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HYPERBOLIC GROUPS WITH LOW-DIMENSIONAL
BOUNDARY

BY MIcHAEL KAPOVICH * AND BRUCE KLEINER !

ABSTRACT. — If a torsion-free hyperbolic group G has 1-dimensional boundary 9. G, then OxG is
a Menger curve or a Sierpinski carpet provided G' does not split over a cyclic group. When 9,G is
a Sierpinski carpet we show that G is a quasi-convex subgroup of a 3-dimensional hyperbolic Poincaré
duality group. We also construct a “topologically rigid” hyperbolic group G: any homeomorphism of 0. G
is induced by an element of G. © 2000 Editions scientifiques et médicales Elsevier SAS

RESUME. — Soit G un groupe hyperbolique (au sens de Gromov) sans torsion. Si la dimension topologique
du bord 9.0G est égale a un, et G n’est ni un produit amalgamé, ni une extension HNN sur un groupe
cyclique, on montre que 9 G est homéomorphe a I’éponge de Menger ou au tapis de Sierpinski. Si 0ocG
est homéomorphe au tapis de Sierpinski, on montre que G est isomorphe & un sous-groupe quasi convexe
d’un groupe de dimension trois de dualité de Poincaré. On construit un exemple d’un groupe hyperbolique
G qui est «topologiquement rigide » : chaque homéomorphisme du bord O G est induit par un élément
g € G. © 2000 Editions scientifiques et médicales Elsevier SAS

1. Introduction

We recall that the boundary 0o, X of a locally compact Gromov hyperbolic space X is a
compact metrizable topological space. Brian Bowditch observed that any compact metrizable
space Z arises this way: view the unit ball B in Hilbert space as the Poincaré model of infinite-
dimensional hyperbolic space, topologically embed Z in the boundary of B, and then take the
convex hull CH(Z) to get a locally compact Gromov hyperbolic space with 0cCH(Z) = Z.
On the other hand when X is the Cayley graph of a Gromov hyperbolic group G, then the
topology of oo X ~ oG is quite restricted. It is known that J,,G is finite-dimensional, and
either perfect, empty, or a two element set (in the last two cases the group G is elementary).
It was shown recently by Bowditch and Swarup [13,41] that if 0,,G is connected then it does
not have global cut-points, and thus is locally connected according to [11]. The boundary of G
necessarily has a “large” group of homeomorphisms: if G is nonelementary, then its action on
000G is minimal, and G acts on 0,,G as a discrete uniform convergence group. It turns out
that the last property gives a dynamical characterization of boundaries of hyperbolic groups,
according to a theorem of Bowditch [14]: if Z is a compact metrizable space with |Z| > 3 and
G C Homeo(Z) is a discrete uniform convergence subgroup, then G is hyperbolic and Z is G-
equivariantly homeomorphic to 0,,G. In general the action G ~ 0., G is not effective, but if G
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648 M. KAPOVICH AND B. KLEINER

is nonelementary, its ineffective kernel is a finite normal subgroup N <1 G; moreover, every finite
normal subgroup of G is contained in N. We let G denote the quotient G/N.
There are two questions which arise naturally:

QUESTION A. — Which topological spaces are boundaries of hyperbolic groups?

QUESTION B. - Given a topological space Z, which hyperbolic groups have Z as the
boundary?

Regarding Question A, all spheres, some homology spheres [20], the Sierpinski carpet, and the
Menger curve [5] arise as boundaries of hyperbolic groups. Moreover, according to Gromov and
Champetier [18], “generic” finitely presentable groups are hyperbolic and have the Menger curve
as boundary. On the other hand, as was noticed by Bestvina, it is unknown if higher-dimensional
universal Menger compacta [6] appear as boundaries of hyperbolic groups (Dranishnikov has
constructed hyperbolic groups with boundary homeomorphic to the 2-dimensional Menger
compactum, [21]).

Considerably less is known about Question B. If 0,,G is zero-dimensional, then G is a
virtually free group [40,26,25]. Recently, it was proven in [24,17,43] that any hyperbolic group
whose boundary is homeomorphic to S acts discretely, cocompactly, and isometrically on the
hyperbolic plane. We call such a group virtually Fuchsian. The case when 0., G ~ S? is a difficult
open problem:

CONJECTURE 1 (J. Cannon). — If G is a hyperbolic group whose boundary is homeomorphic
to S?, then G acts isometrically and properly discontinuously on hyperbolic 3-space H?.

In Section 7 we construct new examples of hyperbolic groups for which we answer Question B
completely. These groups have a remarkable topological rigidity property:

DEFINITION 2. — A hyperbolic group G is said to be topologically rigid if every homeomor-
phism f: 050G — O G is induced by an element of G.

Remark 3. — Actually, the topologically rigid groups constructed in this paper are even locally
topologically rigid in the following sense: if U, V' C 0, G are connected open subsets, then any
homeomorphism U — V is induced by an element of G.

Our examples are the first known topologically rigid nonelementary hyperbolic groups (finite
groups and groups G which fit into an exact sequence

1 — finite group — G — Z/2xZ/2 — 1

are topologically rigid for trivial reasons). The Cayley graph of a topologically rigid nonele-
mentary hyperbolic group is a quasi-isometrically rigid metric space (every quasi-isometry is
within bounded distance from an isometry) (see Lemma 18). Previously known examples of
quasi-isometrically rigid metric spaces include quaternionic hyperbolic spaces and the Cayley
hyperbolic plane [35], higher rank symmetric spaces of noncompact type [32], Cayley graphs
of maximal non-arithmetic nonuniform lattices in isometry groups of rank 1 symmetric spaces
of dimension > 2 [37], and universal covers of compact hyperbolic n-manifolds with nonempty
totally geodesic boundary 2, n > 3. Topologically rigid groups have an even stronger rigidity
property than quasi-isometrically rigid groups (see Lemma 19):

2 This was observed in a discussion Bernhard Leeb, Richard Schwartz, and the authors. The rigidity statement follows
from a doubling construction and the technique of [37].
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HYPERBOLIC GROUPS WITH LOW-DIMENSIONAL BOUNDARY 649

If G’ is a hyperbolic group whose boundary is homeomorphic to the boundary of a
topologically rigid hyperbolic group G, then G’ embeds in G as a finite index subgroup.

The topologically rigid groups mentioned above have 2-dimensional boundary; we prove
in Corollary 17 that this is the minimal dimension for the boundary of a nonelementary
topologically rigid group.

The remaining results of our paper concern hyperbolic groups with one-dimensional boundary.

THEOREM 4. — Let G be a hyperbolic group which does not split over a finite or virtually
cyclic subgroup, and suppose OxoG is 1-dimensional. Then one of the following holds (see
Section 2 for definitions):

(1) 0sG is a Menger curve;

(2) 0@ is a Sierpinski carpet;

(3) 0xG is homeomorphic to S' and G maps onto a Schwartz triangle group with finite

kernel.

It is probably impossible to classify hyperbolic groups whose boundaries are homeomorphic to
the Menger curve (since this is the “generic” case); however, it appears that a meaningful study is
possible in the case of hyperbolic groups whose boundaries are homeomorphic to the Sierpinski
carpet. Recall that the Sierpinski carpet S has a canonical collection of peripheral circles (see
Section 2).

THEOREM 5. — Suppose that 0o G = S. Then:

(1) there are only finitely many G-orbits of peripheral circles;

(2) the stabilizer of each peripheral circle C' is a quasi-convex virtually Fuchsian group which
acts on C' as a uniform convergence group. We call these subgroups peripheral subgroups
of G;

(3) if we “double” G along the collection of peripheral subgroups using amalgamated free
product and iterated HNN-extension (see Section 5), then the result is a hyperbolic group
G which contains G as a quasiconvex subgroup; R

(4) the boundary of G is homeomorphic to S%. Hence by [11,7], G is a 3-dimensional Poincaré
duality group in the torsion-free case;

(5) when G is torsion free, then (G; H1, ..., Hy) is a 3-dimensional Poincaré duality pair
(see [22] for the definition), where H1, ..., H; are the peripheral subgroups of G.

A similar result holds in the case of higher-dimensional analogs of the Sierpinski carpet, except
that in Part 2 one says that peripheral sphere stabilizers are hyperbolic groups with spherical
boundary.

