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ON THE KAUFFMAN BRACKET SKEIN ALGEBRA OF
PARALLELIZED SURFACES

BY PIERRE SALLENAVE

ABSTRACT. - We establish a general link between the Kauffman bracket skein algebra of any parallelized,
oriented compact surface F and two algebras built from the first homotopy group of the surface and its first
homology group respectively. © 2000 Editions scientifiques et medicales Elsevier SAS

RESUME. - Nous mettons en evidence une relation generale entre 1'algebre du crochet de Kauffman d'une
surface compacte orientee munie d'une parallelisation et deux algebres obtenues respectivement a Paide du
groupe fondamental de la surface et de son premier groupe d'homologie. © 2000 Editions scientifiques et
medicales Elsevier SAS

1. Introduction

1.1. Kauffman bracket skein algebras

Let R be a commutative ring with unit, A an invertible element of R and M an oriented
three-manifold. We call "banded link" in F x I any unoriented link F equipped with a vector
field nowhere tangent to F, called the "framing vector" of F; we denote by C the set of isotopy
classes of banded links in M (including the empty link) and by R[C] the free ̂ -module generated
by the elements of C. In the drawings, we take the following convention: the framing of a link
shall be induced by the direction orthogonal to the sheet of paper so that the reader should think
of a banded link L drawn on the paper as a band L x [0,1] in F, the core of which is the link
L and the orientation of which is given by the vector normal to the sheet of paper and pointing
upward; this particular choice of framing will be referred to as the "standard framing".

The Kauffman bracket skein module K(M) is now defined as the quotient of R[C] by the
following skein relations:

L U 0 = (-A^A-^L

Given any framed link L in M, its class in K(M) will be denoted by (L). The mapping class
group of orientation preserving homeomorphisms of M acts in an obvious way on the skein
module K(M).
ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - 0012-9593/00/05AO 2000 Editions scientifiques et
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594 R SALLENAVE

It is sometimes possible to put a structure of ^-algebra on K (M). For example, when A = -1,
the product of two links may be denned by the commutative relation (L) * {L'} = {L U L'}
(where L and L' are disjoint). If M is homeomorphic to F x I , with F a compact oriented
surface, possibly with boundary components, one can proceed as follows: draw the banded links
as projected on F and define the product (L) ' {L'} of two links as their superposition (L over L').

One has the following result:

FACT 1 (Structure of algebra of K(F x I)). - Given a compact oriented surface F and a
multiplication * in K(F x J) defined as above, then K(F x I ) is an R-algebra. Moreover, the
mapping class group of orientation preserving homeomorphisms ofF acts on this algebra by
automorphisms.

Little is known about the structure of .R-algebra of K(F x I ) in general. A full description is
given in a recent paper [5] by J.H. Przytycki and A. Sikora when A has the special value -1, but
only for a few examples do we know complete presentations by generators and relations if A has
no specified value [2]. Moreover, these descriptions are in general difficult to handle.

To any simple closed unoriented curve drawn on F, one can associate a standard banded link,
the framing of which is the standard framing. The structure of JP-module of K(F x I ) is given
by the following theorem [4]:

THEOREM 1. - Let F be a compact oriented surface. Then K(F x I ) is a free R-module and
the simple closed curves (not necessarily connected) with no trivial component in F, together
with the empty link, induce a basis of this module.

1.2. Relative skein algebras of surfaces with at least one boundary component

In [5], J.H. Przytycki and A. Sikora introduced the notion of relative skein algebras. We give
here a slightly different definition, though equivalent.

Definition. - Let F be an oriented surface with boundary, p a point in OF and v a non-zero
vector in TpF x [0,1]. By a special framed arc in F x I we mean an embedded framed arc
7: [0,1] -^ F x J, such that 7(0) = (p, 0) and 7(1) = (p, 1) and the framing of which at the
points (p, 0) and (p, 1) is given by v.

We can consider a special framed arc as a ribbon in F x J, the ends of which lie exactly on
(p, 0) and (p, 1), with v orthogonal to both ends and pointing from the same side of the ribbon.
We now define a relative framed link in F x I to be the disjoint union of a special framed arc and
a banded link in F x I and say that two relative framed links L and L' are ambient isotopic if
there is an ambient isotopy of F x I which carries L to L' and is fixed on F x {0} and F x {1}.

Let ^rel denote the set of ambient isotopy classes of relative framed links in F x I and RC^
the ^-module freely generated by the elements of C^. We define K^F x I ) to be the quotient
of RC^ by the usual Kauffman bracket skein relations. This module is called the relative skein
module of the surface F and it can be shown that this definition does not depend upon the choices
ofp and v we have done so far up to isomorphism (in particular, one should notice that for a fixed
p the space of possible v is simply connected so that the relative skein algebra does not depend
on the choice of v at all). We recall that K^F x I ) is a free ^-module.

