, ® Hy, as follows. Let z € N (¢,9). Then
we define (A, ® Ay)(z) € H, ® Hy such that

(Mg @ Ay)(2), Mg (a) ® Ay (b)) = (0 ®Y)((a" ® "))

fora e Ny, be Ny.

It is easy to see that N, ® Ny C N(p, %) and that (A, @ Ay)(z) = (A, © Ay)(z) for
z €N, ONy.

We collect the GNS-like properties of (H, ® Hy,m, ® Ty, Ay, ® Ay) in the following
proposition.

PROPOSITION 1.29.— The following properties hold.

o The mapping A, ® Ay : N (p,v) — H, ® Hy, is a linear map which is closed with respect
to the strict topology on A ® B and the norm topology on H, ® Hy.

o The mapping A, ® Ay : N (p,9) — H, ® Hy is closable with respect to the strict topology
on M(A ® B) and the norm topology on H, ® Hy. Denote its closure by m. Then
D(R, 8y ) = N(p,%) and we put (Ay ® Ay)(a) = (R, ® Ay )(a) for a € N (i, )
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o (A ®Ay)(2), (Ap ® Ay)(y)) = (0 ®P)(y*z) for m,y € N (0, 9).
o N(p,v) and N (p,v) are left ideals in M(A ® B) and (1, @ my)(2)(Ay ® Ay)(a) =
(Ay @ Ay)(za) for x € M(A® B) and a € N(p, ).

It is now also clear that Ny, ® Ny, C N (¢, %) and that (A, ® Ay)(z) = (A, © Ay)(z) for
zeN e © N b

We included a proof of the previous result in Subsection A.2 of Appendix A.

If one of the weights ¢ and 1 is a KMS weight, it can be shown (see Proposition 4.14 of [30])
that N ygy =N (p,9). So (H, ® Hy,mp ® Ty, Ap ® Ay) is a GNS-construction for ¢ ® ¢ in
this case.

If both of them are KMS, then N, ® Ny, is a core for A, ® Ay (see e.g. Section 7 of [24]).

Throughout this paper, we will be able to restrict ourselves to the following kind of elements
in NV (¢, 1) for which we have explicit formulas. See Subsection A.2 in Appendix A for a proof.

LEMMA 1.30.~ Consider an orthonormal basis (€i)ier for Hy,. Let x € N gy andy € NW
Then x (y ® 1) belongs to N (¢, ),

ST A (@, e @)@ = (e @) ((¥* @ D2tz (y ©1))
el

=o(y" (L@ Y)(z*z)y) < oo

and

(Ao @A) (z(y®1) =D e ®Ay((wa,(y).e @1)(@))-
iel

1.7. W*-lifts of lower semi-continuous weights

In this subsection, we fix a proper weight ¢ on a C*-algebra A. Let (H,, 7, A,) be a GNS-
construction for ¢. We will discuss the canonical extension of ¢ to a normal weight on 7, (A)”
and produce a useful and natural GNS-construction for it.

By Notation 1.4, we have for all w € F,, that w(a) = (7, (a) &, &) for a € A. So there exists
a unique element & € (m,(A)"”)} such that &7, = w, i.e. &(z) = (x &, &) forz € m, (A)".

Because G, is upwardly directed, the same is true for the set {& | w € G, }. This will imply
that we really get a weight in the next definition.

DEFINITION 1.31.— We define the function @:(m,(A)”)* — [0,00] such that @(z) =
sup{@(z) |w € F,} for x € (m,(A)”)". Then & is a normal semi-finite weight on ., (A)”
such that g, = .

Notice that the last statement follows from Theorem 1.6. We call ¢ the W*-lift of ¢ in the
GNS-construction (H,, 7y, Ay).

Although this definition is conceptually appealing it is not that practical in some applications.
It will turn out that it is more useful to get a GNS-construction for ¢ by closing A, with respect
to the o-strong*-topology. Using a result of U. Haagerup (see [18]), S. Baaj provided in [5] the
necessary ammunition to prove the next proposition (we included a full exposition in Section 2
of [30]).

PROPOSITION 1.32. — There exists a unique linear map /~\<p :./\/5 — H, such that:

e (H,,1,A,) is a GNS-construction for &;

o Ay(myp(a)) =Ap(a) foralla € N,.
We :a};)e moreover the following property. For every x € ./\/;j, there exists a net (a;)icr in Ny
such that:
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(1) |laill € ||z|| for every i € T;
(2) (my(as))ier converges strongly* to x;
(3) (Ap(ai))icr convergesto Ay(x).

We will call (H,,¢, 1~\¢) the W*-lift of (H,,m,,A,). It is not difficult to see that (see
Proposition 2.18 of [30]):

o §(my(z)) =¢(x) forall z € M(A)T;

. 1~\¢(ﬂ¢(x)) =A,(z) forallz € N,

We will use the following terminology (which obviously comes from left Hilbert algebra
theory). :

DEFINITION 1.33. - Consider a vector v € H,,. Then we say that v is right bounded with
respect to (Hy,, Ty, Ay) < There exists a number M > 0 such that ||7,(z)v|| < M||Ay(z)|| for
allz € N,.

It is clear that the set of right bounded elements is a subspace of H,,.

DEFINITION 1.34. — We say that ¢ is approximately KMS < The subspace of right bounded
elements is dense in H,,.

A KMS weight is always approximately KMS.
Using the theory of n.f.s. weights, the following result follows easily.

PROPOSITION 1.35.— The weight ¢ is approximately KMS < § is faithful.

Proof. -

= Choose y € 7, (A)" such that (y*y) = 0.

Take a right bounded element v. Then there exists clearly a bounded operator T' € B(H,) such
that TA,(a) = m,(a) v for all @ € N,. Using the second part of Proposition 1.32, it is easy to
see that TA,(z) = z v forall z € N In particular, yv = TA,(y)=0.

Because the set of right bounded elements is dense in H,, (by assumption), this implies that
y=0.

< So @ is now a n.f.s. weight on 7, (A)"” and we can use the standard technique to produce
right bounded elements. Call & the modular group of @, (H,, ¢, K(p) the W*-lift of (H,, 7y, Ay)
and J the modular conjugation of ¢ in the GNS-construction (H,, ¢, K¢)-

For every a € ./\/; and n € N, we define (the integral is defined in the strong topology)

an = / exp(—n2#2)54(a) dt,

then a, € N;N D(G ;). So we have for every z € NV that

2 hp(an) =Ap(zan) = J 54 (an)" JAy(x).

This implies that Kw (an) is a right bounded element.

But it is also clear that (A, (an) | @ € N7, n € N) is dense in H,. So ¢ is approximately
KMS. O

The second part of this proof can be immediately translated to show that ¢ is approximately
KMS if ¢ is KMS.
If ¢ is approximately KMS, this proposition implies the existence of a closed operator T" in

H,, such that A¢(N; ﬂNi) is a core for T and TA,(z) = A, (z*) forall z € Ng N /\/’5.
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So we get also that A, (N, ON;) C D(T)and TA,(z) = A,(z*) forallz € N, HN;.
We will also need the following result concerning the tensor product of approximate KMS
weights.

PROPOSITION 1.36.— Consider C*-algebras A and B and

e an approximate KMS weight @ on A with GNS-construction (Hy,, Ty, Ay);

e an approximate KMS weight 1) on B with GNS-construction (Hy, Ty, Ay).
Then the weight ¢ ® 1 is approximately KMS and (H, ® Hy, 7, ® my, Ay, ® Ay) is a GNS-
construction for ¢ @ 1.

Proof. — Denote the respective W*-lifts of ¢ and ) in their respective GNS-constructions by
® and 1,[; We also denote the W*-lifts of (H¢,ﬂ¢,A ) and (Hy,my, Ay) by (Hy, ¢, A¢) and

(Hyp, ¢, A¢) respectively. Define 6= <p®'¢1 the von Neumann tensor product of ¢ and ¢ (see
Theorem 8.2 of [46]). By Proposition 8.3 of [46], we know that

6= sup OB
WEG,, LEGy,
Then we have immediately that § (T ® my) = p @ 1. Let (Hy, ® Hy, 1, A) be the canonical
GNS-construction for 6 (see Proposition 8.1 of [46]). We know that for a € ./\/’; and b € N- e

Aza®b)= (,,(a) ® Ay (b). But now we have for all z € N gy that (1, ® 70y,)(z) € N5 and
for all a € N, and b € Ny,

(A5((mp @ 74)(2)), A (@) © A (8)) = (A{(mp © 7y)(2)), Ao (a) @ 7y (1))
=0((m, ® 7y)((a" ®1")a))
=(p®9)((@" ®b)a).

It is also clear that ||A{((m, ® 7y)(2))]|? = (¢ ® ¥)(z*z). From this we can conclude that
z € N(p,9) and

(Ap ® Ay)(z) = Ag((mp @ my) ().
Then we get immediately that (H, ® Hy, 7, ® Ty, A, ® Ay) is a GNS-construction for ¢ ® 1.
Let ¢ ® 9 be its W*-lift with lifted GNS-construction (H, ® Hy, ¢, K(p@w). It then follows from

the construction of K%,@w and the strong-norm closedness of A that for all a € N ooy We have
ac Ng, and

Apgy(a) = Ay(a).

From this we may conclude that ¢ ® 1/) is faithful, and so ¢ ® 1) is approximately KMS. 0O

2. The multiplicative partial isometries

Consider a C*-algebra A with comultiplication A and a left invariant weight on A. It is then
customary to define the multiplicative partial isometry. Up to now, it was a non-trivial matter
to prove that this multiplicative partial isometry is unitary. What has been lacking in order to
achieve this, was a concrete formula for the inverse. In this section, we will first introduce some
terminology and then prove a formula for the inverse. We will give some important applications
of this formula in the next section.
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2.1. Left invariance of weights

First we introduce some terminology concerning bi-C*-algebras and left invariant weights on
them. The used terminology is by no means a standard one but will be used throughout this paper.

DEFINITION 2.1. - Consider a C*-algebra A and a non-degenerate *-homomorphism A : A —
M(A ® A) such that (A ® t)A = (¢ ® A)A. Then we call (A, A) a bi-C*-algebra.

We define the non-degenerate *-homomorphism A : A4 — M(A ® A ® A) as A®) =
(A®)A=(®A)A.

Now we define a form of left invariance for weights on bi-C*-algebras. We will use a very
weak form of left invariance but in the cases of interest, this weak form of left invariance will
imply a much stronger one.

DEFINITION 2.2. — Consider a bi-C*-algebra (A, A) and a proper weight  on A. Then:

o we call @ left invariant < we have for all a € M and w € A% that p((w ® t)A(a)) =
w(1) ¢(a);

o we call @ right invariant < we have for all a € M and w € A% that p((t ® w)A(a)) =

w(1) p(a).

Notice that we use the extensions of ¢ to M(A)* in the previous definition because we only
know that (w ® ¢)A(a) € M(A)*. In a proper framework for quantum groups, (w ® ¢t)A(a) will
belong to A* but we will not assume this immediately.

If ¢ is left invariant, it is easy to see that p((w ® t)A(a)) = p(a)w(1) for all a € J—\/l—:
(approximate a strictly from below by elements in M jg).

RESULT 2.3.— Consider a bi-C*-algebra (A, A) and a left invariant proper weight p on A
with GNS-construction (H,m, A). Then:
(1) we have for all a € M, and w € A* that (w ® 1)A(a) € My, and p((w ® 1)A(a)) =
w(1) p(a);
(2) we have for all a € N, and w € A* that (w ® 1)A(a) € Ny, and ||A((w ® t)A(a))| <
@l A@)]-

The first statement is immediate. For the second one, use for instance Lemma 3.10 of [30].
We also want to work with the slice map ¢ ® ¢. Therefore we state the following result. We
introduced the necessary terminology in Section 1.5.

RESULT 2.4.— Consider a bi-C*-algebra (A, A) and a left invariant proper weight p on A
with GNS-construction (H,m, A). Then:

(1) consider a € M; then A(a) € Mg, and (1 ® p)A(a) = p(a) 1;

(2) consider a € N ,; then A(a) belongs to N gy and (1 @ A,)(A(a))* (1 ® Ay)(Ala)) =

p(a*a)l.

The first statement follows from Proposition 1.23. The second one is an immediate
consequence of the first one.

Although all properties are stated in terms of left invariant weights, there are of course also
similar properties for right invariant weights.

Let (A, A) be abi-C*-algebra and 1) a right invariant proper weight on A. Consider a,b € N .
Then the previous result implies for all z € M(4A ® A) that A(a*)z(b ® 1) € Myg, and
Proposition 1.24 implies that

2.1 (W ®1)(Aa)z(b®1))" (P ® ) (A(a*)z(b® 1))
<Y(@a)(¥ @) (0" @ 1)z z(b®1)).
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This is a simple observation which will be used throughout the paper.

RESULT 2.5.— Consider a bi-C*-algebra (A,A) such that (w ® t)A(x) € A for all
xz € Aand w € A*. Let ¢ be a right invariant proper weight on (A,A) and a,b € Ny. Then
(Y@ )(A(a*)(b®1)) and (v @ ¢)((a* @ 1)A(b)) belong to A.

Proof. — We have for w € G, that

|(w® ) (Ala®) (b 1)) ” <[ (w @ ) (Aa*a))|| w(b*b)
< ||(@ ® 1) (A(a*a)) || w(b*b) = 1(a*a) w(b*b).

Hence we get for all w, p € Gy, with p < w that

[we)(A@)be1) - (ko) (A)be )| <v(a*a)w - p)b7b).

This implies that the net ( (w®:)(A(a*)(b®1)) )weg¢
So we conclude that this net converges in norm to (¢ ® ¢)(A(a*)(b® 1)).

Since, by assumption, all elements (w ® ¢)(A(a*)(b® 1)) (w € Gy) belong to A, we get that
(v ®1)(A(a*)(b®1)) belongsto A. O

In the next result, we use inequality (2.1) once more and combine it with the left invariance of
. We get a basic result which will be used throughout the paper.

is Cauchy and therefore norm convergent.

RESULT 2.6.— Consider a bi-C*-algebra (A, A), a left invariant proper weight p on A and
a right invariant proper weight ) on A. Let a,b € Ny, and ¢ € N .. Then (v ®1)(A(a*c)(b® 1))
belongs to N, and

1A (% ® )(Ala*e) (b @ 1) < [|Aw (@) [ Ay )] |Ap(e)]]-

This implies easily the following technical result.

RESULT 2.7.— Consider a bi-C*-algebra (A, A), a left invariant proper weight v on A and
a right invariant proper weight 1 on A. Let a,b€ Ny, and c € N »

Suppose that 6 is a non-degenerate representation of A on a Hilbert space K and consider
v € K together with an orthonormal basis (e;);c1 for K. Then

3 Ao (@ @ )(A@" ) (1@ woe ) (AB) ® 1)) |

el
<Ay @I 1w )1 A (@)1 1o]]* < 0.
Proof. — By the previous result, we know that

S A (W @ (A" ) (1 @ wo e )(AD) ® 1))

el

<Y 18w (@17 [[Au (¢ @ wr e )AB)[* Ay (€)1

i€l

= 1A @17 A6 (@)% ((¢ @ wy,e,)(AD)) (¢ @ wo,e, ) (A(D))).

el

Lemma A.6 implies that

D A @I AN (¢ © wo,e,)(ADB)* (¢ @ wy e, ) (A(D)))

i€l
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= Ay (@)1 1o (I ¢ ((e ® wo,0) (A(*D)))
= [ Au (@) P 1A (I llv]|*  (bD),

where we used the right invariance of ¢ in the last equality. Now the result follows. O

2.2. The multiplicative partial isometry

In the next part of this section, we will introduce (as usual) the multiplicative partial isometry
and prove an inversion formula which is the cornerstone of this paper. This inversion formula
will imply the unitarity of the partial isometry and the existence of the antipode together with its
polar decomposition under rather weak assumptions.

For the rest of this subsection, we will fix a bi-C*-algebra (A, A) together with a left invariant
proper weight ¢ on it. Let (H, 7, A) denote a GNS-construction for (.

At the same time, we fix a proper weight 7 on A with GNS-construction (K,6,T"). (Notice
that we do not assume any form of left or right invariance.)

In Definition 1.27, we defined the tensor product 7 ® ¢ of the two proper weights. Although
the Hilbert space K ® H is in general probably too small to serve as a GNS-space for n ® ¢, it is
however possible to define a partial GNS-construction for 7 ® ¢. We discussed this in Section 1.6
where we introduced the notations A(, ) and T' ® A (Notation 1.28). We want to stress that
we will always be working with elements as in Lemma 1.30.

Using Lemma 1.30 and the left invariance of ¢, it is immediate that we have for every
a€N, and b€ N, that A(b)(a ® 1) € N'(n,) and that (n ® ¢)((a* @ 1)A(b*b)(a ® 1)) =
n(a*a)p(b*b).

By polarization, we get that

(C@M)(AB)(a® 1)), (T ®A) (A (c® 1)) =([(a),T(c)) (A(b), A(d))

forall a,c € N. nand b,d € N - This justifies the following definition.
Notation 2.8.— We define the isometry U : K ® H — K ® H such that

U(T(a) @ A(b)) = (T @A) (A(b)(a®1))

fora e N, and b e N,,.

Now U* could be called a multiplicative partial isometry associated to (A, A). Using the
fact that \V,, and N, are bounded strict cores for I and A respectively (see the remarks after
Proposition 1.9) and the strict closedness of I' ® A (first statement of Proposition 1.29), we get
easily that

U(T(a) ® A(b)) = (T @ A)(A(b)(a®1))

fora e N, andbeN,,.
‘We will also need the following formula for U.

RESULT 2.9.— Consider an orthonormal basis (e;);c1 for K, a € N¢ and v € K. Then we
have that 3,1 || A((wy,e; ® 1)A(a))[|* = [[v]|* p(a*a) < oo and

UweA) = ei®A(woe, ®1)A()).

i€l
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Proof. — We have for every w € K that

ST A (@we @ DA@)[* =Y @ ([(@ie; ® DA@)] [(Wae; ® 1)A(a)]).

i€l i€l

So Lemma A.6 implies that

S A (@nres ® DA@)|)* = 9((warw © 1)A(a*a)) = [[w]]? p(a*a),

el

where we used the left invariance in the last equality.
Also, notice that we get that both expressions in the statement of the lemma depend
continuously on v. So it is enough to prove the equality for a dense set of elements v in K.
Therefore choose b € N;,. Because A(a) belongs to N .®p> We can apply Lemma 1.30. This
lemma gives us immediately that

UT(b) @A) =T @A) (A@Ob®1) =) e;@A((wrp)e ®)A@). O
el

For the sake of completeness, we also include the standard formulas for the slice of U with a
functional (left and right).

RESULT 2.10.- The following properties hold.
o We have for all a,b € N, that (1 ® wp(a),a))(U) = 0((t ® 9)((1 ® b*)A(a))).
o We have for all w € Bo(H,))* and a € N, that (w ® 1)(U) A(a) = A((w ® ) A(a)).

Proof. — e Choose ¢,d € N,,. Then

((t®wa@),A®) (U)L(e),T(d)) = (UT(c) ® Aa)), T'(d) ® A(b))
=(T®A)(A(a)(c®1)),(T @A) (d®D))
=@ ) (([d @b")A(a)(c®1))
=n(d" (1 ® 9)((1 ®b")A(a))c)
={0((t®¢)(1 ®b")A(a)))T(c),T(d))

and the stated formula follows.
e Take c,d € N;,. Choose b € N,,. Then

{(wr(eyr(a) ® V(U)A(a), A(b)) = (U(T(c) @ A(a)), T(d) @ A(b))
= (T ®A)(A@)(c® 1), T ®A)(d®b))
=nee)(([d ©b)A()(co1))
=p(*(n®)(([d* @1)A(a)(c®1)))
= (A((wro),r@) ® )A(a)), AD)).

So we get that (wp(e),ra) ® ¢)(U)A(a) = A((wr(e),ra) ® t)A(a)) for all ¢,d € N,,.
Because Bo(H;)* = [wr(c),r(a) | ¢, d € Ny, the result follows by Result 2.3. O

As mentioned in the beginning of this section, a crucial step in this paper is a formula for the
inverse of the isometry U. We will provide one in the following results.
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In order to deal with the unboundedness of the weight ¢, we will use the following simple
lemma to make things bounded. For the definition of F,, T;, and &,, used in the next lemma, we
refer to Notation 1.4.

LEMMA 2.11. - Consider w € Fp, u,v€E K, w€ H and a E./Tﬂp. Then

1
2

((1 ®Tw YU (u®Aa),v @ w) = (wy,p @ we,,w)A(a).

Proof. — It is clear that we only need to prove the lemma for elements « which are dense in K.
Therefore choose b € ;. Also take p € F,.
We have for all z € N (n, ) that

(0 ®m)(2)(E ® &) = (pew)(a"2) < (@) (a"z) = (T A)(z ).

So we can define a bounded operator F: K ® H — K ® H such that F(I' ® A)(z) =
(0@ m)(z)(€, ®E,) forall z € N(n, p). It is then clear that

F(T(p) ® Alg) = (T} ® T2) (C(p) ® A(a))

1 1
forpe Ny, qeN,. Thus F =T3 Q133
Hence,

(TF @ T2 U(T(b) ® Aa)) = F(T ® A) (A(a) (b ® 1))
—(0©m)(A@)(bO1))(E ®L,).
Consequently,
(T} @ THUT () ® Aa)), v ®w) = (0 ® m)(A@)(b®1))(€, @ &), v D w)
=((0 @7)(A(a)(0(b)¢, ® £u),v @ w)
(0@ m)(AW)(TFT()® &), vew).

1
2

Because (T} ),eg, converges strongly to 1, this implies that

(10 THUT D) A),v@w) = (0@ 7)(A@)[TG) ®&),v0w). O

Now, we can easily prove the crucial result.

PROPOSITION' 2.12. — Consider a right invariant proper weight v on (A,A), a, b € Ny,
c€ N, v € K and an orthonormal basis (e;)icr for K. Then

S IIA(W @ (A (@ @we)AW) @ )| <

i€l

and

U (Z e @ A((Y ® 1) (Ala*c) (L @ wy,e; ) (A(D)) @ 1)))) =v@A((Y®)(A(a*c)(b®1))).

i€l
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Proof. — The first inequality was already proven in Result 2.7. Let us now prove the last
equality. Choose w € F,, u € K and w € H.
Using Lemma 2.11, we get that

<(1 ®Tw%)U<i€ZI e @AV (A ((LOwre,)(AD) ® 1)))),u®w>
= ;«1 ®T2)U (e ® Al @ (A0 ) (L ® woye,)(AD)) ® 1)), u @ w)
= ;(wei,u B weo ) A1 ® 1)(A(a") (L ® wy e, (A(D) ©1)))
= EE; D((1® (Weru © Weuw) A)A(@7 ) (1 ® wy e, ) (A(D)))
= ;w((e B Wey 1 ® Weo ) (A @ )A(@€)) (1 ® wy o) (A(D)))
= (e B (A8 e ) A0 (8 ) (AL)

But Lemma A.6 implies that the last sum is equal to

P((®wo ) (A((t ® we, w)A(a"c)) AD))).

Using now the right invariance of ¢, we get that
<(1 ® Tj)U (Z ei @ A((Y @ 1) (Ala*e)((t ® wae; ) (A(D) ® 1)))) L U® w>
il
=9((t® wo,u) A((L ® we,,,w)(A(a0)) b))

(v,u)Y((t ® we,, ,w)(Ala"c))b)
= (v, u) we,,w ((¥ ® 1) (Aa"c) (b ® 1))

(v,u) (7 ((¥ @ )(A(a"e) (b ® 1)) €w, w)

(w,u) (T3 A((% ® ) (Aa*) (b® 1)), w).

l

1
2

Because (7.7 )weg, converges strongly to 1, we get for all u € K and w € H that

(v(TeoruoiaEaenamsn)ues)
el
~ o) (A ®)A@IBE D), u). O

Let us put this inversion formula in a form which is more transparent.

PROPOSITION 2.13.— Consider a right invariant proper weight 1 on (A,é), a,b € Ny,
c€ENy deEN;, andput x = (Y ® L ® 1)(A13(a*c)A12(b)). Then x belongs to N g, (d @ 1)
belongs to N'(n, ) and

UT @A) (z(d®1)) =T(d) @ A(( ® 1)(A(a*e)(b®1))).

Proof. — Using inequality (2.1), we have that
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$*$=(¢®L®L)(A13(G*C)A12( ) (Yv®L®1) (A1 a*c)Aq2 b))
< W@ e® ) (Aiz(a*a))|| (¥ ® @) (Ar2(b*)Arz(c*c) A1z (b))
=9¢(a*a)(¥ ® L ® ¢)(A12(b*)A13(c*c) Ar2(b)).

For every w € G,, we have

(L@w) (¥ ®L®1)(A12(b*)Ars(c*c)A12(b)))
=@ @) (A®")((t@w)(A(c* ) @ 1)A(D))
=(Ay @ )(AD)* (my (L © W) (A(c™0))) ®1)(Ay @ 1)(A(D)).

Therefore the left invariance of ¢ implies that the net
(t®w)((¥ ®1®)(A12(b")A1s(c"0)A12(b)))) g,

converges strictly to ¢(c*c) (v ® ¢)(A(b*b)). Hence we get that
(% ®1® 1) (Ar2(b") A1a(c*c) Ara(b)) € Mg,

By Result 1.19 and the inequality above we have z*x € ﬂj&o. Therefore z belongs to N @
and we can apply Lemma 1.30. This lemma says that z(d ® 1) belongs to A/ (1, ¢) and

CeA)(z[d®1) =) e ®A((wr@).e ®1)())
el
=2 e @A((¥ @ )(A@ ) ((t ® wr() ) (A1) ®1)))-
€l

Therefore the previous proposition implies that

UToA)(z(d®1) =T(d)A((¥0)(A@)(b®1)). O

3. Bi-C*-algebras possessing a left and a right invariant weight

This section revolves around the applications of Propositions 2.12 and 2.13. They are
threefold:
e the C*-algebras and von Neumann algebras in the GNS-spaces are independent of the left
or right invariant weight;
e unitarity of the multiplicative partial isometries;
e polar decomposition of the antipode.

3.1. Uniqueness of the reduced C*- and W*-algebras

Consider a bi-C*-algebra (A, A) and proper weights ¢ and 1 such that both are left or
right invariant. Let (H,,7,,A,) be a GNS-construction for ¢ and (Hy,my,Ay) a GNS-
construction for 1. We will prove that under some fairly weak conditions the von Neumann
algebras 7, (A)"” and 7y, (A)"” are *-isomorphic (and similarly for the C*-algebras). This will be
done by establishing a weak absolute continuity property between ¢ and 1.

We start off with the lemma which makes it all possible.
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LEMMA 3.1.— Consider a bi-C*-algebra (A,A). Let ¢ be a left invariant proper weight
on (A,A) and v a right invariant proper weight on (A,A). Let b, d € Ny, ¢c € N, and put
a= Y ®)(AM*c)(d®1)) €N,

Suppose that 0 is a non-degenerate representation of A on a Hilbert space H. Let v € H.
Then there exists a family of elements (a;)sc1 inthe set { (Y ®1)(A(b*c)(e®1)) |e € Ny} C N,
such that Y, p(afa;) < oo and (wy,» ® apa*)A(z) =37, w(ajza;) forall z € AT,

Proof. — Define w € A% by w(z) = (8(z)v,v) for x € A. Then we have a natural GNS-
construction (H,,, 7, A,) for w:

o H,=[0(a)v|a€A];

o m,(a)w=_0(a)wforalla€ Aandw € H,;

o A,(a)=6(a)vforallac A.
Take an orthonormal basis (e;);cr for H,, and define, for i € I,

= (1 ®)(AG ) (L ®wye,)(AWM) ®1)) EN,.

By Result 2.7, we already know that ), ; »(a}a;) < oo.

Now we want to apply the results of Section 2.2 (the 7 in that section will be our w). As in
Notation 2.8, we define an isometry U : H, ® H, — H, ® H,, such that U (A, (p) ® Ay(q)) =
(Aw ®Ay)(A(g)(p®1)) forp € Aand g € N,.

Then Proposition 2.12 implies that U (D, ; e; ® Ay (a:)) =v ® Ay (a).

