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BOUNDARY LAYERS AND GLANCING BLOW-UP IN
NONLINEAR GEOMETRIC OPTICS

BY MARK WILLIAMS 1

ABSTRACT. - We construct rigorous geometric optics expansions of high order for semilinear hyperbolic
boundary problems with oscillatory data. The errors approach zero in L°° as the wavelength e —^ 0. To
achieve such errors it is necessary to incorporate profiles of the glancing, elliptic, and hyperbolic boundary
layers into the expansions. The analysis of the glancing boundary layer forces the introduction of a third
scale l/\/i in addition to the usual oscillatory (\/e) and spatial (1) scales. The evolution of the leading
part of the glancing profile is governed by a semilinear Schrodinger-type equation with nonhomogeneous
boundary conditions. The description of the elliptic boundary layer involves complex phases and complex
transport equations.

We also construct examples showing that when glancing modes of order at least 3 are present, the maximal
time of existence Tg of the exact solution Ue can approach 0 as e —^ 0. The blow-up mechanism is different
from the types of focusing known to occur in free space. © 2000 Editions scientifiques et medicales Elsevier
SAS

RESUME. - On construit des developpements de 1'optique geometrique d'ordre superieur pour des
problemes aux limites hyperboliques semi-lineaires avec donnees oscillantes. Les erreurs tendent vers
zero dans L°° lorsque la longueur d'onde e tend vers 0. Pour atteindre de telles erreurs il est necessaire
d'incorporer les profils des couches limites glancing, elliptiques et hyperboliques dans les developpements.
L'analyse de la couche limite glancing nous amene a introduire une troisieme echelle 1/v^ en P^ des
echelles oscillantes (!/£) et spatiales (1) habituelles. L'evolution de la partie dominante du profil glancing
est controlee par une equation semi-lineaire de type Schrodinger avec conditions non-homogenes au bord.
La description de la couche limite elliptique fait intervenir des phases complexes et des equations de
transport complexes.

Nous construisons aussi des exemples montrant qu'en presence de modes glancing d'ordre au moins 3,
Ie temps maximal Te d'existence de la solution exacte Ue tend vers 0 lorsque e —> 0. Le mecanisme
d'explosion est different des types de focalisations qui se manifestent en 1'absence de frontieres. © 2000
Editions scientifiques et medicales Elsevier SAS

Parti
Survey of the main results

1. Introduction

As in [17] we construct geometric optics expansions for a class ofKreiss well-posed semilinear__/v+i
boundary problems on R_^ = [x = (x\ x^) = (XQ, . . . , XN)'' XN ^ 0}

1 This research was supported in part by NSF grants DMS-9401248 and DMS-9706489.
ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - 0012-9593/00/03/© 2000 Editions scientifiques et
medicales Elsevier SAS. All rights reserved



384 M. WILLIAMS

LUe=f(Ue,Ue\

(u) BUe\xN=Q=9e(x'),

Ue = 0 in .TO < 0,

and then show that the expansions are close to exact solutions for small wavelengths e. Here L
is an m x m first-order operator, and ge(x') = G(x' , x ' • ̂ f /e\ where G(xf,0o) is smooth and
periodic in OQ. The main difference is that in this paper, we produce expansions for which the
errors approach zero in L°°, not merely in L2 as in [17]. (By "error" we mean the difference
between the exact solution and the approximate solution given by the expansion.) To achieve the
smaller errors one must incorporate the profiles of the glancing, elliptic, and hyperbolic boundary
layers into the expansions. The existence of the glancing and elliptic boundary layers, which are
small in L2 but not in L°°, was already evident in [17], but there they were absorbed into the
error terms.

The analysis of the glancing boundary layer forces the introduction of a third scale (1/^F),
in addition to the usual oscillatory (1/e) and spatial (1) scales. If only the usual scales are
used, trouble arises since the equation for the glancing profile is then governed by a vector
field everywhere tangent to the boundary. The profile is thus uniquely determined by the initial
condition in XQ < 0, so one can't impose a boundary condition. On the other hand, (generalized)
eigenvectors associated to multiple real zeros of detL(^', ̂ v) = 0 are needed to make the exact
solution satisfy the boundary conditions (see Section 2). This inconsistency is one source of the
large L°° errors in [17].

As in [3,11,6,7] where different three-scale problems were considered (see Remark 8.9), the
profile equations exhibit second-order terms in the intermediate scale when the original system
(1.1) is first-order. The second-order derivatives are transverse to the boundary, so one can impose
a boundary condition. Indeed, we obtain semilinear Schrodinger-type profile equations with
nonhomogeneous boundary conditions (8.34). Schrodinger profile equations of a different sort
were encountered in [3,11], while the second-order profile equations in [6,7] were of parabolic-
hyperbolic type. In Section 2 a simple, explicit, linear example shows how the new scale and
Schrodinger-type equations appear in connection with glancing modes.

The construction of the elliptic boundary layer also has some unusual features. Complex
phases lead us to introduce periodic profiles that extend holomorphically into the upper complex
half-plane. One must work with spaces of profiles that are invariant under complex conjugation
and nonlinear functions (Remark 4.1). The transport equations associated to the complex phases
involve complex vector fields, but these equations need merely be solved to high enough order at
the boundary XN = 0 (Proposition 9.4).

In contrast to [17], where a leading term expansion was constructed for solutions Ue to (1.1)
with oscillatory data g^ defined by almost-periodic profiles, here we work with periodic profiles
and construct expansions of arbitrarily high order under an appropriate generically valid small
divisor hypothesis (Definition 4.1). It turns out that complete expansions can be constructed even
without any hypotheses preventing rectification like the oddness hypotheses of [3].

The elliptic and glancing boundary layers are of width ~ e and ~ -\/e, respectively, and appear
in the leading term of the expansions. Nonlinear interactions cause a hyperbolic boundary layer
of width ~ ^/e to appear as well in the higher order terms (Definition 8.1). One of the main tasks
of this paper is to understand precisely how the three layers interact and evolve. This information
is contained in the analysis of the profile equations. Much of it is summarized in Remark 8.4.

Once a sufficiently accurate approximate solution is constructed, the existence of a nearby ex-
act solution follows from a Gues-type theorem for semilinear boundary problems (Theorem 6.2).
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BOUNDARY LAYERS AND GLANCING BLOW-UP 385

Glancing blow-up
Letj?(0 = detL(0 be the scalar principal symbol of the mxm first-order operator L in (1.1).

To any ^/ = (^o, • • • ,^v-i) ^ ̂ N \ 0 there is associated a combination of glancing, hyperbolic,
and elliptic phases corresponding to the zeros ̂  ofp(^, ̂ v) = 0 which are respectively multiple
real, simple real, and nonreal. The results of [17] were obtained under the assumption that there
were no real zeros ̂  of multiplicity higher than 2. In Section 12 we show the necessity of
this assumption by constructing examples where the presence of real zeros of multiplicity 3
results in a time of existence Tg —» 0 for the exact solution Ue as e —> 0. The examples involve
constant coefficient operators and linear phases so they show that, in contrast to the situation for
hyperbolic equations in free space, coherence (see [8]) does not suffice to prevent blow-up. The
mechanism of blow-up is completely different from the types of focusing in free space identified
in [8] (see Remark 12.3). Theorem 4.2 of [17] shows that high-order nonreal zeros do not cause
blow-up as e —> 0.

Remark 1.1.- In [20] we construct rigorous geometric optics expansions for perturbations of
a stable planar shock produced by oscillations whose associated characteristic vector fields (3.6)
all reflect strictly transversally off the shock (an oscillating free boundary). The results of this
paper are intended partly as a step toward understanding the more general situation where elliptic
and glancing boundary layers form near the shock.

2. Appearance of the new scale in Schrodinger-type profile equations

Consider the 2 x 2 example on R_^ = {(t, y , x): x ^ 0}

Lue = 0,
(2.1) Bu,\^o=ge(t,y\

Ue = 0 in t < 0,
where

T ^ ( ^ ° \^ , f° 1^L=a^{o - i j ^ + ^ i o)9^
and B is a 1 x 2 constant, real matrix such that (L,B) satisfies the uniform Kreiss condition
(Definition 3.2). We take ge(t,y) = b(t, y)e^f3•(tfy)/£ where g = 0 in t < 0 and f3 = (r',7/) with
k'l-lr/1. .

The scalar symbol of I/is

(2.2) p(T,^0=T2-(^+r72),

so ^ = 0 is a double real root of p(r'\r)1',£,) = 0. The associated glancing phase and glancing
vector field are

(2.3) (^(^.^(T'.T/.O)-^,^) and X^lr'Qt-Z^Qy

respectively.
Taking 7 > 0 and ignoring powers of ITT we may write the exact solution Ue to (2.1) as

Ue(t, y,x) = f e^-^)+^+z^(r-z7)2-^2 r(T ~ z^ ̂
J Br(r - Z7, r])

(2.4) xb[r -%7 - — , r ] - ' - ) d r d r j

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



386 M. WILLIAMS

where (<^/"" always denotes the square root with positive part, and r is the eigenvector satisfying

(2.5) L (r - %7,77, \/(r - i^)2 -r]2) r(r - %7,77) = 0.

For (r', 77') fixed make the change of variable

T-' ^1T T]
(2.6) f = r -—, r j = r ] - - 1 -

e e

in (2.4), set X = (f - n + T'/^ 77 + ^V6)^ ^CP ̂  tildes, and use |r'| = |T/| to obtain

Ue(t,X,y) = e^+^V6 />g^(^Xr-^»y?)+^^V/2T/(r-^7)-277^+£[(T-^7)2-^] r(X)
J -L>7"(-X )

(2.7) x 6(r - z7,77) dr dr].

(2.7) exhibits the new scale x / ^ / e . Observe that the glancing phase (f)g appears on the far left,
and the first two terms under the square root give the symbol of Xg.

Now fix (r7,77') = (1,1), and set

(2.8) a,(x, t, y)e^e = e10 { e^^-^+W2^-^)-^ - ̂  r])^^- dr drj.
J Br(X)

Consider the approximate solution

(2.9) ^(t,y,x)=ae(x^y)e^e\ ^.
x V^' e

By Taylor expanding the square root in (2.7) and using [e^ - e^ ^ |w - z\, it's easy to show

(2.10) |e-^(^ - u,)(t,y,x)\^^ ^ Cx^e\b\^^

where \v\H^y) =\(r- i^,r]Yv(r - i^,r])\L^r^'
Finally, observe that ae(x,t,y) satisfies a Schrodinger-type equation with nonhomogeneous

boundary conditions:

tO^de + Xgde = 0,

(2.11) Ba^o=b(t,y\
de = 0 in t < 0.

Remark 2.1. - Later we'll encounter problems like (2.11) for the nth Fourier component
^n(x. t, y , x) of a periodic profile where i9^ is replaced by i9^/n. The 72-dependence is a source
of difficulty in the analysis. To obtain linear estimates suitable for Picard iteration, we are led to
introduce the cutoffs p(-)((D3/2)) (8.35) and to make use of Wiener algebras A^(C7(^, I I s ) ) (7.7),
(8.42).

3. Symbols, phases, the Kreiss condition, and regular boundary frequencies

We revert to the notation I^1 = {x = (X\XN) = (XQ,X") = (xo,y,XN): XN ^ 0} of
Section 1. Denote the dual variables by ^ = (^/, ̂ v) = (^o, 77, ̂ y).

4° SERIE - TOME 33 - 2000 - N° 3



BOUNDARY LAYERS AND GLANCING BLOW-UP 387

A. In (1.1) L = L(Q) = QXQ + Z^LiA^jv is an m x m first-order system, strictly
hyperbolic with respect to .z:o. and noncharacteristic with respect to the boundary XN = 0. The
corresponding symbols are

(3.1)

N

L(Q = ̂  + ̂  A^- = ̂  + A(0,

p(0=detL(0.

We assume the Aj are real matrices. £ ? i n ( l . l ) i s a ^ x m real matrix where ^ is determined
from the Kreiss condition (Definition 3.2).

Define the matrix A(0 by the equation

(3.2) A^L^)=^-A(^).

B. If ^ = (^/, $^) € M^ x C, x e M^1 we call ^ (respectively ^ • x) a characteristic mode
(respectively characteristic phase) when p(Q = 0, and we set

(3.3) charL = {(^) € M^ x C: p(Q = 0}.

For ^ e char L the mode (or associated phase) is called glancing, hyperbolic, or elliptic
depending on whether the root ̂  ofp(^, ̂ ) = 0 is multiple real, simple real, or nonreal.

C. Suppose $ = (^o, ̂ //) ^ char L D (R^1 \ 0). Strict hyperbolicity implies ker L(Q is one
dimensional. Indeed, for ^// € M^ \ 0, A(^") has m distinct eigenvalues -^(^Q satisfying

(3.4) ^(^)<^")<---<^(r)
^,/ /)j=l,...,m.with associated right eigenvectors r^"), j = 1,..., m.

If ^ = (^,^) e char L H (]RN+1 \ 0), ̂  = ̂ (^/) for some i and we set ̂ 0 = ^(i^)' Let

TT(O denote projection of C^ onto ker L(Q along range L(0. This is the same as the projection
onto ri(^) with respect to the decomposition

(3.5) C771 = spann^") © • • • © span r^").