There is an obvious multiplication on K^F x I ) induced by the superposition in the same
manner as for the Kauffman bracket skein module and this gives the relative skein module the
structure of an .R-algebra. This algebra has a unit which is represented by the "trivial special
arc" KQ, i.e. the arc supported by {p} x I with constant framing vector, if v is not vertical and,
otherwise, by -A"3^), where K^ is the special arc (7^)^), with constant vertical framing
vector, for some trivial loop 7 of degree +1.
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THE KAUFFMAN BRACKET SKEIN ALGEBRA OF SURFACES 595

Let G be the fundamental group of the surface F, i.e. G == 71-1 (F). We shall use the group-ring
R{G).

J.H. Przytycki and A. Sikora proved the following two interesting facts:

THEOREM 2 (Relation with the Kauffman bracket). - Let F be a surface with nonempty
boundary andp a point in QF. There exists a natural algebra homomorphism:

r ] • . K ( F x I ) ^ K T e \ F x I )

such that for any link L lying in the interior of F x I, rj((L)) = (L U KQ), ifv is not vertical,
or T]((L)) == —A~^{L U K-i) ifv is vertical, where KQ and K\ are as defined above. Moreover,
if A2 + A~2 is invertible (actually it suffices that it be not a z,ero divisor) in R, then T] is a
monomorphism.

THEOREM 3 (Relative skein algebra for A = —l).-If A = —1, the relative skein algebra
K^^F x I ) is isomorphic as an R-algebra to the algebra H(G) defined as the quotient of
R(G) by the relation h(g + g~1) = (g + g'^hfor all g and h in G.

In the first part of this article, we study how the choice of a parallelization for the surface F
yields a natural homomorphism between R(G) and the relative skein algebra for any value of A.
In particular, we have the following:

THEOREM A. - Let F be a compact oriented surface with boundary, p a point in OF and
TT a parallelization of F. There exists a natural surjective algebra homomorphism ^ : R(G) —^
YJ^^F x I) associated to TT. Moreover, this homomorphism depends only on the isotopy class
of7T.

1.3. A quantized version of the group ring of Hi (F)

Let H be commutative group, the law of which we shall denote multiplicatively by (x). In
practice, we shall take H = Hi(F, Z). We now consider the Z-module RH freely generated by
the elements of H. To avoid ambiguities, we write (h) any element h of H when considered as
an element of RH. Let ( , ) : H 0 H — ^ Z b e the intersection form of jF.

We put a multiplication (*) on RH as follows:

V^e^, (x)^(y)=A^(xxy)^

and we extend this law to RH bilinearly. We observe that for all x in RH, I H ^ X = X ^ I H ,
so that we may embed R in RH via the identification 1^=1^=1^^. This makes RH a
IP-algebra with unit which appears as an A-deformation of the group ring of H.

1.4. Weight of an oriented curve with regard to a specified parallelization of F

Recall that parallelizable compact surfaces are all surfaces with at least one boundary
component plus the torus T2.

Consider an oriented curve 7 on the surface F. Let 6°^ be the degree of 7 with regard to
the given parallelization TT : TF —^ F x R2. We recall that the degree of a connected curve may
be obtained using the following procedure: let d9 be the differential form on R2 - {0} which
detects variations of the argument in the complex plane C c^ R2. Now consider the sequence:

0:[0,l]^TF^Fx (R2-^}).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



596 P. SALLENAVE

One then has:

S^=^fd0{t)^Z.

If 7 has several components 7^, then 67 = ̂  6° 7^.

Definition. - We define the weight P(7) of the curve 7 with regard to the parallelization TT as
follows:

P(^(_A2p([^])e^
where [7] stands for the homology class of 7.

Notice that this definition actually depends on the isotopy class of the parallelization TT only. In
the second part of this article we shall prove the following result relating the Kauffman bracket
skein algebra K(F x I ) and the quantized group ring of Hi (F, Z).

THEOREM B. -Let F be a parallelized oriented compact surface, possibly with boundary,
given with a specified parallelization TT, and let H = Hi(F, Z) be its first homology group. Let
RH be the algebra built on H as above and K(F x I ) the Kauffman bracket skein algebra of
the thickened surface.

(1) There exists a unique algebra homomorphism ^:K(F x I ) —>• RH such that for any
simple closed unoriented curve F on F, equipped with the standard framing, one has:

^((U) = ̂ (7i) + ̂ (72) = P(7i) + PW~\

where 71 and 72 are the two oriented curves supported by r.
(2) The homomorphism <!> is injective if and only if F is a sphere with 1, 2 or 3 boundary

components or a torus with no boundary.

Eventually, we show that the homomorphism ^ may be naturally extended to a homomor-
phism from W^(F x I ) to RH. Let 71-1 (F) be the subset of 71-1 (F, p) of elements which can be
represented by an embedded loop. For any smooth loop 7 embedded in F, we denote by 7 the
special framed arc obtained as the lifting ^f(t} = (^(t),t) of 7, equipped with standard framing:

THEOREM C. - Let F be a compact oriented surface with boundary component, p a point in
OF and TT a parallelization of F. There exist a unique map e: 71-1 (F) -^ {— 1, +1} and a unique
algebra homomorphism 0: K^F x I ) -^ RH such that for any smooth loop 7 embedded in F:

0((7))=A^P(7).