Known examples of groups with Sierpinski carpet boundary are consistent with the following:

CONJECTURE 6. — Let G be a hyperbolic group with Sierpinski carpet boundary. Then G
acts discretely, cocompactly, and isometrically on a convex subset of H with nonempty totally
geodesic boundary.

There is now some evidence for this conjecture. It would follow from a positive solution of
Cannon’s conjecture together with Theorem 5 (see Section 5). Alternatively, in the torsion-free
case, if one could show that (hyperbolic) 3-dimensional Poincaré duality groups are 3-manifold
groups, then Thurston’s Haken uniformization theorem could be applied to an irreducible 3-
manifold with fundamental group isomorphic to the group G produced in Theorem 5. Under
extra conditions (such as coherence and the existence of a nontrivial splitting) it appears that one
can show that a 3-dimensional Poincaré duality group is a 3-manifold group.

The conjecture above leads one to ask which hyperbolic groups have planar boundary.
Concretely, one may ask if a torsion-free hyperbolic group with planar boundary has a finite
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650 M. KAPOVICH AND B. KLEINER

index subgroup subgroup isomorphic to a discrete convex cocompact subgroup of Isom(H?).
Here is a cautionary example which shows that in general it is necessary to pass to a finite
index subgroup: if one takes a surface of genus 1 with two boundary components and glues one
boundary circle to the other by a degree 2 map, then the fundamental group G of the resulting
complex K enjoys the following properties (see Section 8):

(1) G is torsion-free and hyperbolic;

(2) G contains a finite index subgroup which is isomorphic to a discrete, convex cocompact
subgroup of Isom(HH?) which does not act cocompactly on H?. In particular, the boundary
of G is 1-dimensional and planar;

(3) G is not a 3-manifold group.

2. Preliminaries

Properties of hyperbolic groups and spaces

For a proof of the following properties of hyperbolic groups, we refer the reader to [26,1,25,
14].

Let G be a nonelementary Gromov hyperbolic group, and suppose G acts discretely and
cocompactly on a locally compact geodesic metric space X. Then the boundary of X is
a compact metrizable space J-,X on which Isom(X) acts by homeomorphisms. For any
f € Isom(X), we denote the corresponding homeomorphism of 0, X by O f. The action
of G on 05X is minimal, i.e. the G-orbit of every point is dense in 0o, X. Let BgoX =
Oso X X 05X — Diag be the space of distinct pairs in 0., X. Then the set of pairs of points
(z,y) € 02, X which are fixed by an infinite cyclic subgroup of G is dense in 0% X. We let
02X = 0%, X/(x,y) ~ (y,2).

The group G acts cocompactly and properly discontinuously on 93X := {(z,y,2) €
(0o X)? | 2, y, 2 distinct}. There is a natural topology on X U 0o, X which is a G-invariant
compactification of X, and this is compatible with the topology on 9, X .

Recall that a subset S of a geodesic metric space is C-quasi-convex if every geodesic segment
with endpoints in S is contained in the C-tubular neighborhood of S. Quasi-convex subsets of
6-hyperbolic metric spaces satisfy a visibility property (cf. [23]):

Given R, C, 6 € (0,00) there is an R’ with the following property (we may take R' =
R+100). If X is a 6-hyperbolic metric space, Y C X is C-quasi-convex, and x € X satisfies
d(z,Y) = R/, then given any two unit speed geodesics 71, 72 starting at ¢ and ending in'Y,
and any t € [0, R] we have d(y1(t),Im(y2)) < 6 and d(y2(t),Im(y1)) < 6.

As a consequence of the visibility property, if Y, C X is a sequence of C-quasi-convex subsets
of a §-hyperbolic space X, and d(z, Yx) — oo as k — oo, then a subsequence of Y}’s converges
to a single point £ € 0 X .

Sierpinski carpets and Menger curves

The classical construction of a Sierpinski carpet is analogous to the construction of a Cantor
set: start with the unit square in the plane, subdivide it into nine equal subsquares, remove the
middle open square, and then repeat this procedure inductively on the remaining squares. If
we take a sequence D; C S? of disjoint closed 2-disks whose union is dense in S? so that
Diam(D;) — 0 as i — oo, then S* — |J, Interior(D;) is a Sierpinski carpet; moreover, any
Sierpinski carpet embedded in S? is obtained in this way [45]. Sierpinski carpets can also be
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HYPERBOLIC GROUPS WITH LOW-DIMENSIONAL BOUNDARY 651

characterized as follows [45]: a compact, 1-dimensional, planar, connected, locally connected
space with no local cut points is a Sierpinski carpet.
We will use a few topological properties of Sierpinski carpets S:
(1) there is a unique embedding of S in S? up to post-composition with a homeomorphism
of §2;

(2) there is a countable collection C of “peripheral circles” in S, which are precisely the
nonseparating topological circles in S;

(3) given any metric d on S and any number D > 0, there are only finitely many peripheral
circles in S of diameter > D.

The Menger curve may be constructed as follows. Start with the unit cube I° in R3. Consider
the orthogonal projections 7;; : I> — F;; of the unit cube onto the ij coordinate square, and let
Si; C F;; be the Sierpinski carpet as constructed above. The Menger curve is the intersection
Ni< j wi;I(Sij). The Menger curve is universal among all compact metrizable 1-dimensional
spaces: any such space can topologically embedded in the Menger curve. By [2,3], a compact,
metrizable, connected, locally connected, 1-dimensional space is a Menger curve provided it has
no local cut points, and no nonempty open subset is planar.

3. Proof of Theorem 4

The fact that G does not split over a finite group implies [40] that G is one-ended, and 0, G is
connected. Recall that by the results of [11,13,41], the boundary of a one-ended hyperbolic group
is locally connected and has no global cut points; furthermore, if 0, G has local cut points then
G splits over a virtually infinite cyclic subgroup unless 95, G ~ S' and G maps onto a Schwarz
triangle group with finite kernel. Therefore from now on we will assume that J.,G has no local
cut points.

A 1-dimensional, compact, metrizable, connected, locally connected space Z with no local
cut points is a Menger curve provided no point z € Z has a neighborhood which embeds in
the plane (see Section 2). Hence either 0,,G is a Menger curve or some £ € J,,G has a planar
neighborhood U'; therefore we assume the latter holds.

LEMMA 7.—Let I' C 0o G be a subset homeomorphic to a finite graph. Then I is a planar
graph.

Proof. — Since the action of G on 0-G is minimal, every G-orbit intersects the planar
neighborhood U, and so every point of 0sG has a planar neighborhood. Because 0o,G has
no local cut points, we have 9.,G \ I" # (). So we can find a hyperbolic element g € G whose
fixed point set {n1,72} C JooG is disjoint from I" (Section 2). Hence for sufficiently large n,
g™(I") is contained in a planar neighborhood of 7; or 7.

We recall [19,34] that a compact, metrizable, connected, locally connected space X with no
global cut points is planar as long as no nonplanar graph embeds in X . Therefore 0, G is planar.
Finally, by [45], O G is Sierpinski carpet. O

4. Groups with Sierpinski carpet boundary

Let M be a compact hyperbolic manifold with nonempty t(}@lly geodesic boundary and let

G := 71 (M) be its fundamental group. The universal cover M of M may be identified with
a closed convex subset of H® which is bounded by a countable disjoint collection P of totally

geodesic planes. Each P € P bounds an open half-space disjoint from M. M is obtained from H3
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652 M. KAPOVICH AND B. KLEINER

by removing each of these open half-spaces, and Do M C 9o H3 is obtained from 9o H® ~ S2
by deleting the open disks corresponding to these half-spaces. The closures of these disks are
disjoint since the distance between distinct elements of P is bounded away from zero. As E)OOM
has no interior points in S?,itis a Sierpinski carpet (see Section 2). Note that the peripheral circles
of 0.oM are in one-to-one correspondence with elements of P, and therefore the conjugacy
classes of G-stabilizers of peripheral circles are in one-to-one correspondence with P /G, the set
of boundary components of M. The stabilizer of a peripheral circle is the same as the stabilizer
of the corresponding element of P, so these stabilizers are quasi-convex in G.

The next theorem shows that similar conclusions hold for any hyperbolic group whose
boundary is a Sierpinski carpet.