Set pi(0 = ^o — ^S^")- $o(^//)ls real-analytic in ^// and the characteristic vector field associated
to ^ is given by

(3.6) ^IN)-^ (9. =(9^. ̂ ,9^)).

s^c'1
X^ is called glancing, outgoing, or incoming when -^(^//) is respectively == 0,< 0, or > 0.
^ (respectively ^ • .r) is then referred to as a glancing, outgoing, or incoming mode (respectively
phase). The importance of X^ is connected to the well-known fact [12] that

(3.7)
7r(OA^(p = - ||°(i"MO and thus

7r(pLO)7r(0=^7r(p.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



388 M. WILLIAMS

D. When $ = (^//) = (^i^ e charL and Im ^N ^ °5 we don5t "^^^Y have a

decomposition'Uke (3.5) or a well-defined vector field X^ as in (3.6). This leads to

DEFINITION 3.1.- The elliptic mode (^/,^) is regular if
(a) $ is a simple root ofp(£f,^) = 0.
(b) A(^') ̂  diagonalizable.

Condition (b) means there is a decomposition

(3.8) Crn=E^)e•••Q)El(^\ ^m,

into eigenspaces of A(^') associated to eigenvalues -^(0,. • . , -^//) € C. ̂  € R must
equal one of these, say ̂  = ̂ //). We may now define 7r(p to be projection of C771 onto ker
L(0 along range L(Q. This is just projection onto E\ with respect to the decomposition (3.8).

Since every eigenvector of A(^') associated to -^ is an eigenvector of A{^) associated to
$ and vice versa (the same is not true for generalized eigenvectors!), condition (a) in Definition
3^ and (3.8) imply ̂  is simple as a root ofp(^^) == 0. Thus, for ^// = (7^) near (^^)
in R^"1 x C, ^(^Tv) is real-analytic in T] and analytic in ^v. Setting pi(0 = $o - ̂ (^//)the

(complex) characteristic vector field associated to the elliptic mode $ may now be defined by

(3.9) ^-^(O-^-

Remark 3.1. - _
(a) Since the matrices Aj are real, if (^',<^v) is a regular elliptic mode, so is (^,$7v). For a

more general notion of regularity for elliptic modes see Definition 3.5.
(b) (3.7) holds also for regular elliptic modes ̂ .

E. The uniform Kreiss condition and the spaces E^Q. For ^ e M^ and 7 > 0 the strict
hyperbolicity of L implies that the eigenvalues ^(^o - n, ̂ ) of ̂ o - ̂  ̂ ) (see (3-2)) have

nonzero imaginary part. Denote by E^^o - 27. ̂ ) the direct sum of the generalized eigenspaces
of A(^Q - n, rj) corresponding to the ̂  with Im ̂  > 0:

(3.10) E^o-n^)- ® ker[(^-^o-^7^))mJ]-
Im^>o

where rrij is the multiplicity of ^. The dimension ^ = EIm^>omJ of JE;+^0 - ̂ fr]) is

independent of (^rj) G M^, 7 > 0- Let

^={(^0,77,7): (^^eR^, 7^0, ($0,77,7)7^0}.

The spaces ^'-^(^o - ̂ 7^) form a (7°° subbundle of rank p. of the trivial C^ bundle over
X ft {7 > 0} which extends to a continuous subbundle E^ of rank /x over X [2]. For $' G R^
E~^(^) denotes a fiber of this continuous extension.

DEFINITION 3.2. - The pair (L, B) satisfies the uniform Kreiss condition if the restriction of
B to E^^o - %7, r]) is an isomorphism for all ($o, r]) € M^, 7^0 such that (^ ̂  7) + °- T/?^
forces B to be a f^x m matrix.

4® SERIE - TOME 33 - 2000 - N° 3



BOUNDARY LAYERS AND GLANCING BLOW-UP 389

F. Decomposition of E+(Q. For ^/ e R^ \ 0 let ^(0, i = 1,..., M(Q < m be the
distinct roots of det(^ - .4(0) = 0. Write the index set M(^') = {1, . . . , M(Q} as a disjoint
union of subsets ^(0,0(0,P(0,:r(0, and ./V(0 corresponding to the modes A(Q =
(^^(O) that are respectively glancing, outgoing, such that Im^ is positive, incoming, or
such that Im ̂  is negative.

E^(^) may now be written as a direct sum

(3.11) E+^)= (]) ^(^(O).
Z€^(OUO(OUP(O

For i C P(0 E+(/?^(^/)) is the generalized eigenspace associated to the nonreal eigenvalue
$]v(0- For i e °(^ ^(/^(O) = ker ̂ (A(0). a one-dimensional space. Suppose finally that
^ e <?(0, ^ = te^), and that mi > 1 is the multiplicity of the real root ̂ (0. For 7 > 0
small ̂ (^o, r]) splits into m, roots ̂ (^o - z^, 77), k = 1,..., m,, with nonzero imaginary parts.
Let /^(O be the number of these with positive imaginary part. Then dim E^dS^)) = ̂  and
E^(l3i(^)) is spanned by generalized eigenvectors w such that [^(0 - A(O]^W = 0. The
strict hyperbolicity and noncharacteristic boundary assumptions imply [2]

mz i-j j i i = — when mi is even.

_ i 1 ^ 1. rrii+1 mi - 1 ./^ is either —_— or —.— when mi is odd.

DEFINITION 3.3.- Let P(A(0) denote the projection of ^+(0 onto E+(ft(0) w^/i
respect to the decomposition (3.11).

Remark 3.2. - Suppose dim E^/^')) = 2 for some z e ̂ (^/). For ̂ / near ̂ /, £1+(/3,(^)) can
split into a direct sum of two nearly parallel eigenspaces. The projections onto those eigenspaces
blow up as ^/ —> ^/, which raises the question of whether such unbounded projections can lead to
a shrinking time of existence, Te —> 0, for the exact solution Ue to (1.1) as e —> 0. Example 2 of
Section 12 shows this to be the case. On the other hand Theorem 4.2 of [17] shows that elliptic
modes of high multiplicity do not cause Te —^ 0.

To avoid glancing blow-up we shall later fix ^ = (^o, 77) € R^ \ 0 such that

(3.13) For all % € 0(0, m, = 2 and thus dim E^ (A(0) = 1-

In this case E^(f3i(^)) is the eigenspace of A(r], ̂ Jv(O) associated to the eigenvalue -^o.

DEFINITION 3.4. - We call ^/ = (^o, rj) € M^ \ 0 a regular boundary frequency if^ satisfies
(3.13) anJ all the associated elliptic modes /3z(0, z e P(^)UA/'(^), ^r6? regular (Definition?) A).

The results of this paper will assume that ge(x') = G(x\x/ • ^ / e ) in (1.1) oscillates with a
fixed regular boundary frequency ^/.

When ^/ is regular, for each i = 1,..., M(^) the eigenspace of A(rj, <^]v(0) associated to -^o
is one-dimensional. With r(<^, ̂ ]v(0) denoting a corresponding basis vector, the decomposition
(3.11) may now be written

(3.14) ^(0= ® spanr(^,^(0).
(̂OUO(OUP(O

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



390 M. WILLIAMS

Example 3.1.- Suppose

det($o + A(D) = (Co - ci ir 2) fo2 - ̂ l2) fo2 - csiri2),

where 0 < ci < 02 < 03. Then every ^/ C R^ \ 0 is a regular boundary frequency. In particular, if
^ = ($o, rj) satisfies ̂  = 02l^2, then ^(Q, 0(Q, P(Q are all nonempty.

The following simple proposition will be helpful in the construction of the elliptic boundary
layer.

PROPOSITION 3.1. - Assume (L, B) as in Part A satisfies the uniform Kreiss condition, and
suppose ^f is a regular boundary frequency. Then cardP(^) = card./V(0 and the restriction

(3.15) B: Q) spanr(^Jv(0)-Cy
ze^Que^OLW^)

is an isomorphism. The r(r], <^(0) can be chosen so that for each i € P(0 there is a k e A/'(0
such that ̂ (0 = ̂ /) and r(rj, ̂ (0) = r(rj, ̂ (Q). We denote by g : P(Q -^ ./V(0 the
map that associates k e A^(0 to i e P(0.

Pwo/^ - The statement follows immediately from the definitions, (3.14), and the fact that the
matrices Aj, B are real. D

Remark 3.3. - Elliptic modes (^/, <^Jv(0) of multiplicity > 1 do not cause blow-up, so one can
attempt to construct geometric optics expansions for Ue even when such modes are present. We
shall not attempt to deal here with boundary frequencies <f for which the geometric multiplicity
of ̂ (0 as an eigenvalue of A(0 is less than the algebraic multiplicity (see [17], proof of
Theorem 4.7c). But in Remark (9.3) we describe how the results extend to the more general case
where elliptic modes of possibly high multiplicity are required to be regular in the weaker sense
of the following definition.

DEFINITION 3.5.- The elliptic mode (^,^)= (^^^)is weakly regular;/
(a) there are neighborhoods uj of(r^^) in R^-1 x C and 0 of^r^,^) in ̂ N x C such

that for each (rj, ̂ ) e ̂  there is exactly one point (^o(r), ̂ v), rj, ̂ y) C 0 D char L,
(b) the algebraic and geometric multiplicities of^ as an eigenvalue ofA(^) are equal,
(c) A(^ ̂ ) is diagonalwble. ~

G. In the analysis of the glancing boundary layer we shall need to work with Wiener
algebras A^C^^Cr))) (7.7) which are invariant under the function f(u,u) in (1.1). This
will be the case if we assume /(^.^C771 x C^ -^ C^ is entire with /(0,0) = 0. One can
easily consider more general entire functions f(x,u,v) = ̂  ̂ ^ fa^Wu^v'3 by imposing
appropriate restrictions on the coefficients fa,^(x) (see [17], (2.7)), but we'll refrain from doing
so here.

4. Three-scale profile equations and small divisors

Using the notation and definitions of Section 3, Part F we fix a regular boundary frequency ^/

and look for solutions He to (1.1) of the form

(4.1) Ue(x)= [ao(x.x,0)-^Vea^^0)^•'•^(^e)MaM(x^,0)]L^ ^^.
"- ^/e ' e

where the M(^)-tuple of phases (f)(x) and placeholder 0 are defined as follows.

46 SERIE - TOME 33 - 2000 - N° 3



BOUNDARY LAYERS AND GLANCING BLOW-UP 391

Notation 4.1. - For a fixed regular boundary frequency $' and j € 0(0 U 0(0 U Z(0 U
^(0

(a) ^(x) = (^ ̂ ,(0) • x = /?,(0 . x, ̂  as in Section 3, Part F.
(b) rj = r(/^(0), a basis vector for ker L(/^(0),
(c) 7T^ = 7r(/^(0)» projection onto ker L(/^-(0) along range L(/^-(0)»
(d) X, = X^.(^/), the characteristic vector field associated to /3j(0,
(e) 0j is the placeholder for ( / ) j / £ .
(f) For j G MO, set ^(.r) = (-0 -^(0) • .r for k = g-\j) (g as in Proposition 3.1),

/?,(0 = c%, r, = ̂ ^ = 7r(/3,(0), and X, = X^,^/).
(g) For j e MO 0, = -9k for fc = g-^(j).
(h) Set0=(^)^i,,.,M(^).

For i e 0(0 U 0(0 U Z(0 ̂  ^ B^, while for i € P(0 U .A/"(0 we have Im Q, ̂  0. Observe
that for i C .M(0 \ -^(O^ 0^ restricts when .r^ = 0 to the boundary phase ^o(^) = $' • a^, while
for i e .A/"(0^ ̂  restricts to —(/)o(x). We denote by ô the placeholder for (t)o(x)/e.

Each profile a^(^,a;,0) is associated to a smooth periodic function dj(^x,0), 0 € M^^,
whose Fourier expansion has the special form (dropping the j)

(4.2) a(x.x,0)= ^ a,(x,^)e^,
a€Z(0

where Z(0 C Z^^^ is defined by

Z(^) = {a = (ai)^M^ ̂  e Z if i e 0(0 U 0(0 U Z(0;
(4.3)

azeZ-^ifze^OuW)}-
Here Z~^ = {0,1,2,. . .}. Note that since spec a C Z(0^ a extends holomorphically in the
variables (<90zeP(Ou.A/'(0 to

{(^^)^eP(^/)uM^/): Im^^O}.

Denoting the holomorphic extension also by a we define, for 0 as in (4.1)(h),

(4.4) a(x.x,e)=a(x,x,0)\^.

PROPOSITION 4.1. - (a) For a(\, x, 0) as in (4.4), there exists a function c(^, x, 0) of the form
(4.2) such that

a(\,x,e)-=c(^x,6)\ff^Q.
(b) Let /(m,..., Un): (C771)71 -> C7'1 be entire and let

a^Oc, x, 0) = a^Oc, .r, 0)|̂ , z = 1, . . . , n,

/or a^(^, re, 0) as in (4.2). TTî n there exists a function b(\, x, 0) of the form (4.2) such that

/(ai,.. .,aJ = &0c^^)|0=0-

Pwo/ - (a) Write

a(x^9)= ^ a,(x,^)e^
aez(^)
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and note that since 0g^ = -0, when i e P(0 for ^ as in Proposition 3.1, we have

iaO = i(30, for (3 <E Z(Q

where

A = -ai e z, z e ̂ (0 u O(^) u Z(0,

A=^(Z)CZ+, zeP(0,

/?^)=a,eZ+, zeP(^).
(b) Just take b = /(ai,...., aj. D

Remark 4.1. - (a) In particular for a(^, a;, 0) as in (4.4) and f(u, v): C171 x C772 -^ C171 entire,
we have

(4-5) f{a^x,0\a(x,x,0))=b(^x,6)\^

for a function b of the form (4.2).
(b) In Section 9 we work with profiles a(^, a;, 0) of the form

(4-6) a(X^,0)=M^a(^x,0)+M^a(x,0\

where M^a is rapidly decreasing in \ and Mooa is independent of ^. For / as in (4.5),
/(a(^, x, (9), a(^, a;, (9)) also has the form (4.6) (Proposition 5.1).