Moreover, 0 is surjective, it depends only on the isotopy class of TT, and ^ = 0 o rj. The
homomorphism 0 is bijective if and only if F is a sphere with one or two holes.

The link between Theorems A and C is enlightened by the following consequence:

THEOREM D. - Let F be an oriented surface with boundary, p a point in QF and TT
a parallelization. Let ^:R(G) -^ K^F x I ) and 0-.^(F x I ) -^ RH be algebra
homomorphisms as in Theorems A and C above. Then there exists a unique map 7:71-1 (F, p) -^ Z
such that for any g in 71-1 (F, p) the following holds'.

0o^(g)=A^[g}^

where [g\ stands for the homology class corresponding to g.
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THE KAUFFMAN BRACKET SKEIN ALGEBRA OF SURFACES 597

We can summarize the results of Theorems A, B and C by the following diagram of algebra
homomorphisms:

B(G)

I'Y
K(F x J) —^ K^F x I ) —^ RH

2. Relative skein algebras of parallelized surfaces

2.1. Proof of Theorem A

Let F be a compact oriented surface with at least one boundary component and TT a
parallelization of F. Recall that we want to find a natural surjective algebra homomorphism
^: R(G) —> K^F x I ) associated to TT. This will be performed in two steps.

(1) We first prove the existence of such a homomorphism ^.
We recall that a parallelization of F is equivalent to the data of a non-vanishing smooth

vector field V : F —^ TF on F. We can isotope TT near p so that V(p) = v, where p € 9F and
v C (TpC^F)^ c TpF are as specified in Part 1 of the present article (we also demand here that v
be pointing outward of F). For any loop 7: [0,1] —> F with 7(0) = 7(1) == p, we define a special
framed arc ^(7) using the following procedure:
- put ^(7)^) = (7(^) e F x I f o r any t in [0,1];
- the framing of ^(7) at the point ^(7)(t) is given by w(t) = (V(^(t)), 0) € TF x I .

Notice that one can see this relative framed arc as an oriented band, the core of which is the
arc ^(7), with the vector V pointing from the same side of the band for any value of t.

The proof that ^ induces a homomorphism ^: R(G) —^ K^^F x I ) stands on the following
lemma:

LEMMA 1. - The ambient isotopy class of ^(7) depends on the class g 0/7 in 71-1 (F,p) only.

Proof. - Suppose given two loops 71 and 72 corresponding to the same element g of 71-1 (F, p).
There exists a homotopy

r:[o,i]x[o,i]-F,
leaving the ends fixed and such that F(t, 0) = 7i(t) and F(t, 1) = 72 (t) for all t in [0,1]. Then
we obtain an ambient isotopy F from ^(71) to ^(72) by putting, for all (t, u) in [0,1]2:

r^u)={r(t^u^t)^
r^(w{t))={v(r^u))^.

The image via this map ^: 7i-i(F) —^ K^^F x I ) of the product of two elements g\ and g-z
is clearly the superposition of their images. Hence ^ is a group homomorphism which may be
extended to R(G) linearly so as to give rise to the desired algebra homomorphism. This ends the
first part of the proof. D

(2) We now prove that the homomorphism ^ is surjective.
We shall use the following result of Przytycki and Sikora [5]:

PROPOSITION 1. - Let B be the set of special framed links (up to ambient isotopy) which are
the disjoint union of some unoriented curve 7 embedded in F with standard framing and of ^>(g)
for some embedded loop g in F. Then B is a basis over R of the relative skein algebra.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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Hence, as an algebra, K^F x J) is generated by the elements ^>(g) and the elements
presented as the disjoint union of an embedded curve in F with standard framing and the trivial
special framed arc. Hence we must prove that these elements also lie in the image of ^.

To begin with, let 7 be a smooth embedded loop in F, with non-vanishing speed and its
extremities at p. Let 7 be the oriented framed link given by 7 with standard framing. Hence 7 is
a ribbon embedded in F, 7: S1 x I ̂  F. Let U(t) = U = (0,1) be the constant vertical framing
vector of 7 and let p(t, 9) be the rotation of angle Ee^- around ̂ (t) in R3, where e is equal to ±1
so that p(0,1)(U) = (v, 0). We define 7' to be the banded link, with framing vector U ' ( t } <E TF,
obtained from 7 via the following isotopy F:

W=7(^
re(U)(t)=p^0){U(t)).

Now we define a special framed arc 7, with framing vector U(t), as the "lifting" of 7':

7(t)=(7(^),

U(t)=(U(t)^).
The proof of Theorem A will be based on the following lemma:

LEMMA 2. -Let 7 and 7 be as above. Let g be the element of 7Ti(F,p) represented by 7.
Then, in K^^F x I) , we have:

W=(-A3f^{g).