By Proposition 1.29, it is not difficult to see that U(1 ® m,(z)) = (70, ® 7, )(A(x)) U for
x € A. This implies for z € At that

(Wo,0 ® apa®)Az) = (1 ® 1) (A(2)) (v ® Ap(a), (v ® Ay(a)))

((
<(7rw®7r¢ YAz (Zez@m az) (Zel®A¢(az )>

i€l el

1@ m,(z (Zez@u\ az) (Zez@m az))>

i€l i€l

(Zez@)A xa1> (261®A az)>>

i€l el

(v
-
< ei®A<p(xai)aZe’i®A<P(ai)>

el i€l

Z<A¢(xai),A¢(ai)> =Z<p(a;‘xa,~). m]
icl

i€l

In a next step, we want to use this last result to prove a weak form of absolute continuity
between left and right invariant weights. In order to do so, we will need a weak extra assumption

on (A,A).
Terminology 3.2.— Consider a bi-C*-algebra (A,A). Then we say that (A4,A) satisfies

condition [D] if and only if there exist a left invariant proper weight ¢ and a right invariant
proper weight 1) on (A4, A) such that

A=[We)(A@)®en)|abeNy] =[(8p) (A1) abeN,].
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Terminology 3.3. - Consider a bi-C*-algebra (A, A). Then we say that (A, A) satisfies the
KMS condition if and only if there exist a left invariant approximate KMS weight ¢ and a right
invariant approximate KMS weight ¢ on (A, A).

We will give two natural conditions which imply condition [D].

RESULT 3.4.— Consider a bi-C*-algebra (A, A) such that:
e A=[tQw)Aa)]|a€e A, weA*|=[(w®L)Aa) |a€ A, we A*];
o there exist a faithful left invariant proper weight ¢ and a faithful right invariant proper
weight 1 on (A, A).
Then (A, A) satisfies condition [D].

Proof. — We will prove that [(: ® ¢)(A(a*)(1 ®b)) |a,be N, = A.
From Result 2.5, we know that (: ® ¢)(A(a*)(1®b)) belongs to A forall a,b € N,,. To prove
density, we will use Hahn—Banach.
Therefore choose § € A* such that 8((: @ ¢)(A(a*)(1®b))) =0 for a, b € N,,. Then we have
for every a,b € N, that o((8 ® ¢)(A(a*))b) = 0.
Hence the faithfulness of ¢ implies that (6 ® ¢)A(a*) = 0 for all a € N,. So we get for every
‘w € A* and a € N, that

0((t®@w)A(a*)) =w((f ®¢)A(a*)) =0.

Because we have that A = [(: @ w)A(a*) | a € N, w € A*] by assumption, we get that § = 0.
So we have proven that [(: ® ¢)(A(a*)(1®D)) | a,b € N,,] = A. The case for 1 is dealt with
in the same way. 0O

RESULT 3.5. - Consider a bi-C*-algebra (A, A) such that:

o A(A)(1® A) and A(A)(A® 1) are dense in AR A;

o there exist a left invariant proper weight ¢ and a right invariant proper weight 1) on (A, A).
Then (A, A) satisfies condition [D].

Proof. — We will prove that [(: @ ¢)(A(a*)(1 ®b)) |a,be N, = A.

From Result 2.5, we know that (: ® ¢)(A(a*)(1®b)) belongs to A for all a, b € NV,,.. To prove
density, we will use Hahn—Banach again.

Suppose that [(¢ ® ¢)(A(a*)(1 ®b)) | a,b € N] is not equal to A. By Hahn-Banach, there
exists § € A* such that 6 # 0 and 6((¢ ® ¢)(A(a*)(1 ®b))) =0 for a,b € N,,. Then we have
for every a,b € N, that p((0 ® ¢)(A(a*))b) = 0. So we have in particular for every a € N, that
P8 1)(A(*)(B % 1)(A(a)) 0. A

Hence we get for all a € N, and = € A that

p((0® (A1 ®))@ @ )((1®2)A(a)))
=p((0®)(A@))z"z(0 ®0)(A(a)
<lzlo((0 ® )(A(a™) (0 ® 1)(A(a) = 0.

So we get that p((6 ® ¢)(A(a*)(1 ®z*))(0 ® ¢)((1 ® )A(a))) =0 forall a € N, and z € A.

Define N = {y € A | p(y*y) = 0}. Because ¢ is lower semi-continuous, N is closed in A.
But the above discussion implies that N contains ((f ® .)((1 ® )A(a)) |z € A, a € N,,). But
since (1 ® A)A(A) is by assumption dense in A ® A and 6 is not zero,

(0®)((1®2)A(a)) |z € A, a€N,)

is dense in A. Consequently, N = A and ¢ = 0. A contradiction.
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So we have proven that [(¢ ® ¢)(A(a*)(1®b)) | a,b e N,] = A. The case for ¢ is dealt with
in the same way. O

If a bi-C*-algebra satisfies condition [D], it is now easy to prove that we have a weak absolute
continuity between left and right invariant weights.

PROPOSITION 3.6.— Consider a bi-C*-algebra (A, A) which satisfies condition [D]. Let ¢
and 1) be proper weights on A such that o is left or right invariant and such that 1 is left or right
invariant. Then there exists a family of elements (a;)icr in Ny such that (x) =3, ; o(afza;)
forzx e M;Z

Proof. — Suppose first that o is left invariant and that ¢ is right invariant. Let (H,m, A) be a
GNS-construction for 1. We know that there exists a family of vectors (vx)xex in H such that
Y(2) = 3 ke k Wor,vi (@) for z € AT (combine Definition 1.31 and the results in [18]). Now, we
want to apply Lemma 3.1. In this case, A will act on H via 7.

By assumption, there exists a right invariant proper weight 7 on (A, A) such that

A=[n@)(A0")(d®1)|bdeN,].

By referring to inequality (2.1), we see that A = [(n®¢)(A(b*e)(d®1)) | b,d € Ny, c € N, ].
Put N = {(n®)(A(b*c)(d®1)) | b,d € N, ¢ € N,}. Then there exists an element a € N such
that ¢(a*a) = 1: Suppose that there does not exist an element p € N such that ¢(p*p) # 0. Then
Cauchy—Schwarz implies for every p, ¢ € N that ¢(¢*p) = 0. So we get that p(p*p) = 0 for
pe(N).

Now {y € A| p(y*y) = 0} is a closed subset of A which contains (N). Because (N) is dense
in A, we see that {y € A | p(y*y) =0} = A. A contradiction with the fact that ¢ # 0.

Now take b,d € N, and ¢ € N, such that a = (n ® ¢)(A(b*c)(d ® 1)).

Let k € K. By Lemma 3.1, we know that there exist a set J(k) and a family of elements
(a(k,5))jes (k) in the set {(n ® ¢)(A(b*c)(e ® 1)) | e € Ny} SN, such that

(o0 @ ava”)A@) = Y p(alk, ) zalk, )
jeJ(k)

forz € AT,
Referring to inequality (2.1), we see that

A= [(n@b)(A(f"g)(e@ 1)) | f eNn) € ENn» g ENLP]
=[m@)(A(f*9)(e®1)) | f €Ny, e €Ny, gEN],
so we get that a(k, j) € A, hence a(k,j) € N,, forall j € J(k).
Using the right invariance of v, we get now for x € M;z that
Y(@) =9(z)(apa®)(1) = $((t ® apa™) A(z))
= Z(ka,vk ®a¢a*)A($) = Z Z <p(a(k,j)*xa(k,j)).
)

keEK kEK jeJ(k

So we have proven the proposition in the case that ¢ is left invariant and ) is right invariant.
If ¢ is right invariant and 1 is left invariant, the proposition is proven in the same way.

If ¢ and 1+ are both left invariant, we use the right invariant weight ) as an intermediator. The
case where ¢ and % are both right invariant is dealt with in the same way. O
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The same result can also be proven under other conditions. One of them is the KMS condition.
The proof is almost the same as the previous one. The only difference is that we have to
find an element a € N such that ¢(a*a) =1 in another way. But this will follow easily from
Proposition 3.15.

So we get the following proposition:

PROPOSITION 3.7.— Consider a bi-C*-algebra (A, A) which satisfies the KMS condition.
Let ¢ and 1 be proper weights on A such that ¢ is left or right invariant and such that
v is left or right invariant. Then there exists a family of elements (a;)icr in N, such that

Y(x) = plaiza;) for x € Mjp'

Suppose that (w ® ¢)A(a) and (¢ ® w)A(a) both belong to A for all w € A* and a € A.
Appealing to the proof of Proposition 3.6 and Result 2.5, we see that the elements (a;);cs in the
proposition above can then be chosen in such a way that they belong to N,,.

Now it is extremely easy to prove the main result of this section.

THEOREM 3.8.— Consider a bi-C*-algebra (A, A) which satisfies condition [D] or the KMS
condition. Let  and 1 be proper weights on A such that o is left or right invariant and such
that v is left or right invariant. Then:

o there exists a unique *-isomorphism 7 :7,(A) — wy(A) such that m(m,(a)) = my(a) for

a€ A,
o there exists a unique *-isomorphism 0 : w,(A)" — my(A)" such that 6(m,(a)) = my(a) for
a€ A

Proof. — By Propositions 3.6 and 3.7, there exists a family of elements (a;);cs in N » such
that o (z) = > .., ¢(a;za;) forx € M$ Then we get for all z € Ny that -, [| Ay (za;)||* =
||Ay(2)|? < 0o. Let (e;);cr be the orthonormal basis for £2(I).

So we can define the isometry U : Hy, — ¢*(I) ® H, suchthat UAy(z) =Y, € ® Ay (za;)
for x € Ny.

It is then easy to see that (1 ® 7,(a))U = Umy(a) for a € A. So we get for every a € A
that my(a) = U*(1 ® m,(a))U. This implies that 7y (A4) = U*(1 ® m,(A))U and 7y (A)" =
U*(1®m,(A)")U.

Now, define linear mappings m:m,(A) — my(A), y — U*(1 ® y)U and 0:7,(A)" —
mp(A)", y— U*(1 ® y)U. So we have for every a € A that m(m,(a)) = 0(m,(a)) = my(a).
This implies that 7 and 6 are *-homomorphisms.

We get in a similar way *-homomorphisms g : 7wy (A) — m,(A) and 0y : 7y (A)" — 7, (A)”
such that mg(my (@) = 8o (7 (a)) = 7wy (a) for a € A.

It is then clear that oo =, Tomg =¢, Og o0 = ¢ and 6 o 6y = +. Hence 7 and 8 are
*-isomorphisms. O

This result will be crucial to prove the uniqueness of left invariant weights in certain cases.
Given two left invariant weights, we can extend both of them to normal weights in their respective
GNS-spaces. In order to apply Radon—-Nikodym, we need to get these normal weights represented
on the same von Neumann algebra. This will be possible due to the previous result.

We will also use the same principle to get hold of the ‘modular function’ of quantum groups.
In this case, we will have to work with a left and a right invariant weight (see Section 7).

3.2. Liftings of weights and one-parameter groups to the reduced level

In this subsection, we will fix a bi-C*-algebra (A, A) which satisfies condition [D] or the KMS
condition. We also fix a left or right invariant proper weight ¢ on (A, A) together with a GNS-
construction (H, m, A) for ¢. The next discussion will mainly serve to fix some terminology.
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Theorem 3.8 will play a crucial role in the next results.

PROPOSITION 3.9.— Consider a proper weight 1 on (A, A) which is left or right invariant.
For every w € Fy, there exists a unique @ € (m(A)")§ such that & = w.

We define the mapping ¢ : (m(A)")* — [0, 00| such that
W(x) = sup{(z) |w € Fy}

forall = € (w(A)")T. Then ¥ is a semi-finite normal weight on w(A)" such that Y7 = 1. We
call v the W*-lift of 1 in the GNS-construction (H,m, A).

By Definition 1.31, we can define such a weight in the GNS-construction for 1. By using
Theorem 3.8, we can transport everything to 7w(A)”. The same remark applies to the next
proposition. In this case, we have to use Proposition 1.32.

PROPOSITION 3.10.— Consider a proper weight 1 on (A, A) which is left or right invariant.
Let (K,0,T') be a GNS-construction for ¢ and let 0 :w(A)" — 0(A)" be the *-isomorphism such
that O(w(a)) = 6(a) for a € A. Then there exists a unique linear mapping T : N- i K such that:

o (K, 5, f‘) is a GNS-construction for 1’[;;

o ['(n(a)) =T(a) for a € Ny.
We call (K,0,T) the W*-lift of (K, 6,T) in the GNS-construction (H,, A).

We have moreover the following property. Consider x € N- 7 Then there exists a net (a;);cy in
Ny such that:

W) Nl < llell fori € I

(2) (m(a;))ier converges to x in the strong*-topology;

(3) ((as))ies converges to T'(x).

Let us also quickly look into the liftings of one-parameter groups. The following result is
(easily) proven in Proposition 2.19 of [30]. We can then again use Theorem 3.8 to transport
everything to w(A)".

PROPOSITION 3.11.— Consider a norm continuous one-parameter group T on A such that
there exists a left or right invariant proper weight ¢ on A such that 1) is relatively invariant
under T, i.e. such that there exists a number X > 0 satisfying 11, = At for all t € R.

Then there exists a unique strongly continuous one-parameter group 7 on w(A)" such that
Tiom=morT fort € R. We call 7 the W*-lift of T in (H,m, ).

Approximate KMS weights are lifted to n.f.s. weights. This follows from Proposition 1.35 and
Theorem 3.8. See also the remark after Proposition 3.9.

PROPOSITION 3.12.— Consider a left or right invariant approximate KMS weight 1) on
(A,A). Let 1 be the W*-lift of 1. Then v is a normal semi-finite faithful weight.

Suppose that 1) happens to be a KMS weight with modular group o. Then we can define the
WH-lift & of o such that 5,7 = 7wo; for t € R. Then & is the modular group of 1; (See e.g.
Proposition 2.22 of [30].)

We will need that the left/right invariance on the C*-algebra level is also lifted to the left/right
invariance on the W*-level. For this, the last part of Proposition 3.10 is crucial.

PROPOSITION 3.13.— Suppose that there exists a normal *-homomorphism

5171’(/1)” —>7T(A)”, ® 7T(A)”
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such that Am = (m ® m)A. Consider a left invariant weight 1) on (A, A). Then the W*-lift ¥ is
left invariant, i.e.

P(WB)A(2)) = p(z)w(1)

forallxeM}E andw € (m(A)")}. :

Proof. — We have for z € n(N,) and w € (m(A)")} that ¥((w D) A(z*2)) = w(1) Y(z*z):
there exists a € Ny, such that 7(a) = ; then

(3.1) W) (A(z*z)) = (wB) ((r®71)A(a*a)) = 7((wr ® 1) A(a*a)),

so that the left invariance of ¢ implies that

Y((wB)(A@2) = $((wr @ )A(a"a)) = (wr)(1) Y(a"a)

=w(1)y(r(a*a)) =w(1) ¢(z*z).
Fix w € (w(A)")f. Define the sesquilinear mapping T:NJ X NJ — 7(A)" such that
T(z,y) = (w®)A(y*z) forall z,y € NQ}'
Take a GNS-construction (H T AJ) for 1. Now we apply Lemma A.1 with V = N{[»
W =nNy), X = HJ’ A= AJ and K = w(1). This is possible thanks to the last part of
Proposition 3.10 and Eq. (3.1). So Lemma A.1 implies for every x € A- 7 that

Y(WwB)(A(a*2) =P(T(z,2)) =wD) [Az@)]* ©
We have of course an analogous result and proof for the right invariant case.

3.3. Multiplicative unitaries

In this subsection, we fix a bi-C*-algebra (A, A). Let ¢ be a left invariant proper weight on
(A, A) with GNS-construction (H, 7, A). We will prove under some fairly weak conditions that
the multiplicative partial isometries (see the remark after Notation 2.8) are unitary.

We will also assume the existence of a right invariant proper weight ¢ on (A, A) such that 1)
is approximately KMS. Let (Hy, 7y, Ay ) be a GNS-construction for . Using Definition 1.31
and Proposition 1.32, we define the following objects:

e ¢ = the W*-lift of ¢ in the GNS-construction (Hy, 7y, Ay);

° (H¢, L, K¢) = the W*-lift of (Hilﬂ o A¢)

Since 1 is approximately KMS, 1 is a n.f.s. weight on m,(A)”. We will denote its modular

group by o¥.
For technical reasons, we will need to use a Tomita *-algebra:

I;= {z ENJﬂNﬂaz is analytic with respect to o¥ and 0¥ () ENJONi for z € C}.

Using the right invariant version of Notation 2.8, we define the isometry U:Hy, @ H —
H, @ H such that U(Ay(p) @ A(q)) = (Ay @ A)(A(p)(1® q)) for p € Ny and g € N,
The right invariant version of result 2.10 implies for every a, b € Ny, that

(3.2) (Way(a),ap ) @U™) =7 ((¢ @ 1)(A(b*)(a ® 1))).
This implies that (w;,,w ® ¢)(U*) belongs to M (m(A)) for all v, w € Hy.
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LEMMA 3.14. - Consider a € NJ’ beTy ce Ny. Then

w((wxw(a),xw(b) ®)A(c*)) = ( ® ) (U").

W ~
Ay(aa? (b*)),Ay(c)

Proof. — Choose w € Bo(H )*. Using Eq. (3.2) above, we get for all p € N, that
W((@aym)rue) @ OU) =9(L®W)(A())p) = (Ap(p), Ap((L ®F)A(c))

= (Ry(n(0)), Ay (7((L @ B)A(€))) )-
Therefore, Proposition 1.32 implies for every y € N- 7 that

(@5, (e @ DO) = Ry (@), Ry (r((L@D)A(©))) = P ((( © @) A(e))y)
So we get that

w(( 2 )(U") =P (r((t @ w)A())ao?,(57)

W ~
AUJ(aafI‘(b*))J\w(c)

= (b*1((t @ W)A(c"))a)

=WR (@)K (b) (r((t®w)A(c")))

= w(ﬂ'((u)xw (@Kt © DA(cY))). 0

PROPOSITION 3.15. - We have that
H=[A(p®@)(A(b*c)(a®1))) | a,be Ny, ceNy]
= [A((wo,w ®)A(C)) |v,w € Hy,c € N, ].

Proof. — We define @, to be the proper weight on 7(A) such that .7 = ¢, and A,. to be the
linear map from N, to H such that A,(7(a)) = A(a) for a € N,. Then (H,t,A,) is a GNS-
construction for ¢, (¢, is just the restriction of ¢ in Definition 1.31). It is then not difficult to
check that @, 7 =  and that A, (7(a)) = A(a) forall a € N,,.

Define the closed subspace K of H as

K= [A((iﬂ @) (A c)(a®1))) |a,beNy, ¢ E/\ﬂp]
(3.3) =[AM(W@)(AD* c)(a®1))) |[bENy, ae Ny, ceN],

where we used result 2.6 to get the last equality.
We first show quickly that

K = [A((wo,0 ® t)A(C)) |v,w € Hy, c€N,].

From Result 2.6 and Eq. (3.2) in the discussion before the previous lemma, we know for all
a,b € Ny and ¢ € N, that (wp, (a),a, (crb) ® 1)(U*) = 7((¢ ® 1)(A(b*c)(a ® 1))) belongs to
N, and

[[Ar (@ (@),44 (0 @ DU [| < 1Ap (@) A4 O AL

Hence the closedness of A, (see Proposition 1.9) implies for every v € Hy, every b€ Ny, and
every ¢ € N, that (wy, a , (c+5) ® 1)(U*) belongs to N, and

G4 [Ar((@v,y (0 @ DT < N0l AR B TA(C]-
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We know that 7- e is strongly* dense in 7, (A)” and that Ay (T&;) is dense in H,,. Combining

this with the fact that Ufi(TJ) = T;pv, we get that Hy = [Ay(z o¥.(y*) | 2,y € TJ]- Hence
inequality (3.4) implies that
K=[A(m((¥®)(ADd*c)(a®1)))) |a,be Ny, cEN,]
= [Ar (WA (@), A (crp) @ )(U™)) [ a,be Ny, c€N]
= [A(( ® 1) (U*)) |$,y€TJ, beNy, ceN].

Using Lemma 3.14, this gives

w_ ~
Ay(zo? (y*)),Ay(cb)

K= [A((wxw(z)’x¢(y) ®L)A(b*c)) |z,y € TJ;’ b €N¢, CG./V;,].

Since ./~\¢(’T J) is dense in Hy, and Ny, is dense in A, Result 2.3 now implies that

(3.5) K = [A((wo,0 @ t)A(0)) |v,w € Hy, cEN,].

Now, we can finish the proof rather smoothly. Using Notation 2.8, we define an isometry
V:Hy® H — Hy ® H such that V(Ay(p) ® A(g)) = (Ay ® A)(A(g)(p® 1)) for p € Ny, and
q € N,. Now,

e the expression for K in Eq. (3.5) and Result 2.9 imply immediately that V(Hy ® H) C

Hy,®K;
e on the other hand, the expression for K in Eq. (3.3) and Proposition 2.12 imply that
Hy @ KCV(HyQK).
So we see that V(Hy @ H) = V(Hy ® K), hence the injectivity of V' implies that Hy, ® H =
Hy ® K. Because Hy, # 0, this implies that K = H. O

If we combine this result with Proposition 2.12, we get immediately the following crucial
result.

THEOREM 3.16.— Let 1) be a proper weight on A with GNS-construction (Hy, 7y, Ay).
Define the isometry V : H, ® H — Hy, @ H such that V (A, (a) @ A(b)) = (A, ®A)(A(b)(a®1))
fora € N,y and b € N,. Then'V is a unitary element in B(H,, ® H).

Using Proposition 1.29, it is easy to check that V(1 ® 7(a)) = (1, ® 7)(A(a))V fora € A.
Hence (7, @ 7)(A(a)) =V (1@ 7(a))V* fora € A.

It should be mentioned that V* is considered as a multiplicative unitary (rather than V).

With this result in hand, it is now easy to lift the comultiplication A to the reduced level.

PROPOSITION 3.17.— Define the unitary W € B(H ® H) such that
W (A@)® ) = (A& ) (AB) (a2 1)

fora,be N,. Then:
o there exists a unique injective normal unital *-homomorphism A : w(A)" — n(A)" @ w(A)"
such that Aw = (m @) A. We have moreover that A(z) = W*(1@z)W forall € (A)";
e there exists a unique injective non-degenerate *-homomorphism

A:m(A) > M(r(A) @ m(A))
such that A = (1 ® w) A. We have moreover that A(z) = W*(1® )W for all z € (A).
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As usual, the coassociativity of A implies the multiplicativity of the operator W.

PROPOSITION 3.18.— The operator W satisfies the pentagonal equation: W1oW13Wos =
WasWia.

Proof. — Take w, 0 € Bo(H)*. By Result 2.10, we have for a € N, that
(W )(W*) (0@ ) (W*)A(a) = (w R )(W*)A((6 ® ) A(a))
=A((w®)A((8 ® t)A(a))) = A(((0T @ wm) A ® L) A(a)).
Since (O @ wm)A(z) = (0 Qw)(W*(1 @ m(x))W) for all x € A, this implies that

((@w)(WaWiz)Ae) = (we) (W)@ @) (W)Ae) = (0 @w® ) (Wi, Wz Wiz)A(a).
So we conclude that W3, Wi = WHLW3 Wi, O

3.4. The left regular corepresentation

In this section, we define the left regular corepresentation of a bi-C*-algebra. We will prove the
associated inversion formula like in Proposition 2.13 and formulate the corresponding unitarity
result.

The left regular corepresentation will be crucial in pulling down objects existing on the reduced
level to the C*-algebra A itself (which will be dealt with in a subsequent paper).

We will define the left regular corepresentation within the framework of Hilbert C*-modules
but notice that there is a direct link to multiplier algebras.

For the rest of this subsection, we will fix a bi-C*-algebra (A, A), a left invariant proper weight
@ on (A, A) together with a GNS-construction (H, 7, A) for .

Since '

(L®A)(AD))a, (t® A)(A(d)) c) =c"a(A(b), A(d))
for all a,c € A and b,d € N, the following notation is justified.
Notation 3.19.— We define the isometric A-linear mapping U: A ® H — A ® H such that

U@®ADd)=(®A)(A(D))a

fora € AandbeN,,.

Using the last statement of Proposition 1.26, it is not difficult to see that U(1 @ w(z)) =
(t®@m)(A(x))U forz € A. :
We want to prove a version of Proposition 2.13 in this framework. We will do this by reducing
it to the framework developed in Subsection 2.2.
In order to reduce this case to one we already dealt with, we will need some extra notation. Fix
w € A% . We will use Lemma 1.30. We have for all z € N,g, and a € A that 2(a® 1) € N (w, ¢)
and
(Ao N)(z(@®D)), (Av@A)(2(a® 1)) = (W p)((a”@1) 2"z (a®1))
=w(a* (1 ®¢)(z*2)a)
=w(((t®A)(2)a, (t®A)(2)a)).

By a polarization we obtain, forall z € (z(a® 1) | 2 € N gy, a € A),
1(Aw @ A)(@)]] < [|w]]? [|(: ® A) (@)
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So there exists a bounded linear map P,,: A ® H — H, ® H such that P,,((t ® A)(z)a) =
(Aw ®A)(2(a®1)) for z € N, g, and a € A. It is not difficult to see that

(3.6) Po(p®A(g)) =Au(p) ®A(g) forp€ A, geN,,.

Because

(Po(tO M) (), Pu(t© A)(2)) =w ({0 A)(®), ¢ © A)(2)))

for y, z € A ©® N,,, we have immediately that (P,,v, P,w) = w({v,w)) forv,w € AQ H.
Let v € A® H. Then the last equality implies immediately that:

3.7 v=0&P,v=0 forallwe A%.

Now we have enough extra terminology to prove the desired result.

PROPOSITION 3.20.— Consider a right invariant proper weight ¢ on (A,A), a,c € Ny,
beN, ye Aandputz = (v @t t)(A13(a*b)A12(c)). Then x belongs to N g, and

Ue®A)(x)y=y®A((Y ®)(A(ad)(c®1))).

Proof. — By Proposition 2.13, we know that x € N, 1@ Choose w € A*+. Then we define the
isometry U, : H, ® H — H,, ® H such that U, (A, (p) ® A(q)) = (Aw @ A)(A(g)(p® 1)) for
p € A and ¢ € N,,. Using Eq. (3.6) among the remarks before this proposition, it is then clear
that U, P, = P,U.

Using Proposition 2.13, we now see that

P,U(t@ A)(2)y =UuPu(t® A)(@)y = Uu(Ao ® A) (z(y ® 1))
=Au(y) ® A((¥ ®)(A(a"b)(c®1)))
=P, (y® A (¥ @ )(A(a"b)(c®1)))).

Therefore Remark 3.7 before this proposition implies that
U A)(@)y=yeA(@e)(AGD)(e®1). o

Combining the previous result with Proposition 3.15, we immediately get the following one.

PROPOSITION 3.21.- Suppose that there exists a right invariant approximate KMS weight
on (A,A). Then U is a unitary element in L(A ® H).

As usual, U* will be called a left regular corepresentation of (A, A). Remember that U can
also be considered as an element of M (A ® Bo(H)).
Notice that (¢ ® m)A(a) = U*(1 ®@ 7(a))U for all a € A in this case.

3.5. The first step in the construction of the antipode

In this subsection, we fix a bi-C*-algebra (A, A) and
e a left invariant approximate KMS weight ¢ on (A, A);
e aright invariant proper weight 1) on (A, A).
Let (H,m,A) denote a GNS-construction for ¢ and define the closed subspace K of H by

K =[A((¥ ®0)(A@@*b)(c®1))) |a,c€ Ny, bEN,].
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Using Result 2.6, we get that

K= [A((@ 8 )(AG@) o) |2,y € NIN].

We will construct a closed operator in H which is formally the closure of the operator
A(z) — A(S(z*)), where S denotes the antipode. By taking the polar decomposition of this
closed operator, we get operators which potentially induce the scaling group and unitary antipode
appearing in the polar decomposition of the antipode (see Section 5).

PROPOSITION 3.22.— There exists a unique densely defined closed antilinear operator G in
K such that

(Ao )(AE)yo1) |2,y €Ny Ny)

is a core for G and

GA(¥ @ )(A(E) (e 1)) =AY )(AY*)(z©1)))

for x,y € N Ny. We have moreover that G is involutive.