Notation 4.2.- For functions a(^x,0) = a(^x,0)\^ as in (4.4) we'll often write
Qe, aOc, x, 0) instead of [9^ a(^, x, 0)] | ̂ .

Equations for the profiles a(^, x, 0) are obtained by plugging (4.1) into (1.1), Taylor expanding
nonlinear functions of Ue about ao, and setting coefficients of different powers of e equal to zero.
With L(9) and L(Q as in Section 3, Part A, set

(4-7) W)= ^ L(^))9e,.
i^M(^)

Let 1k (respectively B^) be the interior (respectively boundary) equations obtained by setting the
coefficient of ek equal to zero. The 1k equations on XN > 0 are:

I-i: P(^)ao=0,
(4.8)

I_,: P(^)ai+A^ao=0,

Io: P(9e)a2 + ATV^OI + L(9)ao = /(ao),

1^: P(9e)a3 + A7v<9^a2 + L(9)ai = f\ao)a^,

Ii: P(%)a4 + ANQ^ + L(9)a2 = /'(ao)^ + ///(ao)(al,al),

1 ,̂ A; > 1: P(9e)a2k^2 + A^^a2/c+i + ^(9)a2fc = f(ao)a2k + ̂ (ao,..., a^k-i).
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Here we use the shorthand /(ao) for /(^o^o) and do similarly for higher derivatives. Below we
let s(0o) denote the M(0-tuple such that

s(0o\=0o ifzeWAW),

s(0o)i=-0o ifzeW).
The boundary equations on XN == 0 are:

Bo: Bao(x^^)lx=o^7v=o,0=s(0o) = G(x\0o),
(4.9)

B^, A; > 0: Bak(x.x. 0)\x=o,xN=o,e=s(0o) = 0.

Remark 4.2. - If <?(0 = 0, then all odd profiles turn out to vanish, all even profiles are
independent of \, and the equations (1^, B/e) reduce to the usual 2-scale equations (see Section 9).

An important step in solving the (I/c, B/c) is solving equations like

P(9e)a(x,x,0)=F(x,^0)

in algebras of functions of the form (4.4). This is generally impossible because of the occurrence
of small divisors. As in [10] we'll impose a small divisor condition, but here the condition is
slightly modified to take into account the elliptic boundary layer. Observe that for a(^, x, 0) as in
(4.4),

(4.10) V(Qe)a(x^e)=i ^ P(a)a^(^)e^,
aGZ(0

where

(4.11) P(a) = L(a' d(f>\ (f)(x) as in (4.1).

Denote the characteristic set by

C={aeZM(^: detP(a)=0}.

DEFINITION 4.1.- The boundary frequency ^ (or phase <f)) satisfies the small divisor
condition, if there exist C > 0 and d C K such that

(4.12) \d^(a'(f))\ ̂ C^ forallae^^^
(4.13) \detP(a)\^C\ad for alia C Z(0\C.

In what follows we shall always work with a fixed regular boundary frequency ^/ chosen so
that

(4.14) $' satisfies the small divisor condition.

Remark 4.3.- (a) Property (4.12) implies that the component phases of (f) in (4.1) are
Q-independent, a point that will be important in the solution of the profile equations. The
Q-independence would not follow if Z^^ \ 0 were replaced by Z(Q \ 0 in (4.12). Situations
where rational relations hold among just the real phases can be handled by choosing an
appropriate adapted basis (Definition 8.2) for the Q-span of the real phases. This is done in [20]
in the context of multidimensional shocks. It is possible to have relations involving a mixture of
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real and nonreal phases. For example, an integer combination of glancing and elliptic phases can
equal a different elliptic phase. We shall not treat such situations here.

(b) Suppose card (0(0 U Z(0) = m for all ^' in some open subset Q c R^ \ 0, so the
modes associated to each ^' c Q are all hyperbolic. Propositions implying the validity of (4.12),
(4.13) for almost every ^ 6 ^ are given in Section 4 of [20]. Similarly, one can consider lower
dimensional submanifolds Q C ̂ N \ 0 such that a fixed number of glancing modes, and possibly
elliptic or hyperbolic modes as well, are associated to each ^/ € Q. Examples where the small
divisor properties hold for almost every ^ € Q are given in Section 11.

5. Function spaces

Here we define the spaces needed to state the main results.
Fix a regular boundary frequency ^/ G M^ \ 0 and let M(^') be as in Section 3, Part F. Let

QT = [x € R^; -oo < XQ < T, XN ^ 0}, QT,O =^TX T^^,

and set

bQr = [x' € R^: -oo < XQ < T}, bQT,eo = bQr x T1.

We regard the functions a(^, x, 6) in (4.2) as functions on R+ x QT x T^^.

5.1. Spaces for profiles

(a) C^°(r,0 = {aOG^) € G00^ x QT x T^^): a has the special form (4.2) and
9°" . a is bounded for each a ].(X^,6)

(b) C°°(r,0 = [a(x,0) e C^JPT x T^^^): a has the form (4.2) and <9^ a is bounded
for each a.}.

(c) r^°(r,0= {aOG^)eC^°(r,0: ̂ ^^ ^-a is bounded for each pair (a, A:), A: ^0}.
(d) r^°(r,0 - {a(^,a;,0): a = a|^^, with a C r^°(r,0 and (9 as in (4.1)(h)}.
(e) C°°(r,0 = {a(a-,6>): a = a|^, with a e C°°(r,0 and (9 as in (4.1)(h)}.
(f) P^(T,0 = [a(^x,0): a = b^ c, where &(x,^) € ̂ (T.Q and c C C°°(T,O}.
(g) C00^) = {a(^, 6>o) G C700(&^^,0o): ̂ ^ is bounded for each a}.
In (5.1)(d) a has been holomorphically extended as in (4.4).

PROPOSITION 5.1. - Suppose f(u^..., Un): (C771)71 -^ C7" ̂  entire. Let a i , . . . , On € P^(r, 0.
77^ /(ai,..., an) € P^(r, 0. In particular, iff(u, v) is entire and a € P^(T, Q, r/z^M /(a, a) €
iwo-

Pwo/: - Let a, = &, + c,, where b, e ̂ (T, ̂ ) and a G Coo(^, ̂ /). Write

/(Oi, . . ., aj = [/(&! + Ci, .. ., bn + Cn) - /(Ci, .... Cn)] + /(Ci, .... Cn),

rewrite the first term on the right using Taylor's theorem, and apply Proposition 4.1. D

5.2. Spaces on J?r

Let ̂ (Pr), W^^^QT) be the usual Sobolev spaces. For m C {0,1,2, . . .}, p > 0, e e (0,1]
let

(a) B^(T) = {^Gr) € ̂ T^r): Î IL )̂ ̂  P^"^' for \a\ ̂  m, £ e (0,1]}.
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23^ (T) is the analogous space on bQr'

(b) D^(T) = {ue(x) e Wm-oo(QT^ I^IL-OW < P^ for H ̂ ^ € (0,1]}.

P^(r) is the analogous space on &J?r.

Notation 5.1.- The subscript "0" attached to any of the function spaces defined in this paper,
e.g., P^,o(T, 0» will be used to denote the subspace of functions vanishing in XQ < 0.

DEFINITION 5.1.- For functions a(\,x,0) € P^(T,0 we define projections M^a =
lim^oo a e C°°(T, Q and M^a = (1 - M^)a e ̂ (T, Q.

Remark 5.1. - (a) a(^,rr,0) C P^(T,0 implies a(^/^,a',0(.r)/£) <E D^(T) for all m, for
some p = p(m) > 0.

(b) Spaces like B^(T) and D^(T) were used in [4].

Notation 5.2. - (a) For functions a(\, x, 0) C C^(T, ̂ /) we set a(^, x) equal to the mean of
a, and a* == a — a. For a(^, x,0)=a ̂ , we set a(^, x) = a and a* = a — a.

(b) If B is any space of periodic functions, B* will denote the subspace of functions with
mean 0.

6. Main results

We shall construct exact solutions Ue of (1.1) in H^^Qr) where m\ > (N + 1)/2 by first
constructing an approximate solution u^ of the form (4.1) with M terms where (M — 1)/2 ̂  mi,
and then proving a general Gues-type theorem for boundary problems to obtain a unique exact
solution Ue nearby. The smooth profiles aj in (4.1) will be constructed to lie in P^o(^0
(Definition 5.l(f)).

The analysis of the profile equations produces detailed information about the interaction and
evolution of the boundary layers. Some of that information is summarized in Remark 8.4.

THEOREM 6.1.- Fix a regular boundary frequency ^ e M^ \ 0 (Definition 3.4) satisfying the
small divisor condition (Definition 4.1). Consider the problem (1.1) "where (L, B) as in Section
3A satisfies the uniform Kreiss condition (Definition 3.2), f'.C'^xC171-^ C771 is entire with
/(0,0) = 0, and g ^ x ' ) = G(xf,xf • ̂ /e\ where G(x\0Q) G C°°(T) has compact support in x '
and G = 0 in XQ < 0 (so G <E C§°(T)). Choose (M, mi) such that (M - 1)/2 ̂  mi > (N + 1)/2.
There exist To, 0 < To ̂  T, and profiles a^ (^, a;, (9) C P^,oC?o, 0, for j=\,...,M such that Ue
as in (4.1) satisfies

L^=/(^,^)+£(M-1)/2^,

(6.1) B^l^o-^^-1^,

itg = 0 in XQ < 0,

where R^e lie in D^(To) H B^(To), P^o (^o) ̂  ̂ o^o) respectively for some p > 0.

^mar/r 6.1. - (a) In fact for all m ̂  0, R^ r, lie in D^o(To) H B^o^o)- ̂ m)^) ̂
^m),o(^o) respectively for some p(m) > 0.

(b) Comer compatibility conditions in (6.1) hold to infinite order since G e C§°(T) and
/(0,0)=0.
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Exact solutions near approximate ones

The following general Cues-type theorem also applies to boundary problems not involving
oscillatory data.

THEOREM 6.2. - Let (L, B) and f be as in Theorem 6.1 and choose Mi ^ mi > (N + 1)/2.
Suppose Ue € D^o (T) satisfies

(a) ^=/(^,^)+£M^,

-S^ rz^O^^+^re,

He = 0 m XQ < 0,

H^?^ ̂  C B^(T), ̂  G B^oCO/^- some P > 0-
TTz^i r/i^r^ &mr £o > 0 ̂ nJ a > 0 such that for 0 < £ < £Q the problem

(b) LUe=f(Ue,Ue\

BUe XN=O = 9e^

Us = 0 m a;o < 0,

has a unique exact solution Ue € u^ + ̂ ^B^C^)-

THEOREM 6.3 (Exact oscillatory solutions). - Let (L, B), f, g^, (M, mi). To, and the profiles
dj be just as in Theorem 6.1. There exist EQ > 0 6mf/ cr > 0 such that for 0<e <eo, the problem
(1.1) has a unique exact solution in H^^To) given by Ue = Ue + e^^^W^^T) where

^ o\ ~ ( X N ^\ / /-\M /a;N 0\(6.2) ._ao^.,^+...+(^) a^x^.

Proof. - We have u^ € B^(ro), so (6.1) implies the hypotheses of Theorem 6.2 are satisfied
with Mi = (M - 1)/2. An application of that theorem concludes the proof. D

Remark 6.2. - (a) A standard continuation principle and uniqueness for (1.1) imply that the
solution Ue in Theorem 6.3 is in fact C°°.

(b) Theorems 6.1,6.2, and 6.3 remain true exactly as stated when f(ue,Ue) in (1.1) is replaced
by certain more general forcing terms. See Remark 8.5.

(c) Cases where there are nontrivial rational relations (hence resonances) among the
components of </>, but which involve only the real phases, can be handled similarly using adapted
bases. See Section 8.2.

(d) The treatment of boundary frequencies ^/ for which the corresponding elliptic modes are
of possibly high multiplicity, but still weakly regular in the sense of Definition 3.5, is described
in Remark 9.3.

7. Spaces for constructing the glancing boundary layer

The leading term of the glancing boundary layer will be written as a sum of two pieces, bo + Co
(8.35), (8.36). Different spaces are used in the Picard iterations for 60 and Co. Recall the notation
x = (XQ, x " ) = (XQ, y , XN) = (x\ XN) for x € QT'

4e SERIE - TOME 33 - 2000 - N° 3



BOUNDARY LAYERS AND GLANCING BLOW-UP

7.1. &o-spaces

For me {0, l ,2 , . . .} , r>0,7>01et

(7.1) Hrn(T)=(u(x)'. \u\m,T= ̂  \9au\LW<^\.
v |a|<m "

397

(7.2) J^LGF): u\^= ̂  ^^'"lle-7^^!^^^ < ool.
v |a|^m + '

(7.3) H^T) = L(x): \u m^T = Y, 7m~H|e-7a;09c^|L2(^) < ool.
< |a|<m "

(7.4) C(^, fT^r)) = {u(\, x)\ u is a continuous, bounded function of
\ ̂  0 with values in ̂ (T)},

|^|^m,T=sup|u(^,-)|^^.
x^o

(7.5) ^(x^^r)) - {u(x,x): 9^u € C^H^T))^ I ̂  k}.

(7.6) The spaces and norms C7(^, I^^), H^m/y and G(^, ̂ (T)), |^|^yn,7,r
are defined similarly.