THEOREM 8. — Let G be a hyperbolic group with boundary homeomorphic to the Sierpinski
carpet S. Then:
(1) there are finitely many G-orbits of peripheral circles in S;

(2) the stabilizer of each peripheral circle C is a quasi-convex subgroup G whose boundary
is C.

Proof. — We recall that G acts cocompactly on the space 93G = {(2,y,2) € (0xG)? |
z, y, z distinct}. Therefore if Ci, C 95, G is a sequence of peripheral circles, (zx, yk, 2k) € 0°G
and {zk, Yk, zr} C Ck, then after passing to a subsequence we may find a sequence gi € G,
(T oo, Yoo, 200) € O3G so that (gxTk, GkYk, gk 2k ) CONVETZES 10 (T oo, Yoo, Zoo)- But this means that
Diam(gg(C%)) is bounded away from zero, so gi(C%) belongs to a finite collection of peripheral
circles, and hence g (C}) is eventually constant. We conclude that there are only finitely many
G-orbits of peripheral circles, and the stabilizer of any C € C acts cocompactly on the space of
distinct triples in C. By [13] Stab(C)) is a quasi-convex subgroup of G, and JuStab(C) =
From now on we will refer to stabilizers of peripheral circles as peripheral subgroups. By [24,17,
43] each peripheral subgroup is, modulo a finite normal subgroup, a cocompact Fuchsian group
in Isom(H?). O

5. Doubling Sierpinski carpet groups along peripheral subgroups

In this section we prove Theorem 5.

Let G be a hyperbolic group with 9,G ~ S, and let Hy,..., Hj be a set of representatives
of conjugacy classes of peripheral subgroups of G. We define a graph of groups G as follows.
The underlying graph has two vertices and k edges (no loops). Each vertex is labelled by a copy
of G, the ith edge is labelled by H;, and the edge homomorphisms H; — G are given by the
inclusions. We let G be the fundamental group of G.

Next we construct a tree of spaces on which the group G acts in a natural way. Let X be a
finite Cayley 2-complex for G, and let X; be a finite Cayley 2-complex for the group H;. The
inclusion H; — G is induced by a cellular map h;: X; — Xo between the 2-complexes. Let
h:JX; — Xo be the corresponding map from the disjoint union of the X;’s to Xy, and let X
denote the mapping cylinder of h.

Let DX be the double of X along the-collection of subcomplexes X;, i =1,..., k. Consider
now the universal cover DX of DX with the deck transformation group G. Let Y be the 1-
skeleton of DX. The 1-skeletons of the subcomplexes X;, ¢ = 1,...,k, lift to disjoint edge
subspaces of Y. A vertex subspace of Y is obtained as follows: take a connected component
C of the complement of the edge spaces in Y, take the closure C, and then add in all edge
spaces which intersect C. Each vertex space is a copy of the 1-skeleton of the universal cover of
X. Let T be the graph corresponding to the decomposition of Y into vertex and edge subspaces:
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HYPERBOLIC GROUPS WITH LOW-DIMENSIONAL BOUNDARY 653

vertices v of T' correspond to vertex spaces Y, C Y, the edges e correspond to the edge subspaces
Y. C Y. Anedge e is incident to a vertex v if and only if Y, is contained in Y,. It is standard that
the graph T is actually a tree (compare [39]). Let V' and E denote the collections of vertices and
edges in T respectively. If v € T we let E,, denote the collection of edges containing v.

Let 0 : DX — DX be the natural involution of DX. A map 7:Y — Y is a reflection if it is
a lift of ¢ and it fixes some point; each reflection fixes some edge space in Y, and each edge
space Y is the fixed point set of precisely one reflection .. Let I" be the group generated by the
reflections in Y. The group I” is normalized by G since conjugation of a reflection by an element
of G yields another reflection; likewise G is normalized by I'. Let v € T be any vertex. Then I’
is the free product of order two subgroups of the form (r.) where e € E,,. The vertex space Y,
is a fundamental domain for the action of I" on Y. The group I" preserves the tree structure of
Y, so we have an induced action of I" on T" by tree automorphisms, each reflection r. acting on
T as an inversion of the edge e. The action of I" on 7" naturally induces an action of I" on 0T
The space Y is a connected graph, and we give it the natural path-metric where each edge in Y
has unit length.

LEMMA 9. -

(1) The space Y is Gromov-hyperbolic.

(2) Edge and vertex spaces are all K-quasi-convexin'Y for some K.

(3) There is a function C(R) such that for every R, the intersection of R-neighborhoods of
any two distinct vertex or edge spaces has diameter at most C(R) unless the spaces are
incident.

Proof. — The space Y is quasi-isometric to Cayley graph of G. The group G is Gromov-
hyperbolic by [9,10]. The assertions (2) and (3) follow from [33] and [42]. O

We have a coarse Lipschitz projection p:Y — T which maps (Yv - Uees, Ye) to v for
each v € V, and maps each edge space to the midpoint of the corresponding edge of T If
~:[0,00) — Y is a unit speed geodesic ray, then p oy is a coarse Lipschitz path with the bounded
backtracking property 2 by the quasi-convexity of vertex/edge spaces. Hence p o y maps into a
finite tube around a geodesic ray 7 in 7. If p o« is unbounded in 7', then the equivalence class
of the ray 7 is uniquely determined by -y and we label  with the associated boundary point
[T] € 05T By the quasi-convexity of edge spaces, if - hits an edge space for an unbounded
sequence of times, then it remains in a quasi-convex tubular neighborhood of the edge space (of
uniformly bounded thickness). In this case, we know that v eventually remains in a bounded
neighborhood of a unique edge space by property (3) in Lemma 9, and we label v with this
edge. If neither of the above two cases occurs, then for each edge e of the tree, we know that
v eventually lies in one of the two components of the complement of the edge space Y., and
we label the edge with an arrow pointing in the direction of the corresponding subtree of 7.
There must be some (and at most one) vertex v € T' such that all edges emanating from v have
arrows pointing toward v; otherwise we could follow arrows and leave any bounded set. There
must be an unbounded sequence of times t; such that y(tx) lies in the vertex space Y, (by
the construction of the edge labelling); by quasi-convexity of Y,,, this means that v eventually
lies in the R-neighborhood of Y,,; in this case we label v by v. Equivalent geodesic rays are
given the same label. We get a labelling map d,Label: 0Y — (T U O5T') which is clearly
I'-equivariant.

We now examine the topology of J.Y . This space is metrizable and we fix a metric d on
O0xY; in what follows we will implicitly use d when discussing metric properties of OY .

3 A map c: [0,00) — T has the bounded backtracking property if for every r € (0, co) there is an / € (0, 00) such
that if ¢1 < t2, and d(c(¢1),c(t2)) > 7/, then d(c(t), c(t1)) > r for every t > ta.
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654 M. KAPOVICH AND B. KLEINER

Recall that each vertex space Y, is quasi-isometric to G ~ X; since by Lemma 9 every subspace
Y, is quasi-convex in Y, we conclude that 0, Y, C OxY is a Sierpinski carpet. Similarly, the
peripheral circles of the Sierpinski carpet 0. Y, are in one-to-one correspondence with the
boundaries of edge spaces Y. C Y,,. We note that the union (J, 0xY, is dense in 0o Y, since
this subset is G-invariant and G is a nonelementary hyperbolic group.

By the visibility property of the uniformly quasi-convex edge spaces, there is at most one
boundary point of 0, Y labelled by any £ € 0.,T'. For each edge e in T', the set of points in
OxY labelled by e is the ideal boundary of the edge space Y, i.e. a circle. For each vertex
v € T, the set of points labelled by v is

aooY«u’_ U aooYea
e€E,

i.e. the Sierpinski carpet O, Y, minus the union of its peripheral circles.

Our next goal is to describe the topology of 0, Y using the tree T'. Choose v € T'. Every edge
e of T separates T' into two subtrees, and we let T, . C T' be the subtree disjoint from v. We
define the outward subset, Out, ¢, for a pair (v, €) € V x E to be the collection of points of
O Y labelled by elements of T}, . U 05T . The visibility property of Y implies that for a fixed
v € T and any ¢ > 0 there are only finitely many edges e C T so that the diameter of Out,, .
exceeds €. Outward subsets of O, Y are open since a geodesic ray y with 0oy € Out, ¢ Will
eventually leave any tubular neighborhood of the edge space Y., and so nearby boundary points
correspond to rays which eventually lie in the same component of the complement of Y. in Y.
It follows that if £ € O, T, and ey, is the sequence of edges occurring in the ray v€, then the
sequence of outward sets Out,, ¢, is a nested basis for the topology of O, Y at the point labelled
by &. The closure of Out, is Outy,e U O Y. because the complement to Outy, o U oo Ye is
Out,, . where w is the endpoint of e furthest from v (obviously Os Y. C Out, ).