Proof. — By Proposition 1.36, we know that ¢ ® ¢ is approximately KMS and that
(HH,mn@m,AQ®A)

is a GNS-construction for ¢ ® ¢ (where A ® A is introduced in Definition 1.28).

Because ¢ ® ¢ is approximately KMS, we get by the remarks after Proposition 1.35 the
existence of a closed operator T in H ® H such that T(A ® A)(z) = (A ® A)(z*) for
T e N¢®Lp nN;®¢.

Let X denote the flip operatoron H @ H.

Define the isometry U € B(H ® H) such that U(A(a) @ A(b)) = (A ® A)(A(b)(a ® 1)) for
a,beN,.

Choose v € K and for every n € N an element k,, € N and elements z(n, 1), ...,z(n, k,) and
y(n,1),...,y(n, kn) in N Ny, such that:

(D) (Zim AW @ )(A@(n,i)*) (y(n,1) ©1)))) o —0;
@ (X5 AW @ ) (Aly(n,i)*)(z(n,i) ®1)))) o, — .

We have to prove that v = 0.
Choose c,d € N,,. Proposition 2.13 implies for n € N that

kn
U(Z(A®A>(<1®d*>(w®L@L>(A13(:c<n,z')*)Au(y(n,z')))(c@ 1)))

i=1
kn

- <w®w><A(d*))(A<c> © 3 AW ® )(A(n, i) )y(n,i) © 1)))).

=1

Therefore the convergence in 1 implies that the net

kn [
69 (Ws (60161000 un)es ) )

=1 n=1

converges to 0.
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Using the convergence in (2), we get in the same way that the net

kn oo
(3.9) (Z(A ®A)((1® ) (¥ ®L®1)(A13(y(n,1)")Arz(z(n,1)))(d ® 1)))

i=1 n=1

converges to U* (7 @ 7)(A(c*))(A(d) @ v).
Fix n € N and i € k,, for the moment. By Proposition 2.13, we know that

(1®d) (Y ® @) (A(z(n,i)*)A2(y(n,i)) (c®1) € Npgep.
By using the flip maps on A ® A and H ® H, we get that
(@* @1) (¢ @@ 1) (Ar2(z(n,i)*) A1s(y(n, 1)) (1 @ ¢) € Nypgy

and

(3.10) (ARA)((@ 1) (W @& 1) (Arz(x(n,i)*)A13(y(n,9)))(1 ®c))
=2(A M) ((1ed) (¥ ©r®)(Aiz((n,i)")A2(y(n,9)))(c®1)).

We have furthermore that

(3.11) [(@* @)W @@ ) (Ar(z(n,i)*)A13(y(n,))) (1 ® c)]*
— (1@ ) @) (Ara(y(n i) )As(e(n, i) (d© 1),
which, by Proposition 2.13, also belongs to AV, PR
Hence, we see that (d* @ 1)(¢ ® ¢ ® ¢)(A12(z(n,i)*)A13(y(n,1)))(1 ® ¢) belongs to
Nogo NN g,

Combining the convergence of expression (3.8) and Eq. (3.10), we see that the net

kn 00
(Saen@ s nwesa@umisupmmusa)

converges to 0.
From the convergence of expression (3.9) and Eq. (3.11), we conclude that the net

kn )
(7(Een (@ e nwe:ea@utn i) sun i so) )

i=1 n=1

converges to U*(m @ 7)(A(c*))(A(d) @ v).

So the closedness of T' implies that U* (7 ® 7)(A(c*))(A(d) ® v) = 0. By Proposition 2.13,
we know that there exists an element w € H @ H such that U w = A(d) ® v. Therefore

0=U*(r@m)(A(") Uw=U"U(1@n(c"))w=(1®nr(c")) w.
Because NV, is dense in A, we see that w = 0, thus A(d) ® v = 0. Hence v = 0.
From all this, it follows that we can define a closed operator GG in K as stated in the proposition.

It is clear that GG is involutive. O
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4. The definition of a reduced C*-algebraic quantum group

We want to give a simple definition for C*-algebraic quantum groups in which the existence
of a left invariant weight and a right invariant weight plays the central role. We will prove that
from our small list of axioms all the axioms of an upcoming definition of Masuda, Nakagami
and Woronowicz can be proved. In particular the existence of the antipode and its polar
decomposition will be proved. The only thing that we do not prove is the invariance of the
Haar weights under the scaling group. We can only obtain relative invariance, which is in a sense
invariance up to a positive scalar, the scaling constant. Recently, Woronowicz and Van Daele have
discovered an example in which the scaling constant is really non-trivial: the quantum azx + b-
group.

But let us first start with our definition of a C*-algebraic quantum group.

DEFINITION 4.1. - Consider a C*-algebra A and a non-degenerate *-homomorphism A : A —
M(A ® A) such that:

e (A®A=(RA)A;

e A=[(w®)Aa) |lwe A*, a€ A= [t Qw)A(a) |w € A*, a € A].
Assume moreover the existence of:

e a faithful left invariant approximate KMS weight  on (A4, A);

e aright invariant approximate KMS weight ¢ on (A4, A).
Then we call (A, A) a reduced C*-algebraic quantum group.

Remark 4.2.— Notice that the weight 1 is also faithful:

The bi-C*-algebra satisfies the KMS condition, so the results of Section 3.2 apply. Let
(H,m,A) be a GNS-construction for ¢. By Proposition 3.12, the W*-lift 1; of ¢ in the GNS-
construction (H, , A) is a faithful weight. Because ¢ is faithful, 7 is injective. Since ¢ = ,
we see that ¥ is faithful.

Remark 4.3. -1t should be noted that the last axiom in the definition (concerning the right
invariant weight) is not too worrying. In practice, it should be not too difficult to establish the
existence of a *-antiautomorphism §: A — A such that (6 ® 0)A = A6 (and we will later see
that such a map 6 always exists). Then ¢ 6 gives us a right invariant approximate KMS weight.

Notice also that a definition in which the existence of a right invariant approximate KMS
weight is replaced by the existence of such a *-antiautomorphism 6 is very appealing if one
wants a definition comparable to the definition of a Kac algebra.

Remark 4.4. — Although we assume faithfulness of the left invariant weight, this should not be
seen as a restriction. It is more a preparatory stage to the general case. First we develop the theory
and construct all relevant objects for the reduced case. In the general case, one constructs first the
reduced C*-algebraic quantum group and uses the left regular corepresentation to pull down the
objects from the reduced C*-algebraic quantum group to the C*-algebra one started from. This
procedure runs smoothly in the ‘universal’ case and we will go into this in a subsequent paper
(see [23]). But let us first make the statement about the reduction procedure more precise.

In the general case we will look at a C*-algebra A and a non-degenerate *-homomorphism
A:A— M(AQ® A) such that: :

e (ARA=(QA)A,

e A(A)(A®1)and A(A)(1® A) are dense subsets of A ® A.
We will moreover assume the existence of:

e aleft invariant approximate KMS weight ¢ on (A4, A);

o aright invariant approximate KMS weight ¢ on (A4, A).
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We will show later on that the density conditions above also holds for our reduced quantum
groups.

In a next step, we take a GNS-construction (H,w,A) for ¢. The reduced C*-algebra
is by definition A, = w(A). By Proposition 3.17, there exists a unique non-degenerate
*-homomorphism A, : A, — M(A, ® A;,) such that (7t ® m)A = A,x. It is then clear that:

o (AL @A =(1®A)A,;

e A (A;)(Ar®1)and Ar(A,)(1® A,) are dense subsets of A, ® A,.

We can also use the results of Section 3.2. So we get the W*-lifts & and zz of  and v respectively.
Define ¢, to be the restriction of & to A} and 1, to be the restriction of 9 to A;. These
weights ¢, and 1, are determined by ¢, m = ¢ and v, # = ). From the results in Section 3.2,
we conclude that:

e (o, is a faithful left invariant approximate KMS weight;

e 1), is a faithful right invariant approximate KMS weight.

Therefore (A,, A,) is a reduced C*-algebraic quantum group.

Some properties can now be easily pulled down from the reduced level to A. For instance,
we will show uniqueness of left invariant proper weights for (A4,, A,) (up to a scalar of course).
If we combine this with Proposition 3.9, we also get immediately uniqueness of left invariant
proper weights on the level of (A, A).

For the rest of this paper, we will fix a reduced C*-algebraic quantum group (A4, A). In the
rest of this paper, we will gradually prove all the basic properties and construct the relevant
objects. Let us recall the axioms and formulate the results which can be derived from the previous
sections.

So Aisa C*-algebraand A: A — M(A® A) is a non-degenerate *-homomorphism such that:

e (ARUA=(QA)A;

e A=[(w®)Aa) |lwe A*, ac A]=[(t®w)A(a) |w e A*, a € A].

We will also fix a faithful left invariant approximate KMS weight ¢ on (A, A). Remember
that we also assumed the existence of a faithful right invariant approximate KMS weight but we
will not fix one at the moment.

Recall from the proof of Result 3.4 that

@1 A=[(®p)(1ea)AWD) la,beNo] =[(t®p)(A(a")1®D))|a,beN,].

A similar result holds of course also for any faithful right invariant proper weight.
Throughout the rest of this paper, we will work with a fixed GNS-construction (H, 7, A) for .
Using Notation 2.8 and Theorem 3.16, we know that there exists a unitary operator
W € B(H ® H) such that

W (M) ® A(D) = (A© A)(A()(a® 1)

forall a,b € N,,.
The operator W is called a multiplicative unitary of (A, A). As usual, it satisfies the pentagonal
equation (see Proposition 3.18):

WiaW13Waz = WasWia.

Notice that (7 ® 7)(A(z)) = W*(1 @ n(z))W forall z € A.

Also recall the following formulas for W (see Result 2.10):

(1) (t®@waga),am) (W) =m((t®¢)(A(b*)(1®a))) forall a,b € Ny;
2) (W Y(W*)A(a) =A((w®t)A(a)) foralla € A, w € Bo(H)*.
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Combining the first of these equalities with the density in Eq. (4.1), we see that
4.2) m(A) =[(t®@w)(W)|w e Bo(H)",

a familiar result.

From time to time, we need to get help from the von Neumann algebra world. We will therefore
need to lift all objects to the von Neumann algebra in the GNS-space of ¢.

We define the von Neumann algebra A on H by A = w(A)”, the von Neumann algebra
generated by 7(A). By Proposition 3.17, we know that there exists a unique injective normal
*-homomorphism A : A — A® A such that Ax = (7 @ 7)A. Clearly, A(z) = W*(1® z)W for
allz € A. _

By using the results in Section 3.2, we can lift immediately the weight ¢ to A. We will use the
following notations.

e = the W*-lift of ¢ in the GNS-construction (H, 7, A) as described in Proposition 3.9.

e (H,u, K) = the W*-lift of (H, 7, A) in the GNS-construction (H,m, A) as described in

Proposition 3.10. _

Recall that ¢ = ¢ and that (H, ¢, A) is a GNS-construction for .

Proposition 3.12 tells us that ¢ is a normal semi-finite faithful weight on A, we denote its
modular group by . We will reserve the following notations for the modular objects of ¢:

e J = modular conjugation of ¢ in the GNS-construction (H, ¢, A);

e V = modular operator of & in the GNS-construction (H, ¢, A).

For calculation reasons, we will need a Tomita *-algebra:

Tr={z¢c Ngﬂ/\/’;} | z is analytic with respect to & and 7, (z) € Ngﬂ/\% for z € C}.

From Proposition 3.13, we know that ¢ is left invariant:
F(@B)A() =w(1) Blx)

forall z € M* andw € A7,

]

It is clear that the lifting properties of Section 3.2 apply in this case. All W*-liftings of
weights, GNS-constructions and one-parameter groups will always be considered with respect to
(H,m,A).

5. The antipode and its polar decomposition

In this section we will construct the antipode together with its polar decomposition. We will
work as follows: given a right invariant weight 1) on (A4, A) such that ¢ is approximately KMS,
we construct the antipode S, the scaling group 7 and the unitary antipode R. At the end of
this section, we will show that these objects do not depend on the particular choice of v (and
the already fixed left invariant weight (). The reader should keep in mind however that this
independence is only established towards the end of this section.

Throughout this section, we will fix a right invariant weight ¢ on (A, A) such that % is
approximately KMS. Recall from Remark 4.2 that 7 is faithful. Take also a GNS-construction
(H¢, Taps Ad)) for '(/)

By Proposition 1.36, we know that 1 ® 1 is an approximate KMS weight on A ® A with GNS-
construction (Hy ® Hy,my ® Ty, Ay ® Ay). Recall that the mapping Ay, ® A, was introduced
in Definition 1.28.

Thanks to Propositions 3.22 and 3.15, we can introduce the following notation.
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Notation 5.1.— We define the closed densely defined anti-linear operator G in H such that
the space

(M@ e)(AE@)(ye1) o,y e NgNy)

is a core for G and

GA(( @ )(AE")(y® 1) =AY @ )(AY)(z@1))

for z,y € N Nyy. We have moreover that G is involutive.
By taking the polar decomposition of G, we get the following operators in H.

Notation 5.2.—

(1) We define N = G*G, so N is a strictly positive operator in H.
(2) We define the anti-unitary operator I on H suchthat G =I N 3.
Because G is involutive, we have that:

o [=1T%

o [2=1;

e INI=N"1,

5.1. A first step towards strong left invariance

The following technical lemma will be needed in the proof of Proposition 5.5
Consider a Hilbert space K and v € K. Then 6,, denotes the element in B(K, C) given by
0, (w) = (w,v) forallw € K. So &(c) =cv forallceC.

LEMMA 5.3. - Let a,c € Ny. Then the following properties hold:
(1) A®(c) Ags(a) belongs to N (ygy) e, and

1((Ay ® Ay) © 1) (AP (¢) Ans(0)) ||* = (" 0) ¥(aa);

(2) A(e)(1® a) belongs to N ygy;

(3) letve Hy and put p= (6, ® 1)(Ay @ t)(A(c)). Then p belongs to M(A) and
o (Ay®)(A(pa)) = (6, ® 1@ 1)((Ay ® Ay) ® 1)(AP)(c) Ans(a));
o Ay(pa)=(0,01)(Ay ® Ay)(A(c)(1 ®a)).

Proof. — (1) Choose § € A%.. Then we have by definition of 1) ® 1) that:
¥ @9)((1®1®0)(A23(a*) AP (c*c) Ass(a)))
= s (018w ((1®¢80)(Ass(a”) AP(c"c)Aga(a))

W1€Gy,w2EGy

sup ( sup (w1®w2)((L®L®6)<A23(a*)A“")(c*c)Am(a))))

w2€EGy ‘w1€Gy

= sup ( sup (w2 ® 0)(A(a* (wr ®L)(A(c*c))a))>.

w2€Gy “w1€Gy

Since ((w1 ® t)A(c*c))w,eg, is an increasing net which converges strictly to 1)(c*c) 1, the
previous chain of equalities implies that

@) ((®1®0)(A2(a*) AP (") Azs(a))) = (") sup ((w2 ®0)(A(a"a)))

w2€Gy
=¢(c* )Y ((t ® 0)A(a*a))
=y(c*c)y(a*a)d(1).

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



876 J. KUSTERMANS AND S. VAES
Therefore, Proposition 1.23 implies that Ags(a*) A (¢*c)Azs(a) belongs to —M_:¢®¢)®L and

((7,12 RY)® L) (Azg (a¥) A(Q)(c*c)Agg(a)) =¢(c*e) ¥(a*a)l.

(2) We already know this by the right invariant version of the remarks before Notation 2.8.

(3) Notice that by its definition p belongs to L(A) = M(A).

Let us proceed with the proof of the first equality. Choose wy € Fy, wo € Fy and w € Hy,.
Then Result 3.21 of [30] implies that

(0,72 ® 0,2 © 1) ((Ay ® Ay) ® 1) (A® (c) Ags(a))
= (Wey, v ® Weyy w O L) (A(Q)(C)A%(a))
= (e ® ) (Al(we, 0 ® )(A(0)) @)
= (Weuy 0 ® 1) (A((0,T, ®1)(Ay ®)(A()) a).

1
Because (7., )w, eg,, converges strongly to 1, the above equality gives us that

(00 ® 0,73, @ 1) (Ay ® Ay) ©) (AP (c) Aga(a)
= (Wewyw ® 1) (A((6s ® 1)(Ay ® 1) (A(0)) a))

= (0.1, 1) (Ay ) (Apa)).
Since (T,i)w?eg , converges strongly to 1, we get that
(6,® 04 ©1)((Ay ®Ay) ®0) (AP () A23(0)) = (0 ® 1)(Ay ® 1) (A(pa))
for all w € Hy. So we conclude that
(Ay @ )(A(Pa)) = (0 8 10 1) ((Ay ® Ay) ® 1) (AP () Ass(a).
Now we quickly prove the second equality. Take w1, wa € Fy and w € Hy,. Then

(T ®TE) (Ay ® Ay) (A(Q)(1 ® )0 @ w)
= (Weu, v @ Weu, w) (A(c)(1 ® a))
=we,,, w((We,, v ®1)(A(0)) a)
= e, ((0.T5 © 1) (Ay ®)(A()) ).
As above, a two step procedure yields that

((Ay ® Ay)(A(0)(1 ®a)),v @ w) = (Ay(pa),w)

forall w € Hy. So Ay(pa) = (0, @ 1)(Ay ® Ay)(A(c)(1®a)). O

Remark 5.4.— Consider 2,y € Nyg,. Then we have for all a € M(A ® A) that
(@) (y*az) = (Ay ® ) (y)*(my ®¢)(a)(Ay ® ¢)(x). This implies that the mapping

M(A® A) = M(4), a— (Y o)(y az)
is strictly continuous on bounded subsets of M(A ® A).
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The next proposition is the crucial result of this section. It will allow us to define the antipode
S through its polar decomposition.

PROPOSITION 5.5.— Consider a,b € Ny,. Then
(@) (AP )(a®1))) G CGr(($ @) (A@)(b®1))).

Proof. — Choose c,d € Nj; N¢. Let (e;)icr be an orthonormal basis for Hy,. For every i € I,
we put 6; = 0., € B(H,,C).
Define for i € I the elements

vi=(0i®1)(A¢®L)(A(d)) and u; = (0; ® 1)(Ay ® t)(A(c)).

It is then clear that both v; and u; belong to M(A).

Since A(c) and A(d) belong to Ay, it is not very difficult to see (using the definition) that
A®@)(c) and A;2(d) belong to N ... Using Proposition 1.22 and the right invariance of ),
we get moreover for all w,0 € A* that

(W) (@@ (AP (") A1z(d) =¢((t ©@w @ ) (AP (") A1z(d)))
=9(@w)(A(L®0)(A(c")([d®1)))))
—w() PR O)ACE)dD 1))
—w(1) (1 ® )(AE)dD1))).
Hence (v @t ®1)(A®) (¢*) A12(d)) =1® (¥ ® 1) (A(c*)(d @ 1)).

Using Proposition 3.38 of [30], we have for J € F'(I)

D AW ®1) =) (Ay @@ ) (AP ()7 (6;0:; © 19 1)(Ay ® 1 ® 1)(A12(d))
ieJ ieJ
= (Ay ®:®)(APD ()" (Pr 1@ 1)(Ay ® 1@ 1)(A12(d)),

where P; denotes the orthogonal projection onto the subspace (e; | i € J). So we get that the
net

(;A(u:)(m ®1))J€F(I)

is bounded and converges strictly to
(Ye® L)(A(2)(c*)A12(d)) =1® (YR (A(")(d®1))

Because of the remark before this proposition, we have that

¥ @) (A)beD)) (Y @) (AlC)(de1))
= ®)(A>)(1® (P @)(AC)(d®1)(b®1))

= Z(q/) ®1) (A(a*uf)(vib ®1))

i€l

in the strict topology.
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We claim that for all ¢ € I, u;, v; € /\/’;. Choose i € I. Take a sequence x,, € ./\ﬁ/, such that
Ay(xn) — e;. We have for every n € N that

¥ @ )((z7, @ 1)A(d) = (Oa(e,) © 1)(Ay ® ) (A(d)),
so it is clear that (¢ ® ¢)((z}, ® 1)A(d)) — v; in norm. By Result 2.5 we know that
(¥ ®1)((z7 @ 1)A(d))

belongs to A for every n € N. Hence v; belongs to A.

Moreover, because d € N5 Ny, Result 2.6 implies that (¢ ® ¢)((z;, ® 1)A(d)) € NV} and that
the sequence A((¢) ®¢)((;, ® 1)A(d))*) is Cauchy in H. Since A is closed, we get that v; € V.
Analogously, u; € NV;;. This proves our claim.

Now we claim that the net

(Tawenseuwss )

ieJ JeF(I)

is norm convergent in H. It suffices to look at the case ¢ = u*v with u € N, and v € Ny.
Put ¢ = (A¢ ® A,/})(A(d)(l ® b)) S Hw ® H¢.
Let ¢ € I. From the lemma before this proposition, we may conclude that

(Ay ® 1) (A(uia)) = (0; 10 1) ((Ay ® Ay) ® 1) (AP () Ags(a))
and

Ay(vib) = (6; ®1)(Ay @ Ay) (A(d)(1® D)) = (6; ® 1) .
So we get for J € F(I) that

wy = Z(d} ® ) (Ala*u})(vib® 1))

i€J
= 37 (Ay ® )(A(i0))* (Ay ® ) (b @ 1)

i€J
— (A ©40) ©0) (AP () An(0)" (P ® 16 1)(E; & 1)
= T*(my @ 7y ® 1) (AP () (0(p, g1y ® 1),
where T = ((Ay ® Ay) ® t)(AP® (v)Agsz(a)). Therefore
wiwy = (O(p,e1) @ 1)(my @ 7y © 1) (AP (W) TT* (my @ 1y ® 1) (AP (1)) (6 p, 1) @ 1)
<ITIPO(ps@1)e © 1) (g @y © ) (AP (wu) (Op, g1y¢ ® 1)
= (v )P (a"a) (W(p, o), (Prene ® (AP (u*w)).
So we get by left invariance of ¢ that

2
Y MEeoA@ ) be )| =pwiws) < b v)p(a®a)e(uu)||(Pr @ DE|*.

ieJ

Because (P ® 1) jep(s) increases to 1 in the strong topology, our claim has been proved (use
the Cauchy criterion).
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Since the map A is closed with respect to the strict topology on A and the norm topology on
H we get that

Lg/\((w ® 1)(Aa*ul)(v:b® 1)))]
e (CLDICNCYICE: 1) A ®)(A()(d@1)).
By symmetry we get that
L;JA(WJ ® 1) (A v} (wia ® 1)))]
JE?(,)ﬂ((d) ®1)(AG*)(a®1)A((¥ @ )(A(d*)(c®1))).

By definition of G, we have for every J € F(I) that ), ; A((¢ ® ¢)(A(a*uj)(vib ® 1)))
belongs to D(G) and

G(ZA((Q[J ® ) (A(a*u})(vib® 1)))) = ZA((z,b ® 1) (A} (ua®1))).

i€J i€J
Because the map G is closed we obtain that
(Y @ )(Ala")(b® 1)) A (¥ ®)(A(c)(d® 1)) € D(G)
and
Gr((v®)(A")(b@ 1)) A((¥ ®)(A(c)(d@1)))
=m((¥®)(ADb")(a®1))) GA((Y @ )(A(c)(d@1))).
Because G is closed and the linear span of such elements A((¢) ® ¢)(A(c*)(d ® 1))) form by
definition a core for GG, we can finally conclude that

(Y @) (AB*)(a®1)GCGr((¥@)(A)(b®1). O

Remark 5.6.— Let K be a Hilbert space, T' a closed densely defined operator in K and
z,y€B(K). IfzT CTy,then y*T* CT*z*: If T C Ty, then we get that (T'y)* C (zT)*
by taking the adjoint. It is true in general that y*T* C (T y)*. Since z is bounded, we have that
(zT)* =T*=x*.

Applying this remark to the previous proposition, we infer that
(5.1 (W @) ((a* ®1)A((D))) G* C G*n((v @ ¢)((b* ® 1)A(a)))

for every a,b e Ny.
In the rest of this section, we will be able to draw some important conclusions from this
proposition.

5.2. The scaling group

We will repeat some of the discussion from the beginning of Section 3.3. This time, we will
however lift everything in the GNS-construction for ¢.
Using Propositions 3.9 and 3.10, we define the following objects:
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° {/7 = the W*-lift of ¢ in the GNS-construction (H,m, A);

o (Hy, 7y, Ay) = the W*-lift of (Hy,y, Ay) in the GNS-construction (H,, A).
Since 1) is approximately KMS, 1[ is a n.f.s. weight on A. We will denote its modular group by
.

We will moreover use the followmg notations:

¢ Jy = modular conjugation of 1/1 in the GNS-construction (Hy, T Ty, A¢)

e V, = modular operator of ¢ in the GNS-construction (Hy, Ty, A¢)
For technical reasons, we will need to use a Tomita *-algebra once again:

~ — ~ * i i i 1:1; ;/; o *
T;= {ze Nw ﬁ./\/¢ | z is analytic with respect to o¥ and 0¥ (z) € N¢ ﬂN¢ for z € C}.

Recall also that 1~\¢ (a) € D(V}) and V3 K¢(a) = Kd,(afiz(a)) forallze Canda € TJ
Using the right invariant version of Notation 2.8, we define the unitary U : H, @ H — Hy ® H
such that U(Ay (p) ® A(q)) = (Ay @ A)(A(p)(1 ®q)) for p € Ny, and g € N,,. (Remember that
U is unitary because of the obvious right invariant version of Theorem 3.16.)
The right invariant version of Result 2.10 implies for every a,b € Ny, that

(5.2) (Way(a),ay0) @ )(U) =7(( @ )((b* ® 1)A(a))).
This implies that
(5.3) 7(A) = [(Wo,w ® )(U) | v, w € Hy).

LEMMA 5.7.— Consider a € N;; N Ni andbe ’T;pv. Then

(“’Kw(a),Kw(b) ®4)(U)" = (w- ®1) (V).

Ay (a*), Ay (¥, (b*))

Proof. — Choose c, d € TJ Lemma 3.14 implies that

®1)A(r(p))

Ao Ry teo?, (@) ®1)(U) = (wxw(d),xw(C)

for all p € Ny, By Proposition 3.10, this gives

- U A
(wAm),Aw(cafi(d*)) )W) = W5, K0 OIA@
forall g € M- pe So we get fore € le that

(wxw(a),xw(bai(e*)) ® L) )= (wxw(e),xw(b) ®L)(A(a))

(5.4) @A) = (w

= LRmie K@) Kyleo? ()

®)(U).

Take a bounded net (ug)kek in ./\/;/; Al N;Z* such that (uk)gex converges strongly* to 1 (such a
net clearly exists). For every k € K, we put

ek = %/QXP(—tQ)U?(Uk)dL

then ey, clearly belongs to 7:7; We have moreover
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e (ex)rek is bounded and converges strongly* to 1;

e (6% (ex))rek is bounded and converges strongly* to 1.
2
Then we have for all k£ € K that

K¢, (bOﬂZZ(eZ)) = Jiﬁ%d’ (O’f% (62))*J¢7\¢(b) = J¢7’?¢ (Ug(ek))J¢K¢(b).

So we see that (Kw(b ofi(e,’g)))ke K converges to K,p(b).
If we now combine these convergences with Eq. (5.4), we conclude that

(wK,p(a),K¢(b) ®)(U)* = (w ®¢)(U). m]

Ay (@) Ay (aﬂ(b*))
PROPOSITION 5.8. — Consider v,w € Hy. Then
(Wo,w ®L)(U*) G C G (w0 ®L)(U*) and (wy,uw®t)(U)G* CG* (ww,o ®1)(U).

Proof. — Take u € D(G). Take nets (p;)ics and (¢;)ier in Ny, such that (Ay (p;));cr converges
to v and (Ay(g;))icr converges to w. Notice that

(Way (),40(0) ®VUT) =7((¥ ®)(A(g")(p® 1))

for p, ¢ € Ny. So Proposition 5.5 implies that

(wAw (pi),Ayp(qi) ® ")(U*) GCG (wl\w(th),l\w (ps) ® L) (U*)
for every i € I. This implies for every i € I that (wp, (4,),A, (p:) ® t)(U™) u belongs to D(G) and

G ((Way(a) A ) ® )U) 1) = (Way (pi), Ay (a) @ (U™ Gu

So we get that ((wa, (g:),A, (p:) ® 1) (U*) w)icr converges to (wy,y ® ¢)(U*) u and that

(G ((Way (g0 Ap() @)U ) 1)),

converges to (wy » ® ¢)(U*) G u. Therefore the closedness of G implies that (wy, , ® ¢)(U*)u
belongs to D(G) and G((ww,o ® t)(U*) 1) = (wo,w ® ¢)(U*) Gu.