Wiener algebras Ae(B). It was observed in [9] that Wiener algebras are useful for proving
estimates on profiles by mode-by-mode analysis. For a Banach space B Ae(B) is the space of
periodic B-valued functions of 0 € W with absolutely summable Fourier coefficients. Here and
elsewhere we suppress the "p" in the notation. Thus V e Ae(B) if and only if

(7.7) V = ̂  V^0 with |Y|A,(B) = \V\e;B = ̂  \V\B < oo.
n^lP n

If fc ̂  1 we define

A^B) = {V: O^V e Ae(B) for |a| ̂  k}
with

(7.8) |y|^(B) = \V\k^B = E '̂l̂  B-
n

A simple application of the triangle inequality shows that if B is a Banach algebra satisfying
\UV\B ^ C\u B V\B for some C > 0, then for the same C

(7.9) \UV\e,B^C\U\6,B\V\e;B>

In particular (7.9) holds for B = H^^T) or C^H^^T)) when m > (N + 1)/2. The
corresponding |?7|(9;B norms are written \U\e;rn,T, \U\e;^,m,T respectively.

Suppose u, v € C(^, H^^T)) H L00^ x ^7r) for some m ̂  0. We have the weighted Moser-
type inequality [15]

(7.10) \UV ^,m,7,T ̂  C'd^l^m^Tl^lL00 + HL^ |^|^,m,7,T) •
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(7.10) implies, with the obvious notation,

(7.11) \UV\e,^m^T ^ C{\U\e^m^T\V\e^ + \U\e^\V\e^m^T}.

Suppose /: C771 x C171 -^ C171 is entire with /(O,0) = 0. If B is a Banach algebra of C-valued
functions, straightforward use of the triangle inequality shows the map u —> f(u, u) sends B to
itself and is bounded on bounded sets in B. Similarly, (7.9) implies the map

(7.12) U —^ f(U, U) sends Ae(B) to itself and is bounded on bounded sets in Ae(B).

For U € Ae(C(x. H^T))) H L°°(5+ x Qr)\ m ̂  0, (7.11) implies by the same argument

(7J3) WO-^T ^ ̂ (I^I^-)(I^|^,^,T).

7.2. co-spaces
With a = a + a* as in Notation 5.2, set

(7.14) L2* = [a(^x\6) e L2(I+ x 1̂  x T1): a=0}.

Let <9^1 be the map L2* ̂  L2* which assigns to a^x"\0) its periodic primitive. Then
D^1 = i9^ is bounded and self-adjoint on L2*. The operator D^D^, which will appear later
in Schrodinger-type profile equations, is an unbounded self-adjoint operator on L2* with domain

D* = {a(^ x " , 0) e L2*: a is an L2 function of (a/', 6>)

(7.15) with values in I:f2(R+) H ̂ (R-^)}.
For m ̂  0 let

(7.16) ^m=L(^x/\0)eL2(R^xRN.xTP):\a\^r.= ^ Ix^,,,^.^^r2^,,^^ ^^ ^ |y^Q„„a|..<oo
L2

Q:,fc|^?7Z

(7.17) ^m'*={a(^,.zl//,0): ̂ aeP*, |fc,^m}. (Here0eT1).
Spaces like F771 were used in [3]. The following Proposition is an immediate consequence of

Lemma 4.2 of [3].

PROPOSITION 7.1 (Moser inequality for F771 spaces).- (a) There exists C such that for
a.&er^L00

(7.18) \ab\rrrz ^ Cdalr^l^lz/^ + \a L^Hr7").
(b) Suppose f is C00 and a, b e F^ satisfy for some R > 0

(7.19) \b\L^^R and ^Q^^^^R for all a,k\<^m.

Then there is a constant C(m, R, f) such that

(7.20) |/(a+6,a+6)-/(a,a)|^ <^C\b\rm.

In particular, iff(0,0) = 0 we have

(7-21) \f(b,b)\^^C(\b\^)\b\rm.
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For m > 0, T > 0 let

(7(T, r^) = {a(\, x,0): a is a bounded, continuous function of

.z-o e (-00, T] with values in F^},

(7.22) \a\T,r^ = sup |a(-,a;o,-)|r^.
a;oG(-oo,T]

Spaces C^T, F771) are denned in the obvious way.

Remark 7.1. - Because of the initial condition in (1.1), functions with nonconstant depen-
dence on XQ in the following sections will always vanish identically in XQ < 0.

8. Discussion of the proofs

8.1. Discussion of Theorem 6.1

We shall analyze the profile equations (4.8), (4.9) using the projections M^, Moo from
Definition 5.1, as well as operators E which project onto ker P(9e) and approximate inverses
Q(9e) such that QP = PQ = I - E.

Recall the characteristic set

(8.1) C = [a <E Z^^: detL(a • d(/)) = 0},

andfor^=l, . . . ,M(Olet

(8.2) Cj = {a C Z^^: a ' (f> is in the R-span of ̂  }.

We have C = I J - f ^j an<^ m ̂ w of the first small divisor condition (4.12),

Cj = {(0,....0,^,0,...... .,0) e z^^: aj e z}.

For a e Z^^ define T^ : C^ -^ C771 by

(a) 7Ta=0 ifa^C, 7Tc,=Id ifa=0.
(8.3)

(b) I fae^- \0 , 7ra=7Tj.

Next define E: P^(T, ̂ /) -^ P^(T, Q (notation as in (f) of Section 5.1) by the following action
on monomials.

(8.4) E(^(x,.r)e^) = (Tr^)e^, a € Z(^).

Note that E = Eo + EJ^P ̂  where

E -̂ ([/ae^0) = (Tr^)e^ if a € ̂  \ 0, Ej (U^0) = 0 otherwise;
(8.5)

Eo (U^0} =Ua if a = 0, Eo (Uae^0} = 0 otherwise.

By an argument of [10] the small divisor property (4.14) implies the existence of operators

Q(^):p^(r,o^p^(r,0
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satisfying

(a) P(ae)Q=QP=I-E,
(8.6) (b) rangeE = kerP = ker Q,

(c) ker E= range P= range <3.

Indeed, set QOeWae^0) = -iQ(a)Uae^0 where

(a) Q(a)=L-\a-d(t)) ifo^C,
(8.7) (b) Q(0)=0,

(c) QM-E.P^1^^^^ ^'^-(^U^
fc/^o^ )-^o(t )

where -<^(0, k = 1,.. .J, are the eigenvalues of A(^), and TI-A; the corresponding spectralwhere -^(0, k = 1,.. .J, are ̂  ———.oi— ̂  ^"
projections. (8.6)(a) follows from

(8.8) PWQ(a)=Q(a)P(a)=l-7Tp(0=l-7ra

with P(a) as in (4.11).

Decomposition of the profile equations
In order to make use of the projections M^, Moo (Definition 5.1) to break up the profile

equations into manageable pieces, we'll assume for the moment that solutions dk(x^,e) e
IP^o(^o,0 to (4.8), (4.9) do exist for some To > 0. That assumption is verified to be true in
Section 9.

Apply Q to the profile equation I_i to obtain

(8.9) (I - E)ao = 0.

For all k let us use
M(^)

. E = E o + ^ E ^ ; I=M^+M^
j=i

to write
M(^)

(Eaj00^,0)=a^,^)+ ̂  akj(x,x,0j)rj,

(8.10)
Cik = MooCLk + M^CLk.

Applying Eo, E^, and Q to I_ i we find, respectively,

(a) A^Q^OQ =0 so OQ = MooOo,
(8.11) (b) 9^=0 foTjeM^)\G(^

(c) (J-E)ai=-QA^ao.

In (8.1 l)(b) we've used (3.7). Note that for j e ̂ (0, E^A^E^ = 0.
Next apply Eo, MooEo, E^, and MooE^ to Io to obtain, respectively,
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(a) ATV^OI + LO)OQ = f(ao\
(8.12) ———

(b) L(9)ao=M^f(ao\

(c) EjANQ^dt + Xjaojrj = Ejf(ao) (recall (3.7))

(d) XjM^aojrj=M^Ejf(ao).

The first observation is that (8.12)(b),(d) constitute a coupled semilinear system for OQ,
M^aoj, j € G^') U 0(0 U Z(0 since for any k <E ̂ (0 U 0(0 U Z(Q the functions

Moof(ao), MooEkf(aQ) depend only on OQ, MooOoj,
(8.13) je^(0u0(0uz(0
(see Proposition 9.1). They are independent of

aoj,jeTOLJW) and M^ao^jeG^).

To find the corresponding boundary conditions use the boundary equation Bo to write (with
s(0o) as in (4.9))

(a) Bao\^=o=G(xf\
(8.14)

/M(^) \

(b) 5 ]>>o.r, |^^^^-G*(^^o).
\ j=i /

Determination of boundary data for a^
We now show how the Kreiss condition and Proposition 3.1 are used to obtain the boundary

values of

^ S (7Qj(x,0j)rj+ ^ aoj(^x^j)rj
jeM(^\G(^) j^G^)

from (8.14)(b). Letting croj,n, G^ denote the nth Fourier coefficients of aoj (respectively G*),
we obtain the following equations from (8.14)(b). For n > 0, \ = 0, XN = 0,

(8-15) ^( E ^^^-^-B^ao^r,,
^'e^uou-p / jez

while forn < 0, \ = 0, XN = 0

(8.16) B^ ^ ^,nr/+ ̂  ao,,,-̂ ,) = G: - 5^aoj,^)
^j'e^uo j-eA^ / ^ez /

(recall 5(6>o)j = -Oo for '̂ € A/' since ̂  |a;^=o = -^o for j <E A^).
The Kreiss condition implies [Brj }jeGuouv is a basis for C^, so the Fourier coefficients on

the left in (8.15) can be expressed as a linear function of the coefficients on the right. Similarly,
Proposition 3.1 implies [Br^j^guouAT is a basis of C^, so the Fourier coefficients on the left
in (8.16) can be expressed as a linear function of the coefficients on the right.

If b is a periodic function of 0Q with b = 0, let b^ denote the pieces with positive (respectively
negative) spectra. The above discussion implies in particular the existence of constant matrices
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M^ such that

(8.17) (M .̂|̂ o ,̂=^ jeO^))=M±{G^±^^^e^ jeZ(Q).

In the solution of the semilinear system (8.12)(b),(d) the boundary values of M^aoj,
j G <?(0 U Z(0 are determined by transport. Kreiss-type estimates (Lemma 9.2) for the
linearized system are readily obtained since (L, B) satisfies the Kreiss condition and the X.
are just vector fields.

After this semilinear system is solved by iteration, the values of

^oj |^=o, :r,v=o, j € 0(0 and M^aoj |^=o, j € P(^) U A/'(^)

are then read off from (8.15) and (8.16) as explained in the above discussion. For j e 0(<f) set

^^OJ lx=0, XN=O = (^0,j - Xx)<7oj)|^=0, XN=O'

To complete the determination of ao it remains to find

^^M^aoj^jeP^U^) and M^oj,jC^(0.

The elliptic modes are determined by solving the coupled system (8.12)(d) to sufficiently high
order at XN = 0 (see Proposition 9.4) with the boundary data already determined.

Remark 8.1. - For k e P(0 U Af^) M^Ekf(ao) depends on OQ, M^aoj, j e G(^) U
0(0 U Z(0, which have already been determined, as well as MooOoj, j € P(0 U A/'(0.
MooEfc/(ao) is independent of M^aoj, j C <?(0 (Proposition 9.3).

The leading part of the elliptic boundary layer is given by

(8-18) E ^•(^•)r^^.
jeP^^UAT^) 3 £

Leading part of the glancing boundary layer
To determine M^aoj, j e G(^) first apply M^ to (8.12)(c) and then rewrite it using (8.11)

and EjAN^j = 0 (for j e Q(^)) as

(8.19) ^jANQAN9^(M^aoj)rj+XjM^ojrj=M^jf(ao).

Write M^aoj(x, x, 0j) = ̂  Un(x, x)ein^ and observe that

(8.20) QOeWne^ = -iQ^na^Une1^ = -iQ(a,)D^ (U^}

where a^ = (0,.... 0,1,0,.... 0) with I in the jth slot. The following Lemma proved in Section 9
implies that the first term in (8.19) is also given by a scalar operator.

LEMMA 8.1.- For j € 0(0 let (^ ̂ (Q) = (^//), ̂ \ with ̂  as in (3.4). We have

(8-21) 7r,A^Q(a,)A^ = ̂ ^(^ = ITT,.
z ^SA^ Cj

c^ € M \ 0 since (^', ̂ (^/)) ̂  ̂  glancing mode of order 2.
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For j e ̂ 7(0, Cj as in (8.21) define the scalar operator

^w(8.22) Cj=-i———^+X..
°3

(8.19) becomes

(8.23) C,(M^j)rj=M^f(ao\ jeG^).

(8.23) is a coupled system for the M^aoj, j € Q(^') with boundary data determined by (8.14)(b)
as described above, whose solution we'll discuss shortly.

Remark 8.2.- (a) The nonlinear term M^Ejf(dQ) in (8.23) depends only on the known
functions

OQ, (TQ,k = Mooao,fe, k e 0(0 U Z(0, Mooao,A:, k G Q^'\

and the unknowns M^OO,A;, A; € ^7(0 (Proposition 9.5).
(b) The value of M^OQJ, j e ̂  at ^ == 0 is independent of a;^. The M^aoj inherit nontrivial

XN dependence in ^ > 0 from the forcing term.