Proof. - It is clear that in the relative skein algebra 7 and ^{g) only differ by a certain number
of twists. As t increases from 0 to 1, U(t) winds in the "moving frame" given by V of an angle
equal to 27r times the degree of 7. Therefore, we obtain 7 by twisting ^{g) of exactly 6°^
positive twists. This is exactly the statement of the lemma. D

Apart from the use we make of this result right now, it has the technical advantage of allowing
us to do computations about ^ with planar drawings of diagrams with standard framing instead
of three-dimensional ones taking the specific vector field V into account: one can represent ^(g)
by any smooth curve 7, the homotopy class of which is g , given with standard framing and with
a corrective factor of (-A3)"507 corresponding to the specific choice of 7.

Now consider a special framed link L presented as the disjoint union of some unoriented
embedded curve F in F with standard framing with the trivial framed arc KQ. F may be isotoped
in F x I in such a way that one has a ball near (?, j) where the following diagram appears (it is
understood that both the vector v and the framing normal vector of r are pointing upward from
the sheet of paper):

r

Ko
We apply the skein relation at this crossing and obtain that L satisfies the relation:

(L)=A^)^A-1{^}

for some embedded loop 7 in F.
We see that, by Lemma 2, (L) lies in Im( ̂ ) and, as ^ is a homomorphism of algebras, it

is surjective. Now it is clear from the construction that ^ depends on the isotopy class of the
parallelization TT only. This completes the proof of Theorem A.

4e SERIE - TOME 33 - 2000 - N° 5
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2.2. Influence of a change of parallelization

We can compare the values of ^ for two non-isotopic parallelizations TT and TT' of F.
Let TT be a parallelization of F and ̂  the corresponding homomorphism R(G) -^ K^F x

I ) . We recall that to any parallelization TT' of F corresponds a cohomology class a in H1 (F, Z),
depending on the isotopy class of TT' only, in such a way that the set of isotopy classes of
parallelizations of F is an affine space over H1 {F, Z); hence for all smooth curve 7, one has

^7=^7=^7+<aj7]>,

where [7] is the homology class of 7 and ( , ) is the evaluation map. This leads to the following
result in a straightforward manner.

PROPOSITION 2. - If ̂  denotes the homomorphism associated to a parallelization TT of the
surface F and a G H1 (F, Z), the following relation holds'.

V^e G=^i(F,p), ^+.(^) = (-A3)^ ̂ (^).

In the case A = —1, Theorem 4 gives a description of the kernel of the homomorphism ^ as
generated by the elements of the form

(*) ^+<^ l)-^+<^ l)^
One can easily show that for an unspecified value of A the center of the relative skein algebra

is very different. Therefore, we cannot expect some equivalent result and it has so far remained
unclear whether there exists a generalization.

2.3. A natural orientation of embedded loops

We saw in Subsection 2.1 that for a special framed link L presented as the disjoint union
of some embedded curve F with standard framing with the trivial framed arc KQ, there exist
oriented loops 7 and 7~1 such that (L) = A(^) + A"^"1). We can give a more accurate
result:

PROPOSITION 3. - There exists a unique map e: 7Ti(F) —» {—1, +1} such that for any L, 7
and^~1 as above:

(L) =A-^<7) +A-^7~1)<7-1).

Proof. - Let S C 9F be the component of 9F which contains p. The orientation of F yields a
compatible orientation of S. Let g be the generator of 71-1 (5, p) corresponding to this orientation.

Let F -°—> F be a covering space of F such that a^ is an isomorphism of TTI (F, p) to 71-1 (5', p).
By lifting of paths, to any x in 71-1 (F, p) there is associated a unique element x of 71-1 {S,p). Write
x = e{x)g. The map defined by e{x) = sgn{e(x)) is the one we desire. D

This result will be of some interest for the proof of Theorem C where the map e will be the
one we have just built.

We now study how the data of a parallelization TT of a compact oriented surface F yields
algebra homomorphisms between K(F x I ) or K^F x I ) (if the surface has non empty
boundary in this case) and the A-deformation RH of the group ring R{H-^ (F, Z)).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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3. Relation between RH and K(F x I ) and K^F x J): proof of Theorems B and C

In this part, we build two maps <?: K(F x I ) -^ RH and 0: V^F x I ) -> RH (when F
has non empty boundary in this case) meeting the requirements of Theorems B and C. We first
define two new skein modules M and M based on oriented diagrams drawn on F together with
J?-module homomorphisms 0, ^, T, rj and ̂  such that the following diagram commutes:

K(FxI)-^M^RH

^ r, Id
v v ~ i

K^FxJ)——^—^^

Afterwards, we prove that the R-module homomorphisms <? = ̂  o 0 and 0 = ̂  o r are actually
JP-algebra homomorphisms.

3.1. Skein modules based on oriented diagrams drawn on F
We recall that F is a compact oriented surface equipped with a parallelization TT. Let D be a

link diagram drawn on F in general position, hence D is a diagram whose only singular points
correspond to crossings of two branches and such that for every crossing the branch passing over
the other is specified. We say that the arcs between the crossings of D are the arcs of D. For each
arc a of D we denote by £a and £a the two possible orientations of a. We allow some of the
arcs, say ai , . . . , a/c, of D to have a pre-specified orientation v^,..., v^ and call again D the
data of D together with the pre-specified orientations.