So we have proven the first inclusion. The second follows from the first by taking the adjoint (see
Remark 5.6). O

Before we can prove the next result we need a simple lemma which we will use several times
later on.

LEMMA 5.9.— Consider Hilbert spaces K and L, a unitary V € B(K ® L), strictly
positive operators S1 and Sy in K and strictly positive operators Ty and T» in L such that
(Wr,w®)(V)T1 C Ty (wsl—1v,32w®L)(V)forv € D(S71) andw € D(S2). Then V (S, ®T)) =
(SQ [0z TQ)V

Proof. — Choose p1 € D(S1), ¢1 € D(T1), p2 € D(S2), g2 € D(T3). Then

(V(p1 ®q1), 5202 @ Tagz) = ((Wp,85p2 ® 1)(V) q1,T2g2)
= <(w51_1(51111)»52p2 ® L)(V) ql’T2q2>'
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Therefore the assumptions of this lemma imply that
(V(p1 @ q1), S2p2 @ Tagz) = (T» (wsl_l(slpl),s2p2 ®0)(V)q1,q2)

= ((Ws1p1,ps ® (V) T1q1,q2) = (V(S1p1 ® T1q1),p2 ® g2).

Because D(S2) ® D(T%) is a core for Sz @ T5, this implies for all p; € D(S1), g1 € D(T1)
and v € D(S; ® T?) that

(V1 ®©q1),(S2@To)v) =(V (S1p1 ® Tiqh),v).

Since S ® T is selfadjoint, this implies for all p; € D(S;) and ¢; € D(Th) that V(p1 @ 1) €
D(Sz ® Tz) and (Sz ®T2)(V(p1 ® Q1)) =V(S1p1 ® T1q1).

Because D(S1) @ D(Ty) is a core for S; ® 11 and S ® T3 is closed, we conclude that
V(S1 ®Th) C (S2 ® T2)V. Hence (S1 ® T1)V* C V*(S2 ® T»). By taking he adjoint of this
inclusion, we see that (S2 ® T»)V C V(S; ® T1). Consequently, (S2 @ T2)V =V (S;®@T1). O

RESULT 5.10. - The following commutation relation holds: U(Vy @ N) = (Vy, @ N)U.

Proof. — Choose a,b € T{[‘ Using twice Lemma 5.7 and once the previous proposition, we get
that

(wxw (6),Ay(a) ® L) )G = (wxw(b*),xzb(aﬂ(a*))

CGlw. =~ - @)U

Ay (o? (@), Ay ()
=Glw. ~ . =~
( Ay (o} (@), Ay (a? ()
Using the previous proposition once more, the chain of inclusions above gives
L) (U)N = (wAw(a 1R ) ® W(U)G*G

C O™ (WR, ) Ry(w BN G

CGGw. ~ ~ ~ @)

Ay (o) (a)),Ay(a? (b))

(@R, (0) K0 () @

=N (‘”V“Kua),w??w(b) ®)(U)-

Since A¢( ) is a core for both Vw and V, the previous inclusion implies that

(@ow ® )(U)N € N(wg ® 1) (U)

2o Vyw

forallv € D(V;l) and w € D(V ) (compare with the proof of the previous proposition). Hence
Lemma 5.9 implies that U(V, ® N) = (V4 @ N)U. O

Now, we have proved the necessary commutation relation to be able to define the scaling group
of our reduced C*-algebraic quantum group.

PROPOSITION 5.11.~ (1) There exists a unique strongly continuous one-parameter group T
of automorphisms of A such that 7,(z) = N~* z N forall t € R and z € A.

(2) There exists a unique norm continuous one-parameter group T of automorphisms of A
such that T, = 7Ty for allt e R.

(3) We have that (¥ @7_4)A = Acr;p forallt e R.
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Proof. — Recall from Eq. (5.3) that
(5.5 m(A) =[(w®)(U) |w € Bo(Hy)].
By the commutation relation (Vy, ® N)U =U(V,, ® N), we have
N~ w®)(U)N* = (V; "V ©)(U)

for all ¢ € R. Therefore Eq. (5.5) implies that:

(1) N~%g(A)N* =n(A) forall t € R;

(2) N"#AN* = Aforall t € R;

(3) we have for every a € A that the function R — 7(A), t — N ~%r(a)N* is norm

continuous.
The equality in (2) implies immediately that we can define a strongly continuous one-parameter
group 7 of automorphisms of A such that 7;(z) = N~ %z N forallt € R and = € A.

The equality in (1) and the injectivity of 7 allows us to define a one-parameter group 7 of
automorphisms of A such that 7w = w7y for all ¢ € R. The third property implies that 7 is norm
continuous.

It is easy to see that (my ® 7)(A(a)) = U(ny(a) @ 1)U* for all a € A. This implies that
7y ) (A(z)) = U(Ty(x) @ 1)U* forz € A.Sowe have forz € Aand t € R

(Fy @ 0)((0f BT-0)A(2)) = (Vi © N*) ((Fy ®)A(2)) (V,* @ N7H)
= (Vi@ NU(Ty(x) @ ) U*(V,* @ N~™)
=U(ViFy(z)V,*@1) U
= (T B)A (0} (2))-
Because 7 is faithful, (0F ©7_)A(z) = A0? (z). O
The next commutation rule is now more or less obvious.

RESULT 5.12.— We have A1y = (1: @ 7¢)A forall t € R.

Proof. — Let t € R. From Ao? = (¥ ©7_;)A we can conclude that

(F@A7 A= (BR)A0} = ABIAS = (Aol B74) A

= (0BT B74)(AB YA = (67 B (74 ®7-1)A) A,
implying that (@ A7_;)A = (\® (7 ®7—:)A)A. By composing this equality with 7 (from
the right of course), this gives (T @@ m)(L @ AT_ ) A=(m QT m)(t ® (Tt @ T—¢)A)A 50
that the injectivity of 7 implies that (¢ ® A7_;)A = (¢ ® (7—¢ ® 7—¢)A)A. Then we get that

A(T—t((w ® 1) A(a))) = (T ® T—) A((w ® 1) A(a))
forall w € A* and a € A. Density gives the conclusion. O

5.3. Invariant approximately KMS weights are KMS

In a next step, we want to show that the weights ¢ and ¢ which are assumed to be
approximately KMS, are in fact KMS. We will however need some extra technical results. The
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following result was already an important tool in the theory of Kac algebras. This will also be
the case in our framework.

RESULT 5.13.— Consider z € A. If A(z) =1®z or A(z) =z ® 1, then z € CL.

Proof. — First we suppose that A(z) = 1 ® . For n € N, we define z,,, y», € A such that (the
integrals are in the strong topology)

_n 2\ _n 242\~
acn—\/T_r/exp( n“t*)of (r)dt and 1y, ﬁ/exp( n“t*)7_¢(z) dt.

Then z, is analytic with respect to o¥. Because (o @ FL)A = Ao? for t € R (see
Proposition 5.11), it is moreover clear that A(z,) =1 ® yy.

Now, we take d € Mji such that (d) = 1. Because z,, € D(c?), we know that dz,, € M 7
Take w € A,. Then we have that

wle-€-)

(B w)A(dzn) = (1R ynw)A(d).

By right invariance of 1, we know that (v @w)ﬁ(d Tn) € M;[;, (1@ ynw)A(d) € MJ and

U(dzn)w(1) = P((Bw)A(den)) = P((1BYaw)A(d)) = (yaw) (1) $(d) = w(yn)-

So we get that y,, = 9(dz,)1.
Because (y,, )52, converges strongly to z, the sequence (P(d Zn))32, is Cauchy so it converges
to a number c € C. Thenz =c1.

If A(z) = z ® 1, we can use the opposite comultiplication to get that x is a scalar. We refer to
the proof of Proposition 5.15 for some more details. O

Although our definitions of left and right invariance were rather weak, it is possible to improve
the invariance properties considerably. More precisely:

PROPOSITION 5.14.— Consider € At such that (18w, ,)A(x) belongs to M:% for every
v € H. Then x belongs to M:i

Proof. — Take y € AT such that (18w, ,)A(y) € Mi for all v € H. Put y, = (3 )A(y)

for w € Gy, (w was defined in Proposition 3.9).
Let v € H. We have for every w € Gy, that

82 || = (g v,v) =B Bwo)A®)) < P((LBwo)A)).

So the net (yé v)weg,, is bounded. Therefore the uniform boundedness principle implies that the
net (yu%)weg,,, is bounded.
Hence we have a bounded increasing net (y.,)weg,, in AT . Denote its strong limit by z € A+.
Since (y,v,v) = 6((b®wv,v)£(y)) for w € Gy, Proposition 3.9 implies that (zv,v) =
J((L@wv,v)ﬁ(g/)) for all v € H. Because any element in A can be written as a norm

convergent sum of vector funstionals, the lower semi-continuity of 1; now implies for every
e Af that p(z) = ¢ ((t®p)A(y)), so we get in particular that (¢ ® p)A(y) € M;—E
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Take w, pu € A . Because (1 ® p)A(y) € M+ the right invariance of ¢ gives

WB)AR) =P (B WBrA)A®Y) = ((Bw)A((LBr)AY)))
=wQ)P (B )AY)) =wl)u(2).

Consequently, ﬁ(z) =1 ® z. Therefore Result 5.13 implies the existence of A € Rt such that
z= A1 and hence

P(Bwon)AWY)) = (z0,0) = Al|®
forallve H. _ _
Now define the mapping 6: A* — [0, +o0] in the following way. Let y € A*.
o If L Q@wyw)A(y) € M;b't forallv € H, we define §(y) € R* such that ) ((¢ Qwy,»)A(y)) =
|v]|26(y) forallv € H. B
e If there exists a v € H such that (L Q@w, »)A(y) ¢ M;’Zi, we put 0(y) = +o0.

It is easy to see that 6 is a weight. Since
(5.6) 0(y) = sup {((:Bwu)AWY)) |v e H, o] =1}

for all y € At the weight 6 is normal (as a supremum of o-weakly lower semi-continuous
functions). _
Take t € R and y € A*. Using Proposition 5.11, we have for all v € H that

(0 Bwon) AP W) = (07 ((Bwow ) AW))) = B (LB w0 n-10)A®Y)).

Therefore Eq. (5.6) implies that 8(a¥ (y)) = 0(y).

Because J is right invariant, the definition of ¢ implies immediately that ¢ is an extension of
'1;. Combining this with the fact that @ is invariant under 0¥, the W*-version of Proposition 1.13
implies that § = ’QZ and the result follows. O

The next result is true because of symmetry. For the sake of completeness, we will make this
argument very precise.

PROPOSITION 5.15.— Consider z € A such that (w, , ® t)A(x) belongs to M% for every
v € H. Then x belongs to Mi.

Proof. — By imitating the first paragraph of the proof of the previous proposition we get that
WS)A(z) € M+ forallw e Af.

Let A° denote the opposite comultiplication on A4, i.e. A° = x A. Then (A, A°) is of course
still a reduced C*-algebraic quantum group but this time ¢ is right invariant and v is left
invariant.

Let A° = my(A)” which is a von Neumann algebra on Hy. Then we can lift the
opposite comultiplication to a normal *-homomorphism A°: A° — A°Q A° such that A° Ty =
(my ® my)A°.

By Theorem 3.8, we know that there exists a *-isomorphism 6 : A° — A such that 0 (myp(a)) =
7(a) forall a € A.

Call ¢° the W*-lift of ¢ in the GNS-construction (Hy, 7y, Ay). For every w € F, let &°
denote the element in (A°)} such that w°my = w. It is then clear that W8 = &° So we get for
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every y € (A°)* that
(0(y)) =sup{@(0(y)) |w € Fpo } =sup{@°(y) |w € F,} = &°(

It is easy to see that X(9@0)5° = A 6. This implies that (LBw)A° (0~ (z)) € M%’O for all
we (A°) . Applying the previous proposition to $° gives 8~ (z) € M ,hence x € Mg. O

Now we can at last prove the desired result:

THEOREM 5.16. — The weight 1) is a KMS weight on A.

Proof. — Take t € R. Define x; = 73 aZ” , SO K is a *-automorphism on A. Proposition 5.11 and
Result 5.12 give

(i B®)A=(Ro?BFRTIA=(ROT)AY = AT 0¥ = Ak
This allows us to use the previous result. Take y € M+ Choose w € AF. Then (W ® )A(ke(y))
+(y

= (wk:®¢)A(y). Therefore the left invariance of & implies that (w®)A(k
to M%.

Now, the previous proposition guarantees that ;(y) belongs to M%. Take w € ﬁj such that

)) belongs

w(1) = 1. The left invariance of ¢ implies that

Blre() = B(WB VA (Re(y))) = B((wre BOA(Y)) = (wre) (1) Bly) = Fy)-

The relation (k; '®:)A = Ak; ! gives in a similar way that /-:t_l(Mg) - M%. So we
have proven that @ is invariant under ;. Define the unitary operator U; € B(H) such that
UtA(a) = A(k¢(a)) forall a € N

Arguing as in Lemma 3.14 and as in the beginning of Lemma 5.7, one checks easily that

(8 Rz i) (W) = (Bg ) KAL)

force N; anda, b€ ’T; (we introduced the Tomita *-algebra 7:; at the end of Section 4).
This implies, for ¢ € N;; and a,b € T;, that

ke ( (v ®wK(aZ_,-(b*)),K(c))(W)) = m((b@u}A(a) A(b))ﬁ(c*)) = (L@WX(G),X(b))g(KZt(C)*)

(l’ ® wA(a,a i(b*)), A(Nt(c))) (W)

=(® ‘”X(a?i_i(b*)),UtK<c)) (W).

So we get that
(5.7) ke ((L@W)W)) = (L@wU;) (W)

forall w € Bo(H)*. Because m(A) = [(t @w)(W) | w € Bo(H)*|, this implies immediately that
ke(m(A)) =n(A) forall t € R.
Choose ¢, d € .N';; and w € G,,. Then we have that

(Ut (c), TLA(d )) = (ke(c) éu, d o),
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implying that the function R — C:¢ — (U, A(c), T, A(d)) is continuous. Since (T.)weg,
converges weakly to 1 and A(N;—) is dense in H, this implies that the function R — C:t —

(Ug v, w) is continuous for all v, w € H.

So we see that the function R — B(H) : t — Uy is weakly continuous and therefore strongly*
continuous (because both topologies agree on the set of unitaries). Combining this with Eq. (5.7),
we get for every z € 7(A) that the function R — w(A) : ¢ — k(z) is norm continuous.

Since crf’ =T_4 k¢ for all t € R (and 7 satisfies similar properties as ), we conclude that:
o o/ (n(A)) =n(A) fort € R;
P

e we have for z € w(A) that the function R — 7(A), t — o, (z) is norm continuous.
Therefore the injectivity of 7 implies the existence of a norm continuous one-parameter group

o¥ on A such that 7ratd’ = af’ 7 for ¢t € R. It is now easy to check that ¢ is a KMS weight on A
with modular group o¥. O

For the rest of this section, we will stick to the notation o¥ for the modular group of .

Remember that 7 UZ/’ = aﬁb m for t € R. Also notice that V, is the modular operator of ¢ in the
GNS-construction (Hy, Ay, Ty). Let us also use the following notation:

Ty = {z € Ny NN} | z is analytic with respect to ¥ and o¥ (z) € Ny NN} for z € C}.

Proposition 5.11 implies immediately the following commutation relation.
PROPOSITION 5.17.— We have for all t € R that (¥ @ 7_)A = Ac?.
Using the opposite comultiplication, we get the following proposition for free.

PROPOSITION 5.18.— Consider a left invariant weight 1 on (A, A). If ) is approximately
KMS, then n is a KMS weight on A.

Therefore we have in particular that ¢ is a KMS weight on A. For the rest of this paper, we
will denote the modular group of ¢ by o. Notice that 7 g, = 7, 7 for t € R. We also have that:

e J = modular conjugation of ¢ in the GNS-construction (H, m, A);

e V = modular operator of ¢ in the GNS-construction (H, 7, A).
5.4. The antipode through its polar decomposition

Let us start off this subsection with an easy consequence of Result 5.10.

RESULT 5.19. - Forall z € C and a, b € Ty, we have
(¥ ® (0" ®1)A@))N* € N*n((v ® (01, (b) ® DA(0}, (a))).-

Proof. — From Result 5.10, we know that U(V, ® N) = (V4 ® N)U. So we get for all t € R
and a,b € Ny

N7 (1 @ )((b* @ 1)A(a))) N* = N""(wp, (a),ap(5) @) (U)N™
- (VJ”“’Aw(a),Aw(b)ij ®)(U)
= (woguny @95, 0 @) U).

The analytic function
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C—B(H), z+— (wV;ZAw(a),VfLqu(b) @)U)=n((v® L)((Uf’z(b*) ® l)A(chpz(a))))
attains in it the value

N7%r((p @) ((b* ®1)A(a))) N¥,
so that our conclusion follows from Proposition 9.24 of [47]. O
We can also define the unitary antipode now.

_ PROPOSITION 5.20.— (1) There exists a unique *-antiautomorphism R of A such that
R(x)=1z*1I forall x € A.
(2) There exists a unique *-antiautomorphism R of A such that m R = R . Moreover we have

R(®®)((@" @ )AW) = (@) (A, (@), (0) ®1))
forall a,be Ty,

Proof. — Choose a, b € Ty,. Then Proposition 5.19 implies that
(6@ (0" @ DAW@) N € NEr((6® (0} (6) 8 DAWGY()).
Remembering that G* = N 3 I, inclusion (5.1) implies that
(@ )((6" ® DA(@)) N C N2 In (4 ® 0)((a* @ DAD))) 1.
Since N is densely defined and injective, these two inclusions imply that
In((¥ @ )((@* @ DAG)) = (@ @ (o} (6) @ DA (@)))).
Hence,

In((¥ @) ((a* ®1)AWM)) T=r(¥®)(Ae?, (a"))(e” (b) @ 1).

Thus we have I7(A)I = 7(A). The rest of the proof is obvious now. 0O

Since 12 = 1, we get immediately that R2 = ; and R% = .
Combining the previous proposition with Proposition 5.11, we can now define the antipode of
our reduced C*-algebraic quantum group.

DEFINITION 5.21. - We define

S=Rr_: and S=RT

Wl

Let us collect the most basic properties of S in the following proposition. They follow easily
from the corresponding results for 7_ i

Notice that ,.R = R, forall t € R since INI = N~1.

PROPOSITION 5.22.— The linear map S has the following properties:

(1) S is densely defined and has dense range;

(2) S is injective and S™! = Rry =7 R;

(3) S is antimultiplicative: we have for all x,y € D(S) that xy € D(S) and S(zy) =
S(y)S(z);

4¢ SERIE — TOME 33 — 2000 - N° 6



LOCALLY COMPACT QUANTUM GROUPS 889

(4) we have for all x € D(S) that S(z)* € D(S) and S(S(z)*)* = x;

(5) 52 = T—j.
RESULT 5.23. — We have the following commutation relations:
e RS=SR;

e 7,5 =57 forteR.

We want to stress the following fact. The definitions of S, 7 and R (and their von Neumann
algebraic counterparts) depend on the choice of ¢ and 1) and we should keep this in mind. But
we will show later on that S, 7 and R actually do not depend on the choice of ¢ and 9.

In the next proposition we will prove a formula that one could call the strong right invariance
of the weight 1. The strong left invariance of the weight ¢ will be tackled in the next subsection.

PROPOSITION 5.24.— For all a,b € Ny, we have (¢ ® 1)((a* ® 1)A(b)) € D(S) and
(@ 0((a* ©DAG)) = (b ) (A(a)(b®1)).

We have moreover that (¢ @ ¢)((a* @ 1)A(d)) | a,b € Ny) is a core for S.
Proof. — Choose a, b € ;. Remembering that G* = N 3] , inclusion (5.1) implies that

(¢ ® o) ((a* ® 1)ADB)))N? C N2 I((¢p ® ) ((b* @ 1)A())) I

Because 7; is implemented by N %, this implies that 7((¢) ® ¢)((a* ® 1)A(b))) belongs to
D(7_;) and
?_%- (ﬂ((w ®t)((a* ® l)A(b)))) = Iw((w ®)((b* ®1)A(a))) I
=m(R((¥ ®1)(Aa")(b®1)))).
Because this last element belongs to 7(A), we get (see e.g. Proposition 1.24 of [25]) that
(¥ @) ((a* ®@1)A(b)) € D(’T_%')
and
T (¥ ®)((@” ®DA®B))) =R((¥ ® )(Ala") (6 ® 1))

Since S = Rr_% , the first statement of the proposition follows.

The second one follows by observing that the stated subspace of A is dense, invariant under

7; by the commutation rule (cf ® 7_;)A = AcY, and is a subspace of D(T_%) (see e.g.
Corollary 1.22 of [25]). O

We will finish this section by proving yet another familiar formula. We first need a lemma,
which formally implies the well known algebraic formula x (S ® S)A = AS.

LEMMA 5.25.— Consider w,0 € A* such that wS and 0S are bounded and let wS and

0S denote their respective continuous extensions to A. Then we have for all x € D(S) that
B @w)A(S(z)) = (WS ®OS)A(z).

Proof. — Choose a,b € Ny and put y = (¢ @ ¢)((a* @ 1)A(b)).
Then we have that

(@5 ®05)A(y) = (@5 ®F5)A((¥ ® 1) ((a* ® AD)))
((t®85)(¥® @) ((@* ®1®1)AP (b))
(( ((a* @ DA((t®8S)A(D)))).
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The last equality is justified by Proposition 1.22. Bring first wS§ in together with S. Then pull
wS back out. '

By Proposition 5.24, we get that (v ® ¢)((a* ® 1)A((t ® §S)A(b))) belongs to D(S) and
S((w®)((@” @ DA((®08)A®D)) = (©® ) (A")((t® 05)(A(b) ®1)).

Therefore,

where we used Proposition 5.24 once again.
On the other hand,

(0 ®w)A(S(y) = (0 @w)A(S((¥ @ ¢)((a” @ 1)A(D))))
=0 ewA(Pe)(A@)(be1))
=0 ew)(Wee)(AP @) be11)))
=0((v ® )(A((t @w)A(a*))(b®1))).

So we see that (wS ® 05 )A(y) = (0 @ w)A(S(y)).
Because such elements y form a core for S, the lemma follows. 0O

PROPOSITION 5.26.— We have that x(R® R)A = AR.

Proof. — Let w,u € A* be analytic with respect to 7. By this we mean that the function
R — A*:t+— wT; has an extension to an analytic function from C to A*. From this, it follows
that w, is bounded for every z € C and that the function C — A*: z — w7, is analytic.

Then we clearly have that wRS is bounded with closure wRS = wT_i. The same is valid for p.

Now the function C — (A® A)*: z — [T, ®WT, is analytic as a function from C to (A ® A)*.
Because the embedding of (A ® A)* in M(A ® A)* is isometric, this function is analytic, when
we consider it as a function from C to M(A ® A)*.

Take a € A such that a is analytic with respect to 7. Then we have that C — C:
z— (I, @ Wz )A(a) and C — C: 2z — (1 ® w)A(7,(a)) are both analytic and coincide on
R because of Result 5.12. So they are equal.

Then we have by the previous lemma

(w®u)((R® R)A(S(a))) = (4RS ® WRS)A(a) = (775 © 7 7)A(a)

2
= (1 ®w)A(_4(a) = (1 ®)A(R(S(a)).
Because S has a dense range we get

(5.8) (w® p)(R® R)A(z)) = (1 ® w)A(R(x))

forall x € A.
If now p € A* and n € N, we define p(n) € A* such that

p(n)(a) = exp(—n’t*)p(re(a)) dt

Sl
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forall a € A. Itis clear that p(n) is weak* analytic with respect to 7, and the standard application
of the uniform boundedness theorem gives that p(n) is analytic with respect to 7.
Now, take p;, p2 € A*. By Eq. (5.8), we have for all n € N and x € A that

(p1(n) ® p2(n)) (X(R® R)A(@))= (p1(n) ® p2(n)) A(=).

We have, forall y e M(A® A),

(p1(n) ® p2(n)) (y) = (01 ® p2)(y) asn — oo.
So we conclude that (p1 ® p2)(x(R® R)A(z)) = (p1 ® p2)A(z) forallz € A. O

5.5. Strong left invariance

We will prove the strong left invariance of the weight ¢ (in fact, of every left invariant proper
weight). Before we can do so, we need some technical results.
First we need some extra terminology.

DEFINITION 5.27.— Consider a C*-algebra B and an index set I. Then we define the
following sets:
1) MCI( = {z an I-tuple in M(B) | (] z;)icy is strictly summable in M(B)}.
2) MR;(B) = {z an I-tuple in M(B) | (z;x})icy is strictly summable in M(B)}.
Elements of MC 1( ) can be thought of as infinite columns, elements of MR;(B) as infinite

TOWsS.
Notice that the *-operation gives you a bijection between MC;(B) and MR;(B).

LEMMA 5.28. - Consider a C*-algebra B and an index set I. Let x,y € MCy(B). Then
(xFyi)ser is strictly summable and the net (3, ; 1y;) e p(r) is bounded.

Proof. — Define c,d € M(B)* suchthatc =), zfz;andd =), ; yi yi.

Choose b € A. Take a finite subset J of I.

Look at the Hilbert C*-module E over M(A) given by E = @, ; M(A) and such that the
inner product is defined in such a way that (v, w) =, ; w;v; forv,w € E.

Then we have by the Cauchy—Schwarz inequality for Hilbert C*-modules that

(an]ﬂ’) (Z@y&) = ((yib)ics, (@i)ics) ((Yib)ies, (:)ics )
ieJ icJ
< ||<($z‘)z‘eJa ($i)ieJ>” <(yib)ieJ» (yib)ieJ>

Z ;T Z b*yiyib < |lc|| Zb*yz Yib,

icdJ iceJ iedJ

implying that

2
Zw:yib

i€

(5.9 <llell || b yiwib

ieJ
So we get for finite subsets J, K of I such that J C K that

2
Zx;‘yib—Zx;yib Zb*y;‘yzb Zb*yz yib

i€EK i€J €K ieJ

< |lell[6*dbll.

< el
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By assumption, we have that (3, ;b*y;y:b) jep (1) is convergent so the above inequality
implies that the net ( Y e Th yib) JeR(D) is Cauchy and hence convergent in B.

We have then of course also that the net (3, ; yfx:b*) sep(r) is convergent in B. So by
using the *-operation, we see that (3, ; b} ¥i)ser(r) is convergent in B. Notice that the
boundedness statement follows from inequality (5.9). O

This lemma implies easily the following algebraic properties.

RESULT 5.29. - Consider a C*-algebra B and an index set I. Then MR;(B) and MC(B)
are vector spaces for the componentwise addition and scalar multiplication.

Restating Lemma 5.28 in terms of rows and columns, we get the following result:

RESULT 5.30.— Consider a C*-algebra B and an index set I. Let © € MR(B) and

y € MCy(B). Then (z; yi)ic1 is strictly summable and the net (ZiEJ T; yz) JER(D) is bounded.

We will also need the following simple result.

RESULT 5.31.- Consider C*-algebras B and C, a non-degenerate *-homomorphism 0 from
B into M(C) and an index set I.

(1) Let x € MR (B). Then (6(x;))icr belongs to MR (C).

(2) Let y € MCy(B). Then (0(y;))ic1 belongs to MC(C).

Remark 5.32. - Take a bounded net (u;);cs in A such that (u;),cs converges strictly to 1.
For j € J, we define the element e; € A by e; = % [ exp(—t?)7:(e;) dt. Then (e;) e is a net
in D(7_ ) such that:

e (e;);e is bounded and converges strictly to 1;

e (7_5(e;))jes is bounded and converges strictly to 1.

So (e;)jes isanetin D(S) such that (S(e;)) e converges strictly to 1. Due to the closedness
of S, this implies easily the following property.

Consider a, b € A such that we have for every x € D(S) that ax € D(S) and S(ax) = S(z)b.
Then a belongs to D(S) and S(a) =b.