The leading part of the glancing boundary layer is given by

(8.24) ^ ^^X^^)^-!^^ Q.^'
je^') vev 3 £

Determination of a\, 02, . . . , CLM
With ao G P^(To, ̂ ) thereby constructed, we read off (I - E)ai from (8.1 l)(c).
^a! e ̂ C^o.O is determined by (8.12)(a) and we recover M^ e r^°(To,^) using the

following obvious Lemma.

LEMMA 8.2. - Suppose b(^ x, 0) e r^°(To, 0 ̂  ̂ ^

00=-/w,B(x,x,e)=- b(^^e)d^.

Then B € ̂ (To, $') ̂ ^ ̂ B - b.

To determine M^aij, j e 0($') U Z(^) U P(0 U A/'(^) apply M^ to (8.12)(c) and use
(8.11)(c)toget

(8.25) E^A^Eoi + EjAN9^(I - E)ai + XjM^aQjrj = M^Ejf(ao).

For these j, E^A^E^ = djEj for some ̂  e C \ 0 by (3.7), so Q^M^aij e r^°(To, ̂ ) can be
read off from (8.25). Application of Lemma (8.2) yields the functions M^a^j e r°°(To, ̂ ).

Next apply Eo, MooEo, E^, and MooE^ to L to obtain respectively:

(a) AN9^ -\- L(9)a^ = f'(aQ)a\,
(8.26)

(b) L(9)M^ = MooAoo)^,
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(c) E^ANQ^ + X j O i j r j = Ejf(ao)ai + E ,̂

(d) XjM^aiJrj=M^Ejf/(ao)ai+M^Ej^,

where .F here and henceforth represents an already determined element of P^(To, 0.
Parallel to an earlier argument we observe that (8.26)(b),(d) constitute a linear system for

Moo0i_, Mooaij, j e 0(0 U 0(0 U Z(0 since Moof(ao)oi_ and MooE^ /'(ao)ai depend only
on Moo^, Mooai,fc, A; G 0(0 U 0(0 U Z(0, and the known function ao.

To find the boundary data for this system, rewrite Bi in (4.9) as

(a) BMooOi_ ^=o = -BM^oi_|^=o, XN=O^
M(^)

(8.27) (b) BEoi = B ̂  (M^aij + M^i,,)^- = -B(J - E)ai,
j=i

on .r^v = 0, \ = 0, 6> = S(OQ).
The functions

M^o^, M^ai,,, \7- e O(^) UZ(^) U P(0 UA^(0
and (J - E)ai are already known. The procedure followed earlier yields boundary values first for

Mooai,,, je^(0u0(0uz(0,

and then for the remaining pieces of ai, namely

A^aij, JC0(0 and MooOij, j'eP(OuA/'(0-

(8.26)(d) gives a linear system for the MooO-ij, j e P(^) U M^') which is solved to
sufficiently high order at XN = 0 with the boundary data just determined. For these j,
MooEjff(ao)al depends on the known functions

ao, Moo0i_, Moo^-u, A;e^(OuO(OuZ(0

and the unknowns MooO-u, k e P(0 U ̂ v'(^).
It remains to find the M^aij, j C ^(^/). First apply Q to Io to get

(8.28) (I - E)a2 = - QATV^OI + y.

Applying M^ to (8.26)(c) and using (8.28) yields

(8.29) EjAN9^Ea2 + ̂ ANQ^(I - E)a2 + XjM^^Tj = M^E/'(ao)ai + M^F.

Forj e 0(0. (8.29) may be rewritten using (8.28), E^A^vE^ = 0, and Lemma 8.1 as

(8.30) Cj(M^j)rj = M^f\ao)a^ + M^E^.

The linear system (8.30) is solved in Section 9 with the boundary data determined above.

Remark 8.3. - The construction of 02,03,.... OM-I is exactly parallel to the construction of
ai. Note that for any k, making 1k hold (to sufficiently high order at XN = 0) requires complete
determination of ao, . . . , 02/c, but only determination of

(J - E)a2^+i, M^Q2fc+i, M^2fc+u, j C 0(0 UZ(0 U P(0 UA/'(0,
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and (I - E)o2fc+2. To achieve (6.1) we need to solve (Io,Bo),.. .,(I^_a,Bjw_^) so OM-I^M
need only be partially determined.

DEFINITION 8.1.- For any K the glancing, elliptic, and hyperbolic boundary layers of order
K are, respectively,

K

(8J1) Z^V^)' ̂  M^aij(^^0j)rj\ ^ ^,
z=o ,e<?(0 x v£v 3 £

K

Y, ^o,j(^0j)rj ^ ̂  +^(v^r ^ ^(X^^-l ^ ̂ ^,
jePCOuA^') 3 £ 2=1 jep^QuMe7) ^' J £

(8.32)
^m6?

j<
(8.33) ^(^ ^ A^^^)r^^ ,.̂

z==i je0(0uz(0 ^' J £

wi'̂ /i o'ij as in (8.10).

Remark 8.4.- (a)

aoOc, ̂ , ̂ ) = ao(x) + ̂  <7o,j(x» x, 0j)rj + ^ cro,j(^, O j ) r j .
J'^W) jeAKeOY^Q

For fc ̂  1, Edk(x, x, 0) = a^, x) + E .̂M(O ̂ j^. ̂ . 9j>j.
(b) For any k ^ 0 the pieces of a/c are determined in the following order:

(1) (J-E)^,

(2) M^ak, M^akj, jeM^f)\g^f\

(3) MocOfc, Mooa^-, JG^(OUO(^)UZ(O,

(4) Mooa^-, jeWuW),

(5) M ,̂,, je0(0.

(c) The ordering in (b) reflects the boundary and interior coupling (via the forcing term) of the
different pieces of a^.

The term in (1) is determined directly from knowledge of the previous profiles. The terms in (2)
can be read off from knowledge of (1) and the previous profiles. The terms in (3) are determined
by a system whose forcing term depends only on the terms in (3), (1) and previous profiles, while
the forcing term for (4) depends on the terms in (4), (3), (1) and previous profiles. Finally, the
forcing term for (5) depends on the terms in (5), (3), M^a^ and M^a^, j e 0(^) U Z(^) from
(2), (1), and previous profiles.

These systems are semilinear when k = 0 and linear for k ^ 1. The time of existence To is
determined by the systems for (3) and (5) when k = 0.

The coupling on the boundary is somewhat different. For example, the boundary data for
the terms in (1), (2) is needed to determine that for the terms in (3), (4). On the other hand
while there is interior coupling among the terms in (4), there is no boundary coupling in the
sense that for a given j e P(0 U ./V(0, M^akj \XN=O can be ^ad off from an equation like
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(8.27)(b) independently of M^cr^i 0^=0, z + j ' The same applies to the terms of (5). However,
MooOkj \XN=O. J ^ ̂ (0 is needed to determine M^akj |^=o, j € G(^).

(d) For any fixed k there is no interior coupling or boundary coupling (in the sense used in (c))
between the elliptic and glancing boundary layer terms given by (4) and (5) respectively. The
evolution of these terms is influenced by the glancing and hyperbolic pieces in (3), but as noted
in (c) the influence is not mutual.

(e) In particular (k = 0) there is no interior or boundary coupling between the leading parts
of the elliptic (8.18) and glancing (8.24) boundary layers.

Remark 8.5. - The same analysis handles the case when f(ue,u^) in (1.1) is replaced, for
example, by f(x, u^ u;) + F ( X N / V £ , x, (f)/£\ provided F(^, x, 0) e P^,o(T, 0 and f(x, n, v) is
smooth in x, entire in (u, v), vanishes in XQ < 0, and satisfies f(x, 0,0) = 0. Remark 8.4 continues
to apply. Note that when F(^, x, 0) = 0, we have M^a^j = 0, j e <?(0, for all k.

Construction of the glancing boundary layer
We must solve the system (8.23) with specified data at \ = 0. Set 5o(^, x, 0)= (sojO^ x, Oj)) =

(M^o-oj), j € <?(0. Remark 8.2(a) implies this system has the form, with Cj as in (8.22),

Cj(soj)rj=Ejh(x^,so), j e G(^\ uj = (0k\ k e GU 0UZ,

(8.34) ^•lx=o=^(^),
SQJ = 0 in XQ < 0,

where the h,gj are smooth in x,uj,0j, vanish in XQ < 0, and by finite propagation speed have
compact support in x ' on [0, T]. h is entire in (so, 5o), h(x, LJ, 0) = 0, and h has compact support
in XN on [0, T] if it is not independent of XN (see Proposition 9.5).

Choose a cutoff function p(r) e C§°(R^), supp p c [0,1], p = 1 near r = 0. We will construct
SQ in the form SQ = &o + <°o (see Remark 8.7) where bo, CQ satisfy respectively

^oj)r, = p(x(Dy))E,h(x^,bo), j e Q^\

(8.35) boj ^=o = gj\

boj =0 in XQ < 0,

^<^)^=^/^(^^6o+co)-p(x(^)3/2)E,•^,cJ,&o),
(8.36) co j |̂ o -O,

CQJ = 0 in XQ < 0.

Here p(^(D3/2)) acts on periodic functions of 0j as the multiplier p(x{n)3^).
These two systems are solved by separate Picard iterations corresponding in the obvious way

to the following scalar (hence no j) linear problems:

Cbo=p{x(De)3/2)h(^x,0), h e F^CT.O, 6 e T1,
(8.37) &ok=o = 9^\ 0\ g e C§°(T),

bo = 0 in XQ < 0,

£co=k(^x,0), ^er^oCr.O,
(8.38) co|^=o=0,

Co = 0 in .TO < 0.
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Remark 8.6. - k vanishes to infinite order at \ = 0, and h,k,g have compact support in
x ' on [0,r], with h,k having compact support in XN if not independent of XN- We also let
h 6 r^o(T + 1,$'), g e C§°(T + 1) denote extensions of h,g vanishing in XQ > T + 1/2 with
h=k=g=0.

(8.37) is solved for each Fourier coefficient. The problem for the nth coefficient b^n(x^) is,
with c, X corresponding to Cj;, Xj in (8.22),

(^+Ao,„=p(x(n)3/2)An,
\cn }

(8.39) ^0,n|x=0=^n(^),

bo,n =0 in a;o < 0.

Let X(^o — n,0 denote the symbol of \X. For 7 > 0 the partial Fourier transform of the
solution is

x ______

^n(X, ̂ o - n, ̂  ̂ v) = f e^V07^"- '̂)
0

/ oo ____ \

( L-^-X-VcnX^-^-^^^^S^)^^^.^. ̂ ,^,^)^ rfx'v, /
(8.40) + eW^o-^-)^ _ ̂ , ̂ '),

where ̂  denotes the square root with positive imaginary part. (8.40) leads to the estimates
(notation as in Section 7)

C
(8.41) l^nlc^J^Cr)) ̂  _/ v ^nIce^yCr)) + {9n)H^(T).

v i \ 1 1 /

C
(8-42) I^IA^C'^^OT))^ -7=l/l|A0(C'(x,^(T)))+ (g)A^H^(T))'

Iteration together with a continuation principle proved using the Moser-type inequality
for Wiener algebras (7.13) yields a solution 60 e r^CTo.O to (8.35) for some To > 0
(Proposition 9.6).

Remark 8.7. - (a) (8.42) is immediate from (8.41).
(b) The factor l/(n) in (8.41) is there because supp p(xW3/2) C [0, l/(n)3/2]. Without the

cutoff l/(n) would be replaced by (n), and the resulting estimate for bo would not be suitable
for Picard iteration. Having 1 in place of l/(n) would make iteration possible, but we need the
gain of one 6 derivative in (8.42) to deduce infinite regularity in 0 of the solution to (8.35).

We can write down the solution to (8.38) using the unitary group corresponding to the self-
adjoint operator D^D^1 /cj with domain D* C L2* (7.15). Integrating along characteristics of
the glancing vector field X = Q^o + v • Qx", we obtain

7 _ w
(8.43) co(x,x,0)= e^° s ) ^ k(^x+(s - xo)(1^0\0)ds

o
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which yields the estimate
XQ

(8.44) \CO(',XO,')\L^ ( \k(^s^)\^ds.
0

To get r^ estimates, m > N / 2 we use the following commutator result, proved in Section 9.

PROPOSITION 8.1. - Suppose k(^x,0) <E L2* is such that^Q^k C D*, |A;,;| ^ 1. Then

A^1, .^^_^^
(8.45) ^ e"—r- A; = 2^—^ -x-^.

This readily gives the key estimate

(8.46)

XQ

\co(^xo,')\^^ [\k(',s,-)\rr.ds for k e F^* (7.17).

Iteration together with a continuation principle obtained from the Moser-type inequality for F^
spaces (7.21) produces a solution Co e r^(To, 0 to (8.36) for a possibly smaller To > 0.

The equations for higher order glancing profiles are similar but linear (recall (8.30)). They are
solved in Section 9.4.

8.2. Real resonances and adapted bases

A resonance occurs when there is a relation

^c^=0,
z<E.M(0

where at least 3 of the Oz C Z are nonzero. Suppose ^/ is such that all resonances involve only
the real phases. That is,

(8.47) ^ a^=0=^a,=0, ze^OuW).
ze.M(0

This situation can be handled by constructing an adapted basis B(^) for the Q-span of
{^JL'€^QIJO(OUZ(^).

Suppose B(^) = {^k(x)]k=i,...,b is a basis for the Q-span of {^}je^u(9uz. With ^ =
(^ i , . . . , ^ )and je<?UOUZle t

(8.48) Vj = {a <E Z6: a • ̂  is in the M-span of ̂  },

and let aj be the element of minimal length in Vj such that a"- ' ^ is a positive multiple of ̂ .
Observe that every element of Vj is some integer multiple of o^.