LEMMA 10. — Suppose & € OxoY converges 1o oo € OsoY . Then one of the following holds.

(1) €wo is labelled by a boundary point Label(€x,) € OooT. In this case Label(y) converges
to Label(£ ) in the compact space T'U 00T

2) & is labelled by a vertex v € T. In this case, for any subset £ C E,, containing all but
finitely many elements of E.,, the sequence &, eventually lies in

D00 Yy U ( U Outv,e).

ecf

(3) & is labelled by an edge eg. In this case, if v, w are the endpoints of eg, then for any
subset £ C E, containing all but finitely many elements of E,, and any subset F C E,,
containing all but finitely many elements of E,,, the sequence & eventually lies in

Do Yy U oo Yoy U < U Outv,e> U ( U Outw,e).

ec€& ecF

Proof. — Case (1): if v is any arbitrary vertex of T, and e, eq,... is the sequence of edges
comprising the geodesic ray v€s C T, then Outy, ., C OsY is a neighborhood basis for &
Therefore Label(£;) converges to Label(€,) by the definition of the topology on T'U 04,7

Case (2): if this weren’t the case, then a subsequence of &, would converge to an element of
Outy . = Outy,e U0 Ye for some e ¢ £. This contradicts the fact that £ is labelled by v.

Case (3): similarto case 2. 0O
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HYPERBOLIC GROUPS WITH LOW-DIMENSIONAL BOUNDARY 655

PROPOSITION 11. - 8006 is homeomorphic to S2.

Proof. — Let G’ be the fundamental group of a compact hyperbolic 3-manifold M with
nonempty totally geodesic boundary. Recall (see Section 4) that O G’ is a Sierpinski carpet.
Using the notation developed above (decorated with “primes”), G’ is the fundamental group of
the double of M, s0 Ouo G'is homeomorphic to S?. We will construct a homeomorphism between
9o G' and 8,G.

Choose vertices v € T and v' € T”, and a bijection E,, — E,. This induces an isomorphism
between Coxeter groups I' — I/, which we will use to identify I" with I"". There is a unique
I'-equivariant isomorphism T U 0soT — T" U 0o, T” which induces the given bijection E, —
E,/; we will use primes to denote corresponding edges and vertices. Choose an enumeration
v = vy, va,... of vertices of T so that d(vg,lJ i<k v;) = 1. Choose a homeomorphism
f1:050Y, — 0xY,,. Using reflections from I" we inductively extend f; to a homeomorphism
fk:Uf:l O Y, — Ule OsY, for each k, so that the resulting map foo:Ujeq 0o Yo, —
Ufil OxY,, is I'-equivariant. By construction, f is compatible with label maps, i.e. the
following dilagram commutes:

U oy, 2= Uowy,
Labell lLabel
TUOxT —a TUOxT

We claim that f., extends continuously to a homeomorphism f:9.Y — 05,Y”. In view of
the naturality of our construction it is enough to show that f., extends to a continuous map
F1000Y — OxY’ ~ 800G’ ~ S2, since the inverse map may be produced by exchanging the
roles of G and G’. Pick a sequence &, € O Y which converges to some £ € 05, Y. We will show
that fo(£x) converges.

Case (1): € is labelled by some 1 € OxT. — In this case there is a unique £’ € Y’ which
is labelled by 1’ € 9.,T". We know that if e; (respectively e}) is the sequence of edges of
the ray 77 (respectively v/7)’), then the outward sets Outy.e, (respectively Outv/,e;) form a

basis for the topology of O..dx (respectively DxY”) at & (respectively £'). Since fo, maps
Outy,e; NUjey Ooo Yo, to Outyr e N Uiz, 8, the sequence foo(&x) converges to &'.

Case (2): € is labelled by a vertex v € T. — For each k either &k € 0oy or & € Outy e,
for a unique ey € Fdge,. By Lemma 10, in the latter case Diam(Out, e, ) — 0 as k — oo.
Construct a sequence (x € 9oY, so that (x = & when & € 0oy, and ( € OnoYe, =
Outy,e, NJooY, otherwise. Note that limy_, o (x = & since Diam(Out, ¢, ) — 0. The sequence
foo(Ck) convergesto fo (&) since f|a,, v, is continuous. Observe that d( foo (Ck ), foo(€k)) is zero
when ¢, € 0 Y, and is at most Diam(Out;,,e;c ) otherwise. Since each ey, occurs only finitely

often, Diam(Out,, o) — 0 so

kli»nc}ofoo(gk) = Iclggo foo(Ck) = foo (£)

Case (3): € is labelled by an edge eq € T. — We leave this case to the reader, as it is similar to
case (2). 0O

COROLLARY 12. — Let G be a torsion-free hyperbolic group with Sierpinski carpet boundary
and Hy, ..., Hy be representatives of conjugacy classes of stabilizers of peripheral circles of the
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Sierpinski carpet. Then Gisa torsion-free hyperbolic group, and hence it is a 3-dimensional
Poincaré duality group by [11,7]. By [22], if one splits a PD(n) group over a PD(n — 1)
subgroup, then the vertex groups (together with the incident edge subgroups) deﬁne PD( ) pairs;
therefore (G; Hy, . .., Hy,) is a Poincaré duality pair. In particular, x(G) = >, x(H,

COROLLARY 13. — Let G be a torsion-free hyperbolic group with Sierpinski carpet boundary.
Suppose either
(A) Cannon’s conjecture is true, or
(B) every 3-dimensional Poincaré duality group with a nontrivial splitting is the fundamental
group of a closed 3-manifold.
Then G is the fundamental group of a compact hyperbolic 3-manifold with totally geodesic
boundary.

Proof. — Let Hy,..., Hy, @, I', be as in the first part of this section. If A holds, then G is
the fundamental group of a closed hyperbolic 3-manifold M. Since G splits nontrivially by its
very definition, if B holds then G = m (M), where M is a closed irreducible 3-manifold. M is
Haken since its fundamental group splits, and so Thurston’s uniformization theorem implies that
M admits a hyperbolic structure. In either case we have G acting on H? discretely, cocompactly,
and isometrically.

The reflection group I" acts on ! G by conjugation, with each reflection centralizing a unique
quasi-convex edge subgroup of G. By Mostow rigidity, I" acts isometrically on the universal
cover of M normalizing the action GAH3.GCGisa quasi-convex subgroup, and so it acts
on H? as a convex cocompact subgroup. The limit set of G in 9o H? is a Sierpinski carpet, and
because every peripheral subgroup of G is centralized by a unique reflection in I" C Isom(H?3),
the peripheral circles are fixed by reflections in I". Thus each peripheral circle of the limit set of
G is around circle, and so the convex hull of the limit set is a convex subset bounded by disjoint
totally geodesic hyperbolic planes. It follows that GG is the fundamental group of a compact
hyperbolic manifold with totally geodesic boundary. O

6. Examples

We now use Theorems 1 and 5 to see that some classes of hyperbolic groups have Menger
curve boundary.

We first remark that a torsion-free hyperbolic group with Sierpinski carpet boundary has
negative Euler characteristic by Corollary 12. So if G is a torsion-free hyperbolic group with
1-dimensional boundary, G doesn’t split over a trivial or cyclic group, and x(G) > 0, then 05, G
is a Menger curve.

THEOREM 14. — Let G be a torsion-free 2-dimensional hyperbolic group that does not split
over trivial and cyclic subgroups and which fits into a short exact sequence:

l1—F—G—Z—1,

where F is finitely generated. Then O, G is the Menger curve.