Also notice that this, together with the closedness of .S, implies that S is closed with respect
to the strict topology on A.

We now get the following interesting result. The original idea of looking at the elements
in A of the form in the next proposition is due to A. Van Daele and was further developed
by A. Van Daele and the second author in [54].

PROPOSITION 5.33.— Consider a,b € A such that there exist an index set I, p € MR;(A)
and q € MCy(A) such that

1®@a=) (P®1)A(G) and 10b=>) Ap:)(a:®1).
el il
Then a € D(S) and S(a) =b.

Notice that by results 5.30 & 5.31, the families ((p; ® 1)A(g;))ier and (A(p;)(g; @ 1))ser are
strictly summable.

Proof. — Choose ¢,d € /\fw. Because of Remark 5.4, we have that the net

(Zweo(ene 1>A(qz~d)))J i

i€J
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converges strictly to the element a (v ® ¢)((c* ® 1)A(d)) € A. By Proposition 5.24, all the
elements of the net belong to D(S) and

S(Z(«p@o((c*m ® 1)A(qid))) =Y W) (AP (@d® 1)

ieJ ied

for J € F(I). This net converges strictly to (¢ ® ¢)(A(c*)(d ® 1)) b € A. Because S is closed
with respect to the strict topology on A we get

a(®)((c*® l)A(d)) € D(S)
and

S(a(@@)((c" ®1)A(d))) = (¥ ® 1) (A(cT)(d D 1))b.

Because of Proposition 5.24 and the closedness of S we get for all z € D(S) that ax € D(S)
and S(ax) = S(x)b. The previous remark gives our proposition. O

COROLLARY 5.34.— Consider a,b € A such that there exist an index set I, p € MR (A) and
q € MCj(A) such that

a®1:ZA(pi)(1®q,-) and b®l:2(1 Qi) A(g;)-
i€l i€l
Then a € D(S) and S(a) =b.

Proof. — Apply x(R ® R) to both of the given equations and use Proposition 5.26. Then
the observation that (R(p;))ic; € MC;(A) and (R(¢;))icr € MR;(A) (remember that R is
antimultiplicative) and the previous proposition imply that R(a) € D(S) and S(R(a)) = R(b).
Since SR = RS, this gives that a € D(S) and S(a) =b. O

We will formulate the next corollary in a more general context which will be needed later on.
In particular, this gives us the strong left invariance of ¢ with respect to S.

COROLLARY 5.35.— Consider a left invariant proper weight n) on (A, A). Then we have for
all a,b € N, that

(c@n)(A@)(1®b) €D(S) and S((t@n)(Ala")(1®D)) =(®n)((1®a")A(D)).

Proof. — Let (H,, 7y, A;) be a GNS-construction for 7. Take an orthonormal basis (e;);er
for H,.

Take i € I and define the operator 6; € B(H,,C) given by 0;(v) = (v, e;) for v € H,. Now
put

pi=[196:)(t®A;)(A®)]” and ¢i=(1©6)(c®A,)(A®D)).

Then we have

D opif =) (1®Ag)(A@))"(1®676:)(c ® Ay)(A(a)

ieJ icJ
for all J € F'(I) and this net converges strictly to

(t® Ay)(Aa)" (2 © An)(A(a)).
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So (p:)icr € MR(A). Analogously (¢;)icr € MC(A). With the same kind of argument as in
the proof of Proposition 5.5, we get

Y A1) = (©®A) (AP (@) (1® e ® Ay)(Az3(D))
i€l

= (:®:07) (AP (@) Az(b) = (® 1) (A1) @ 1
and
> (1@p)A(@) =(en)((1ed)Ab) @1
iel
analogously. Now the result follows from the previous corollary. O
Again, we will use Notation 2.8 and Theorem 3.16 in the formulation of the next lemma.

LEMMA 5.36.— Consider a left invariant proper weight 1 on (A, A) and let (H,), 7y, Ay,) be
a GNS-construction for n. Define the unitary element V € B(H ® H,) such that
VA® A )(A(b)( 1)) = Aa) ® Ay(b) for a € N, and b € N,.. Then we have for
veD(N~%) andw e D(N?) that

(wv,w@L)(V)*:(w ~1 1 ®L)(V).

Proof. — Choose a,b € N;,. We have that (1 ® wa, 3),4,(a)) (V) = 7((t ® n)(A(a*)(1 ®b))).
By Corollary 5.35, we know that (¢ ® n)(A(a*)(1 ®b)) belongs to D(S) = D(r_4). Since 7 is
implemented by N %, we get that

L
N2

N

Nir(r_y (L@ (A1 1))
Nin(R(S(@n)(A@)1ob)))
NEIn((t@n)((1®a*)A(b))) T
Nz I7((c@n)(AG*)(A®a)))]
N2ZI(t ®@wa, (a),A, ) (V).
ThenwegetforveD(N“%)andwED(N%)andalla,beN,,

(@ WA, ).Ay (@) (V)

D=

Il

<(wIN_% wiNbw® ) (V)Ap(b),Ap(a)) ={(t ® WAn(b),An(a))(V)N%I% N‘%Iw>
= <N%I(L ®@wa, (a),a, b)) (V) N_%I'w>
= (W, (L@ W, (@)1, (V)V)
= ((Ww,o ® t)(V*)Ay(b), Ay(a)).
Because this is valid for all a, b € NV,;, we get our result. O

In the next proposition, we will work with a left invariant KMS weight on A. In the first step of
the proof of the uniqueness of a left invariant weight, we will show that every proper left invariant
weight is automatically KMS. The basic idea of the proof of the next proposition comes from
Lemma 2.5.5 in [15]. Because 7 can be non-trivial, we have to be a little bit more careful and
work with the unbounded operator N.
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PROPOSITION 5.37.— Consider a left invariant KMS weight 1 on (A, A) with modular group
k. Let (Hy, 7y, Ay) be a GNS-construction for 1) and define the unitary element V € B(H ® H,)
such that V(A ® Ay)(A(b)(a ® 1)) = Ala) ® A,y (b) for a € N, and b € N,,. Let:

o J = the modular conjugation of 1 in the GNS-construction (Hy, 7y, Ay);

o M = the modular operator of 1 in (Hy, 7y, Ay)).

Then:

D) INV=VIxJ);

2 (N'@M)V=V(N"1e M),

(3) (1t @ kt)A = Ak fort €R.

Proof. — Define X to be the closed operator in H,, such that A, (N, ﬁNn*) is a core for X and
X Ay(x) = Ay(z*) for every x € N;y N Nr. By definition, M = X*X and X = JM?. We have
moreover that 7, (k¢ (x)) = M%m, (z)M~* fort € Rand z € A.

Choose v,w € H.

Take y € N,y N ;. By the left invariance of 7, we have that (wy,» ® t)A(y) € Ny NN,

Because (wy,w @ t)(V*)Ap(y) = Ap((wo,w ® t)A(y)) (see Result 2.10), we get that
(Wo,w ® ) (V*)Ay,(y) belongs to D(X') and

X (wo,w ® (V) Ay (y) = X Ay ((wo,0 ® )A(Y)) = Ay ((wo,0 @ )(A(Y))*)
= An((“-’w,v ® L)A(y*)) = (Ww,0 ® )(V*)Ay(y*)
= (Ww,o ® )(V*) X Ay(y).

Because A, (N; NAY) is a core for X, this implies easily that

(5.10) (W, @) (V)X C X(wyw®)(VF).
By taking the adjoint of this inclusion, we get that
(5.11) (W, ®@)(V)X™ C X" (Wo,w®)(V).

(1) Choose v € D(N) and w € D(N~1). Using inclusion (5.11) and Lemma 5.36, we infer
that

(Wo,w ® L) (V)M = (wy,u @ ) (V)X X C X (wWw,o ®)(V)X

=X (wIN—%w,IN%v ©)(V)"X.

By using inclusion (5.10) and Lemma 5.36 once more, we get that
(Wo,w ® (V)M C X*X (w . ®)(V)*

IN3v,IN~3
1 ® L) (V) = M(wNv,N—lw ® L) (V)

=M
(wN% IIN2o,N“3IIN"%w

So we have proven that
(Wo,w ® ) (V)M C M(wny,n-10 @ L)(V)
forv € D(N) and w € D(N~1). Therefore Lemma 5.9 implies that
VINT'@M)=(N"te M)V.
(2) Choose v € D(N~2) and w € D(N?).
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Using inclusion (5.10), we see that

T (@ @ )VH)ITME = T (wee ® (V)X
(5.12) CIX (@o,w ®1)(V*) = M3 (W ® 1) (V).
The result provenlin (1) implies that V* (N‘% ® M%) = (N_% ® M%)V*.
Take p,q € D(M 2). Then
{(Wo,w ® )(V*)p, Mq) = (V*(v @ p),w® Mq)

=(V*(v®p),N~%(Nw) @ M?q)
= (NP @M V*(v@p), Niw®q)
=(V*(N"30@M?p),N3w®q)
=(@y-1, yb, ®OVIMEp,g).

2w

Because M7 is selfadjoint, this implies for every p € D(M ) th at (wy, @ t)(V*)p belongs
1 1 . s
to D(Mz) and M2 (wy, ® t)(V )p=(wN_%U’N%w®L)(V )M zp.
In other words,

(wN“%v,N%w @V )M M3 C M%(Wv w ® ) (V7).

Using Lemma 5.36, we also have that

(wN_%U,N%w ® L)(V*) = (wN% N_%v ® L) (V)*

= @yt i anty-1, @9 (V)= @ren @ (V).
Therefore,
(W10 ® O)(V)ME C M3 (wy 0 ® L) (V).

Because M % has dense range, this inclusion together with inclusion (5.12) implies that
(WIw,Iv & L)(V) = j(ww,v ® L)(V*)j

This implies for all v,w € H and p, q € H,, that

(INV*(I®T)(wep),weq)=Twe TqV*(Ive Ip))
=(VIw® Jq),Iv® Ip) = ((Wrw,10®1)(V)T ¢, Tp)
< (W, @ L)(V") q,Jp> <p,(wwv®L)(V*)q>
= ((wo,0 ® )(V)p,q) = (V(v®p), w ® q).

Hence (I @ J)V*(I® J) =

(3) It is easy to see that (7 ® m,)(A(a)) = V*(1 @ my(a))V for a € A. Recall also
that m,(k¢(a)) = M¥m,(a)M~* and n(m¢(a)) = N~ %mw(a)N® for all a € A and t € R.
Theorem 3.8 and the injectivity of m imply that 7, is injective. Hence, arguing as in
Proposition 5.11, the commutation V(N ! @ M) = (N~! @ M)V implies that (1; ® k;)A =
Ak forteR. O

Let us formulate these results in the case that n=. Then V=W, J=Jand M = V.
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PROPOSITION 5.38.— We have the following commutation relations:
D) (IJH)€W=W*(IQJ);

2 (N'VIW=W(N1®V);

(3) (‘Tt ®0’t)A = Aotfort eR.

PROPOSITION 5.39.— Considerv € D(N~2) andw € D(N?%). Then

(wWow ® )(W)" = ® L) (W).

(wlN—%u,IN%w
With this information in hand, we can formulate a left invariant version of Proposition 5.24.

PROPOSITION 5.40.— For all a,b € N, we have that (v ® ¢)(A(a*)(1®b)) € D(S) and
S((t®¢)(A(a*)(1®D))) = (@) ((1®a*)A(D)).

We have moreover that the set (v ® p)(A(a*)(1 ®b)) | a,b € N,) is a core for S.

Proof. — The first statement was already proven in Corollary 5.35. By Proposition 5.38 (3) the
considered subspace of A is invariant under 7. It is also clearly a dense subspace of D(S). Now
the conclusion follows. O

Remark 5.41.—Because 7:((t ® w)A(a)) = (t ® wo_¢)A(ot(a)) and because A =
[(t®@w)A(a)|a € A, we A*] we see that 7, does not depend on . Because of the previous
proposition, S does not depend on 1 either. So R does not depend on .

But there is more. Because of the commutation relation A af’ = (of’ ® 7_¢) A, we see in an
analogous way that R, S and 7 do not depend on the choice of ¢ we made in the beginning of
the story. So R, S and 7 are completely determined by the pair (A, A).

The previous remark justifies the following terminology.

Terminology 5.42.— We will use the following more or less standard terminology.
e S is called the antipode of (A, A);
e 7 is called the scaling group of (A, A);
e R is called the unitary antipode of (A4, A).
The triple (S, R, 7) will be referred to as the antipodal triple of (A, A).

There is also a way to characterize S in terms of (A, A) without referring to left or right
invariant weights. This characterization is described by Corollary 5.34 and the following result.

PROPOSITION 5.43.— Define C' to be the set consisting of all elements a € A such that there
exist an element b € A, an index set I and p € MR[(A), g € MC;(A) satisfying

a®1=Y Ap)1®q) and be1=Y (1®p)Ag).
i€l i€l
Then C is a core for S.

Proof. — It is easy to see that C'is a subspace of A. Corollary 5.34 implies that C C D(S). The

proof of Corollary 5.35 implies that ((: ® ¢)(A(a*)(1® b)) | a,b € N,,) is a subset of C. The
result now follows by Proposition 5.40. O

So we see that S can be completely defined in terms of (A, A). Also notice that the pair R, 7
is completely determined by the following properties:
e R is an involutive *-antiautomorphism on A;
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e 7 is a norm continuous one-parameter group on A;

e R and 7 commute;

e S=RT i
Notice that the above properties imply that 7_; = S? so that the C*-analogue of Lemma 4.4
in [17] determines 7. Then R is determined by the fact that S = R7_ i

Let us illustrate how these different characterizations of the antipode can be used to prove
easily a basic result about *-homomorphisms commuting with the comultiplication. First we

need to extend the antipode to the multiplier algebra.

Remark 5.44.— We know that the mapping 7_ i is strictly closable in M(A) and we denote
its strict closure in M(A) by 7_s. Since S = RT__;;, we see that S is also strictly closable. We

denote the strict closure of S by S and put S(a) = S(a) for all a € D(S). It is also clear that
S=R7_ 5 Where R denotes the unique *-antiautomorphism on M(A) which extends R.

If a € D(S) and S(a) belongs to A, then a belongs to D(.5) (because we know it to be true
for 7_ i, seee.g. Proposition 1.24 of [25]). Using the net (e;);cs of Remark 5.32, we see that

for every z € D(S), there exists a net (z;);cy in D(S) such that:

o (x;);cs is bounded and converges strictly to z;

e (S(z;))icr is bounded and converges strictly to S(x).

Arguing as in Remark 5.32, we get: consider a,b € M(A) such that we have for every
x € D(S) that ax € D(S) and S(az) = S(z)b. Then a belongs to D(S) and S(a) = b.

It is then clear that Proposition 5.33 and Corollary 5.34 remain true if we let a and b belong to

M(A) and replace S by S.

PROPOSITION 5.45. — Consider two reduced C*-algebraic quantum groups (A1,A;) and
(Az, Ag) with antipodal triples (S1, R1,71) and (S2, Rz, T2) respectively. Let o.: Ay — M(As)
be a non-degenerate *-homomorphism such that (o ® o)Ay = Ay o Then

aS; €S2, Roa=aRy, a(n)i=(r)a forallteR,

where we use the usual convention that Szo := Sa, Ry := Ry and (o)1 := (7o) s v

Proof. — Define C' to be the set consisting of all elements a € A; such that there exist an
element b € Ay, an index set [ and p € MR (A1), ¢ € MC;(A4,) satisfying

a®1l= ZAl(pi)(l ®q) and bR1= Z(l ® pi) A1(gs)-

i€l i€l

Using Corollary 5.34 (and its extension to the multiplier algebra following the previous remark),
it is not so difficult to see that the commutation relation (o ® a)A; = Az« implies that a(C) C
D(S5) and that S(a(a)) = a(S1(a)) for a € C. Since C is a core for S; (see Proposition 5.43),
we get that a.S; C Spa. Using the fact that C is a strict ‘bounded’ core for S; (see the previous
remark), the strict closedness of S implies that @S; C Saa.

This implies immediately that

(f1)-i=aS. C S

QI

Arguing as in Definition 4.1-Lemma 4.4 of [17], one concludes that

Qi

(5.13) (7——1)t:(7_'2)td fort € R.
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Choose a € D((71)_3) = D(S1). Since a(71)_;
tion (5.13)), we get that a( ) € D((72)_3) = D(S2) an

[SICN

- ( 2)_ io (which follows from commuta-
an

Ry(a((m1)_4(a))) = Ra((72) _ s (a(a)) = S2(e(a)) = (1 (a)) = (R ((m1)

Z
2

(a)))-
Because (71)_ ¢ has dense range, this implies that Ry(a(z)) = a(Ry(2)) forallz € A. O

COROLLARY 5.46. — Consider two reduced C*-algebraic quantum groups (A1,A;) and
(A2, Ag) with antipodal triples (S1, R1,71) and (S2, Rz, T2) respectively. Let a.: Ay — Ay be
a *-isomorphism such that (o ® a)A1 = Agc. Then

aS1 = S2a, Rpa=aRi, a(n)i=(n)ia forallteR.

Remark 5.47.—1In this case, the use of the results in [17] can be simply avoided by the
following reasoning. Take a left invariant KMS weight ¢ on (As, Ag) with modular group o.

The weight @a is a left invariant KMS weight on (A4;,A;) with modular group R —
Aut(A;):t— a1 oy a. Therefore, Proposition 5.37 implies for every ¢ € R that

(m)®a o) A=A lora= (o' ®a ) Agora
= (a_l(Tg)t ) a_lat)Aga = (Oé_l(Tz)ta ® a_lota)Al,

implying that ((11); ® t)A1 = (@1 (72)ia ® t)A1 so that (11); = a~!(72):a by the density
conditions. Thus a(71): = (72): .

6. Relative invariance properties and commutations

From now on, we will fix a particular right invariant weight ¢ on (A, A), namely ¢ = pR.
Because of Proposition 5.26, this weight 1 is indeed right invariant. Also notice that ¢ is a KMS
weight on (A, A), with modular group ¢’ given by o; = Ro_.R for all ¢t € R (the minus sign
appears because R is antimultiplicative).

Remember also that we have a Tomita *-algebra running around:

Ty = {z € Ny NN} | x is analytic with respect to ¢’ and o7, (z) € Ny N N;; for z € C}.

We will also use the following notations:

e G = the unbounded operator defined in Notation 5.1;

e N = G*@ and [ is the anti-unitary on H such that G =1 N2,

Recall the following result (which is an immediate consequence of Result 5.13).

RESULT 6.1.— Consider z e M(A). If A(z) =z Q@1 or A(z) =1®z, then x € C1.
Notice also that Propositions 5.14 and 5.15 imply immediately the following results.

PROPOSITION 6.2. - Consider x € A" such that (wy,, ® 1)A(x) belongs to M for every
v € H. Then x belongs to Mg.

PROPOSITION 6.3.— Consider x € A" such that (1 ® wy,)A(z) belongs to M;}; for every
v € H. Then x belongs to M:Z

In the following part of this section, we prove a uniqueness result for left invariant weights
which will be the essential step for a general uniqueness result in the next section.

In a first step, we want to prove that any left invariant proper weight is automatically KMS.
This will follow easily from the next lemma which we borrowed from [15] (Corollary 2.7.3).
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LEMMA 6.4. — Consider a projection P in A such that &(P) <P®lorAP)<1®P.
Then P=0or P=1.

Proof. — Suppose that A(P) < 1® P. Then A(P)(1® P) = ZS(P) which in terms of W
becomes W*(1® P)W(1® P) =W*(1® P)W. So we get that

6.1) (19 PYW(1® P)=(1® P)W.

Choose v € D(N~2),w € D(N?) and apply w 3, ®¢ to the above equation. Hence

IN“3u,IN

(6.2) P( ® ) (W)P= P(wm_%%m%w ® ) (W).

w
IN“3uINYw

Using Proposition 5.39, we see that (w
the adjoint of Eq. (6.2), we get that

IN“3vINBw ® 1) (W)* = (wo,w ® ¢)(W). So if we take

P(wy,w @ L) (W)P = (wy,uw @) (W)P.

Therefore we conclude that (1 ® P)W (1 ® P) = W (1 ® P). Combining this with Eq. (6.1),
this gives us that W(1® P) = (1® P)W, hence A(P) = W*(1® P)W = 1® P. So Result 5.13
implies that P € C1, and hence P=0or P =1. o B

If A(P) < P®1, then the W*-version of Proposition 5.26 implies that A(R(P)) < 1® R(P)
and the previous part of the proof implies that ﬁ(P) =0 or E(P) = 1. Therefore P =0 or
P=1. O

RESULT 6.5.— Consider a left invariant proper weight 1 on (A, A). Then 1) is a KMS weight
on A.

Proof. — Let 77 denote the W*-lift of 7 in the GNS-construction (H,m,A) (as described in
Proposition 3.9). By Proposition 3.13, we know that 7 is left invariant. _

Put N = {z € A|n(z*z) =0}. Then N is a o-weakly closed left ideal in A. So there exists a
projection P € A such that N = A P (1 — P is of course nothing else but the support projection
of 7). ~

We have in particular that P € N which by left invariance of 7 gives us for every w € A} that

T([wBYAP)] [wB)AP)]) < v F((wB)A(P*P)) = ||w|*7H(P*P) =0,

implying that (w®:)(A(P))P = (w®)(A(P)). So we get that A(P)(1 ® P) = A(P).
Therefore the previous lemma implies that P = 0 or P = 1. Because 77 # 0, we must have that
P = 0. So we have proven that 7 faithful.

From the remarks after Proposition 3.9, it follows now that also the W*-lift of 7 in its own
GNS-construction is faithful. So 7 is approximately KMS and the result follows now from
Proposition 5.18. O

The next result is the essential step towards the general uniqueness result. In a corollary,
we will prove uniqueness under some relative invariance condition. The spirit of the proof of
Theorem 2.7.7 of [15] is still present in the proof of the next proposition but we prove a weaker
result under weaker conditions. By changing strategy, we can stick to basic properties of weights
(except for the ever present Tomita Takesaki theory) and avoid liftings to the von Neumann
algebra where we would use Radon Nikodym.
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It should be pointed out however that the proof of Theorem 2.7.7 of [15] could also be
used in our approach since we will prove later on that any left invariant proper weight is
automatically relatively invariant under o (so it is in particular true for the weight 7, in the
proof of Corollary 6.7).

PROPOSITION 6.6. — Consider left invariant proper weights 11 and 12 on (A, A) such that
m < 2. Then there exists a number r €0, 1] such that 1, (x) = rnz(x) for x € M.

Proof. — Take GNS-constructions (H;, m;, A;) for n; (i = 1,2). Using Theorem 3.16, we define
a unitary operator U on H ® Hj such that

U(A(a) ® A2(b)) = (A® A2) (A(D)(a® 1))

fora € N, and b € Ny, .

By Theorem 3.8, there exists an isomorphism 7z : A — m3(A)” such that 73 (m(a)) = m2(a)
foralla € A.

Using Proposition 1.29, it follows easily that (r @ m2)(A(a)) = U(1®m2(a))U* forall a € A.
Therefore (1 ® 72)(A(x)) = U(1 ® 7p(z))U* forall z € A.

Result 6.5 implies that 7, is a KMS weight. Denote by 7 the modular conjugation of 7 in the
GNS-construction (Hz, 72, A2). Tomita—Takesaki theory tells us that

T72(A)T = Tma(A) T =ma(A).

Since 71 < 72, there exists a bounded operator F' € B(Hz, Hq) such that F'Az(a) = A1(a)
for all a € N;,. Put T = F*F, then T is a positive operator in B(Hj) such that 7, (b*a) =
(T'Az2(a), A2(b)) for all a, b € . This equality gives us easily that T € mp(A)’, so J T'J belongs
to T (A).

Choose a € N, and b € N,),. Take an orthonormal basis (e;);cr for H.

By Result 2.9, we know that 3°, ; [|[A2((WA(a),e; ® ¢)(A(D)))]|*> < oo and

U(A(a) ® As(8) =Y ei ® A ((wa(a),e; ® 1)(A(D)))-
el
Consequently,
(1®T)U(A(a) ® A2()), U(A(a) ® A2(b)))
=D (Tho(@Wha)e: ® D(AD))), A2 ((@a(ay.e; @ AD)))

i€l

=Y 1 ((Waw@).e ®)(AD))* (WA(a).e: @ )(AD))).

iel
Therefore, Lemma A.6 implies that
(1®T)U(A(a) ® A2(b)), U(A(a) ® A2(D))) = m ((WA(a), () ® 1) (A(D*D)))
= (A(a), A(a))m (b"D),
where we used the left invariance of 7;. So we get that
<(1 Q@TYU(A(a) ® A2()),U(A(a) ® Az(b))>
= (A(a), A(a)(TA2(b), A2(b)) = (1 ® T)(A(a) ® A2(b)), Aa) ® Ax(b)).
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By polarization, we get that
(1@ T)U(Aa) ® A2 (b)), U(A(c) ® Az(d))) = (1 ® T)(A(a) ® A2(b)), A(c) ® A2(d))

forall a,c € N, and b,d € Ny, .
So we have proven that U*(1 ® T)U =1 ® T. Because U*(I @ J) = (I ® J)U (see
Proposition 5.37), we get that

UAJTIT)U =1JTJ.
Remembering that 7 T.J € T5(A), we see that
(TR (A (TTI)) =V ITIIU* =18 JTJ = (Br)(10 7 (I TT)).

Consequently, the injectivity of ¢® 7, implies that Z(%{ YWgTg) =107 (JTT).
Therefore, Result 5.13 implies that 75 1 (JTJ) is ascalar. So we find a number r > 0 such that
T =1, thus m (x) = rna(x) for all z € M . Because m # 0, we have that r # 0 (remember
that {x € AT | m(z) =0} is closed). Since 2 #O0 and n; <12, 7 < 1. O

COROLLARY 6.7.~ Consider a left invariant proper weight ny on (A, A) such that there exists
a number )\ > 0 satisfying no, = \'n) for all t € R. Then there exists a number v > 0 such that
n=re.

Proof. —Put 1. = 1 + . Because no; = A7 for t € R, Proposition 1.14 of [30] implies
that n, is a proper weight on A. It is also easy to check that 7, is left invariant (notice that
/\/I:’r L= J\/l;7F n M;f). Because ¢ < 14, we conclude from the previous proposition that there
exists a number s € |0, 1] such that ¢(z) = sn4(z) forx € ML.

So we have for z € My N M that p(x) = sn(z) + s p(z). Put r = 1=2 € RT. Then we have
for z € M} N M that n(z) = re(z). Since n # 0, r # 0.

This implies that 7 is invariant under ¢ and thus 1 = r¢ by Proposition 1.13. O

By using the unitary antipode R, it is clear that a similar result holds for right invariant weights.

Once we have the modular element of (A4, A) at our disposal, it will be easy to prove that any
left invariant proper weight is relatively invariant under o. But we will already be able to use this
restricted version to draw some important conclusions in the last part of this section.

Now we have gathered enough technical material to prove all the relevant relative invariance
properties.

PROPOSITION 6.8. —
(1) The automorphism groups o, o' and T commute pairwise.
(2) We have the following commutation relations for all t € R:

Aoy = (1 ® 01)A, Aoy = (0, @ T_4)A,
Aty = (17t @ 1) A, At = (o ® 0’ ,)A.
(3) There exists a number v > 0 such that
pop=vtp, Yoy =v"",
Yre=vT',  er=vT"y,
forallt e R.
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Proof. — Notice that the first three commutation relations in (2) were already proven in
Proposition 5.17, Result 5.12 and Proposition 5.38. We will proceed to the proof of the other
results.

(i) Choose t € R and define k = g;7—¢. Then

(L@ K)A = (TtT—t ® 04T—1)A = Aoy 7_t = AK.

Letac M$ Then A(a) € ﬂ:;@ by right invariance of . Hence,

A(k(a)) = (:® K)A(a) € Myg,-
By Proposition 6.3, we get that #(a) € M and so

Y(k(a))l= (Y ® L)(A(KZ((I,))) = ® L)((L ® K)A(a)) = fs((w ® L)A(a)) =1(a)l.

Working with k1, we get completely analogously that n_l(M:E) - M:; Hence o7 =
YK =1).