DEFINITION 8.2.- A basis B(Q= {^U=i,...,b /or the Q-span of {0,},e0uouz ^
(^(R^1)^ adapted y:

(a) /or ^ac/i fc, ^|a;^=o = ̂ /c0o, rnk 0 Z;
(b) /or each j C ̂ (^/) U 0(0 U Z(0, aj • ̂  = ̂ -.
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Remark 8.8. - (a) If f(0) is a periodic function of 0 € R6 with spectmm contained in Pj,
there is a uniquely determined periodic function /*(ci;j) of ci;j C R such that

/(0)=rk=a^.
To see this write

/(^E/^^E^^-
aC'Pj ^CZ

(b) No matter what relations exist among the {^j }jeC?uouz» an adapted basis can always be
chosen. The construction and use of adapted bases is explained in detail in [20]. The definition
there is slightly more complicated since the shock is a free oscillating boundary.

If we now take

(f)(x) == {(^k)k=l,...,b, (0j).7€P(^)UA/'(^))

and assume (f)(x) satisfies a small divisor property similar to Definition 4.1, a construction just
like that outlined above produces approximate solutions Ue of the form (6.2).

8.3. Discussion of Theorem 6.2

Consider the linearized problem corresponding to (1.1):

Lu=f,
(8.49) Bu\^=o=g,

u = 0 in XQ < 0,

where / G L2(^T), 9 ^ L2(bj?^) and both vanish in XQ < 0. The starting point is the classic
inequality for systems (L, B) satisfying the uniform Kreiss condition:

There exist C > 0 , A o > 0 such that for A ^Ao,

fQ ^nv l l -L x l \ ^^YI/lo,M . {g)o,^\\(8.50) MO,^,A + —r- Wo,^x ^ C 1 —,— +—-r-— I.

Here we use Gues's weighted norms

(8.51) \w\m^x= Y, ^-'"'le-^^wl^^),
0^|a|^m

and denote boundary norms by ()m,p,,\-
As in [4] the idea is to take advantage of the factor ^Ml in hypothesis (a) of Theorem 6.2 to

find an exact solution

Us = Ue + We

as in (b) of the theorem. Wg is constructed by the iteration scheme (some epsilons are suppressed):

Lw^+i = f(u + Wn) - f(u) - e^ Re.

(8.52) Bwn^^=o=-eMlre,

Wn-\-i = 0 in XQ < 0.
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The key estimate is proved in Section 10 by differentiating (8.52) and applying (8.50). Here
we set

(8-53) INIm^A = \U\m^\ + —r- (u)m,fi,\'

PROPOSITION 8.2.- Let mi > (7V+ 1)/2 and p be as in Theorem 6.2. Suppose Wn C
H^(QT) satisfies

(8.54) \Wn\L^r)^K.

There exist C(K, p) > 0, \o(K, p) > 0 and a positive function <^(A) such that for X ̂  \o(K, p)

(8.55) IK+i||̂ , ̂  ̂  ̂  ̂ ^[l̂ ll̂  ̂  ̂  +^—1^).

(8.55) easily implies the existence of \i(K,p) ̂  \o(K,p) and ^i(A) such that for A ^ Ai,
£ C (0,^i] we have

(8.56)
(a) llwnllrn^/^A^^-^A) for all n,

(b) \Wn\L°°(nT) ̂  x f01" alr77'-

Convergence of the iterates is proved by a similar argument.

Remark 8.9.- (a) In [6,7] Gues considers semilinear Dirichlet problems for viscous
perturbations 1~i + e£ of a first-order symmetric hyperbolic operator 1~i (8 is second-order,
elliptic). He shows that the solution Ue converges in H8, s < 1 /2, to the solution UQ of a maximal
dissipative boundary problem for H. The obstruction to convergence for s > 1/2 is a boundary
layer of size e. When the boundary is charac teristic, the layer has another piece of size ^/e. The
profile equations in [6,7] are of parabolic-hyperbolic type.

(b) [3] and [11] construct rigorous geometric optics expansions valid for times of order 1 / e for
nonlinear hyperbolic initial value problems in free space. The profiles a(ex, x, f 3 ' x / e ) involve a
third (slow) scale (e). Some of the profile equations are of Schrodinger type and have the form

(8.57) ^-p^^Q^=f(a\

where a = a(T,Y,y,0), x = (t,y\ X = (T,Y) =(et,ey). Here P is anti-self-adjoint and
second-order only in the 9y derivatives.

These equations differ from our profile equations in 2 respects. The second-order derivatives
do not occur in variables X = ex corresponding to the new scale. More significantly, those
derivatives do not involve the time variable, so the solution to the linearized initial value problem
for (8.57) is given by the operator e^. Because our profile equations involve second-order
derivatives in \ = XN/VC and nonhomogeneous boundary conditions on XN = 0, we were
forced to do mode-by-mode analysis involving the cutoffs p^n)372) and the use of Wiener
algebras.
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Part II
The proofs

9. Theorem 6.1: Construction of the approximate solution

9.1. Determination ofoo, M^aoj, j e Q^') U 0(0 UZ(0

To solve the system (8.12)(b,d) with boundary conditions (8.14)(a) and (8.17), we'll need the
following spaces of profiles.

DEFINITION 9.1. - Let QT,O = ̂ T x TP, bJ?r,0o = ̂ r x T1. For m € {0,1,2, . . .}, T > 0,
a>0let

(a) irXr)^^^): |^kT=EH<ml%,^lL^^)<00};

(b) nrn(T)={u(x\0o): ^)m,^=E|a|^(%wn)^2(^T,.o)<oo^
(c) H^(T) = {U(x,0): \U\^T = Elal^^"1'1!6""0^)^!^^) < oo}. H^T) is

defined similarly on b^T,Go-

The following proposition clarifies an earlier assertion about the nonlinear terms in (8.12)(b,d).

Notation 9.1. - Suppose u(\, x, 6) € P^(T, 0 satisfies E-u = u, so

M(^)

u=u(\,x)+ ̂  (Tj(^x,0j)rj
j=i

for some n, (7j. For / as in Theorem 6.1 we sometimes write

f(u,u)=f(M^M^(M^), je.M(0;(Mooa,), j € M(^))

(9.1) = f(M^u, M^u, M^UG^ M^UQ^ ..., M^uru^, M^u-pu^).

where A-K^) = G^) U O(^) U Z(0 U P(^) U A/"(^).

PROPOSITION 9.1.- Suppose a ̂ ^(T^') satisfies (^.9) and ̂ A\)(h). Then for j eG(^)U
0(OUZ(0

(a) Moo/(o)=Eo/(0,a,0,Moo^,0,aouz,0),

(b) MooE^/(a)=E^/(0,a,0,Mooa^,0,aouz,0).

The proof makes use of the following Lemma, which shows that elliptic modes are never
cancelled by multiplication with a nonzero element of P^(7\ ̂ ').

LEMMA 9.1. - Let a, be P^(T, Q and suppose Eja = a for some j C P(0 U A/'(<f). Then
for k = 0, and k G ̂ (0 U 0(0 U Z(0 w^ /?av^ Efc(a • 6) = 0.

Pwo/^ - Write out the Fourier series of a and b, observe that if a ̂  0, the spectrum of a
contains only positive integers while spec b C Z(^), and use the definition of E^. D

Proof of Proposition 9.1. - Note that

a = Moo ,̂ CLouiuvuM = MooaouiupuAT-

Now
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fW - /(O, a, 0, M^CLQ , 0, aouz, 0) = /(O, a, M^CLQ , MooOg, 0, aouz, 0, apu )̂

-/(0,a,0,Mooac?,0,aouz,0)

= (^ag)gi + (apuAf)g2

(9.2) =^i+^2

for ^i, ̂ 2 coming from Taylor's formula. We have M^F\ = 0, since M^ag is rapidly decreasing
in \ and ^i <E P^(T,0 by Proposition 5.1. Also, gz e P^CT.O so E^ = 0 for j = 0 or
.7 € 0(0 U 0(0 U Z(0 by Lemma 9.1. (a) and (b) now follow since the E^ commute with
Moo. D

Proposition 9.1 leads us to consider the system

L(9)ao = Eo/(0,oo, 0, Mooao,^, 0, Mooao,ouz, 0),

XjM^OQjrj = E^/(0,oo, 0, Mooao,e?, 0, Mooao,ouz, 0), j e Q U 0 U Z,

Boo1^=o=G(^),

(9.3) (Moo .̂|̂ =o, 0,=^ J e 0) ^M-^ (G^Moo .̂l̂ o, ̂ =00- J eZ).

PROPOSITION 9.2. - The semilinear system (9.3) has solutions OQ, MooO-oj, j G ^ U 0 U T
belonging to Cg^To, ̂ Q/or some To > 0 an^ m'r/; compact support in x.

Proof. - Convergence of the usual iteration scheme will follow from an a priori estimate for
the following linear system for the unknowns u, a-j(x, 9j\ j G Q U 0 U Z:

(a) L(Q)u=f(x\
(9.4)

(b) X j a j ( x , 0 j ) = f j ( x , 0 j ) , jeQUOUl,

(c) ^lo^o-^'),

(d) (af\^=o,e^ jeO)=M±{G^±,af\^^e^jeI),

where N1^= is defined as in (8.17), all functions vanish in XQ < 0, and the data (/, fj;), G is smooth
with compact support in QT^ ^T respectively. —

Set

W(x,0)=u+ ^ aj(x,0j)rj
j^GUOUl

and

F0r,0)=/+ ^ fj(x^)r,.
j^GuOul

LEMMA 9.2. - Let m € {0,1,2,. . .}. There exist OQ > 0, C > 0 ̂ c/? ̂ /or a > 0-0,

(9.5) \W\^T + —W^ < cfi F ̂ T + —(G)^,r).
V0- ^a ^/a' / ' ' y

Proof.-Write Xp = 9^ + E^i1^,^^ + ^p,NQxN. where ap,7V > 0 (respectively < 0,
= 0) if Xp is outgoing (respectively incoming, glancing). Assume now that Xp is outgoing,
Xq incoming, and Xr glancing. e-^W satisfies a system just like (9.4) except Q^ in L(9) and
Xj is replaced by (<9^ + cr), and F, G are multiplied by e"^0.
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Multiply the a? equation in this new system by e~axoap(x, Op), integrate over QT x T1, and
do similarly for the <jq and o~r equations to obtain:

(a) Cr|(7p|o-,0,T ̂  ̂ N^p^O/r + \fp\(r,0,T\^p\a,0,T,

(9-6) (b) a ^gl^O/r + I ̂ N1(^)^0,7 ̂  \fq\a,0,T\(7q\a,0,T,

(C) a | Or \ ̂ o,T ̂  I fr I (T,O,T | ̂ r | a,0,T •

Use (9.4)(d) in (9.6)(a) to write (Tp\x^=o in terms of (C?*, aj,j € T). For u we have the Kreiss
estimate

(9.7) U\^T + —^)a,o,r ^ C(^|/|,,o,r + -^(G),,o,r).Vo- \a - VCT /
Summing over all modes and absorbing terms in the usual way by taking a large, we obtain

the estimate (9.5) for | \a,o,T norms. Differentiating (9.4) and applying the L2 estimate yields
(9.5). D

For M > (N + 2)/2, /(ao) as in (8.12), and W as above, since

(9.8) \UV\m,T ^ C(\U\L^ \V\m,T + \U\m,T\V\L^.

(9.9) \f(W)\^^C(\W\L^\W\m,T. and

(9.10) \^f(W)\^^C\f(W)\^ j = O o r j e G U O U l ,

a standard iteration argument and continuation principle based on (9.5) yield solutions 00,
MooOQ j, j e Q U 0 UZ to the semilinear system belonging to IHIg° for some TQ > 0. Their support
in x is compact by finite propagation speed. This concludes the proof of Proposition 9.2. D

9.2. Determination of OQJ, j e P(0 U A^(0

The next Proposition is proved just like Proposition 9.1.

PROPOSITION 9.3.- Suppose a ̂ ^(T^') satisfies (^.9) and(^A\)^).Then for j €P(OU
^1\

M^Ejf(a) = E^/(0, a, 0, M^ag, 0, aoul, 0, apuA/-).

This proposition and (8.12)(d) lead us to consider the system

(a) X j O o j r j = E^/(0,ao,Mooao,c?,0,ao,ouz,0,ao,pu^) = F^ j € P U.V,
(9.11)

(b) 0'0,j\xN=0,Oj=s(0o)j ==9j(xf^0\

where the gj e Co'0 (To) are obtained from (8.14)(b) using the Kreiss condition, and s(0o) is as in
(4.9).

PROPOSITION 9.4. - Let TQ be as in Proposition 9.2. There exist functions (TQJ, 1^oj(x,0j),
j € P(0 U .yV(0 all belonging to Cg^To, ̂ /) with compact support in x, such that

x^r, = ̂  + x^-^no^ e,\)j\^,Uj^

(9.12)
/ a \^OJ\XN=O, ej=s(0o)j = gj(x\0o).

Here [(M - 1)/2] is the smallest integer ̂  (M - 1)/2.
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Proof. - The coefficient of <9^ in the complex vector field Xj is nonzero. Requiring (9.1 l)(a)
to hold just at XN = 0 determines <9^ao,j|a;^=o, j G P UAf. Similarly, requiring (9.11)(a) to
hold to order [(M - 1)/2] - 1 at XN = 0 determines <9^o-oj|^=o, I ^ [(M - 1)/2]. Choosing
elements of C§°(ro,0 with compact support in x with these traces at XN = 0 determines the
7Zo,j. D

9.3. Determination of M^OO,^, j € 0(0

Although the next proof uses an argument from [3], we include it here to clarify how Cj as in
(8.22) arises from a glancing mode (^/, ̂ y(O).