Proof. — In view of Theorem 1, it is enough to show that -G cannot be a circle or a Sierpinski
carpet. If 9ooG ~ S', then G contains a finite index closed surface subgroup G’. But then we
would have an exact sequence 1 — F' — G’ — Z — 1, where F’ = F NG’ is finitely generated,
which is absurd. Now suppose 0-,G is a Sierpinski carpet. Note that if F' admits a finite
Eilenberg-Maclane space, then it is easy to see that x(G) = x(F)x(Z) = 0, s0 05G cannot
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be a Sierpinski carpet by the remark above. However there are examples such that F' is not a
finitely presentable group (see [36]). We now consider the general case. Then (G; Hy, ..., Hy)
is a Poincare duality pair. Let K be a finite Eilenberg—Maclane space for the group G, let D be
a disjoint union of finite Eilenberg—Maclane spaces for the groups Hi, ..., Hi, and let K be the
mapping cylinder for a map D — K which induces the given maps H; — G. We view D as a
subcomplex of K. Consider the finite cyclic coverings

(Kn,Dpn) — (K, D)

which are induced by the homomorphisms G — Z — Z,. Then each pair (K,,D,) again
satisfies relative Poincare duality in dimension 3, so

H*(Kn, Dn; 2/2) 2 B3 (K3 Z/2).
We will use the notation b; (L) to denote the dimension (over Z/2) of H;(L,Z/2). Thus

(1) lim by (Dy) = 00

n—0o0

and by (K,,) < by (F) + 1 < co. Consider the exact sequence of the pair (K, D,,):
o — HY (K Z/2) — HY(Dy; Z/2) — H*(Kp, Dn; Z/2) — -+
Since b (K,) is bounded by by (F') + 1, the equality (1) implies that

lim Dimz/z (H2(Kn7 Dy; Z/z)) = 00.

n—oo

This contradicts the fact that H?(K,,, D,,;Z/2) 2 H1(K,;Z/2). O

Now let F' be a finitely generated free group and ¢ : F' — F' be an irreducible hyperbolic
automorphism (see [9] for the definition). Consider the extension

1—F—G—7Z—1

induced by ¢. The group G is hyperbolic by [9]. The cohomological dimension of G is 2 by the
Mayer—Vietoris sequence, thus the boundary of G is 1-dimensional by [11].

COROLLARY 15. - 0,,G is the Menger curve.

Proof. — We will show that the group G does not split over a cyclic (possibly trivial) subgroup.
Suppose that it does. Then we have the corresponding action of G on a minimal simplicial tree T'
with cyclic edge stabilizers. Consider the restriction of this action on the subgroup F. Let T’ C T
be the minimal F-invariant subtree, then T" is Z-invariant (since Z normalizes F'), thus T/ = T'.
By Grushko’s theorem (in the case of trivial edge stabilizers) and the generalized accessibility
theorem [8] (in the case of infinite cyclic stabilizers), the quotient T'/ F is a finite graph I". The
action of Z = (z) projects to action on I', after taking a finite iteration of ¢ (if necessary) we may
assume that z acts trivially on I'. Since G does not contain Z2-subgroups, the edge stabilizers for
the action of F' on 71" must be trivial. Thus we get a free product decomposition of F so that each
factor is invariant under some iterate of z. This contradicts the assumption that the corresponding
automorphism ¢: F' — F'is irreducible. 0O

THEOREM 16. — Let G be a finite graph of groups. Suppose:
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(1) each vertex group is a torsion-free hyperbolic group whose boundary is either a Menger
curve or a Sierpinski carpet; and at least one vertex group has Menger curve boundary;
(2) each edge group is a finitely generated free group of rank at least 2, and includes as a
quasi-convex subgroup of each of the corresponding vertex groups;
(3) if T is the Bass—Serre tree for G, and e, ea C T are two edges emanating from the same
vertex v € T, then their stabilizers intersect trivially.
Then the fundamental group G of G is a hyperbolic group with Menger curve boundary.

Proof. — Conditions (2) and (3) imply that G is hyperbolic by [9], and vertex groups are quasi-
convex subgroup of G by [33,42]. G is torsion-free since all vertex groups are torsion-free. G has
cohomological dimension 2 by the Mayer—Vietoris sequence, s0 0, G has dimension 1 by [11].

We claim that G does not split over trivial or infinite cyclic groups. To see this, let T be the
Bass—Serre tree of G, and let S be the Bass—Serre tree of a splitting of G over trivial and/or cyclic
groups. Consider two adjacent vertices v1, v2 € T, let G,,, C G be their stabilizers, and let G be
the stabilizer of the edge joining them. Since GG,,, does not split over trivial or cyclic subgroups
[13], G,, has a nonempty fixed point set in S. If s; € S is fixed by Gy, , then the segment joining
s1 to so will be fixed by G.. Since G, is free of rank at least 2, we see that s; = so. Therefore
by induction we find that G has a global fixed point in S, which is a contradiction.

If the stabilizer of v € T has Menger curve boundary, then by the quasi-convexity of G,, in G,
the Menger curve embeds in O,,G. This shows that 9., G cannot be homeomorphic to S* or the
Sierpinski carpet. By Theorem 4, 0., G is a Menger curve. O

7. Topologically rigid groups

In this section we will construct some examples of topologically rigid groups. Before
proceeding, we first note a consequence of Theorem 4.

COROLLARY 17.— Let G be a nonelementary hyperbolic group with Dim(0scG) < 1. Then
G is not topologically rigid.

We will sketch a proof of the corollary, and leave the details to the reader.

Case 1. G has more than one end. — Then G splits as an amalgamated product or HNN
extension over a finite group. Let G ~ T be the action of G on the Bass—Serre tree associated
to such a splitting, so there is only one edge orbit in T". Following along the same lines as
in Section 5, we construct a tree of spaces X, with vertex and edge spaces corresponding to
vertices and edges in 7. For each vertex v € T', the vertex space X, C X is quasi-convex in X
and as in Section 5 we may label points in J,, X with elements of T'U 0,7 . The outward sets
(see Section 5) are open and closed in O, X. If e; and ey are incident to a vertex v then they
lie in the same G, -orbit (since G/T has only one edge). Out, ., and Out, , are disjoint and
homeomorphic, so we may define a homeomorphism of 9o, X by swapping them while holding
everything else fixed. This construction yields a continuum of homeomorphisms of 9.,X, so
G — Homeo(0sX ) cannot be surjective.

Case TI: G is 1-ended. — If 05, G is homeomorphic to S, the Sierpinski carpet, or the
Menger curve then G cannot be topologically rigid since each of these spaces has uncountable
homeomorphism group. Therefore, by Theorem 4, we may assume that G splits as an
amalgamated free product or HNN extension over a virtually cyclic group. Let G ~ T be
the action of GG on the Bass—Serre tree associated with such a splitting. If e is an edge in T,
e = T10g, then Outy, ¢ — 0o X, and Out,, . — O X, are open and closed in G0 X — oo X,
and are preserved by G.. Take an element g € G, that fixes both points in O.Ge, and define
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a homeomorphism f:0cX — 0o X by flout,, . = 9cglout,, . and flout,, . = id|out,, .-
This type of construction will give a continuum of homeomorphisms of 0o, X, so again G —
Homeo(d, X ) cannot be surjective.

The following lemma relates topological rigidity of hyperbolic groups with quasi-isometric
rigidity.

LEMMA 18.— Suppose that G is a nonelementary Gromov-hyperbolic group, and X is a
Cayley graph of G. Then there is a function ¢(t, s) so that each (L, A)-quasi-isometry f: X — X
which induces the identity mapping of 0 X, is ¢(L, A)-close to the identity. If G is topologically
rigid then every (L, A)-quasi-isometry is $(L, A)-close to left translation by some g € G.

Proof. — Suppose f: X — X is an (L, A)-quasi-isometry which induces the identity mapping
on 95 X. Since G is nonelementary, 0., X = JxG contains infinitely many points. Let o, 8
be complete geodesics in X which are not asymptotic to each other in either direction.
Therefore there exists a function r(c) (which depends on X, «, 3) such that the intersection
between c-neighborhoods of « and 3 has diameter < r(c). Since X/G is compact, there
is a constant C' such that each point z € X is within distance < C from g¢(«) and from
g(B) for some g € G. Stability of quasi-geodesics in Gromov-hyperbolic spaces implies that
d(ga, f(ga)) < D, d(gB, f(98)) < D where D depends only only X, L, A and C. Thus
f(z) € Ne+p(ga) N Neyp(gB), the diameter of the intersection is < r(C + D). Hence
d(z, f(z)) <r(C+ D) =¢(L,A).