Then we get that %,0¢7_¢ = 0,70, for all s,¢ € R. Thus we have
(L®o_4T)A=(T_4T1 @ 0_17t)A = Ao _47s = Ad’_,o0_4T10)
= (0., @75)Ac_y1i0%, = (01, @ Ts0_47) Aol = (L ® Ts0_ ¢ TeT—s ) A.

Soforalla € A and w € A*, we have
(o—t7¢) ((w ® L)A(a)) = (TSO'_tTtT_s)((UJ ® L)A(a)).

Hence,
O_tTt = TsO_tT4tT—s = TsO_tT—_sTt.

Thus we have 0_; = 740 _;7_; for all s,t € R, so that o and 7 commute.

(ii) Fix t e R. If a € M?, we have 7;(a) € M} and thus

(r @) A(a) = A(ri(a)) € Mg,
So (t®7)Aa) € ﬂ:r&p, and thus A(a) € MZF@W{ Moreover,

(t® ) Ala) =T-4((t ® 9)A(12(a)) = (7 (a))1.

So o7 is a left invariant KMS weight on (A, A). Because o and 7 commute (7 is invariant
under o. By Corollary 6.7 we get the existence of a number \; > 0 such that o7z = A;p. This
implies the existence of a number v > 0 such that ¢7; = vt for all ¢ € R (see e.g. Result 2.15
of [24]). By applying R we obtain ¢y = v+ for all ¢t € R. So also ¢’ and 7 commute. Then
we get

Yo, =v " Yr_sor = v oy = v,

where the last equality follows from part i) of this proof. From this we get that o’ and o commute.
Also,

@0, =pRo_tR=1vo_1R=v'"9yR=1'p.
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This ends the proof of the first and the third statement.
(iii) Now, we prove the last statement of 2). Fix ¢t € R. Observe that So} = o_;S because
Ro}, = 0_4R and because 7 and o commute. Then we get for all a,b € N,

o (L@ p)(Aa")(1®D))) = (t®¢)[(0; ® )(A(a"))(1®b)]
=7t ®p)[(0r ® T-1)(A(a")) (1 @ T—¢(b))]
=17 (L@ @) [A0y(a")) (1 ® T—¢())].
So we get that o7 ((¢ ® ¢)(A(a*)(1 ®b))) belongs to D(S) and
S(e(L®9)(A@)1®D))) =r~* (1 ® ) [1@0;(a"))A(T-:(b))]
=@ @) [1®a")(t®al,)A(r—¢(b))].
On the other hand, (¢ ® )(A(a*)(1 ® b)) belongs to D(S) and
o-(S((t® @) (A(@)(1®b)))) =0- (L@ p)((1®a")A(b)))
=(®¢)(1®a")(0-: ® )AD)).

Therefore,
(t@9)[(1®a")(t®)A(T_¢(b)] = (t® ¢)((1 ® a*)(0-t ® ) A(D)).
Because ¢ is faithful we get
(t® 0L )A(T—¢(b)) = (0t ® )A(D)

forall b€ Ny, sothat A7_; = (0_; ® 0})A. O

Since 1, = v~t(p, we can introduce the following positive operator in H (which is generally
unbounded).

DEFINITION 6.9. - Define the strictly positive operator P in H such that P®%A(a) =
viA(r(a)) forallt € R and a € N,

Then we get immediately that Ptz P~ =7, (z) forall z € A.
In Definition 1.2 of [64], Woronowicz introduces the notion of manageability of a multiplica-
tive unitary. It is no big surprise that:

PROPOSITION 6.10. — The multiplicative unitary W is manageable.

Proof. — From Proposition 5.39, we get that for all v € D(Nz),w € D(N~%) and p,q € H
(I(t @ wap) W) Iv,w) = ((t @ wp ) (W)N2v, N~ 3w).
Because (L ® wp 4)(W) € A and 7; is implemented by N, we can conclude that
(t®@wp,g)(W) € D(?_g) and F—% ((t®wp,g)(W)) = I(t ® wa,p)(W)I.
Since 7; is also implemented by P, this implies that
(I(t ® wa,p)(W)Iv,w) = {(t @ wp,q)(W)P~ 3y, P%w>
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forall v € D(P~2), w € D(P?) and p, q € H. Because of Proposition 5.38 we can rewrite this
as

YW*3(q®v),pRQw) =(EXWX(Jp® P"2v),Jq® Pzw).
* ( ) 1 1

If we can prove now that XW*¥ and P @ P commute, we arrive at the manageability of XW*%
which implies the manageability of W by Proposition 1.4 of [68]. It is clear we have to prove
that W* and P ® P commute. But for a,b € N, and ¢ € R we have

W* (P @ P%) (A(a) ® A(b)) = VW (A(Tt(a)) A(7¢(b)))
= (A® M) (AR (B)(n(a) @ 1))
=v(A®A) (e @ 1) (A(b)(a ® 1))
=(P" @ P*")W*(A(a) ® A()).
This concludes the proof of the proposition. O

COROLLARY 6.11. — The linear spaces A(A)(1 ® A) and A(A)(A® 1) are dense subsets of
A® A

Proof. — This follows immediately from Proposition 5.1 of [68]. O

7. The modular element of a C*-algebraic quantum group

We will denote the W*-lift of +) by 1/) and the W*-lift of o’ by 5’. So d) is a n.f.s. weight on A
with modular group &’. Recall that 5,7 = 7rcrt for t € R. It is easy to see that w ") 5 R.

By Proposition 6 8, we have that po; = vip for all t € R. So we get for all ¢ € R that
p0, = (po;) = vtp. Consequently, we can apply the adapted version of Radon-Nikodym
(Theorem 1.16) to get hold of the modular element of (A A) This section revolves around
the proof of the fact that this modular element is an unbounded group-like element.

For the notation used in the next definition, we refer to the second part of Section 1.4.

DEFINITION 7.1.— We define & as the strictly positive element affiliated with the von
Neumann algebra A such that at(6) —vi§fort € Rand ¢ = o5

Recall that the modular groups ¢ and & are related via the equality o} (x) = 5154 (z)6~" for
t € R. So we have for ¢ € R that 5;(6) = v*6

Let us use this to introduce a special GNS;constmction for 1,; (see the remarks before
Proposition 1.15).

Notation 7.2. — We define (H,, P) to be the GNS-construction for ¢ = @5 constructed from
(H,t,A) via é.

LEMMA 7.3.— The operators A(8) and 6 ® 6 commute.
Proof. — Fix t € R. Using Proposition 6.8, we get that
(645, ®5107)A = (61 BF_15/7) A7,
= (67 ®E\)AG_ &) = (6_1®5))ATs5_45) = AG_5).
We have for all z € A that (5_,5})(z) = 626~ . Therefore we get

(gfit ® S’zt)ﬁ(x)(g—zt Q g—it) — &(git:pg—it)
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for all z € A. This implies in particular for every s € R that
(5zt ®57't) (513)(5-”@(5 zt) (6ztézs6—zt) A(gzs)

Hence 5(5) and 6 ® 6 commute. O

Recall the following notation:
T;= {ze NJON% | z is analytic with respect to &’ and &, (z) € NJO/\% for z € C}.

Remark 7.4. — Consider a, b € T,,. Using Proposition 5.20, we see that
R((aa” ® )AWD) = R((6 ® 0)((a* ® DAGE) (@ 1))
= R((¢ ® 0)((0}(a)a” ® DAEB™D)))
=¥ ®)(A(0L 4 (o7(a) a™))(oL; (b"D) ® 1))
= @) ((7, (B @ VA ()0} (a)) (o (57 ©1))
= (0 () 9o’y (0) @ ) A(0y () (a)").

We will also need this equation on the level of A. In order to achieve this, we use an
approximation procedure.

l
2

[N \ ml@

LEMMA 7.5. - Consider a, b € T{E‘ Then we have that
R((apa"B)A ') = (7, (b) 45, (5) B) A(3 (a)F (a)7).

Proof. — By the previous remark, the formula is clear for a,b € 7(7,). Now we define, for
ze Aandn eN,

n2t2
x(n) exp(—n®t?)a;(z) dt.
G /
Choose a € N~ N Ni. By Proposition 2.22 of [30], we can take a net (aq)aers in m(Ny NN)

such that (aa)ael — a strong* and bounded, (I'(aa))acs — I'(a), (f(a;))aef — T'(a*) in
norm. Then we have, for every n € N and « € I, that a(n) € T ~ and aq(n) € m(Ty). We see
that, for every n € N and every z € C,

(0%(aa(n))) ,e; — T%(a(n)) strong* and bounded,
(C(@(aa(n))) ; — T (3L (a(m)),
(F(F.(aa(n)))) ey — T(3%(a(n)")).

Observe that zyz* = WE(2) T(z)’

valid for a(n) and b(n) whenever a,b € N- Jﬁ./\/’ i and n € N by approximating a and b as above.

for every z € N- ot Then we may conclude that the formula is

Now choose x € T s Then we have

(3.(z(n)))—, — oL(z) strong* and bounded,
QCACON e CACE
(TE(xm))) o, — T(F (")
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Now we may conclude the formula is valid for a, b € 7- pt because we already know it is valid for
all a(n) and b(n). 0O
The following result will be used in the proof of the group-like property of 6. It has some

intrinsic interest because it gives a precise meaning to the algebraic property (¢ ® ¥)A(a) =
(a)6~" appearing in [59].

RESULT 7.6.— Consider a € M:% and v € D(6~%). Then

P((Won ®1)A(a)) =(a) (6 20,6 2v).

Proof. — Let n € N. Then we define the element e,, € A by the following integral in the strong
topology:

_n L 2,2\Fit
en—ﬁ/exp( n“t*)6* dt.

Using the fact that 5, (§") = 1?5 for s,t € R, it is then a standard exercise to check that:
(1) e, is analytic with respect to ¢’;
(2) 6~ %e, is bounded and 6‘5% is analytic with respect to ¢”';
(3) 6725, (ey) is bounded and 625", (e,,) is analytic with respect to &';
2 o 2
@) &, (6 Fen) =v 15725 (en).
2 2
Define C = (e, | € T, n € N). Using the above properties of the elements e, (n € N), it
is not difficult to see that any element ¢ € C satisfies the following properties:
1) ceT~
(2) 6~ %cis bounded and 6~ % ¢ belongs to D(, ) NN fd
2
(3) 6725, (c) is bounded and 6~ 25, (c) belongs to Ndi};
2 2
@) &, (67 3c) =v~ 16735, (c).
2 2
Choosece C'and d € T;pv.
Since 5~ 25", (c) is bounded and 6~ % &, (c) belongs to . i, we get that &, (¢)*6~ 2 is bounded
2 2 2

and

& (c)*6 5= (6% 5’ (c))" €N

Because ¢ = 12;5_1, this implies that ’; (¢)* belongs to N; and
2

(0403 (0)") = (@, (0)76™F T ()6~ %) =v((8 2 5% (0)) (372 5%(0))).

i
2 2

We know moreover that 6~ ¢ belongs to D(5", ) ﬂ/\/;/; and that &, (5~ 2¢c) = v=16-35, (c).
2 2
Plugging this in into the above equation, we find that:
St (NS (RN (S (R—k NS (R NF\ (R N (F-3
(7.1) cp(a%(c)o%(c) ) —1/)(0%(6 Zc) s (672¢)7) =v((672¢)" (67 2¢)).
By the previous lemma, we know that
R((cpc* ®)A(d*d)) = (@, (d)*JE’% (d) ) AF (7 (0))-

2
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Therefore the left invariance of ¢ implies that

P(ePe BB d) = F(R((ee T)A(")
e (CACREAVIEDINCACLATY)
S CAGEACNECACCACY
= (" d)yp((6 2oy
where we used Eq. (7. 1)1n the last equality. 5 o
Since ¢ € ./\/~ and 6-%ce N we have that T'(c) belongs to D(6%) and 6 2L(c) =

f‘(g_ 3 c). So the above equation becomes

(
)®

N

(72) V(W o VA ) = P(d"d)(673T(c), 6 T (c)).

We have for every n € Nand x € TJ that

I(enz) =epI'(z).

T_1

Because lN“(T;;) is dense in H, we infer from this that ['(C) is a core for 6~ 2.
Appealing to Lemma A.1, Eq. (7.2) now implies that

P (w0 BOAWE D) = §(d"d)(5~Fv,5-Fo)

forallve D(6~2)andd € TJ'

Since TJ is a ‘bounded’ o-strong* core for T, we can again use Lemma A.1 to conclude that

B BORG™D) = F(Eb) (40,57 0)
forallv e D(g‘%) and b ENJ‘ O

__ In the next results, we will use the normal *-homomorphism A® A ABARA given by
AP = (AR LA = (1B A)A.

°’> t
w]»-‘
®
i
ol
Y
I~
o
S

LEMMA 7.7.— Consider a € M~, veD(6~

(W B AP (a)) =P(a){(§2 @8 F)v, (672 67 %) v).

Proof. — Choose p1,p2,q1,q2 € D(3-%). By Result 7.6 (and polarization), we have that
(Wpy,q1 ® L)A(a) belongs to M;; and

D ((Wpr,q BUA(0)) =9(a) (6 3p1,6 2 1)

Applying Result 7.6 once more, we see that (wp, g, @L)&((wm,ql ®1¢)A(a)) belongs to M g
and
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D ((@pa,0s BVA((Wps 0 B)A()))
_’/’((wpuql ®1)A(a )<6 2p2,672¢ 2)
= (@) (6 2p1,8 21 ) (6 p2,d 2q2 >
ZJ(G)<(5_5 ®6” ) (p1 ®p2), (6 51 ) 1 ®q)).
Because (wp, g, @ 1) A((Wpy .01 @ 1)A(a)) = (Wpr0pr.ar@qe © L)A(Q) (a), we see that

1
2

(Wp1®p2,q1802 ® L)A(Z) (a)
belongs to M 7 and

w(("-’m@pz 1092 ®L)A( )(a 'L/"(a)<( _% %)(pl ®p2)a( -3 ®5’%)(Q1®Q2)>-

Therefore we get for all w € D(572) ® D(5~2) that

P (@uw®)AP (@) = P(a)((67F ®5 2w, (52 ®5 )w).

Because D(g_%) ® D(6-%) is a core for -2 ® 6%, the lemma follows now by using
LemmaA.l. O

LEMMA 7.8.— Consider a € M;r/;, ve D(A(672)). Then

P ((wow®AD(0)) = P(a)(A (6 )0, A5 F)0).

Proof. — Let (e;)ic1 be an orthonormal basis for H.
Fix ¢ € I for the moment and define 6; € B(H,C) by 6;(u) = (u,e;) for all u € H. Put

= (0; ® )Wo. It is easy to see that (6; ® 1)(1 ® 67%)Cé63(h; ®1). Sincé A(52) =
( ® 5_‘)W we have that Wv € D(1 ® 6“) So the previous inclusion implies that
w; € D(6%) and

G:e)(106 H)Wo=53(0; @ )Wo=6 2w,

Now observe that for every x € A

wyo(A(z)) = (1@ z)Wv,Wv) = Z ((676; ® 1)(1 @ z)Wv, Wo) = Z(xwi,'wi)

iel i€l
= E :wwiywi (l‘)
iel
Because %) is normal we have

J((Wv,v@L)Z(z)(a)) = Q2’1((‘-’-’11 vz@L)A )
= ZQZ((wwz w; ® L)&(a))

=2 d@8 b
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- ZJ(a)”(ei @) (106 )W’
i€l
@||(1@s 5w’
()(A(67%)0,A(67%)0),
where we used Result 7.6 in equality (*). O
These last lemmas allow us to prove easily that Sisa corepresentation of (Z , Z&):
PROPOSITION 7.9. — We have that A(8) =6 ® 8.
Proof. — Take an element a € M;'pi such that ¢(a) =
Then Lemmas 7.7 and 7.8 imply forall v € D(6~% ® §~2) N D(A(5~%)) that

1 ~ ~ ~ ~ ~

(13) (672@6%)0,(6 @6 %)0) =9 ((wo, ®)AP (a)) = (A(672)v, A6 % )0).

u

By Lemma 7.3, we know that ﬁ(g) and & ® & commute. This implies the existence of a
subspace C' of H ® H such that C'is a core for both 6-3®6°% and A(é ) If we combine
this with Eq. (7.3), it is not difficult to see that D(§~% ® 6~3) = D(A(5~%)) and

forve D(6-% ® 6 7). Consequently, A(§) =6 ® 5. O
A standard trick allows us to prove easily that & is affiliated with m(A) in the C*-algebra sense.
PROPOSITION 7.10.— The operator § is affiliated with mw(A) in the C*-algebra sense.

Proof. — The previous proposition 1mphes that W*(l ® 5)W = 6 ® 6. Therefore we have

for every ¢ € R that (1 ® 6")W (1 ® 6~*) = W (5" ® 1). This implies for every t € R and
w € Bo(H)* that

(L@w)(W)E™ = (1L ® 6~ Hwd™)(W).

So we find for every w € Bo(H)* that:

(1) (t®w) (W) € w(A) for every t € R;

(2) the mapping R — m(A):t — (1 ® w)(W)5% is norm continuous.
Because such elements (¢ ® w)(W) are dense in 7(A), we get for any a € w(A) that:

(1) a&™ € n(A) forevery t € R;

(2) the mapping R — 7(A):t+—a & is norm continuous.
This implies that (see e.g. Proposition 3.12 of [25]) § is affiliated with 7m(A) in the C*-algebra
sense. 0O

Now we use the faithful *-isomorphism 7: A — 7(A) to pull & down to A:

DEFINITION 7.11.— We define the strictly positive element ¢ affiliated with A such that
m(8) = 6.

In the next proposition, we collect all the basic properties concerning 6. Recall that we
discussed the extension of S to the multiplier algebra in Remark 5.44.

PROPOSITION 7.12. — We have the following properties:
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1) A(6) =b6®6;

(2) 7(8) =bfortcRand R(§) =671;

(3) lett € R. Then 6% belongs to D(S) and S(6%) =6,

4) o4(6) =01(6) =v'6 forallt € R;

(5) oi(a) =6%04(a)6 " forallt e R and a € 4;

(6) ¥ =yps.

Proof. — The results concerning o and ¢’ follow from the corresponding results on the W*-

level. We only have to consider the statements concerning S, R and 7.
Choose s,t € R. Then we have that

Tt((sis) ®0’t((5is) — (Tt ®O’t)A(6is) — A(at(éis)) — VistA((Sis) — I/ist(sis ®6is — 67;3 ®0't(6is).
Thus Tt((sis) = 6i5.

Because 1 ® 6% = (6% ® 1)A(6%) and 1 ® 6% = A(67%)(6* ® 1), Remark 5.44 about
Proposition 5.33 implies immediately that §% € D(S) and S(6%) = §~*. Since 7,(6") = §*
for s,¢ € R, we get that §" € D(7_5) and 7_; (8§") = 6%. Combining this with the fact that
S=R7_i,wegetthat R(6%)=6"". O

— L

2

Let us also fix a particular GNS-construction for 1) (see the remarks before Proposition 1.14).

Notation 7.13.— We define (H,m,T") to be the GNS-construction for ¢ = ¢s constructed
from (H, 7, A) via é.

We end this section with the general uniqueness theorem for invariant weights.

THEOREM 7.14. — Consider a left invariant proper weight 1 on (A, A). Then there exists a
number 1 > 0 such that n = re.

Proof. — Result 6.5 implies that n is a KMS weight. Denote its modular group by k.
Proposition 5.37 implies that

(7.4) (1: @ ke)A = Aky forteR.
Fix s € R for the moment. Using Proposition 6.8 and the above commutation, we get that
(Lt ®@0_sks)A = Ao_sks.

Arguing as in the beginning of proof of Proposition 6.8, we get that 1) is invariant under o_sk.
So o_sks commutes with o’. Since o5 commutes with o/, we get that k; commutes with ¢o’.

Choose s,t € R. Using the commutation mentioned above, the fact that 7(6) = § and
A(6) =6 ® 6, we find that

A(K)t(éis)) = (Tt ® Ht)A((sis) = Tt(5is) ® K/t((sis) = 6is ® mt(éis).
Hence
A(re(6)67%) = 1 ® kg (6°)57°.

Consequently, Result 5.13 implies the existence of a complex number u € C with |u| =1 such
that k¢ (6%) = ud®.

Take s € R. Because o4(z) = 6 %o, (x)6" for all t € R and x € A and because we have
already proven that ¢’ and k, commute, we conclude that o and k, commute. So (pk, is a KMS
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weight which is invariant under o. The relation (7.4) above implies that @k is left invariant.
Therefore, Corollary 6.7 implies the existence of a number A; > 0 such that pk; = M. As
usual, this implies the existence of a number A > 0 such that \; = X! for t € R.

The theorem follows now from corollary 6.7 (it is clear that we can reverse the roles of 1 and
 in this corollary). O

Combining this theorem with the equality x(R ® R)A = A R, uniqueness for right invariant
weights is an immediate consequence.

THEOREM 7.15. — Consider a right invariant proper weight n on (A, A). Then there exists a
number r > 0 such that = ri.

Since we have established the uniqueness of the left invariant proper weights up to scalar, we
can introduce some new terminology.

Terminology 7.16. —

e The number v, determined by either one of the four conditions in Proposition 6.8 (3), is
called the scaling constant of (4, A).

e The element 8, determined by Proposition 7.12 (6), is called the modular element of (4, A).

8. The reduced dual of a reduced C*-algebraic quantum group

In this section, we construct the dual of a reduced C*-algebraic quantum group following
Chapter 3 of [15] (see also [6] and [33]) and relying on [68] (in which most of the hard work
has already been done). The construction of the dual is a generalization of the construction of the
reduced group C*-algebra of a locally compact group to the quantum world.

We model the definition of the dual weight on Definition 3.5.2 of [15] (and even more on
Proposition 3.5.4 of [15]). We will however follow a different route (not using left Hilbert
algebras and the somewhat tricky *-operation) to define it, but this is not very essential. We
give however a more elementary proof of the left invariance of the dual weight.

In the rest of this section, ¥ denotes the flip map on H @ H.

DEFINITION 8.1. — We define:

o theset A=[(w® ) (W) |w e Bo(H)*|;

e the injective linear map A: A — B(H ® H) such that A(z) = XW(z @ 1)W*X for all
z €A

The flip map ¥ is introduced to guarantee that the dual weight, constructed from the left
invariant weight ¢ in the next part of this section, is again left invariant and not right invariant.

Thanks to Theorem 1.5 and Proposition 5.1 of [68], we can sit back and relax for a moment,
allowing someone else to do the hard work for us.

THEOREM 8.2.— The set A is a non-degenerate sub-C*-algebra of B(H) and the mapping
A is a non-degenerate *-homomorphism from A into M(A ® A) such that:

e (ARA=(t®A)A;

e A(A)(A®1)and A(A)(1® A) are dense subsets of A® A.

Following Notation 3.19 and Proposition 3.21, we define the unitary element V € L(AQ H) =

M(A® Bo(H)) such that V*(a ® A(b)) = (:® A)(A(b)) a for a € A and b € N,,. Then it is not
so difficult to check that

8.1) (t® Waga),am) (V)= (@ 9)(AD*)(1 ®a))
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for a,b € N,. By Result 2.10, this implies that (7 ® ¢)(V') = W. So, because T is faithful, V' is
just a copy of W, but with its first leg standing firmly in A.

-~

The same Theorem 1.5 of [68] implies that V € M(A ® A). Since W12 W13Wa3 = WazWia,
we have moreover that (A ® ¢)(V) = Vi3Va3 and (1 ® 3)(V) = V13Via2. The element V is called
the left regular corepresentation of (A, A). It is at the same time the right regular corepresentation
of (4,A).

The antipode has the following characterization in terms of V. This also shows that our
antipode essentially coincides with the antipode defined in [68] (c¢f. Theorem 1.4.5 of [68]).

PROPOSITION 8.3.— Forall w € Bo(H)*, we have that (1 ® w)(V) belongs to D(S) and
S(8w)(V) = (@w)(V°).
Moreover, the set
{Low)(V)|weBo(H)"}
is a core for S.
Proof. — Take a,b € N,. Eq. (8.1) implies that (+ ® wa(a),aw)(V*) = (t ® 9)((1 ®

b*)A(a)) and (¢ @ wa(e),aw))(V) = (¢ ® 9)(A(b*)(1 ® a)). So Proposition 5.40 implies that
(t ® WA(a),A(v)) (V') belongs to D(S) and

S((t®@wagay,a@w)(V)) = (¢t ® way,a@)) (V")

Therefore, the closedness of S implies easily for all v,w € H that (¢ ® wy 4, )(V') belongs to
D(S) and S((t @ wy,0)(V)) = (t @ wy,w)(V*). Since any element of Bo(H )* can be written as
a norm convergent sum of vector functionals, the closedness of S implies for every w € Bo(H)*
that (: @ w)(V') belongs to D(S) and S((: @w)(V)) = (t @ w)(V*).

The statement concerning the core follows immediately from Proposition 5.40. O

Let us strengthen the analogy with the group case by introducing the closed subspace L!(A)
of A*:

L'(A) = [apdb* | a,b € N).

By Proposition 3.6, it is clear that we also could have chosen 1 in order to define L' (A). Notice
that the linear mapping 7, : A, — L!(A):w — wr is an isometric isomorphism. So we get also
that L' (A) = {wn | w € Bo(H)*}. Notice that A = [(w ® ¢)(V) |w € L} (4)]

Define the contractive linear mapping A : L' (A4) — A such that

(8.2) Aw)=(we)(V)
for w € L!(A). Notice that Eq. (8.1) implies that X is an injection. Result 2.10 tells us that
8.3) (w®)(V)A(z) = A((w ® ) A(z))

forall x € N, and w € L1(A).

The topological dual A* is a Banach algebra under the multiplication A* x A* — A*:
(w,8) — wh given by (wh)(z) = (w ® 0)A(z) for all w and # in A* and z € A.

In the group case, this corresponds to the convolution product. It should be pointed out that,
since the antipode can be unbounded, A* carries no appropriate *-structure. It is however possible
to define a *-operation on a large subalgebra of A*. We will not go further into this.
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Take w € A% and a,b € N,,. Fix also a cyclic GNS-construction (K, 6, u) for w. Then we have
for all x € A that

(wlaph")) (#) = (w® (aph")) (A@)) = (@ Benam) (V1 ©1(@)V)
=(1®7(2)(0 @ )(V)(u® Aa)), (0 @ )(V)(u® A®b))),

which implies that w(awb*) € L' (A). We conclude that L' (A) is a left ideal in A*. Because R
is implemented by I we see that wR € L!(A) whenever w € L*(A). By using Proposition 5.26,
we get that L1(A) is a two-sided ideal in A*, so it is certainly a subalgebra of A*. It is also clear
that for every w € L'(A) and every a € M(A), the elements wa and aw belong to L1 (A).

The equality (A ® ¢)(V') = V13Va3 implies that A: L' (A) — B(H) is multiplicative.

In a next natural step, we want to turn (A, A) into a reduced C*-algebraic quantum group by

constructing a left and a right invariant weight on (A\, 3) Copying Definition 2.1.6 of [15], we
introduce the following subset of L1 (A).

Notation 8.4.— We define the subset Z of L!(A) as follows:
T = {w € L'(A) | there exists a number M > 0 such that |w(z*)| < M||A(z)| forall z € N, }.

It is clear that 7 is a subspace of L*(A). By Riesz’ theorem for Hilbert spaces, there exists for
every w € T a unique element £(w) € H such that w(z*) = (£(w), A(z)) for z € N,.

The linear map 7 — H :w +— &(w) should be thought of as a GNS-map (more precisely, a
restriction of such a map) of a still to be constructed weight. It is not so difficult to see that this
linear map is closed.

It is easy to construct an enormous amount of elements belonging to Z (Proposition 2.1.7 (i)
of [15]).

LEMMA 8.5.— Let a,b € T,. Then apb* belongs to T and &(apb*) = A{ao;(b)*).
Proof. — We have for all z € NV,, that

(apb™)(z*) = p(b"z"a) = p(z"aoi(b)") = (Alacs (b)), A(z)),

implying that apb* belongs to 7 and £(awb*) = A(ao;(b)*). O

This implies immediately that {£(w) | w € T} is dense in H and that Z is dense in L*(A).
Let us collect two basic properties in the next result (Proposition 2.1.7(iii) and Proposi-
tion 3.5.1(iii) of [15]).