Proof of Lemma 8.1

Proof. - For o^ as in (8.21)

^•^-(^^(O-^ru')
for some k. We'll write Q(o^) = Q(^, ̂ //). As in (3.7)

L(^,W^^)=0

implies

(9.13) ^(^(^^)('^+A^7r=0.
\O^N /

Differentiate (9.13) to get

(r)/^ \ r)2^ / r)/^ \
(9.14) O^TT 0^+A^ Tr+^-^Tr+Trf^+A^l^^-O.

^N 7 9^ V^ /

Differentiate (J - TT) = L(^, ̂ /)Q(^, ̂ /) (respectively I - TT = QL) and multiply on the left
(respectively right) by TT to get

(9.15) -^.Q^^^f^^A^Q,
\O^N )

respectively

(9.16) -9^.^=Q(9^^AN\.
\^N )

Multiply (9.14) on the left and right by TT and use (9.15), (9.16) to find

( ^tk \ / Q^k \ Pfick

-. g°-+A.)Q(^+A.).+^
^N ) \O^N ) 0^

/ ^ck \ / ^tk \
(9.17) - ^ ( ^ + A ^ ) Q ( ^ + A ^ ) 7 r = 0 .

\9^N ) \9^N }

(^//) is glancing so Q^/O^N = 0 and (9.17) implies (8.21). D

The same argument as for Proposition 9.1 gives
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PROPOSITION 9.5. - Suppose a € P^(T, Q satisfies (8.9) and (8.1 l)(b). Then for j <E Q(^)

M^Ejf(a) = Ej [/(O, a, M^, MooOg, 0, aoul, 0) - /(O, a, 0, M^ag, 0, aouz, 0)].

This proposition and (8.23) lead us to consider

£j(M^(Tojrj) = Ej [/(0,oo, M^g, Moo0o,g, 0, ao,ouz, 0)

(9.18) - /(0,oo,0,Mooao,^,0,ao,ouz,0)], j e G ,
Mx(J^3 lx==o, ^=0o = 9j(x\ OQ\

where the ̂  C ̂ (T) are obtained from (8.14)(b) as before.
The system (9.18) is of the form (8.26) and is solved by constructing 60 as in (8.35) and then

Co as in (8.36).

PROPOSITION 9.6. - There exist TQ > 0 and a solution bo C ̂ (To,^) to the semilinear
system (8.35).

Proof. -1. The first step is to establish the estimate (8.41) on the nth Fourier coefficient
bo,n(x. x) and (8.42). Define ̂ , f3n by rewriting (8.40) as

x
(9.19) ^nO^o - ̂ ^".XN) = I e^-^W, •)^/ + e^g^ = B^ + B^

o

Integrate by parts twice in

•y

/ /9 /fp^X-X^Crt^

<1= x ( ..+ ^n^,-)^
—%^n

A /»/ c_ „-, fll ^ \ _ / ^Cx-xK4" /3 ^// \ /7^/ i ^^C"1" ^A _ DA i DA

X

/ r) ,(p^X-X
^A _ ^X ^_____

"•1- ——^
0

to get

p^x-x'Kri" /• p^x-x'K^
2<i(x.-)= ..+ /3n(x^•)lox+ / —————(-^W^/WW/-+ /-"-v/v ^ ^iu • / •^+

Sn J ^n
0

"^Sn ^ %Sn

= — fe-^-^icnp^W^h^x^^dx'
C,n J

L X
oo

_ e^ fe^'^icnp^W^h^, -)dx'
o

x -i
(9.20) + L^-x'K^cnp^ri)3/2)/^, •)dx' •

5 -I
Now <+ = v^nX^o-n,^'), |Im X| = 7, and

suppp^W^ctO,^)-3^],
X'

so we read off from (9.19), (9.20) the estimate
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c
(9.21) l^nic^, H^) ̂  ———7—\hn\C(x, H^) + (9n) H^ ,

V ' ^ /

for (7 independent of n, JY^ as in (7.2). (9.21) implies that &o,n must vanish in XQ < T if hn and
^n do, so we may replace the H^ norms in (9.21) by H'^(T) norms (7.3). This gives (8.41) and
summing over n we obtain

C
(9.22) \bo(x^,0)\^c(x, H^-(TW ^ -^-I^IA^C'OC, ^(T))) + (g)A^H^(T))-

2. There exist constants C\, €2 independent of 7 > 0, T > 0 such that

(9.23) C,\U(X)\H^(T)<^ ^ [e-^Q^^^WH^T^
\0i\^'m

_7V-(-1
Indeed, the second inequality is obvious. When QT = I^+ the first inequality follows from the
Plancherel theorem and the fact that

(Dt - n)̂  (e~^u) = e~^D^u.

Reduce to this case using the fact that for u e H^(T) there exist Seeley extensions u e H171 such
that

(9.24) \u\m^ ^ C\u\m,r,T-
3. Fix m > (N + 1)/2. Using (9.23) we may set 7 = 1/T in (9.22) to obtain

(9-25) l&o|A^C(x,^m(^)))^c7V/TI/l|A0(C'(x,-^m(T)))+(^)A^(^-(T))•

Since

|E^/2,(a;,a;, &o)|Ae(C'(x, H1^^))) ^ C'l^lAeCC'c^, ^^m(^))),
we may use (7.9), (7.12) and Picard iteration to find a solution &o(x» «^ (9) ^ A^(G(^, ̂ ""(To))),
for some To > 0. A continuation principle based on (7.13) yields bo C A^((7(^, H00^))) in the
usual way.

4. Differentiate (8.35) to obtain (with obvious notation)

C9ebo=pE^(x^bo)^^V (^ = (0^k e ̂ UOUZ),
[^aCJ (70o C'c/ J /

(9.26) 9ebo\^o=9eg,
Qffbo =0 ina;o < 0.

Apply (9.25) and use (7.9), (7.12) again to deduce

Qebo^A^C^H^To))).

Repeating the argument we obtain

&oeA^(C(x,^(ro))).

Eq. (8.35) then gives

(9.27) boeA^c^^ro))).
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5. To see bo e r^(To, 0 let b^ denote the kth iterate in the Picard scheme and write

(9.28) by\x,x,0)=BW+B^\ bo=B^Bz

where the B^ correspond in the obvious way to the terms Bn,i of (9.19). Observe that B^ is
the same for all k. Since G C C§°(T) and

(9.29) ImC^ = Im v/cnX(& - ry,^) ̂  C^/\n\^ for 7 large,

it follows easily that B^ = B^ € -T^To, 0.
For each 72, Bn,\ in (9.19) is constant in \ for ^ ̂  1 since suppypQ^n)3/2) c [0, (n)"3/2].

We have

(9.30) CB^=(^-9^+x}B^=p{x(n}3/2)hn=0 i n x ^ l .\cn )
Thus, XBn,i = 0 in ^ ̂  1. Since X is glancing and Bn,\ = 0 in a^o < 0 we deduce B^j = 0 in
X ̂  1. Thus Bi € r^(To, ̂ ') and we conclude bo € r^To, 0. D

The following L2 estimate for linear Schrodinger-type equations with homogeneous boundary
conditions will be used in the construction of CQ (8.36) and also in the solution of the higher
profile equations. Jf1^',!/2*^,;^^)) denotes the space of H1 functions of x ' with values in
the space of L2 functions of (^, XN^O) with mean 0.

PROPOSITION 9.7. - Let a(^x,0) = (aj(x,x,0j\j € ^(0) belong to L^((-oo,T]: £)*) H
H1 (x\ L2*^, XN, 0)) and satisfy

(9.31) Cjaj=Ej(ba)-^-dj, j € Q(^\

where b(^ x, 0) G P^o(T, 0, d, (x, x, 0) € ̂ (T, Q. Then for O^XQ^T

XQ

(9.32) l^(^o,•)|i2(^^)</leM<a;o-s)|d(•,5,.)|i2d5,

o

"where M depends on \b\Loo.

Proof. - Note that Oj; |^=o == 0 and aj |a;o<o == 0. In the usual way take the L2^, x " , 0j) inner
product of both sides of (9.31) with aj and integrate by parts, using the anti-self-adjointness of
iD^D^. To conclude use |Ej;(ba)\^ ^ C7|6|L°° \o\L2 and Gronwall's inequality. D

Remark 9.1.— Similar estimates for \9^a(',xo,')\2^ Hm(x" e)) ^l^w for sufficiently
regular a by differentiation of (9.31) with respect to (XQ.X'^O) (not \). These estimates, while
useful for the linear higher order profile equations, don't help with the semilinear problem for ao
because they give no L°° control in \.

PROPOSITION 9.8. - With To as in Proposition 9.6 there exist TQ, 0 < TQ ^ To and a solution
CQ G F^TQ, ̂ ') to the semilinear system (8.36). CQ vanishes to infinite order at\ = 0.

Proof. - 1. In this step we prove Proposition 8.1, which implies the key estimate (8.46).
Let W\ (respectively Wz) equal the left (respectively right) side of (8.45). Straightforward

computation shows that both Wi satisfy
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u-.w^^.^^^
\ c] ) Cj

(9.33) H^=o=0,

Wi=0 ina;o<0.

W\ — W'z satisfies the hypotheses of Proposition 9.7, and since (9.32) continues to hold if Xj is
replaced by 9t in the definition of £j, we have W\ = Wi.

2. The function k(%,x,0) in (8.38) lies in 7^(7,0 and vanishes to infinite order at ^ = 0.
From (8.46) and the fact that

D ^ D , 1

e^—^-:D*-.D*

we deduce the same properties for CQ.
3. With co = (coj(\,x,0j), j C (?0 in (8.36) and m > (N + 2)/2, use the estimate (8.46),

the Moser-type estimates (7.18), (7.20), and iteration to find a solution CQ e ̂ (T^r^) (7.22)
for some 0 < TQ < To. A continuation principle based on (7.21) yields co € CoCTo.r00), and
then the equation gives CQ € C§°(TQ, r00) C ̂ (To,^). CQ vanishes to infinite order at \ = 0
because all the iterates do. D

This completes the determination of the M^aoj e r^To.O and hence the construction of
the leading profile ao(x, x, 0) € P^To, ̂ /).

9.4. Construction of the higher order profiles

The construction of the higher profiles parallels the construction of ao, but is much simpler
since the equations are all linear. For example, there is no need for the cutoff p(^(Do)3/2) or for
the use of Wiener algebras A<9. Thus, we'll focus here mainly on the final step in the construction
of ai, the solution of (8.30) for M^aij, j e G(^) with boundary data at \ = 0 determined from
(8.27). At this stage the other pieces of a\ have already been determined and lie in P^Q(TQ, ̂ /),
where To is the time of existence of ao.

PROPOSITION 9.9.- The system (8.30) for M^j, j € ^(0, with M^j ^=o = g ^ x ' ,
0j) € C§°(TQ) given has a unique solution in r^o(To,0, where TQ is the time of existence
ofao.

Proof. - The first term on the right in (8.30) may be written

(9.34) M^E,/'(ao)ai =E,/'(ao)[ ^ M^r,} +^(x^A' j j (^QW—^jJ W)^ 7 ^ 1V±XU\.^1 3 ] ~T ̂ j\^^^j)

j'e^')\ ^£-r'.(ci\ /

where Tj e r^(To,$') is known. Thus, the problem has the same form as (9.31), but with
boundary conditions Oj; |^=o = 9j- Write aj = tj + uj, where

(9.35)

(9.36)

Cjtj=0,

^j\x=o=9j^

CjUj=Ej[b(t+u)]+dj,

Uj\^=Q=0.
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The solution t to (9.35) can be written down using the Fourier transform (see e.g. (8.40)) and
lies in F^TQ,^). Standard linear arguments using (9.32) and the higher derivative estimates
described in Remark 9.1 yield a solution u to (9.36) in

Co°° ((-oo. To]: L2 (^ Hoo(x/\ 0))) (new but obvious notation).

Eq. (9.36) then gives

' , € (^((-oo.To]: H^^x^O)).

Finally, to see u <E C§°((-oo,To]: r°°) c r^To.O we commute powers of \ through (9.36)
using

(9.37) [x,D^D,l]u=29^D,lu,

and apply the above argument to deduce successively "^u e C§°((—oo,To : H^^x'^O)),
^u C C§° ((-oo, To) :^00), etc. D

Remark 9.2. - (a) The profiles a^..., OM are constructed by the same analysis as for ai.
Note that in the interior equations for MooOfcj, j G P(0 Uj\f(^) the term X^'^^KQJ^X, Oj)
in (9.12) may be replaced by ^M-l)/2]-(fc/2)7^^(^). As observed in Remark 8.30(a) we
need only determine

(J-E)aM-i, M^OM-I, M^M-IJ, JCO(OUZ(OUP(OUW),

and (I — E)OM in order to solve Io,..., IM-I .
2

(b) By finite propagation speed every profile has compact support in x ' and is compactly
supported in XN if not independent of XN.

9.5. Analysis of the remainders

The proof of Theorem 6.1 is completed in the next Proposition.

PROPOSITION 9.10.- The remainders Re(x\ re(x') in (6.1) lie in B^To) H B^(To),
P^o (^o) H B^Q (To) respectively/or some p > 0.