Definition (Admissible orientations). -Let D = (D, (ai, ̂ i), • . • , (o^, ̂ aj) be a diagram.
Let v : {arcs} -^ [Ja^a^a} be the data of an orientation for each arc of a diagram D. We say
that v is admissible for D if v{ai) = v^ for all pre-oriented arc a^ and if for every crossing one
has exactly two arcs oriented inward and two arcs oriented outward. A crossing where the orien-
tations of arcs belonging to a same branch are not the same is called exotic (see figure below).

\ \t *
Exotic crossings

A diagram jD, together with an admissible orientation v is said to be oriented and denoted by
(D, v\ If there is no exotic crossing in v, then D is totally oriented.

Let M' be the ^-module freely generated by the set of oriented diagrams in F modulo isotopy
of diagrams. We consider the following skein relations for elements of M''

r - ^ r
-'rA-1
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0
0

-A2

-A-2

It should be emphasized that the distinction between two orientations of a circle embedded in
F makes sense precisely because we have excluded the case of a sphere with no hole by requiring
the surface to be parallelizable. Noticeably, these relations make sense for all oriented compact
surfaces except the sphere with no hole.

The class of an element D of .A/f modulo these relations is denoted by [D\. Let M. be the
quotient of M.f by these skein relations. One can easily see that M. is a free J?-module, a basis
of which is given by the embedded oriented curves with no trivial component in F.

Similarly, if F has a boundary and a base point p e 9F, we define a "pointed" version M
of M to be the quotient by the same skein relations of the free module generated by oriented
diagrams in the interior of F, except at most one component which then contains p, up to isotopy
leaving p fixed. Obviously, there is a natural injective homomorphism rj: M. ^—> M. given by
rj{D)=D.

We now construct a natural homomorphism between K{F x I ) and M.

PROPOSITION 4. - Let D be an unoriented link diagram on F corresponding to some banded
link L in F x I. Let E(D) be the set of all admissible orientations for D. Then there is a natural
homomorphism of R-modules <j): K(F x I) —> M. such that for any banded link L:

^((L))= ^ [(D^)}.
v^E{D}

Proof. - Given an unoriented link diagram D on F, one can obviously define (f)(T>) as in the
proposition without ambiguity. This definition is clearly invariant under isotopy of diagrams. To
show that it actually leads to a homomorphism from K(.F x I ) to M., we now prove that it is
also compatible with the Kauffman bracket skein relations, and therefore invariant under type 2
and type 3 Reidemeister moves.
- First consider the "trivial link" skein relation: any embedded circle in F can be equipped

with two different orientations, corresponding to values of +1 and —1 of its degree, so:

<^u0)=wu0 + W[^Q

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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Hence, applying the skein relations in M:

^(D U 0 ) = (-A2 - A-2)^) - <^((-A2 - A-2)?)

Furthermore if we look at the "crossing" skein relation near one specified crossing p, we
obtain the following identity:

/ i ^ „ t , _ t
-E^^ +E—^" + E'

^€^1 I v^E-i \ i^CEs

+ ^—— + I:—— + E—
^e^4 f V^ES I ^G^6 T

where each sum in the above equation is extended to the set Ei of admissible orientations
of the link diagram which have the desired value for the crossing p we are watching.
Now apply the skein relations to the oriented diagrams in each of these sums:

and rearrange the summation according to the unoriented support of the oriented branches
having appeared. It turns out that each term corresponds to an admissible orientation for its
support, giving the following:

r^nA——(——+A-1

which means exactly that (j) is compatible with both Kauffman bracket skein relations. D

Equivalently, we can define a homomorphism r: K^^F x I ) —> M..
Given any relative framed link L in F x J, it can be ambient isotoped to a smooth relative

framed link L\ the framing of which is the standard framing everywhere except in small
neighborhoods of (p, 0) and (p, 1) where it has an arbitrary small twist to meet the requirement
that the framing at these points be given by the horizontal vector v. Let D{U) be the link diagram
on F obtained as the projection of L' (the relative framed arc in L' projects as component of
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the link diagram). We give D[L') the pre-specified orientation of the unique arc containing p
obtained as the projection of the "upward" orientation of the corresponding relative framed arc.

PROPOSITION 5. - There exists a natural R-module homomorphism:

T:y\FxI}-.M,

such that for all relative framed link L and diagram D as above, the following holds'.

T((L))=^[(D,^)],
V

where the sum runs for all admissible orientations v ofD.
Moreover, the following diagram is commutative:

K(F x I ) ̂ -^ M

'1 1'Y ^

K^FxJ )———^

Proof. - The proof that r is a well defined homomorphism follows exactly the same steps as
for Proposition 4. The fact that 770^=^077 is a straightforward consequence of the definition
of 77 and 77. D

It is so far unclear whether there exists or not a multiplication on M such that the map (f)
should be a homomorphism of algebras .. . However, we shall use </> to prove Theorems B and C.
To begin with, we define a basis of K^F x I ) with which the computations will prove easier.