RESULT 8.6.— The following holds.
o The set T is a left ideal in L' (A) such that £(wf) = Aw)&(0) forw € LY (A) and 6 € T.
e We have for a € M(A) and w € T that aw belongs to T and £(aw) = m(a)é(w).

Proof. —
e We have for x € NV,, that

(w8)(z") = (weh)A(") =0((w®)A(z")) = 0((@ @ )(A(z))")
=(€(0), M@ ® 1) A(2))) = (£(0), @ ® ) (V) A(x))
=((w®)(V)E(9), Az)).
This implies that wf € 7 and £(wf) = A(w)&(H).
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e It is clear that for z € N,

(aw)(z") =w(z"a) = w((a"2)") = ({(w), A(a"2))
= ({(w),m(a")A(2)) = (r(a)é(w), Al)).-
This implies that aw € 7 and £(aw) = w(a)é(w). O

In a next step, we introduce the one-parameter representation on L' (A) which will implement
the modular group of the dual weight.

Notation 8.7.— Define the norm continuous one-parameter representation p of R on L!(A)
such that p;(w)(x) = w(§~%7_¢(z)) forw € L1 (A), z € Aand t €R.

The fact that p is a representation follows immediately from the fact that 74 (6) = 6 for t € R.
Since any element of L' (A) arises from an element in Bo(H)* and since 7; is implemented by
P (see Definition 6.9), the norm continuity is easily verified.

Result 5.12 and Proposition 7.12 (1) imply immediately that p; is an algebra automorphism of
L!(A) forevery t € R.

Now we start to change our route a little bit in comparison with the route followed in [15].
We will not use left or right Hilbert algebra theory. Recall that we introduced the strictly positive
operator P in Definition 6.9. So P*A(a) = v% A(7¢(a)) and Jr(6)" JA(a) = v~ % A(ab~ %) for
all t € R and a € N,,. Since 7(6) = 6 for all t € R, we get immediately that Jr(6)J and P
commute.

LEMMA 8.8.— We have for all t € R and w € T that py(w) € T and &(pi(w)) =
Pt Jr(8§)* JE(w).

Proof. — Choose € N,. The remarks before this lemma imply that

pe(@)(@") =0 (677 (7)) = w((re(@)6%)7) = (), Alr—e(2)6)
=75 (g(w), J(6) Tt TA(T_(2))) = (E(w), Jm(8) " TP A(x))
= (P*Jn(6)" JE(w), A(z)).
This implies that p;(w) € T and &(py(w)) = PEJm(§)%JE(w). O

The next proposition is a simple consequence of Lemma 8.8 and the multiplicativity of p; for
every t € R.

__PROPOSITION 8.9.— There exists a unique norm continuous one-parameter group o on
A such that 5y(AN(w)) = Mpe(w)) for all t € R and w € LY(A). We have moreover that
ot(x) = Pt Jn(8) JzJm(8) " JP~" fort e R and x € A.

We will need the following two norm continuous one-parameter representations 6* and 7* of
R on L!(A) defined in such a way that:

* 5 (w)(z) =w(8"x),

o 77 (w)(@) = w(ri(z))
forall t € R, w € L'(A) and z € A. So §* and 7* commute and p; = 7*,6*, for t € R. This
implies that 7* ; §* ; is closable and that its closure is equal to p i (see e.g. Proposition 4.9
of [25]). t

Consider z € C, x € D(7,) and w € D(7}). Since the two functions

S(z) = C:y—j(w)(z) and S(z) = C: y— w(r,(z))
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are continuous on S(z), analytic on S(z)° and agree on the real line, they are equal on S(z).
Hence 7} (w)(z) = w(7:(x)).
LEMMA 8.10.— We have for allw € D(7* ;) that (WR ® ¢)(V*) = (7* ; (w) @ ¢)(V).
2 2

Proof. — Choose 6 € Bo(H )*. Proposition 8.3 implies that (: ® 6)(V') belongs to D(.S) and
S((t®@8)(V))=(®6)(V*).

So (¢ ® 6)(V) belongs to D(r_;)and

T_ i ((t® 0)(V)) = R((L ®6)(V*)).
Applying w to this equation, using the remark before this proposition and rearranging things, we
get
0((r ;@) ® (V) =0((WRGH(V"). D

In Notation 7.13, we introduced the GNS-construction (H,x,I") for 4. Since 1) = @R, there
exists an anti-unitary U : H — H such that UT'(z) = A(R(z*)) for z € Ny.

PROPOSITION 8.11.~ Consider w € I and 6 € D(ps). Then
wheT and £(wh)= U*)\(p% 0)*Ut(w).

Proof. — Since the mapping Z — H : 7 — £(n) is closed and D(7* ; 6* ;) is a core for pi,itis
2 2
sufficient to prove the result under the extra assumption that § € D(7* , §* ;).
2 2
For n € N, we define the element e,, € M(A) as

_n 242y gt
en—ﬁ/exp( n“t*)6* dt.

Then ey, is analytic with respect to o, implying that N, e,, C N,,.
Take € N,. Since 1) = @5 and I' = A4, we get that z(6~2e,) belongs to Ny and
I'(z(62e,)) = A(z e,). Therefore the right invariance of v implies that

(L® 5*_%(9))A(x(6_%en))

belongs to NV, and, using the remarks before this proposition,

—_— —— 1

I((t® 8", @)A@(E 2en))) = UA(R((c® 5, (0)(A(z(6” Fen)))"))
= U"A(R((1® 8" 4 (9))(A(2(52en))")))-
Using the equality x(R ® R)A = AR, this implies
T(( ®@)A(w(5_%en))) =UA((82 4 (O)R® DAR((z(67 2en))")))
=U* (6", (O)R@ 1) (V)A(R((z(572en))"))
=U" (6", ()R® ) (V*) UT (a( “e,)).
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Using the previous lemma, this gives
84) (@6 (0)A@(6 Fen))) =U* (12, (624 (6) @) (V) UA(2(5 2 en)8?)
=U"(p3(0) ® )(V) UA(zen).

Define the function f:S(%) — A:z — (1 ® 65(0))A(z(6*€n)). Then f is continuous on

S(%), analytic on S(%)° and
f)=(®6:(0)A(x(6%e,)) = (t®0)(A(zend™)(1®6™™)) = (1 ®8)(A(zen))s™
for all t € R. This implies (see e.g. Corollary 6.8 of [25]) that (: ® 6)(A(ze,,)) is a left multiplier
of 672 and
(t®8)(A(zen))6" % = (@8, (8))A(z(6" e,)) € Ny.
2

Because ¢ = 1bs-1 and A = T'-1, this implies that (: ® 8)(A(ze,,)) belongs to N, and
At ®0)(A(zen))) =T (¢ ® 51%(9))A(x(5—%en)))
so that Eq. (8.4) implies that

A((®B)(A(zen))) = U*Apy () UA(zen).

Now
(wB)((wen)*) = (w @ O)A((zen)) = w((t ® 0)A((zen)*)) = (£(w), A((+ ® ) A(zen)))
= (6w), U"X(p3 (0)) U Azen)) = (U™ X(p; (0)) UE(w), Alwen)).

Since (re,)S2, converges to z and (A(ze,))S>; converges to A(z) (¢f the proof of
Lemma 5.7), we get that

(w8)(z") = (U A(p4 (0)" U (w), Alz))-

i
2

This implies by definition that w 6 belongs to Z and that

§(w0) =U"A(ps(0))*U¢(w). O

i
2

Remark 8.12.— Since the mapping 7 — H :w + §(w) is closed, Lemma 8.8 implies (see e.g.
Lemma 1.1 of [24]) for every w € T that 7= Jexp(—n?(t + £)?)ps(w) dt belongs to Z and

&(%/eXp(—nQ (t+ %>2>Pt(w) dt)

_ % / exp (—n2 (t + %)2)Pit.]7r(5)itjg(w) dt.

Also notice that

oy (2 [exp(—n2(t+L N pewydr) = " [ exp(en)pr(w)dt.
(7 on(-(t+3) Jorar) = 2 |

So we see that ps (D(ps) N T) is dense in L' (4).
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We have now all the necessary information to construct easily the dual weight on A.

PROPOSITION 8.13.— There exists a unique closed densely defined linear map A from
D(A) C A into H such that A\(Z) is a core for A and A(A(w)) =¢&(w) forw € T.

Proof. — Take a sequence (wy,)52; in Z, w € H such that (A(w,))5%,; converges to 0 and
(&(wn )2, converges to w.
Choose § € D(p i ) N Z. Then we have by Proposition 8.11 that

Awn)€(0) =U"A(p(0)) U (wn)

P4
for all n € N. Letting n tend to oo, this equality gives 0 = U*A(p%(G))*Uw. By Remark 8.12,
this implies that w =0. O

PROPOSITION 8.14.— There exists a unique KMS weight 3 on A such that (H,.,A) is a
GNS-construction for p. We have moreover that § is faithful and that G is the modular group

for @.

Proof. -

(1) Since 7 is dense in L'(A), the boundedness of A implies that A(Z) is dense in A. By
Result 8.6, we have for all = € )\(LI(A)) and y € A\(Z) that Ty e A(Z) and A(:l:y) = a:A( ).
Using this and the closedness of A, it is easy to check that D(A) is a left ideal in A and that
A(zy) = zA(y) forall z € Aand y € D(A).

(2) Take t € R. By Proposition 8.9 and Lemma 8.8, we have for all z € A(Z) that 7;(x) €
D(A) and A(Gy(z)) = P tJm(6)*, JA(z). The closedness of A now implies easily for every
z € D(A) that 5,(z) € D(A) and A (64 (z)) = P Jm(8)* JA(x).

(3) Choose w € D(p ) Then clearly \w) € D(Ei) and Er\%()\( w)) = Ap %( w)). This
implies by Proposition 8 11 for every x € )\(I) that z\(w) € D (K) nd K(a:)\(w)) =
U *61 (A(w))*UA(z). Again, the closedness of A gives for every = € D(A) that

(8.5) zA(w) e D(A) and A(zA(w)) =U*5,

L
2

(Aw))*UA(z).

Because #(D(p)) is dense in D( ; ) and invariant under 6 we get that #(D(p )) is a core for
& ;. Combining this with Eq. (8.5) and the closedness of A, we getforx € D(/A\) andy € D(c i )
that xy € D(K) and

A(ay) =U*5;(y)* UA(z).

O3
2

Definition 5.12 and proposition 5.14 of [24] imply the existence of a KMS weight & on A such
that (H,¢, A) is a GNS-construction for @ 53 and o is a modular group for @. By the last equality

of (3), we have zA(y) = U*E%( y)*UA(z) for z € N$ and y € D(;) N ./\/;;. Faithfulness
follows easily from this. O

It turns out to be not so difficult to establish the left invariance of our dual weight.
PROPOSITION 8.15. — The weight ¢ is left invariant.

Proof. — By the remarks after Theorem 8.2, we get that V € M(A ® ;1\) and (¢t ® Z&)(V) =
Viz Vio. R
Choose w € 7 and § € A*. Then (+ ® 0)(V') belongs to M(A). Moreover,

4¢ SERIE — TOME 33 — 2000 — N° 6



LOCALLY COMPACT QUANTUM GROUPS 919

0@ )ANW) =R )A(we (V) =(we0®)((t®A)(V))
=(w®0®)(VisViz) = (we ) (V((t@0)(V) ®1))
=A([(t®0)(V)w).
Hence Result 8.6 implies that (6 ® L) (Mw)) € /\/A and

K((0®@)ANW))) =7((:®0)(V)A(A(W)).

Therefore the closedness of A implies for every z € Ns? that (0 ® L)ﬁ(x) eEN > and

(8.6) A0 @ )A(x)) =7 ((t®0)(V))A(=).

Now take i € 21 and z € Ng. Fix also a cyclic GNS-construction (H,,, 7y, v,) for  and an
orthonormal basis (e;);cr for H,. By Lemma A.6, we know that

B((21)B(@* 7)) = B((Wo, 0y @OA@2)) =3 F((Wo,e0 @) (A(2))" (Wo,.e, 1) (A(2))).
el

Hence, using Eq. (8.6) above,
3((n@vA(z*z)) Z (A W es @A), A((Wo, e; © 1)A(2)))

i€l

= (m((t @ wu, ) (V)A@), 7((t ® Wy e, (V) A ()
i€l

= (1@ wa,,e ) (V) (L@ o, e ) (V))A(), Alw)).
i€l

Using Lemma A.6 once again, the unitarity of V' gives

-~

3((n® A" 2)) = (1((1L @ Wo, 0,)(VV)A(2),A(2)) = n(1)P(z*z). O

It is also easy to get an expression for W in terms of .

PROPOSITION 8.16.— We have for all x,y € N$ that
EWE)(A@) ®Ay) = Ao A)(A)(z®1)).
Proof. — Define the isometry W’ on H ® H such that
W' (A(z) @ A(y)) = (A @ R)(A(y)(z ® 1))
forall z,y € . Take w € Bo(H)* and & € N;. Then
(W )W)A(@) =A(we )A) 2 r(ew)(V)A() =W )(SWD)A(),

where in equality (*), we used Eq. (8.6) of the previous proposition. So W/ =XWX. 0O

Let us quickly prove that (A, A) is indeed a reduced C*-algebraic quantum group. So we have
to prove the existence of a right invariant KMS weight on (A, A). This can be easily done by
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introducing the unitary antipode in the usual way (see Proposition 3.3.1 of [15]). For the sake of
completeness (and because it is easy to do so), we include a proof.

PROPOSITION 8.17. — There exists a unique *-antiautomorphism R on A such that ﬁ()\(w))
= MwR) for all w € L' (A). We have moreover that R(z) = Jz*J for z € A.

Proof. — Choose w € L!(A). Take 6 € Bo(H)* such that 07 = w. So 0(In(a)*I) = (wR)(a)
for a € A. Using the commutation relation (I ® J)W*(I ® J) = W (see Proposition 5.38), we
get that

JNwR)*J=JWRe)(V)'J=00)(I )W I®J)=(08)W)=Aw),

s0 A(wR) = JA\(w)*J. The rest of the proof is now obvious. O
Since (I ® J)W*(I ® J) =W and R is implemented by I, we get that (R ® R)(V)=V.
PROPOSITION 8.18.— We have that x(R® R)A = AR.

Proof. — Choose w € L!(A). The remark before this proposition and the fact that (@ A)(V) =
VisVis imply that

AR(we (V) =A(WR®)(V)) = (WR®t®)((t® A)(V)) = (WR® 1 ®1)(VizVia).

So the antimultiplicativity of R and R and the remark before this proposition imply that
(x(R® R)A)(R(we L)(V))) x(w®®)((R®R® R)(Vi3Vi2))

X(w®L® L)((R ® R)(V)lg(R ® R)(V) )

=X(w®t®1)(Vig Vis)

= (W®®)(VigVi2) = (w® @) (@ A)(V))

=A(w® (V)

,.\,\

and the proposition follows. O
COROLLARY 8.19. — The weight (p\ﬁ is a right invariant faithful KMS weight on (;1\, 3)
Therefore we can conclude that:

THEOREM 8.20.— The pair (;1\, 3) is a reduced C*-algebraic quantum group. It is called the
reduced dual of (A, A).

_Notice that Proposition 8.16 implies that YW*X is the multiplicative unitary of the dual
(A, A) in the GNS-construction (H, ¢, A) for 3.

It does not take much extra work to identify the antipodal triple of (2 , 3) Let us first introduce
a symbol for the antipode of the dual.

Notation 8.21. — We denote the antipode of (2 A) by S.

Since XW*X is the multiplicative unitary for (;1\, 3), Proposition 8.3 gets in the dual setting
the following form:

PROPOSITION 8.22.— For all w € L'(A), we have that (w ® 1)(V*) belongs to D(S) and
S(We (V) = e (V).
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Moreover, the set
{(w®)(V*)|weL(4)}
is a core for S.

Now it is time to introduce the scaling group. Arguing as in Lemma 8.8, one gets for every
t € Rand w € 7 that

(8.7) 7(w) €T and &(rF(w)) =v TP % (w).

The equality (7; ® 7¢)A = AT, implies that 77 : L}(A) — L!(A) is multiplicative. As in the
case of Proposition 8.9, this implies the following one.

PROPOSITION 8.23.— There exists a unique norm continuous one-parameter group TonA
such that 7;(Aw)) = Mw—¢) for t € R. We have moreover that Ty(x) = P*x P~* for t € R
and x € A.

Using Eq. (8.7) and arguing as in part 2 of the proof of Proposition 8.14, we arrive at the
following conclusion (first check the second statement).

PROPOSITION 8.24.— We have that $7;, = V' @. Moreover, A(7y(z)) = v% P*A(z) fort € R
and x € Na.

From the proof of Proposition 6.10, we know that (P @ P*)W (P~% @ P~%) =W for all
t € R. In other words, (1; ® 73)(V) =V for all t € R.

PROPOSITION 8.25.— The following holds:
(1) R is the unitary antipode of (A, A),
(2) T is the scaling group of (A, A).

Proof. — Let us start off with the second statement. Call 7/ the scaling group of (A, A). Take
t € R and = € A. Then Proposition 8.9 and the remarks before this proposition imply that
A@Gi(z)) = SW (3,(z) @ 1)W*S = SW (P Jn(8) JaJn(6) 4 TP~ @ 1)W*S
=XW (P*Jr(6)" JoJw(6) “JP " @ PP )W*E
= (P* @ PY)SW (J7(6)* JzJn(8) " “J @ 1)W*S(P~* @ P~™).
Tomita-Takesaki theory tells us that J(5)*J belongs to w(A)’ (this follows in fact easily from
Proposition 1.12.2). Since W belongs to M(7(A) ® Bo(H)), we conclude that

A@Gi(z)) = (Pt @ P Ir(6) ) SW (z @ )W*S (P~ @ Jr(6)~*JP~i*) = (7, ®5,)A(x).

Combining this with Proposition 5.38 (3), we see that (7, ® t)A(z) = (7/ ® t)A(z). Arguing in
the usual way, the density conditions imply that 7 = 7'.
Let R’ denote the unitary antipode of (A,A). Choose w € D(7

s). Lemma 8.10 and the
2
remark before Proposition 8.18 imply that

R(we (V") =wRe)(V*) = (" ()@ )(V).

On the other hand, Proposition 8.22 and the fact that S=7

_: R imply that (w®¢)(V) € D(Ty1)
and

i
2

|

R ((we ) (V") =75 ((we)(V)).

Nl
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The two functions

-~

S(3) = Ay (@) ©)(V) and S(3) = Ay = 7y (W@ (V)

are continuous on S(5 t), analytic on S (3 £)° and agree on the real line by the remark before this
proposition. Hence they are equal. In partlcular (r* ( )®@)(V) =73 ((w®¢)(V)) and we get
that R((w ®1)(V*)) = R ((w @ ¢)(V*)). We conclude that R=R. O

Notice that the first statement of this proposition and Proposition 8.24 imply that v~ 1 is the
scaling constant of (A A)

We defined the dual with the aid of the left invariant weight . In the next part, we show that
the dual could have been easily defined using the right invariant weight ¢ = @ R. Let us define a
GNS-construction (H, 7y, Ay) for 9 in such a way that:

e Ay(a) =JA(R(a)*) for a € Ny,

o my(x)=Jn(R(z)*)J forz € A,
where J still denotes the modular conjugation of ¢ in the GNS-construction (H, 7, A).

If one would work with another GNS-construction for ¢, one would end up with a reduced

C*-algebraic quantum group which is unitarily equivalent to the dual (A, A). The same remark
applies of course to  itself.

It is then customary to define a unitary element We B(H ® H) such that
W (Ay(@) ® Ay (b)) = (Ay ® Ay) (A(a) 1 ©1D))

for a, b € Ny. This is again a multiplicative unitary, i.e. WQWBW% = ngﬁvﬁz. But this time,
(1) my(A4) = [(w @ )(W) |w € Bo(H)"],
(2) (my @ my)(Ala)) =W (my(a) ® 1)W* forall a € A.

LEMMA 8.26. — The unitaries W and W are related in the following way:
W =(J®J)EW*S(J ® J).

Proof. — Choose a,b € Ny. Then R(a)* and R(b)* belong to N, and the formula
x(R® R)A = AR implies that
W*S(J ® J)(Ay(a) ® Ay(b)) = W*E(A(R(a)") ® A(R(D)"))
= W*( (R(b)") ® A(R(a) ))

— (A& A)(A(R@") (RO) ©1))
=(A® M) (x(R® R)(Aa)(1®1))"))
=S(A®A)((R® R)(A(@)(1®b))")
=3(J @ J)(Ay @ Ay)(A(a)(1®b))
=S(J @)W (Ay(a) @ Ay(h)). O

PROPOSITION 8.27.— We have the following characterization for (;1\, ﬁ)

() A=[®w)(W) |weBo(H)"),
) A( )= ZW*(I@x)WEforalla;eA
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Proof. — Recall that the anti-unitary I has been fixed in the beginning of Section 6. Define U
to be the unitary element in B(H) such that U = JI. Then Proposition 5.38 and the previous

lemma imply that W = (U ® 1)W (U* ® 1)E. So we get for every w € Bo(H)* that
(8.8) (L@w)(W) = (U*wU ® 1) (W).

Consequently, Definition 8.1 implies immediately the first equality. Let us turn to the second one.
Therefore choose v, w € H. Take an orthonormal basis (e;);cs for H. Using Eq. (8.8) and
Lemma A.5, we get that

At @ wo,w)(W)) = A((Wrrv,00 ® )W) = (Wrv,0+0 ® L ® 1) ((t ® A)(W))
= (Wusv,urw ® L@ 1) (Wi3Wi2)
= Z(WU*v,ei ®)(W) ® (we;,uxw ® L)(W).
iel
Using Eq. (8.8) and Lemma A.5 once more, we conclude
A((t @ wy,w)(W)) = D (Woro,us e ® (W) © (Wor+ (wey),v=w @ 1)(W)
i€l
=D (L®wye,) (W) ® (1 ® wre, w)(W)
icl
= (1® L ® wy,w)(WazWh3).
Therefore the pentagonal equation for 1% implies that
A((t ® W) (W) = St ® £ ® wyw) (WrzWhas) T
=D ® L @ W) (Wi WasWi2)E = SW* (1© (1 ® wy o) (W))WE.
The second equality follows now immediately from the first one. O
Remark 8.28.—Because A(L!(A)) ® A(L'(A)) is a dense subset of A ® A and because

L1(A) C A*, we can consider a lot of elements in M(A ® A) as functionals on A ® A. So

we can formally look at A( (w))(z ®y) for w € L*(A) and z,y € A. If v,w € H and (e;)ies
is an orthonormal basis for H we can make a calculation similar to the proof of the previous
proposition, and obtain:

3()‘("‘)v,w)) = Z A(wo,e;) @ Mwe; w)-
el

Hence we can write in some sense

A(A(wv w x ® y Zwv e; x)we“w ) w'v,w(yx)'
el

This is precisely a formula one obtains in an algebraic theory (see e.g. [59]). It is possible to give

a more precise meaning to the formula above, but we do not go into that.

We end this section with the Pontryagin duality theorem. As in the first part of this section, we
can construct the dual reduced C*-algebraic quantum group of (A A) with respect to the GNS-
construction (H, ¢, A) of . Let us denote the resulting reduced C*-algebraic quantum group by

(4,4).
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_From the remark after Theorem 8.20, we know that XW*X is the multiplicative unitary of
(A, A) in the GNS-construction (H, ¢, A) for . Therefore, Definition 8.1 and the discussion in
the second part of Section 4 imply easily the following theorem.

THEOREM 8.29.— The reduced C*-algebraic quantum groups (A,A) and (:4\7 ﬁ) are

isomorphic. More specific, the mapping 7™: A — Aisa *-jsomorphism such that (1 @ ) A

Denote the dual weight of @, as defined in Proposition 8.14, by 55 Let 7 be the left ideal in
L! (ﬁ) constructed from @ as in Notation 8.4 and let A be the corresponding closed linear map
as defined in Proposition 8.13. By definition of $, the triple (H, ¢, ./A\) is a GNS-construction for
5 _

By uniqueness of the left invariant weight on (A, A), we get that ¢ is proportional to . But
to our big surprise, we can easily prove that:

»

PROPOSITION 8.30.— The weights c?w and @ are equal. Moreover, A = A.

Proof. — Let A denote the canonical representation of L(A) into A = m(A) (as defined in
Eq. (8.2)). Since YW*X is the left regular corepresentation of (;f A), we get that )\(w)
(L ® w)(W*) for w € L1(A).

Notice that, since »m and ¢ are proportional, 7~ ( :,;) = N,. Choose w € 7 and put

a=n1"1A(w)) = (: ®w)(V*) € N,. Then we have for 6 € T that

wA(0)) =w (0 )(V)) =w(@®) (V) =0((t®w)(V")
=6(a") = (£(9),A(a)) = (A(a), A(X(9)))-

Since A(Z) is a core for A, this implies that

(8.9) w(z*) = (A(a), K(x)) forall z € NG‘

Hence Proposition 8.13 implies that K(:\\(w)) =A(a) = A(w‘l(X(w))).
Because X(f) is a core for A and A is closed, this implies that K(y) = A(r~1(y)) for all
y € Na. Remembering that 7! (Nx) = N,,, the proposition follows. O
@ )

Remark 8.31.— Consider § € L'(A) such that \(f) € Ng. Choose w € Z. From Eq. (8.9)

in the proof of the previous proposition, we know that (A(ﬂ‘l(X(w))), ./A\(:c)) = w(z*) for all
z € N-.
©

In particular, (A(ﬂ_l(X(w))), A(NB))) =w(A(6)*). We can rewrite this as
(RO@), AT @) =0 (A(w))):
Because w‘l(/):(f)) is a core for A, this implies that (A(A(6)), A(a)) = 6(a*) for all a € N,,.

Consequently, § belongs to 7.
So we arrive at the conclusion that 7 = {# € L(A) | \(9) € NG}
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Appendix A: Some technical results concerning weights

LEMMA A.l.- Consider a von Neumann algebra M, a normal semi-finite weight n on M
and

e a vector space V with a subspace W,

o a normed space X and a linear mapping A:V — X,

o a sesquilinear mapping TV x V — M such that T'(v,v) 20 forv eV,

o anumber K >0,
such that:

o 7(T(v,0)) = KIAW)|? for v e W

o for every v € V, there exists a net (v;)ic; in W such that (T(v;,v;))icr converges:

o-strongly to T'(v,v) and (A(v;))ie1 converges to A(v).

Then n(T(v,v)) = K||A(v)||? forv e V.

Proof. — Choose v € V. By assumption, there exists a net (v;);er in W such that (T'(v;, v;) )ier
converges o-strongly to T'(v, v) and (A(v;))ser converges to A(v).
Because 7 is normal, we have that

n(T(v,v)) < liminf(n(T(vi,vi)))iGI =liminf(K||A(v:)||?) ., = K[| A(W)|]%

iel
So we get that
(A1) T(v,v) e M} and 7(T(v,v)) < K|v||* forallveV.

By polarization, we get for every v, w € V that T'(v, w) belongs to M,,. This gives us a semi-
inner product V x V — C: (v,w) — n(T'(v,w)). This implies that the mapping V — R*: v —
n(T(v,v))? is a semi-norm on V.

Therefore we get for every v, w € V' that

1
2

(A2)  [n(T(0,0)t —n(T(w,w)) | <n(T(0—w,v—w))* < KHA@) - Aw)],
where we used Eq. (A.1) in the last inequality.

Take u € V. By assumption, there exists a net (u;);cs in W such that (A(u;));es converges
to A(u). Then inequality (A.2) implies that (n(T(u;,u;))); e converges to n(T'(u,u)).

But we assumed that 7(T(uj,u;)) = K||A(u;)||?> for j € J. Consequently, the net
(n(T (uj,u;)))jes also converges to K || A(u)||%. Therefore n(T'(u,u)) = K| A(u)|%. O

A.1. KSGNS-construction for a slice weight

Throughout this subsection, we will fix two C*-algebras A and B together with a proper
weight ¢ on B. Let (H,, 7y, A,) be a GNS-construction for (.