If G is topologically rigid and f: X — X is an (L, A) quasi-isometry, then 0o, f : 0oc X —
000X is induced by some g € G; hence by the argument above d(g, f) = d(id,g~ ' o f) <
o(L,A). O

Recall that for a hyperbolic group G, G denotes the quotient of G by the maximal normal
finite subgroup.

LEMMA 19. - If G’ is a hyperbolic group whose boundary is homeomorphic to the boundary
of a topologically rigid hyperbolic group G, then G’ embeds in G as a finite index subgroup.

Proof. — We leave the case of elementary hyperbolic groups to the reader and assume that
G (and hence G') is nonelementary. Recall that for a hyperbolic group G, 3G denotes the
collection of points in (O, G)® where all three coordinates are distinct. Let b : 0o G’ — 05, G be
a homeomorphism. The kernels of the projections G’ — Homeo(9G'), G — Homeo(9-G)
are the maximal normal finite subgroups N’ C G’, N C G. Since G is topologically rigid, the
conjugation by h determines an embedding ¢ : G’ — G, where G := G/N, G’ := G’ /N'. The
groups G/, G act properly discontinuously cocompactly on 93G’, 93G. Hence +(G7) also acts
properly discontinuously cocompactly on 83G. It follows that [G : 1(G")] < co. O

COROLLARY 20.- If E' is a hyperbolic group quasi-isometric to a topologically rigid
hyperbolic group G, then G' embeds in G as a finite index subgroup.

Proof. — A quasi-isometry between Gromov-hyperbolic metric spaces induces a homeomor-
phism between their boundaries. O

Our construction of topologically rigid groups is based on the idea (realized precisely in
Proposition 24) that a homeomorphism of S? must be a Mdbius transformation provided it
preserves a sufficiently rich family of round circles. We begin with an analogous statement for
homeomorphisms of S*.
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Line configurations in H?>

Let £ be a locally finite collection of geodesics in H? so that the complementary regions of
Upe. L are bounded, and we assume that there is a cocompact lattice I' C Isom(H?) stabilizing
L. Let % H? be the space of unordered distinct pairs in 9., H?, and let 8,,.L be the collection of
pairs of endpoints O, L for L € L, 05 L := {0 L | L € L} C % H?. Note that if Ly, Lo € L
and 0o L1 N O L2 # 0, then L1 = Lo. Let Stab(05L) C Homeo(O5H?) be the group of
homeomorphisms of 9., H? which preserve 0., L C 6% H2.

LEMMA 21.-

(1) If L1, Lo € L have nonempty intersection and g € Stab(0xoL) fixes OooL1 U 0o L2
pointwise, then g = id.

(2) {00y |7y € I'} C Homeo(Os,H?) is a finite index subgroup of Stab(0x L).

Proof. — Our arguments essentially follow ([16], Proof of Theorem 2.7). We will identify the
.. oo .o 72 oo
space of geodesics in H* with 0, H*.

(1) Suppose L1, Lo € £ and g € Stab(0s L) fixes 0o L1 U Oo Lo pointwise. If o1, o5 are the
connected components of 9o H? — 0o L1, then g(o;) = 0; since |0so Lo N 03| = 1 and Oso Ly is
fixed by g. Observe that »; := {0 LNo; | L € Land |L N Li| =1} C o is a discrete subset of
o; with the order type (with respect to the ordering on o; ~ R) of the integers, and g(X;) = X;.
But g fixes the point 0o, L2 N o; € X; and is orientation preserving, so g|s, = idx,. Therefore g
fixes O L for every L € £ with L N Ly # (. The incidence graph of £ is connected, so we may
apply this argument inductively to see that g fixes O L for every L € L. The set {J . 0oL is
dense in 0,,H?Z, so g = id. This proves the first assertion of the lemma.

(2) We now show that every sequence gj € Stab(J., L) has a subsequence which is constant
modulo I", which proves that [Stab(0xcL): I'] < 0. Pick L1, Lo € L such that L; intersects
L, in a point p. For each k let gi.L; € L be the unique line with 0o (gr+Li) = gr(OooLi)-
Then (gr«L1) N (gr«L2) = pi for some py € H?2, and we may choose a sequence v € I’
such that supd(yx(px),p) = R < co. Then the lines (v o gx).L; lie in the finite set {L €
L | LNB(p, R) # 0}, so after passing to a subsequence we may assume that (v o gx)|o.. L,
independent of k for i = 1, 2. By the previous paragraph the sequence vy, o g, € Homeo(0o,H?)
is constant. O

Plane configurations in H?

Below we prove an analog of Lemma 21 for a collection H of totally geodesic hyperplanes in
H3.

Let H be a locally finite collection of totally geodesic planes in H?, with stabilizer G :=
{g € Isom(H?3) | g(H) € H forevery H € H}. Let O H := {0 H | H € H}. We assume that
‘H satisfies the conditions:

(1) G is a cocompact lattice in Isom(H?);

(2) the complementary regions of | J;,, H are bounded;

(3) if H € H, then the reflection in H does not preserve the collection H.

Such examples will be constructed later in this section.

The local finiteness of H implies that there are finitely many G-orbits in H, and that the

stabilizer of each H € H acts cocompactly on H.

DEFINITION 22.— We will say that three circles Ooo H1, OooHo, OsoH3, where H; € H, are
in standard position if the three planes H; intersect transversely in a single point x € H3.

Note that if the circles 0. H1, OcoHa2, OsoHs are in standard position and C, Cs, Cs is
another unordered triple of circles which bound elements of H, then C;, C5, Cs5 are in standard
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position if and only if there is a homeomorphism [ : 0o H1 U Ooo H2 U 0o Hz — C1 U Cy U Cy
which carries elements of H to elements of H.

Let Stand denote the collection of unordered triples of circles in standard position. Thus the
previous remark implies that Stand is invariant under the homeomorphisms S — S? which carry
elements of H to elements of H. We will say that two elements of Stand are incident if they have
exactly two circles in common.

LEMMA 23. -

(1) The incidence graph of Stand is connected.

(2) If v C 0o H3 is homeomorphic to S, then either v = 0o H for some H € 'H, or there is
an H € H so that 0o H intersects both components of OsoH> — 1.

Proof. — The union |J ¢, H determines a polygonal subcomplex in H?3 with connected 1-
skeleton. Therefore the assertion 1 follows.

To prove the assertion 2, let U and U’ denote the connected components of 9o H? — . We may
find H, H' € H sothat 9.o H C U, 8,H' C U’. Since the incidence graph for H is connected we
can find a chain of planes Hy = H, Hy,...,H, = H' in H so that consecutive planes intersect
each other. We see that either v = 0., H; for some H; in this sequence or for some H; the circle
OooHjj intersects both U and U’'. O

PROPOSITION 24.— Let Stab(O,H) be the group of homeomorphisms of OoH® which
preserve oo H, Stab(0s™M) := {g € Homeo(OooH?) | (0o H) € O™ for all H € H}. Then
Stab(0scH) = {009 | g € G}.

Proof. — Suppose {00 H1, OsoHa, OcH3} € Stand, f € Stab(0.oH), and f(OH;) =
OooH; for 1 <4< 3. Then for 1 <7 < 3 we may consider the collection £; of geodesics in H;
of the form H; N H for H € H — H;. Part 1 of Lemma 21 then implies that f|s_x, =ido._ &,

Now suppose {9 H1, OocHa, OcoHs}, {0 H1, OcoHa, O Hs} € Stand are incident, f €
Stab(0xH), and fl|o g, =ids. m, for 1 < i< 3. Then f(OooHs) = O Hy since Hy is the
unique element of H whose boundary contains the 4-element set 0o Hy N (Ooo H1 U O H2).
Therefore by the previous paragraph we have

f|aooH4 =idg,.

Since the incidence graph of Stand is connected we see by induction that f|s g = ids,_ g for
all H € 'H, and this forces f =idg_ps.

Reasoning as in Lemma 21 we conclude that [Stab(0-cH) : G] < co.