3.2. An appropriate basis of K^F x I )

We wish to define a suitable basis of K^F x I ) for computations with link diagrams drawn
on F with standard framing. In particular, as we want to look at products, we want the elements
of this new basis to glue together properly at p when they are superposed. By Proposition 1, a
basis of K^F x I ) is given by B.

Let x be an element F U ^(7) of B for some embedded smooth loop 7 in F. If ^(7) = 1 we
can modify 7 near? so that 7(0) = 7(1) be in the opposite sense to that of the oriented boundary
component S as defined in Subsection 2.3 (see figure below)

^2 - A
P P

9F OF

We call 7' the special framed arc obtained by doing the equivalent local modification on 7 if
e(^() = 1 and equal to 7 otherwise. Clearly, x and r U 7' only differ by a certain number of
twists. Hence the set Bf of elements F U 7' is also a basis of K^F x I ) .

We recall that we want to obtain algebra homomorphisms ^: K(F x J) —>• RH = RH^(F)
and 0: K^F x I ) -^ RH such that:

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



604 R SALLENAVE

- for any embedded simple closed curve F in F, with possible oriented versions 71 and 72,

<?({r))=P(7i)+P(72);

- for any embedded loop 7,

0((7))=A^)P(7),

where ^(7) is the "weight" of the oriented curve 7 with regard to the parallelization TT of
the surface F.

For convenience of notation we define 0(7) to be equal to P(7) if 7 does not contain p and
to A^71)P(7) if 7 has a component 71 which contains p.

The proof of Theorems B and C will follow two steps: first we construct an P-module
homomorphism ̂ : M. —» RH and define 0 to be ^ o r and ^ > t o b e ^ o ^ = ^ o ^ o ^ ) ; then
we show that these maps are actually algebra homomorphisms.

3.3. A homomorphism ^: M —^ RH

Definition (Path choices on oriented diagram). - Let D be an oriented diagram drawn on F.
We call "path choice" for D the specification of a generically embedded path c supported by D
and compatible with its orientation.

In other words, a path choice for a diagram D is the choice of a smoothing compatible with
the orientation for each crossing.

In particular, only exotic crossings actually provide a choice between two possible paths (see
figure below) so that there exists only one possible path choice for any totally oriented diagram.

r - 4^ or 4"
path choices near an exotic crossing

Given a path choice c for an oriented diagram D and a crossing p of D, we put

/ \ def ..m(c^p) = A

if the choice c at p is to turn left when one follows the upper branch of the local diagram towards
the crossing, and

/ \ def A _im(c,p) = A

if the choice is to turn right.
To any oriented diagram D and compatible path choice c, one clearly has an associated weight

P(D,c)eRH.

PROPOSITION 6. - There exists^ a unique R-module homomorphism '0 : M. —>• RH such that
for any embedded curve 7 in F, ^(7) =0(7). For any oriented diagram D, ^([D}) is given by
the following formula:

W})=^\Y[m^p)\Q(D^\
c •- p
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where the sum runs over all possible path choices cfor the oriented diagram D and the product
over all crossings of D. Furthermore, the compositions'.

^=:^^}orjo(f)=^o(|)•.K(F x 1)-^ RH,

0 = ̂  o r : K^F x J) -> RH

are the unique R-module homomorphisms between K(F x I) (respectively V^^F x I)) and RH
such that for any embedded unoriented curve F = F1 U • • • U F71 in F, each F'1 with oriented
versions 7^ and 73 (respectively any embedded curve 7 = 7 1 U 7 ~ ' 2 U • • • U r71, with 71 the
component containing p):

<?«^))=^[JP(^)+P(^)]'1=1

0«7))=Q(71)^[P(^)+P(^)]•
i=2

Proof. -
- Unicity: the requirements of the proposition specify the values of ^, ^, and 0 over bases

of.M, K(F x I ) and K^F x I ) respectively. It is also clear that 0 is surjective.
- Verification of the formula: it is clearly true for embedded curves, and, for general oriented

diagrams, the reader may easily check that it is compatible with the skein relations in
M. D

Eventually the homomorphisms <S> and Q appear as state summations: let D\ be a diagram for
some banded link F\ and D^ a diagram for some special framed link Fs, then

^«^l))=E[^m(c^)1p(JD^^C)=E^JD^^C)-
0,c) L P ] (^,c)

^^^-Efn^-^Q^-^^-E^^^)'
(^,c) L P J (^,c)

where the sums run over all pairs of admissible orientation and path choice.

3.4. Proof of the first part of Theorem B

The end of the proof of Theorem B now stands on three technical lemmas regarding the image
via ̂  of a superposition of two embedded curves in F: we will eventually prove that for such an
element (F) = (Fi)^) in K(F x I ) the value of ^((F)) may be worked out by considering
only total orientations of the associated banded link diagram.