RESULT A.2.— Consider x € N,g, and v € H,. Then there exists a unique element
q € M(A) such that 6(q) = (A, ((0 ® 1)(x)),v) for § € A*.
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Proof. — For a € N, we put g(a) = (t @ ¢)((1 ® a*)z) € M(A).
Using Proposition 1.24, we see for all a,b € N, that
lla(a) — a(®)11* = lla(a — b)*q(a — b)|
=[[t®e)((1®(@a=b))2) (@) ((1& (a—b)")a)|
<leep(ie@-nrie@-)|ices e
= [|Ap(a) = Ap B)IPll(e ® p) (2" ).
Now take a sequence (a, )32, in N, such that (A, (a,))32, converges to v. Then the previous
inequality implies that (¢(a))$2; is Cauchy and hence convergent in M(A). So there exists an

element ¢ € M(A) such that (¢(a,))52; converges in norm to q.
We have for every §# € A* and n € N that

0(q(an)) = ¢(ay,(0 @ 1)(2)) = (Ap (0 ® )(2)), Ap(an)),

which implies that (6(g(an)))5%; converges to (A, ((0 ® ¢)(x)),v). So 6(g) must be equal to
(Ap((0®1)(2)),v). O

We borrowed the next result from [43].

LEMMA A.3. - Consider an increasing net (a;);cy in AT and an element a € A" such that
w(a) =sup{w(a;) | ¢ € I} for all w € A% Then the net (a;);c1 converges to a.

Proof. — Define S = {w € A% | ||w| < 1} and equip S with the weak*-topology. Then S
becomes a compact Hausdorff space.

For every i € I, we define the function f; € C(S)* such that f;(w) = w(a;) for w € A%.
So (fi)ier is an increasing net in C(S)*. We also define the function f € C(S)* such that
f(w)=w(a)forwe Ax.

By assumption, the net (f;);c; converges pointwise to f. Therefore Dini’s theorem implies
that ( f;)ier converges uniformly to f.

Because ||z|| = sup{|w(z)| |w € S} for z € AT, this implies that (a;);es converges in norm
toa. O

It is not difficult to prove the following strict version.

LEMMA A.4.- Consider an increasing net (a;)ic; in M(A)1 and an element a € M(A)*
such that w(a) = sup{w(a;) | i € I'} for allw € A%.. Then the net (a;)ic1 converges strictly to a.

Proof. — Take b € A. By the previous lemma, we get that the net (b*a;b);c1 converges in norm
to b*ab.
Notice that a; < a for ¢ € I. So we get for i € I that

llab — a:b|* = [b*(a = a:)bl| < lla — ai| 1b*(a — a:)bll < 2lla]l 1b*(a — a:)bll,

which implies that (a;b);c; converges in normto ab. O

LEMMA A.5.- Consider a non-degenerate *-representation @ of A on a Hilbert space H
and an orthonormal basis (e;)icy for H. Let ,y € M(A ® B) and v,w € H. Then the net

(Z(W,ei ®0)(y)" (Wre, ® sz)) o

ieJ
is bounded and converges strictly to (wy ., @ L) (y*).
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Proof. — By polarization, it is enough to prove the result for y = = and v = w.
Choose 1 € B and take a cyclic GNS-construction (K, 6, u) for p. Fix also an orthonormal
basis (f¢)ecr, for K. Then

ZN((LUv,ei ®1)(z)* (Wy,e; ®L) (x))
el
=3 (B((@re; ® (@), 0((wore, ® 0)(@))us)
el

=305 (B((woe: ® (@), Fo)(Fe, 0(Wore, ® 0)())u)

i€l LeL

=3 > {(r20)(@)(veu),e @ fr){e: ® fi, (1@ 0)(z)(v @ u))

i€l LeL
= (1 ®6)() (v ® w), (7 © 6)(@)(v ® u)) = Wy ® wu ) (£°7) = (w0 ® 1) (z").
Consequently, the lemma follows from Lemma A4. O
The next simple lemma will turn out to be useful at several instances.

LEMMA A.6.- Consider a non-degenerate *-representation 6 of A on a Hilbert space K
and an orthonormal basis (e;)ic1 for K. Let v,w € K and z,y € N .. Then the net

(Z (e ©0w @ 8 00) )
ieJ JeF(I)
converges to p((wy,w ® t)(y*x)).

Proof. — By polarization, it is enough to prove this lemma for x = y and v = w. We have for
every J € F(I) that

Y o((@re: ® (@) (wWore, ® 1)(2)) =0 (Z(wv,ei ®1)(2)" (Wo,e; ® L)(fv)) :

ieJ ieJ

By Lemma A.5, we know that (3, ;(wy,e;, ® )()* (wy,e; ® t)(2)) JeR(D) is an increasing net
which converges strictly to (w, , ® ¢)(x*z). Hence the strict lower semi-continuity of ¢ implies
that the net

(3 ol 9000 e 90
pyt JEF(I)
converges to ¢ ((wy,» ® 1)(z*2)). O

We will now apply these results to get a sort of KSGNS-construction for the ‘C*-valued
weight’ t ® :

PROPOSITION A.7.— There exists a unique linear map A: N g, — L(A, A® H,) such that
Alz)*(a®@Ay(b) = (1 ® p)(z*(a®D))
forac AandbeN,,.
For x € N g, we put (1 ® Ay)(z) = A(z). Then we have the following properties:
e we have forall T,y € N'\g, that (L @ Ay)(y)* (. ® Ay)(z) = (L ® ¢)(y*z);

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



928 J. KUSTERMANS AND S. VAES

e consider a € M(A) and b€ N, then (L ® Ay)(a ®b) = a® Ay (b);
e we have fort € M(A® B) andy € N g, that (1 ® Ay)(zy) = (L ® 7,) (%) (L ® Ay) (y).

Proof. — Fix an orthonormal basis (e;)icr for H,.

Take z € N,g,. Using Result A.2, we define for every i € I the element ¢; € M(A) such that
1(¢:) = (Ap((n ® 1) (@), €;) forn € A*.

Choose 1 € A% and a cyclic GNS-construction (K, 6, v) for p. Fix also an orthonormal basis
(fe)eer for K. Then we have that

D omlara) =Y (0(g:)v,0(ai)v) =Y Y (6(g:)v, fo)(fe,0(a:)v)

i€l el i€l LEL
=D ) @) =D (A (wo,f, @ 0)(2)),€5)]
i€l teL teL i€l
=Y (w1, ®)(@)" (Wo 1, ®0)(@)).
el

Therefore Lemma A.6 implies that

Y onlgia) = o((h®Y(z*2)) = p(L® p)(a*z)).

el

Hence Lemma A.4 implies that the net (. ; 47 i) ser(r) converges strictly to (1 ® ) (z*z).
Take finite subsets J and K of I such that J C K and a € A. Then we have that

2
Y ga®e—Y gade Y a*giga

€K ieJ i€KNJ

)

implying that the net

(Taose)
ieJ JEF(I)

is Cauchy and hence convergentin A ® H,,.

So we can define an A-linear operator F;,: A — A® H,, such that F;;(a) =) ;. qia ®e; for
ac€A.

Because ), ;47 ¢; = (+ ® ¢)(z*z) in the strict topology, it follows that

(A3) (Fp(a),Fp(a)) =a" (¢ @ p)(z*z)a forac A.
Choose a € A, b€ A and c € N,,. Then we have for w € A* that

w((Fe(a),b®Ap(0))) =Y w((ga®@ei,b®Ay(c))) = > w(b*gia){es, Ay(c))

iel i€l

_Z<A ((awb* @ ¢)(z)), €:)(ei, Ap(c))

i€l
= (Ay((awb* ®1)(z)), Ap(c))
= (e (awb” ® 0)(2)) = (awb*) (L8 ¢) (1 © )a))
=w((L® (0" ® )a)a).
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So we see that

(A4) (Fz(a),b® Ay(0)) = (. ® ¢)((b* ® ")) a.
The Cauchy—Schwarz inequality in Proposition 1.24 implies for y € A ©® N,, that

1@ @)@ YI* < @) D) @)Yl =@ )@ 2)| I © Ay)(W)II?

This implies that there exists a unique bounded A-linear map G,:A ® H, — A such that
G:(b® Ap(c)) = (L @ p)(z*(b®¢)) for b€ A and ¢ € N,. Eq. (A4) then implies that
(Fz(a),v) =Gg(v)*afora € Aandv € AQ H,. So F belongsto L(A,AQ H,) and F, = G%.

Now define the map A: N ,g, — L(A, A ® H,) such that A(z) = F, for z € N,g,. So we
have that A(z)*(b® A,(c)) = (L ® p)(z*(b®c)) forbe A, c € Ny and z € N 5.

This implies immediately that A is linear and that A(a ® b) = a ® A, (b) for a € M(A) and
beN,.

Eq. L?A.3) implies that A(z)*A(z) = (¢ ® ¢)(z*x) for € N,g, so polarization yields that
Ay)*A(z) = (L ® ) (y*z) for z,y € N g0

Choose b € A and c € N,,. Then we have for z € A ® B that

2 *
68408 =¢84, (080) ¢ ®4,) (6a)]

=) (e z (@)

<zl [cop) (b (o) =z b]*¢(c ).
So the linear mapping A® B — L(A,A® H,): 2z (1 ® Ay)(2(b® c)) is bounded. This is of
course also true for the linear mapping A® B — L(A,A® H,): 2~ (1 ®m,)(2)(b® Ay (c)).

It is easy to see that both mappings above agree on A ® B so they agree on A ® B, i.e.

(t®AL)(2(b®¢)) =(1®Ty)(2) (bR Ay(c)) for z€ A® B.

Now choose = € NV,g, and z € M(A ® B). Take an approximate unit (u;);jc; for A ® B.
Then we have for j € I and b € A, c € N, that

[(t®@7p) (1) (¢ @ Tp)(2) (¢ ® Ay) ()] * (b®Ay(c))

[(t®my)(ujz )(L®A¢)(:c)]*(b®A¢(c))

(t®Ap)(@)" (1@ ) (2"u5) (b ® Ap(c)) = (1 ® Ap) ()" (. ® Ay) (27w} (b ® )
( )

(

L p) (:c*z*u* (b®c)) =@ Ay)(22)* (L ® Ay) (u; (b®c))
1®Ap)(22)* (L @ Tp) (u] )(b ® A¢(c)) = [(L Q@ m)(u;)(t ® Aq,)(zx)] * (b ® Aw(c)).

Hence (¢ ® m,)(u;)(t @ mp)(2)(t @ Ap)(z) = (¢ ® my)(u;) (¢ ® Ay)(2z) for all j € J, so
(t®7)(2) (L ® Ap)(x) = (t® Ay)(27). D

A.2. Partial GNS-construction for the tensor product of two weights

Throughout this subsection, we will fix C*-algebras A and B, a proper weight ¢ on A and a
proper weight 1) on B. At the same time, we fix a GNS-construction (H,,7,,A,) for ¢ and a
GNS-construction (Hy, 7y, Ay) for . For used notations, we refer to Subsection 1.6.

PROPOSITION A.8. — The following properties hold:

o the mapping Ay, ® Ay : N (p,v) — H, ® Hy, is a linear map which is closed with respect
to the strict topology on A ® B and the norm topology on H, @ Hy;

o the mapping A, ® Ay : N (p,9) — H, ® Hy is closable with respect to the strict e strict topology
on M(A ® B) and the norm topology on H, ® Hy. Denote its closure by A, @ Ay,. Then
D(A, ® Ay) =N (p,%) and we put (A, ® Aw)( )= (R ®Ay)(a) forae N’(so,d))
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o {(Ay ® Ay)(2), (Ay ®Ay)(y)) = (0 ® P)(y*2) for z, y € N (0, ¥);

o N(p,v) and N (p,v) are left ideals in M(A ® B) and (7, ® my)(z)(Ay @ Ay)(a) =
(Ay ® Ay)(za) for € M(A® B) and a € N (p, ).

Proof. — Define a mapping I': N(¢p, 1) — » ® Hy as follows.

Consider z € N (¢, ). Then we define I'(z) € H, ® Hy, such that

(T(x), Ap(a) ® Ay (b)) = (¢ @ ¥) ((a” @ b")z)

fora e N,, be Ny. So Ay, ® Ay is the restriction of ' to N (¢, 9).

Fix a GNS-construction (H,m, A) for ¢ ® 9 and define the isometry U : H, ® Hy — H such
that U(Ay(a) ® Ay (b)) = Ala ®b) for a € N, and b € Ny,. We have for all z € N g, and
a €N, and b € Ny that

(U*A(x), Ap(a) ® Ay (b)) = (A(2),U(Ag(a) ® Ay (D))
—<Ax a®b)>=(<p®¢)((a*®b*)x).
This implies for every z € N gy that € N(p,v) & [|[U*A@)|? = (p ® ¥)(z*z) &
|U*A(z)|| = |A(z)]| & A(z) e U(H, ® Hy). Moreover, I'(z) = U*A(z) and UT'(z) = A(x)
for all x € N(p, ).

This implies easily that E (p, ) is a subspace of M(A ® B) and that the map I is linear. We
also have for every z, y € N'(p, ) that

(T(x),L(y)) = (UT(x),UT(y)) = (A(2), A(y)) = (¢ ® ¥)(y"2).

Choose z € M(A ® B) and a € N (i, ). It is easy to see that U(m, ® my)(z) = 7(z)U (by
checking it first on simple tensors and then using continuity arguments). Then za € N oy and

A(za) = n(z)Ala) =7(2)UT (a) =U(n, @ my)(x)T'(a) € U(H, @ Hy).
Hence

(A5) za € N(p,%) and T(za)=U*A(za)= (7, ® my)(x)T(a).

Choose a net (z;);er in N(p,¢), 2 € M(A® B) and v € H, ® Hy, such that (z;)er
converges strictly to z and (I'(z;))sc1 converges to v. Because UT'(z;) = A(z;) for i € I, this
implies that (A(x;))icr converges to Uv. So the strict closedness of A (see Proposition 1.9)
implies that z € N ,gy and A(z) = Uv. Since A(z) € U(H, ® Hy), we get that z € N (¢, 1))
and I'(z) = U*A(z) = v. Hence I is strict-norm closed. Since A, ® Ay, is the restriction of I" to
N(p,) N A, it follows that A, ® Ay, is also strict-norm closed as a map on A ® B.

Using Eq. (A.5) and an approximate unit for A, we see that A'(p, %) is a strict core forI'. O

PROPOSITION A.9.- Consider an orthonormal basis (e;)icr for Hy. Let x € N gy and
y € Ny. Then z (y ® 1) belongs to N (i, 1),

1A (@a, e ®D@)|* = (@) (0" @ D a*z (y©1))
i€l

= (¥ (t®Y)(z*z)y) < oo

and

(A @A) (2(y® 1) =) € ® Ay ((Wa, (), ® ) (@)).
i€l
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Proof. — We have that

(@) (¥ @z*z(y®1)) = S (W®0)((y* @)z z(y®1))

= sup ( sup w(y* (L@ O)(z"2)y))-
w€EG, 0EGy,

Since ((¢®0)(z*x))oeg,, is an increasing net which converges strictly to (1 ®1))(z* ), the above
equality implies that

(A6) (p@9¥)((¥* @ )z*z(y®1)) = Sup w(y* (@Y (e r)y) = o(¥* (L @ ¥)(z*z)y).

So we have in particular that z(y ® 1) € N ygy. Now
2 *
D Ay (@Wap e @ D@7 =Dt ((Wa,wye: ® @) (Wa,y).e; ® (@)
i€l i€l
Using Lemma A.6, the above equality implies that

S A (@ap e @ @) [I° = ((@n, @), 00 ) @ V) ("2))

i€l
=wn, w4, ((L@Y)(@"T))
=(poy)(y"@l)"z(y®1)).
Putv=>3".c;€ ® Ay((wa,(y),e; ®t)(x)). Then itis clear that

[o]I* = (p @ 9)((y* ®@ D)z (y ©1)).
Now, choose a € N, and b € N;,. Then we have that
(A7) (0,Ap(a) @ Ay (b)) =D (ei, Ap(a)) (A (Wa, (y),e @ 1)(@)), Ay (b))
el
We have for w € H,, that

14w (@A, 0 ® (@) | = (@, ()0 ® (@) WA, ()0 @ 0)(2))
< NwlPY ((Wa, ), 4,) @ ) (@*T)).

So we get that the antilinear map H, — Hy 1w +— Ay ((Wa, (y),w ®t)(z)) is bounded. Therefore
Eq. (A.7) implies that

(v, Ap(a) ® Ay (b)) = (Ay (W, (y),A, () © £)()), Ay (b))
=P (0" (WA, @) A (@) B V(@) =Wa, )0, (@ (L@ $)((1 D))
=(p®Y)((a" ®b)z(y®1)),
where the last equality follows in a similar way as Eq. (A.6) by using polarization. 0O

Note added in proof. — Recently, the second author proved that in fact for arbitrary proper
weights ¢ and 1 on C*-algebras A and B, one has that N'(¢, 1) = N4, and hence also that
(Hy ® Hy,mp @ Ty, Ap ® Ay) is a GNS-construction for ¢ ® ). Moreover one can prove that
N, ® Ny is a core for A, ® Ay.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



932 J. KUSTERMANS AND S. VAES

REFERENCES

[1]1 ABE E., Hopf Algebras, Cambridge Tracts in Mathematics, Vol. 74, Cambridge University Press,
Cambridge, 1980.
[2] BAAT S., Représentation réguliere du groupe quantique des déplacements de Woronowicz,
Astérisque 232 (1995) 11-48.
[3] BAAJ S., Représentation réguliere du groupe quantique E,(2), C. R. Acad. Sci. Paris, Série I 314
(1992) 1021-1026.
[4] BAAT S., Multiplicateurs non bornés, Thése 3™ cycle, Université Paris-6, 1980.
[5] BAAT S., Prolongement d’un poids, C. R. Acad. Sci., Paris, Série A 288 (1979) 1013-1015.
[6] BAAT S., SKANDALIS G., Unitaires multiplicatifs et dualité pour les produits croisés de C*-algebres,
Ann. Scient. Ec. Norm. Sup., 4° série 26 (1993) 425-488.
[7] BANICA T., Le groupe quantique compact libre U(n), Commun. Math. Phys. 190 (1997) 143-172.
[8] BusBY R.C., Double centralizers and extensions of C*-algebras, Trans. Amer. Math. Soc. 132 (1968)
79-99.
[9] CIORANESCU L., ZSIDO L., Analytic generators for one-parameter groups, T6hoku Math. J. 28 (1976)
327-362.
[10] CoMBEs F., Poids associé a une algebre hilbertienne a gauche, Compos. Math. 23 (1971) 49-717.
[11] CoMBES F., Poids sur une C*-alggbre, J. Math. Pures et Appl. 47 (1968) 57-100.
[12] D’ANTONI C., ZSIDO L., Groups of linear isometries on multiplier C*-algebras, Pac. J. Math. 193 (2)
(2000) 279-306.
[13] DRINFEL’D V.G., Quantum groups, Proceedings ICM Berkeley (1986) 798-820.
[14] EFFrOS E., RUAN Z.-J., Discrete quantum groups I: The Haar measure, Int. J. Math. § (5) (1994)
681-723.
[15] ENOCK M., SCHWARTZ J.-M., Kac Algebras and Duality of Locally Compact Groups, Springer-
Verlag, Berlin, 1992.
[16] ENOCK M., VALLIN J.-M., C*-algébres de Kac et algebres de Kac, Proc. London Math. Soc. 66 (3)
(1993) 619-650.
[17] HAAGERUP U., Operator-valued weights in von Neumann algebras, I, J. Funct. Anal. 32 (1979) 175—
206.
[18] HAAGERUP U., Normal weights on W*-algebras, J. Funct. Anal. 19 (1975) 302-317.
[19] KIRCHBERG E., Lecture on the conference ‘Invariants in operator algebras’, Copenhagen, August
1992.
[20] KOELINK H.T., Addition formula for a 2-parameter family of Askey—Wilson polynomials, Preprint,
KU Leuven, 1994.
[21] KOELINK H.T., On quantum groups and g-special functions, PhD-thesis, Rijksuniversiteit Leiden,
1991.
[22] KOELINK H.T., VERDING J., Spectral analysis and the Haar functional on the quantum SU(2) group,
Commun. Math. Phys. 177 (1996) 399-415.
[23] KUSTERMANS J., Locally compact quantum groups in the universal setting, Int. J. Math., to appear.
#math/9902015.
[24] KUSTERMANS J., KMS-weights on C*-algebras, Preprint, Odense Universitet, 1997. #funct-
an/9704008.
[25] KUSTERMANS J., One-parameter representations on C*-algebras, Preprint, Odense Universitet, 1997.
##funct-an/9707010.
[26] KUSTERMANS J., The functional calculus of regular operators on Hilbert C*-modules revisited,
Preprint, Odense Universitet, 1997. #funct-an/9706007.
[27] KUSTERMANS J., VAES S., A simple definition for locally compact quantum groups, C. R. Acad. Sci.
Paris, Série I 328 (10) (1999) 871-876.
[28] KUSTERMANS J., VAES S., The operator algebra approach to quantum groups, Proc. Natl. Acad.
Sc. 97 (2) (2000) 547-552.
[29] KUSTERMANS J., VAES S., Locally compact quantum groups in the von Neumann algebraic setting,
Preprint, KU, Leuven, 2000. #math.OA/0005219.

4° SERIE — TOME 33 — 2000 - N° 6



LOCALLY COMPACT QUANTUM GROUPS 933

[30] KUSTERMANS J., VAES S., Weight theory for C*-algebraic quantum groups, Preprint, KU Leuven &
University College Cork, 1999. #math/9901063.

[31] KUSTERMANS J., VAN DAELE A., C*-algebraic quantum groups arising from algebraic quantum
groups, Int. J. Math. 8 (8) (1997) 1067-1139. #q-alg/9611023.

[32] LANCE C., Hilbert C*-Modules. A Toolkit for Operator Algebraists, London Math. Soc. Lect. Note
Series, Vol. 210, Cambridge University Press, Cambridge, 1995.

[33] MASUDA T., NAKAGAMI Y., A von Neumann algebra framework for the duality of the quantum
groups, Publ. RIMS, Kyoto University 30 (1994) 799-850.

[34] MASUDA T., NAKAGAMI Y., WORONOWICZ S.L., Lectures at the Fields Institute and at the
University of Warsaw, 1995.

[35] PEDERSEN G.K., C*-Algebras and their Automorphism Groups, Academic Press, London, 1979.

[36] PEDERSEN G.K., TAKESAKI M., The Radon-Nikodym theorem for von Neumann algebras, Acta
Math. 130 (1973) 53-87.

[37] PODLES P., Quantum spheres, Lett. Math. Phys. 14 (1987) 193-202.

[38] PODLES P., WORONOWICZ S.L., Quantum deformation of Lorentz group, Commun. Math. Phys. 130
(1990) 381-431.

[39] QUAEGEBEUR J., VERDING J., A construction for weights on C*-algebras. Dual weights for C*-
crossed products, Int. J. Math. 10 (1) (1999) 129-157.

[40] QUAEGEBEUR J., VERDING J., Left invariant weights and the left regular corepresentation for locally
compact quantum semi-groups, Preprint, KU Leuven, 1994.

[41] RIEFFEL M.A., Compact quantum groups associated with toral subgroups, Contemp. Math. 145
(1993) 465-491.

[42] RIEFFEL M. A, Deformation quantization of Heisenberg manifolds, Commun. Math. Phys. 122 (1989)
531-562.

[43] RIEFFEL M.A., Integrable and proper actions on C*-algebras, and square-integrable representations
of groups, 1998. #math/9809098.

[44] RIEFFEL M.A., Some solvable quantum groups. Operator algebras and topology, in: Arveson W.B.
et al. (Eds.), Proceedings of the OATE 2 Conference Bucharest, Romania, 1989, Pitman Research
Notes in Mathematics, Vol. 270, 1992, pp. 146-159.

[45] SAKALS., C*-Algebras and W™ -Algebras, Springer-Verlag, Berlin, 1971.

[46] STRATILA S., Modular Theory in Operator Algebras, Abacus Press, Tunbridge Wells, England, 1981.

[47] STRATILA S., ZSIDO L., Lectures on von Neumann Algebras, Abacus Press, Tunbridge Wells,
England, 1979.

[48] TAKESAKI M., Theory of Operator Algebras I, Springer-Verlag, New York, 1979.

[49] TAYLOR D.C., The strict topology for double centralizer algebras, Trans. Amer. Math. Soc. 150 (1970)
633-643.

[50] VAES S., The unitary implementation of a locally compact quantum group action, J. Funct. Anal., to
appear. #math.OA/0005262.

[51] VAES S., Examples of locally compact quantum groups through the bicrossed product construction,
in: Proceedings of the XIlIth International Conference on Mathematical Physics, London, 2000, to
appear.

[52] VAES S., A Radon-Nikodym theorem for von Neumann algebras, J. Oper Th., to appear.
#math.OA/9811122.

[53] VAES S., Hopf C*-algebras, Masters Thesis, KU Leuven, 1998.

[54] VAES S., VAN DAELE A., Hopf C*-algebras, Proc. London Math. Soc., to appear. #math.OA/
9907030.

[55] VAINERMAN L.I., KAc G.I., Nonunimodular ring-groups and Hopf—von Neumann algebras, Math.
USSR, Sbornik 23 (1974) 185-214.

[56] VAINERMAN G.I., KAc G.I., Nonunimodular ring-groups and Hopf-von Neumann algebras, Soviet
Math. Dokl. 14 (1973) 1144-1148.

[57] VAKSMAN L.L., SOIBEL’MAN Y.S., Algebra of functions on the quantum group SU(2), Funct. Anal.
Appl. 22 (1988) 170-181.

[58] VALLIN J.-M., C*-algebres de Hopf et C*-algebres de Kac, Proc. London Math. Soc. 50 (3) (1985)
131-174.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



934 J. KUSTERMANS AND S. VAES

[59] VAN DAELE A., An algebraic framework for group duality, Adv. in Math. 140 (1998) 323-366.

[60] VAN DAELE A., Discrete quantum groups, J. Algebra 180 (1996) 431-444.

[61] VAN DAELE A., The Haar measure on a compact quantum group, Proc. Amer. Math. Soc. 123 (1995)
3125-3128.

[62] VAN DAELE A., Multiplier Hopf Algebras, Trans. Amer. Math. Soc. 342 (1994) 917-932.

[63] VAN DAELE A., WANG S.Z., Universal quantum groups, Int. J. Math. 7 (2) (1996) 255-263.

[64] VAN DAELE A., WORONOWICZ S.L., Duality for the quantum E(2) group, Pacific J. Math. 173 (2)
(1996) 375-385.

[65] VERDING J., Weights on C*-algebras, PhD Thesis, KU Leuven, 1995.

[66] WANG S.Z., Free Products of compact quantum groups, Commun. Math. Phys. 167 (1995) 671-692.

[67] WorRONOWICZ S.L., Compact quantum groups, in: Symétries Quantiques (Les Houches, 1995),
North-Holland, Amsterdam, 1998, pp. 845-884.

[68] WORONOWICZ S.L., From multiplicative unitaries to quantum groups, Int. J. Math. 7 (1) (1996) 127-
149.

[69] WoRroNowICZ S.L., Quantum E(2) group and its Pontryagin dual, Lett. Math. Phys. 23 (1991) 251-
263.

[70] WoroNOWICZ S.L., Unbounded elements affiliated with C*-algebras and non-compact quantum
groups, Commun. Math. Phys. 136 (1991) 399-432.

[71] WoroNOwWICZ S.L., Tannaka—Krein duality for compact matrix pseudogroups. Twisted SU(NN)
groups, Invent. Math. 93 (1988) 35-76.

[72] WORONOWICZ S.L., Compact matrix pseudogroups, Commun. Math. Phys. 111 (1987) 613-665.

[73] WoroNowICz S.L., Twisted SU(2) group. An example of a non-commutative differential calculus,
Publ. RIMS, Kyoto University 23 (1987) 117-181.

[74] WoroNowICcZ S.L., Pseudospaces, pseudogroups and Pontrjagin duality, in: Proceedings of the
International Conference on Mathematical Physics (Lausanne, 1979), Lecture Notes in Physics,
Vol. 116, 1980, pp. 407-412.

(Manuscript received July 1, 1999.)

Johan KUSTERMANS
Department of Mathematics,
University College Cork,
Western Road,

Cork, Ireland
E-mail: johank @ucc.ie

Stefaan VAES
Department of Mathematics,
KU Leuven,
Celestijnenlaan 200B,
B-3001 Heverlee, Belgium
E-mail: Stefaan.Vaes @wis.kuleuven.ac.be

4¢ SERIE — TOME 33 — 2000 - N° 6