Let G’ C G be a finite index normal subgroup of Stab(OH). Each f € Stab(0..H)
normalizes the action G’ ~ 9, H?3, so by Mostow rigidity each f is a M&bius transformation.
Therefore, for every f € Stab(0-H) we have f = 0scg forsome g € G. O

Constructing topologically rigid groups
Let G’ C G be a finite index torsion-free subgroup of G so that for each H € ‘H the stabilizer
of H in G’ preserves the orientation on H. Let {Hy,..., Hy} be a set of representatives of the
G’-orbits in H, and let G; := Stabg/ (H;). For any 1 < i < k, the set of geodesics
{HNH;|HeH—-H;, HNH; #0} C H;

is finite modulo the action of G;. Hence for each 1 < ¢ < k, there is a finite collection Z; of
conjugacy classes of maximal cyclic subgroups of G; with the property that:
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(a) for any g € G’ — G, the intersection gG;g~! N G is an element of Z;;

(b) forany g € G’ and i # j, the intersection gG;g~ N G; is an element of Z;.

We now construct a double? of G’ along the collection of subgroups G; := Stab(H;),
1 < i < k as follows: construct a graph of groups G with two vertices v1, v and k edges
e1,...,eg, where G,, is isomorphic to G’ and G, is isomorphic to G;. Identify G,, with G'.
We choose the embeddings ¢;; : G, — G, so that the image coincides with the copy of G; C G’
in Gy, (j =1, 2), but so that the ¢;;’s satisfy the following condition:

(Twisting) ¢, (2:) Nt (25) = 0.

To construct embeddings ;;: G, — G, satisfying the twisting condition we first choose
random embeddings ¢;;: Ge, — G,,; whose images are the copies of G, then let 1;; 1= ;1.
Define t;o as the composition of ;o with a sufficiently high power of a pseudo-anosov
automorphism of the surface group Gi(i=1,...,k).

Let G :=m1(G), let T be the Bass—Serre tree associated with G, and let V and E denote the
collections of vertices and edges in T respectively. G acts (discretely, cocompactly) on a tree of
spaces X constructed as in Section 5, with vertex spaces X,,, v € V and edge spaces X, e € E.

LEMMA 25.- G is a hyperbolic group. All vertex and edge groups Gy, x € VUT are quasi-
convex subgroups of G.

Proof. — By [10,42,33] it suffices to show that there is an upper bound on the length of essential
annuli (see [10], Section 1) in the graph of groups G. Or, equivalently, we need to show that there
is an upper bound on the length of any segment in 7" which is fixed by a nontrivial element g € G.
We claim that if e, ez, es are three consecutive edges in the tree T, then G, N Ge, N G, is
trivial; for the twisting condition implies that the intersections G, N Ge, and G, N G, are
cyclic subgroups of G, with trivial intersection. O

LEMMA 26. -

(1) Forevery vertex v € V, Ooo Xy C O X is a 2-sphere.

(2) Foreveryedge e € E, 0o X C OxX is a circle.

(3) Ifvy # v2 €V then 8o Xy, NOoo Xy, ~ St implies that v1 and vo are the endpoints of an
edge e € E, and 0o Xy, N Ooo Xvy = OooXe-

4 Uyey 0o Xy is dense in 0o X.

(5) Pickec E, andlet Ty, To C T be the two subtrees that one gets by removing the interior
of the edge e. Then O X — Ooo X has two connected components, namely the closures of
(UveTi 00 Xp) — OoXe N O X — 0o Xe fori=1, 2.

The proof of the lemma is similar to arguments from Section 5, so we omit it.

LEMMA 27.—If v C 0o X is homeomorphic to S* and v separates 0o X, then ¥ = 050 Xe
for some e € E.

Proof. — We first claim that 7 C 0,,X, for some v € V. Otherwise, by Alexander duality
000Xy — 7y is connected for every v € V, and (000 Xy, U 000 Xy, ) — 7y is connected for any pair
of adjacent vertices v, v2 € V. By induction this implies that UveV 000Xy — 7y is connected.
By Part 4 of Lemma 26 we conclude that 0o, X — - is connected, a contradiction.

Hence we may assume that v C 05X, for some v € V. Suppose 7y # 0o X, for any e € E
adjacent to v. Then any point £ € 0., X — v lies in the same component of 0., X — v as one of

4 If we double G’ without “twisting” the edge inclusions, then the resulting group G is not hyperbolic. But it acts on a
CATY(0) space X so that Homeo(Oo0 X)) contains G as a finite index subgroup.
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the two components of 9., X, — y. By Lemma 23 we can find an edge e adjacent to v so that
O X intersects both of the components Uy, Us of d5, X, — 7. So we may connect Uy to Us
within 0., Xy, — 7, where w is the other endpoint of e. This contradicts the assumption that
separates O X. O

Thus, any homeomorphism f: 8., X — 0. X preserves the collection of circles {9 X,
e€e E}.

Let C denote the collection of unordered triples of circles C; = 0o X, , €; € E, which are in
standard position, i.e. there exists a triple H;, Hy, H3 € ‘H which are in standard position and a
homeomorphism [ : Ooo H1 U O Ha U 0o H3 — C1 U C U C5 which carries each circle 0o H;
to one of the circles Cj;). We define the incidence relation for elements of C the same way as
before, let I'(C) denote the associated incidence graph. Thus C contains the subsets S, where
S, consists of triples of circles in standard position which are contained in J.X,. Then the
incidence graph I'(S,) is isomorphic to the incidence graph of S, thus it is connected (see Part 1
of Lemma 23). For each vertex v € V' the union of triples of circles {Cy, C3, C3} € S, is dense
in Ose Xy

LEMMA 28. — The subgraphs I'(S,) are the connected components of I'(C).

Proof. — It is enough to show that any {Cy, Ca, Cs} € C is contained in 0, X, for some v € T,
since there is at most one 0, X, containing any given pair of circles.

Pick {C1, Cs, Cs3} € C, with C; = 0o X, for e; € E. Note that d(e;,e;) < 1for1 <4, j <3,
for otherwise, we would have C; N C; = (. Also, observe that if two of the circles lie in some
00Xy, then the third one must too (because |OooXe N OooXy| < 2 unless JooXe C 00 Xy).
Clearly, this forces the edges e; to share a vertex. 0O

Define the incidence graph with the vertex set {9o0 Xy, v € T}, where the vertices v, w are
connected by an edge if and only if 9o Xy N Ooo Xy ~ S'. Lemma 18 implies that this graph is
isomorphic to the tree T'.

PROPOSITION 29.— Any homeomorphism f : 0o X — 0o X preserves the collection of
spheres {00 X, v € V'}. In particular, f induces an isomorphism of the tree T.

Proof. — The homeomorphism f induces an automorphism fz of the graph I'(C), thus it
preserves its connected components. Therefore for each v € V' there is w = fx(v) such that
fuI'(Sy) = I'(Sy). However,

Uc

CeS,

is dense in oo X . Thus f preserves the collection of spheres {9 Xy, v € V'}. The paragraph
preceding proposition implies that f induces an automorphism of the tree . O

THEOREM 30.— The homeomorphism group of O-X contains G asa subgroup of finite
index. Therefore Homeo(0x X)) is a topologically rigid hyperbolic group.

Proof. — For every v € V, we identify 0o, X, with 0, H? via a homeomorphism which carries
the collection {0xc X | € € E, v C e} to O-H; this homeomorphism is unique up to a Mdbius
transformation by Proposition 24.

Suppose f € Homeo(0xxX) and f|s_x, = id|s,, x, for some v € V. Then f fixes 0o Xe
pointwise for every e € E containing v. Hence if v/ € V' is adjacent to v, then f(Jo0oXy/) =
00 Xy By Proposition 24 f|s, x , is a Mobius transformation. Either f|o x , = id|a, X,
or f|a,x,, is a reflection. But Condition 3 on H rules out the latter possibility. Therefore by
induction we conclude that f fixes 0, X, for every w € V, and so f =id.
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2

Fig. 1. The hyperbolic polyhedron &.

Pick v € T, and consider the possibilities for f|s_x,, where f € Homeo(0xX). There
are clearly only finitely many such possibilities up to post-composition with elements of G
therefore, by the preceding paragraph G has finite index in Homeo(0ooX ). O

An example of a plane configuration

We now construct a specific example of a plane configuration H satisfying the three required
conditions. We start with the 3-dimensional hyperbolic polyhedron @ described in Fig. 1: the
edges of the polyhedron are labelled with 2 and 3, they indicate that the corresponding dihedral
angles of the polyhedron are 7/2 and 7 /3 respectively. Such a polyhedron exists by Andreev’s
theorem [4]. Note that @ has an order 3 isometry 6 which is a rotation around the geodesic
segment CE and reflection symmetries in each of three quadrilaterals, two of which are depicted
in Fig. 2.