LEMMA 3. - Let D be a diagram given as a superposition of two embedded curve diagrams
and let v be an admissible orientation for D. Suppose that there exists at least one exotic crossing
pona given branch B ofD. Then the branch B meets at least one exotic crossing of the following
type:

In fact the number of exotic crossings of each type met by any branch ofD is exactly the same.
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Proof. - Suppose the given exotic crossing is not of that type, i.e.

t
P

Then follow one of the involved branches in any direction. As r\ and Fs are closed curves this
branch must be closed so that you come back to p along the same branch from the direction
opposite to that chosen. The orientation v of this branch differs from one side ofp to the other;
hence there must be at least another exotic crossing on the branch. Let p ' be the first exotic
crossing encountered when following the branch starting from p, then p ' is necessarily of the
desired type and exotic crossings of either type actually appear alternatively. D

LEMMA 4. - Let v be an admissible orientation for D with an exotic crossing p of the
following type:

Let c be a compatible path choice and c' the path choice everywhere equal to c except at the
crossing p. Then the following identity holds:

4>{D^c')=-^D^c).

Consequently, if a banded link diagram D is the superposition of two simple closed curves in
F, then one can compute ^((D)) by considering only total orientations of D.

Proof. - For convenience of notations, suppose that the path choice c near p is the following:^
m(c^p) = A 1

so that c' is characterized near p by:

m̂(c,p) = A

- We first notice that the homology class [(D, v, c)] associated to the oriented curve (D, v, c)
does not depend on c. Hence (D, v, c) and (D, v, c'} induce the same element in Hi (F).

- Furthermore, we can compare the respective degrees of these two embedded curves. We put
a natural Riemannian metric on F and we start by isotoping D\ and D^ near p so that they
exactly coincide with the right angle drawing:

tMs
Mi |

| M2
M^
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We recall the expression of the degree of an oriented curve 7 as an integrated function along
the curve given in the introduction of the present article:

60-f=^fd0(t)€Z.

7

In a contractible neighborhood of p, the parallelization TT is isotopically standard. Therefore,
it can be modified inside this neighborhood in such a way that 0 be constant along each
branch of the crossing, equal to 0, ̂  or TT modulo 27r according to the direction followed,
and as {D, v^ c) and (D, v, c') only differ near p, we have:

,- y MI M-2 \ / M2 Ml v

60{D^^)-60(D^^f)=l\{ fd0^ fd6)-[ fd0-{- f d027r \ .7 J \ J J >
L ^4 Ms / ^4 Ms

Hence

60(D^c)-60(D^c')=-\(7-+7-}-(-7-7-}}=l.
ZTT \ 2 2 / \ 2 2 /

- We finally obtain the following identity in RH:

4>(D^c)=( ]]; m(cy)) -m(c,p). {-A2}80 {D ̂ \{D ̂  c)}
^P'^P /

= (n m(c/^/)) • (A~2m(c/^)) • W^^D^C}}^ p ' ^ p }
=-4>(D^c').

D

We now focus our attention on the total orientations of D. We have the following property:

LEMMA 5. -Let (D^i/) be a totally oriented diagram given as the superposition of two
oriented closed curves embedded in F, (Di, v\, ci) and (D^, v^, 02). Let c be the only compatible
path choice for D, then'.

- (rip771^?)) =:A<[(D1^1'C1)L[(D2'^/2'C2)]>. where the product runs for all crossings? of D\
- [{D^c)\ = [(Di^i,ci)] • [?^02)] mHi(F);
- SO(D^^)=60(D^^c^+60{D^^c^

COROLLARY. - The following holds in RH: (J)(D, v, c) = 4>(D^, z/i, ci) * ̂ (-C^ ^2, C2).
Pwo/: -
- We begin by proving the last assertion: it follows immediately from the additiveness

property of the integration in the formula we use to compute degrees.
- The second assertion is a basic result of homology theory.
- Eventually, the first assertion stands on the fact that the intersection form ([x], [y}) counts

the algebraic number of crossings of two oriented curves x and y , by counting a crossing
where the pair (a;, y) is direct as +1 and a crossing where it is indirect as —1. D

End of the proof of the first part of Theorem B

By Proposition 5, any algebra homomorphism satisfying the requirements of Theorem B must
be equal to ^. We now prove that ^ is in fact compatible with the multiplicative structures. For
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this purpose, it is obviously sufficient to study the image via ^ of the product of two curves
embedded in F.

Take a skein element (F) in K(F x I ) which is the product of (Fi) and (Fs) for two curves
embedded in F and given with standard framing. Represent F by the superposition D of the
associated diagrams D^ and D^. By Lemma 4, one can compute ^((F)) by taking into account
total orientations only:

^«r))=]^(i^c),
v

where the sum runs over all total orientations v and for each v, c is the only possible path choice.
The set of total orientations v of D corresponds exactly to the set of pairs (z^i, ^2) of total

orientations of D\ and D^ respectively by splitting of v in two parts, and, by Lemma 3,
(J){D, v, c) = ^(Di, z/i, ci) * ̂ (D2, ^2, c-z) so that:

<p{(^})= E ^l^l^l)*^2^C2).
(^1^2)

In other words:

^((r)) - ( E w^i^i)) * ( E ^2^02)),
^iCTO^i) / ^CTO^) /

where TO(D^) is the set of total orientations of Di.
And, as all orientations of an embedded curve are total orientations, we finally get the desired

result:

^((A)(r2))=^((ri))*<?((r2)).
This completes the proof that ^ is a homomorphism of J?-algebras.