The polyhedron @ contains three squares which “bisect” @; one of them 1 = PQR.S which
is indicated in Fig. 1, the other two (32, (33 are obtained from (3; by applying the rotation 6.

LEMMA 31. - The bisectors (31, B2, (33 are realized by totally-geodesic 2-dimensional poly-
gons in @ which are orthogonal to the boundary of ®. More precisely, for each 1 < j < 3 there
is a totally geodesic plane H; C H3 which intersects the same four edges of ® as [3; and H;
intersects the faces of ® orthogonally.

Proof. — It is enough to prove the assertion for 31, the other two polygons are obtained via
the rotation . The proof is similar to [30]: we first split open the cube ¢ combinatorially along
the bisector 3; into two subcubes @, and &_. Each polyhedron &, &_ has a face Fly, F_
which corresponds to the bisector ;. We assign the label 2 to each edge of & is contained
in Fy. Andreev’s theorem again implies that &, and &_ can be realized by polyhedra in H3
(we retain the names & for these polyhedra). Our goal is to show that the homeomorphism
F, — F_ (which is given by identification with the bisector ;) is isotopic (rel. vertices) to
an isometry of the hyperbolic polygons. The polyhedron € admits a reflection symmetry which
fixes the totally-geodesic rectangle EJC A; this symmetry also acts on the polyhedra ¢, , &_
and quadrilaterals F; so that the fixed point sets are the geodesic segments corresponding to PR.

4° SERIE — TOME 33 — 2000 -N° 5



HYPERBOLIC GROUPS WITH LOW-DIMENSIONAL BOUNDARY 665

E 2 F
~
\.\
2 N\, 3
Xy
2 ™
b: 3 \\ J
N o
N 3 .\.
o %
N, 3 N,
. N
. N
N N
A B 2
N, 3 ", 2
\, .
3 \'\.
N
N,
N,
N
\

2

Fig. 3. “Bisectors” of the hyperbolic polyhedron &.

However it is clear that there exists a unique (up to vertex preserving isotopy) hyperbolic structure
on quadrilateral PQRS so that the edges are geodesic, angles are 7/2, 7/3, 7/2, /3 and the
quadrilateral has an order 2 isometry fixing PR. Thus we have a natural isometry F, — F_ and
we can glue & to P_ using this isometry. The result is a hyperbolic polyhedron ¥ which is
combinatorially isomorphic to @ this isomorphism preserves the angles. Thus by the uniqueness
part of Andreev’s theorem (alternatively one can use Mostow rigidity theorem) the polyhedra
&, W are isometric. On the other hand, the polyhedron ¥ contains totally geodesic 2-dimensional
polygon F'y = F_ which is orthogonal to the boundary of ¥. 0O

We retain the notation §; (j = 1, 2, 3) for the totally-geodesic 2-dimensional hyperbolic
polygons orthogonal to ¢ which realize the bisectors ;. These polygons split & into 8
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Fig. 4. Symmetry of the bisector J;.

subpolyhedra P;, i = 1,...,8, which are combinatorial cubes. Note that the dihedral angles
between (;, j =1, 2, 3, are all equal and are different from 7/2 (otherwise the combinatorial
cube P; which contains the vertex E would have all right angles which is impossible in
hyperbolic space).

Now we construct the collection of planes H as follows: let R C Isom(H3) be the discrete
group generated by reflections in the faces of @; the polyhedron @ is a fundamental domain for
R. The 2-dimensional hyperbolic polygons 3; = H; N & are orthogonal to 0@, the plane H;
is invariant under the subgroup R ; of R generated by reflections in the faces of ¢ which are
incident to 3;. The R-orbit of these hyperplanes is H. Note that:

(0) If H is a member of  and the intersection H N @ # 0, then H N @ is equal to one of the

bisectors 3;.

We next check that H satisfies the required properties:

(1) the fundamental domain @ for R is compact, hence the group R is a cocompact lattice;

(2) the complementary regions to 7 in H? are finite unions of the polyhedra P;, i =1,...,8,

thus they are bounded;

(3) let p; be the reflection in the plane H;. Since the planes H;, 1 < j < 3, are not mutually

orthogonal it follows that this reflection maps H;, i # j, to a plane which does not belong
to H (see Property (0) above); it follows that p does not preserve the configuration H.

8. Groups with planar boundary

In this section we discuss the example mentioned at the end of the introduction.

LEMMA 32. - Let S be a surface of genus 1 with two boundary components, Cy and Cs. Let
K be the complex obtained by gluing Cy to Cy by a degree 2 covering map C1 — Cs, and set
G :=m(K). Then:

(1) G is torsion-free and hyperbolic;

(2) G contains a finite index subgroup which is isomorphic to a discrete, convex cocompact
subgroup of Isom(H?) which does not act cocompactly on H3. In particular, the boundary
of G is 1-dimensional and planar;

(3) G is not a 3-manifold group.

Proof. — (1) The group G is torsion-free since it is an HNN-extension of a torsion-free group.
The hyperbolicity of G follows from the Bestvina—Feighn combination theorem [9,10].
(2) Our arguments are similar to [27]. We first construct a finite covering p: F' — S such that:
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(a) each component of OF which covers C; does so with degree 1 and each component of
OF which covers Cs does so with degree 2;

(b) there are twice as many circles in p~1(C}) as there are in p~1(C2).

To get the cover, consider the cone-type orbifold O obtained by attaching a disk D; to S along
C1, and a disk D> with a cone point of order 2 around Cs. Then O is an orbifold of hyperbolic
type and hence admits a finite orbifold covering po: O — O, where O is a manifold (see [38]).
Now remove py ' (Interior(D;) U Interior(Ds)) from the surface O, and call the resulting
surface F'. Then p := po|p : F' — S is the covering with the required properties. Let m denote the
number of boundary components of F' which cover Cy. Now define a complex L by identifying
each component of p~1(C3) with precisely two components of p~1(C} ), so that the composition
F — S — K factors through a covering map L — K. We claim that 71 (L) is a 3-manifold
group. Indeed, consider L as a graph of spaces where the vertex-spaces are F' and m copies of
the circle S?, the edge-spaces are 3m copies of S! and the attaching maps are homeomorphisms.
Replace the vertex space homeomorphic to F by Y, = F' x I, I = [0,1]; replace each vertex
space X, homeomorphic to S! by the solid torus Y, = S' x D2, The edge subspaces of F x [
are the components of OF x I; the edge subspaces Y, incident to S! x D? =Y, are the annuli
S! x a; (i =1, 2, 3), where o are disjoint arcs of 3 D?. The maps from edge-spaces to vertex-
spaces are obvious inclusions. Then it is clear that the total space of the resulting graph of spaces
{Y,, Y.} is a 3-dimensional compact manifold with boundary, which we call N. The fundamental
group of N is isomorphic to 71 (L) since L is a deformation retract of N. The manifold N
is clearly Haken, thus we apply Thurston’s hyperbolization theorem to N and conclude that
71 (L) = m1(N) is isomorphic to a discrete, convex cocompact subgroup G of Isom(H?). If
H3 /G were compact, then x(N) = 0 which is obviously false since x (V) is a nonzero multiple
of x(K)=—2.

(3) Assume that G is a 3-manifold group, G = 71 (M), M is a compact 3-manifold. We can
assume that M is irreducible and, since 71(M) = G is the fundamental group of a graph of
surface groups, it follows that M is Haken. Orient the loops C; and let ; be the corresponding
elements of G. Then for i = 1, 2, the group G splits over the subgroup (v;), G = m1(S5)*(x,)-
Hence ~; corresponds to an embedded essential annulus or a Moebius band A; in M, i=1, 2.
On the other hand, 712 is conjugate to qétl in G. This is impossible (see [28,29]). In [31] we show
that the group G cannot act discretely simplicially on a coarse 3-dimensional Poincare duality
space; this gives another proof that G cannot act cocompactly on any contractible 3-dimensional
manifold with boundary. 0O
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