3.5. Proof of the first part of Theorem C

The proof will be very similar to that given for Theorem B. We shall prove that for a diagram
D corresponding to a superposition x = x\x^ of elements of B\ one can compute 6{x) by
considering only total orientations of D.

Let D be such a diagram and v an admissible orientation of D. Call D' the component
corresponding to the special framed arc in x. The crossings of D correspond to crossings between
different components of D or self-crossings of D1\ By Lemmas 3 and 4, we know that if v has
exotic crossings on crossings of the first type (between two components) then ^{[{D, v)\) = 0.
We therefore can concentrate on orientations having no exotic crossings on crossings of two
components. We now look at such orientations and focus on self-crossings of D ' .

^ LEMMA 6. - Let D' be as above. If v has an exotic crossing on a self-crossing of D'', then
^([(A^)])=0.

Therefore, one can compute 0{x^x^) by considering only total orientations of the associated
diagram.
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Proof. - Follow D/ starting from p in the "upward" sense. Then the first exotic crossing is
necessarily of the following type:

Therefore ̂ ([(D, z/)]) is zero by Lemma 4. D

As in the case of Lemma 5, we now focus our attention on total orientations of a diagram D
which is associated to the product in K^F x I ) of two elements of B ' .

LEMMA 7. - Let (D, v) be a totally oriented diagram as above. Let (J9i, v\) and (D^, ̂ 2) be
the totally oriented diagrams corresponding to the elements x\ and x^ ofB'. Let c be the only
possible path choice for D. Then:

- (]~[ m(c,g)) =A^D1^11C1^^D2^2'C2^}~1 ̂ here the product runs for all crossings q of D\
- [(^%,c)]=[(Pi^i,ci)].[(D2^2,C2)]mHi(F);
- 60(D,^c)=60{D^^,c^^60(D^^C2).

COROLLARY. - The following holds in RH:

(J)(D, v, c) = (j)(Di, v^, ci) * ̂ >(D^ z/2,02).

Proof. - The two last assertions are exactly equivalent to those of Lemma 5. On the other hand,
we know again that ([(Di,^i,ci)], \(D^v^ 02)]} counts the algebraic number of crossings of the
oriented curves D\ and D^. Now, the special framed arc x ' in x is built as the superposition of
the special framed arc x[ and x^, where x[ and x^ correspond to smooth embedded loops with
equal speed at their extremities on p. To obtain the associated component D/ of D, one must
isotope x1 in a neighborhood of (p, |), where x[ and x^ are glued so that D' meets p only at
its extremities. By considering the possible relative positions of D[ and D^ near p, one can see
that this operation always leads to a change of —1 of the algebraic number of crossings. This is
exactly the result stated in the lemma.

The corollary is now a consequence of the fact that after smoothing all the crossings, the
components of D, D\ and D^ which contain p all give the value +1 to the map e. D

We now proceed to the second part of Theorems B and C. We already know that 0 is surjective.
- The structure of the Kauffman bracket skein algebra of the sphere with one, two or three

holes is already well known (see [1] for example) and is:
(1) isomorphic to R if there is one hole,
(2) isomorphic to the polynomial algebra R[C\ if there are two boundary components C

andC',
(3) isomorphic to the polynomial algebra R^.C'.C"} if there are three boundary

components (7, C' and C " .
The reader will easily check that the homomorphism ^ is actually injective in these cases
and so is 0 except for a sphere with three holes. On the other hand, if a sphere F is given
with more than three holes, then one can find two non-isotopic embedded curves in F having
the same homology class. Hence ^ and 0 cannot be injective.

- Suppose that F is a surface of genus g at least equal to two or a torus with at least one hole,
then one can find a non trivial embedded curve in F the homology class of which is null.
Hence ^ and 0 cannot be injective in this case either.

- The last possible parallelized surface is the torus with no boundary component. An
equivalent result was already established in [3] and [6], using presentation by generators and
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relations of the skein algebra. However, for the sake of consistency of this article, we give
here another proof of this fact: recall that the first homology group of the torus is isomorphic
to Z © Z and that to any element h of Z © Z there is associated an oriented embedded curve
(up to isotopy), the homology class of which is h. Consequently, one can see the image of
^ as the submodule of RH generated by the elements (-A2)^0^) + (-A2)-*50^-^) in
Z © Z ̂  RH and an easy induction shows that these elements are free in RH. Hence ^
maps a basis of K(T2 x J) onto a free family of elements of RH.

This completes the proof of Theorems B and C.
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