Proof. - The error Lue — f(ue, u) may be written as a sum of two pieces

(9.38) x^~^n{x^ (0,)^pu^) I, .̂  + ̂ -^(^ ̂  0\

The first piece is the error in solving the complex transport equations for elliptic modes (e.g.
(9.12)), and the second is the usual error coming from Taylor remainders and reflecting the
failure of IM-I , EM to hold. Note that 7Z C C^°(r,0, Se € P^(T,0 with smooth, bounded
dependence on ^/£, and both have the support property described in Remark 9.2(b). Thus,

0 | r~ THt771! CT^ \ (~^ in?771! Cf^ \^£\^=^L^e=^ eDp,o(lo)nBp,o(lQ)^-^-°-T

for some p.
Since

/ \ (M-l)/2 , / \

^T0/2^^-1)/2)^) -R and Im^=b,XN-}
\ e ) £ ^ e )
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with bj > 0 for j e P U A/", we have as well

x x(M-l) /2 / /^ \ \
(9.39) p^ TZ ^ p eD^(ro)nB^(ro)

\ c / \ \ c / jepLW/

for some p.
The boundary remainder r^ is handled similarly. D

Remark 9.3 (W^a^fy regular boundary frequencies). - Suppose ^/ = (^o, rj) € R^ \ 0 satisfies
(3.13), but all the associated elliptic modes /^-(0 = (^,<^(0), j G P(Q UA/'(0 are only
required to be weakly regular (Definition 3.5). Let ^ = (^,^6\0=(^^v(0) for some 3 ^
P(0 U A/"(^). Part (c) of Definition 3.5 allows us to define ^~as before (Notation 4.1). The
function $o(^ $7v) in part (a) of Definition 3.5 is real analytic in rj and analytic in ^v near (77, ̂ y),
so the complex vector field X^ may be defined as in (3.9) and (3.7) is still valid. Part (b) of
Definition 3.5 implies that E^~(^) is spanned by eigenvectors (not just generalized eigenvectors)
of A(0, a point that is important in our solution of the profile equations.

The operators E, Ej;, and Q are defined just as before. Instead of (8.10) we now have

(9.40) Eafc(x,^=0fc(x^)+ ^ (Tk,j(x^,0j)rj + ^ A^O^,^)
jeGuOul j'e-Pu.A/'

where A^ takes values in the eigenspace of .4(0 associated to ̂ v (which equals the eigenspace
of A(rj,^N) associated to —$o). In (9.11)(a), for example, o-ojrj should be replaced by Ao,j.
Since the elliptic transport equations are again governed by complex vector fields like X^, their
analysis goes through with no substantial changes. ~

10. Theorem 6.2: Exact solutions near approximate ones

The proof is similar to an argument in [4] but simpler. We give a brief version here for the sake
of completeness.

Notation 10.1.- (a)Forae {0,1 ,2 , . . .} 9^ is any operator of the form <9^° • • • 9^ such that
OI.Q + • • • + ON = a. Q°^, is an analogous tangential operator.

(b) For a e {1,2 ,3 , . . .} denote by 9^ 0 any product of the form (9^ ̂ ) • • • (0^ ̂ ) where
1 ̂ r ^ a , a i + — + Q ^ = a , a , > l . I f a = O s e t 9 < ° > 0 = l .

(c) |H|^ ̂  ̂  is the analogue of (8.54) defined by replacing 9^ with 9^.
(d)Let \u\^ = \U\L^.

LEMMA 10.1 ([4]). - Let ai + • • . + Or ^ k <S m, on C {0,1,2,.. .}, and m e H^(QT) H
L°°(QT\ F o r l ^ X ^ p .

^m-l|(9al^l)•..(^ar^)|^^G^|^|^,/^|^^V1=1 s'^i /

Proof of Proposition (8.52)(a). - 1. For 0 ̂  k ^ m\ we will apply the L2 estimate (8.50) to
the problem satisfied by ^rn~k9^rWn^\, and then use the equation to estimate <9^ derivatives.

Below we'll write m = m^ w^+i =w, Wn=b, C will always be a constant depending on
(K, p), ( / ) is always some C°° function of its arguments, and 0 < e ̂  1 ̂  e^.
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We will show
C' rn

(10.1) ll^l|m,M^Tll^llm,^+^^Ml-7n(^)m-^
k=0

for A ̂  AoC?C, /?), and then set ^ = X/e to get (8.55). The first step is to show

^ -m

(10.2) IHÎ  ̂  ̂ ||(>||̂ ,+^eM,-^^-^
k=0

forA^Ao(^,p).
2. Set (9 ,̂ = (9^. For 0 ̂  k ^ m the problem satisfied by (^w is

L^w = 9k{ [/(n + 6) - /(i2)] - ̂ Ml^},
(10.3) Bwl^^o--^^,

w = 0 in XQ < 0.
Write

f(u+b)-f(u)=g(u,b)b.
Then \^lrn~k9k[f(u +b)- f(u)]\Q^x yields terms of the form

(10.4) ^-^(u^Q^uQ^bQ^b^^

where a + / ? + 7 = A ; . n e ]D)^o(T)' so

(10.5) (10.4) ̂  ̂ -^(e^C^bQ^b^

with f3 + 7 = A; — a. Lemma 10.2 implies

(10.6) (10.5KGH^,A.

We have

^rn-k Q^e^Re)^ ̂  £Ml-7n(^)m-fcp

since Re € B^oCO, and a similar estimate holds for eMV9kre. This gives (10.2). Using the
equation to estimate normal derivatives gives (10.1). D

PROPOSITION 10.1 (Boundedness of the iterates ||wn||^ \/^ \). - There exist \\(K,p) ̂
\o(K, p) and e\(\) such that for \ ̂  Ai, e C (0, e\] the Wn defined by (8.52) satisfy

(a) llwll^^/^^^-^A) foralln,
(10.7)

(b) \Wn\^^K foralln.
Proof. - (a) follows immediately from (8.55) for A ^ Ai large enough, (b) follows from (a)

for e\ small enough, since for u c H^\QT). 0 < 6 < m\ - ((TV + 1)/2), we have the Sobolev
inequality [4]

(10.8) \u\^ /^C(A)H^,A.
D
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PROPOSITION 10.2 (Convergence of (wj). - There exist \^(K,p) ̂  \\(K,p) and ^(A) ^
^i(A) such that for \^\z the sequence (Wn) converges in the \\ ||̂  x / ^ ^ norm, uniformly with
respect to e G (0, ̂ L 77^ limit w satisfies

(10.9) IHI^A/^A^^-^A).

Hence (w,w|^=o) e ̂ B^T) x e^ B^T) for some a > 0.

Pr<o6^ - A^+i = Wyi+i — Wn satisfies

LAn+i = /(n + Wn) - f(u + W^+i) = ̂ n9(u, W^ W^-l),

(10.10) ^+i 1^=0=0,

Ayi+i =0 ina;o < 0.

By the argument that produced (10.1) we use (10.7)(a) to show

(10.11) l |An+l| |^,A/,,A^^|An|^,A/.,A+^i(A)|A,|,

for A large and e e (0, £i(A)]. (10.11) and (10.8) allow us to choose \z(K, p\ ̂ (A) so that

||An+i||^ \/s, \ ̂  .||An||^^ A/e, A

for A ^A2, £6(0, £2]. n j-

11. Generic validity of the small divisor properties

We first recall a result from [20] which gives generic validity of the small divisor properties in
the hyperbolic region

n={^ eRN\0: M(^)= O(OLJZ(O}.

For ^/ e H we have

^)=(^+^^(0)^^,^^.
SetA,(0=^(0.

PROPOSITION 11.1.- L^r 0 C H be open. Suppose for each j e { 1 , . . . , m ] there exists I ̂  j
such that the m — 2 vectors

^'(1H2)' ^{i.--^}w}'\ r^l — l^j /

are linearly independent in R1^ for each ̂  6 0. Then for almost every ^ ' G 0, ^' (or (f)) satisfies
the small divisor condition (4.12), (4.13).

In this section, as in this whole paper, we are mainly interested in ̂  that correspond to glancing
and elliptic modes as well as hyperbolic modes. To simplify the exposition we'll focus here on
a 6 x 6 example where all three types of modes are present simultaneously. It will be clear that
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similar propositions can be formulated and proved in the same way for systems of any dimension.
Proposition 11.1 represents the simplest case in this collection of results.

The proof depends on the following classical result in simultaneous diophantine approxima-
tion.

THEOREM 11.1 ([!]).- (a) Fix e > 0. For almost all 6 = (<9i , . . .,0J C R71 there exists a
constant CQ > 0 such that

(11.1) Mi + ... + an6n - c^+i | ̂  C^al-™

for all a eZ^^O.
(b) In particular (11.1) holds -when 1,0\,..., On are algebraic numbers linearly independent

over the rationals.

Notation 11.1.- (a) Let L as in (1.1) be a 6 x 6 system, p(Q = p(^o, 77, <^v) = detL(Q,
and B C M^"1 \ 0 an open set satisfying B H -B = 0. Suppose ^o: B -^ R is a G°° function
homogeneous of degree 1 such that for ^'(77) = (^oW, ̂ ), ̂ ^B,

P(̂ UN) = fcv - fcl^'))2^ - A:2(^)) fev - fc3(0)

(11.2) x (^ - ̂ (O)^ -^(0).

Here the ^ are C00 functions on the submanifold of R^ parametrized by ^(r]), k\,k^ k^ are
real and distinct for each rj e B, and Im k^ > 0 on B. For 77 C B define ki(—^(r])) = —ki(^(rj)),
i = 1,2,3, and fe^-^)) = -^4(^(77)). Note that (11.2) holds now with ^(77) replaced by
-€W.

(b)Forz=l,. . . ,4and^(77)=(^o(r7),77),

^(x)=xf^+XNki^(ri)Y ^(x^-x'ii'-XNk^'WY

Write A;4 = (74-h %T4.

PROPOSITION 11.2.- (a) In the notation above suppose there exists I G {1,2,3} such that
the 2 vectors

(11.3) ^f^^V z € { l , 2 , 3 , 4 } \ { Z , 4 } ,\ki -0-4/

are linearly independent in RN~1 for each 77 C B. Then for almost every 77 € B, ^/ = (^oW,^)
satisfies the first small divisor condition (4.12).

(b) Assume (11.3). Suppose also that for each j € {1,2,3} there exists I € {1,2,3} \ [j ] such
that the vector

(11.4) ^f^-^V z € { l , 2 , 3 } \ { j , Z } ,
\ "̂  — Kj\ j

is nonzero for each 77 e & Then for almost every rj e B, ^ = ($o(^)» ^7) satisfies the second small
divisor condition (4.13).

Pw<9/: - (a) Fix e > 0. For a = (o-i, . . . , 05) G Z5 \ 0

dx(a • <^) == ((ai + 02 + 03 + 04 — a^, a\k\ + 02^2 + o^

+ (04 - Q;5)CT4 + Z(04 + 05^4)

(11.5) =/?(a,77).
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If oi + 02 4- 03 + 04 - 0:5 ^ 0 or 04 + 05 ^ 0 then |/3(o,77)| ̂  C\rj\. If both equal 0, then
(01,02,03) 7^0 and with 1= 1 say in (11.3)

|/3(o,77)|= |oi(A;i - 0-4) + 02(^2 - 0-4) + 03(^3 -04)!

(11.6) =|A;i1 7 ii , ^2 — ^4 , k3 — 0-4= \ki -a4\ oi +0:2-——— +03-———
' K\ — 04 /Ci — 04

Define the G°° map /: B -^ M2 by

/(^=
^2 — < '̂4 ^3 — "̂4

^ k\ — 0"4 A^i — (74

Let E be the set of measure zero in R2 where (11.1) fails to hold. By hypothesis / is a submersion
at every 77 € B, so the preimage f^^E) has measure zero. Thus, for almost every rj e B there
exists Crj > 0 such that the right side of (11.6) ̂  C'Jai.Q^Q^I"2"6.

(b) Fix e > 0. We now consider a e Z(0 \ 0, so 04 ^ 0, 0:5 ^ 0. It suffices to prove the result
with B replaced by an arbitrary open set 0 CC B.

Define S={^= ($',<^v) € R^ x C: Im ^v ^ 0, |$| = 1} and let P: (R^ x C) \0 -^ S be the
map P(Q = ̂ /|^|. For ^ > 0 define

(11.7) f6=Ue5: d(^p-\0)nS)^6},

where d indicates distance measured on S.
There exists Cg > 0 such that

(11.8) |p(0|̂  for^e^.

For 77 e (P let $' = (^o(^).yy) or (—^o(^). —^)- Provided ^i > 6^ > 0 are chosen small enough, if
P(^', $7v) ^ (f^)" there exists an unique; e {1,2,3,4} and C > 0 such that

(11.9)
(a) P^'^v+^fc^-^e^r for 0 0^1,

9p >CatP(^,^) i f Z ^ l ,(b)

(c)

c^v

92?f >GatP(^^) in=l,
.̂A^

(d) Im^-0 if I e {1,2,3} and (^,^v)=/?(a,77).

Suppose first that P(/?(a, 77)) € f^. Then by (11.8)

(11.10) |p(/?(a,77))|^|/?|6.

Note that if both ai + 02 + 03 + 04 — 05 = 0 and 04 + 05 == 0, then 01 + 02 + 03 = O now.
Thus, the argument of part (a) shows that except for 77 in a set of measure zero

(11.11)

in this case.

l/^G^ajoi-1--6/
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Suppose next that P(/3(a,^)) e (£^Y, but f3 ^ p-^O), and apply (11.9)(a) with f3(a,r])
in place of (^jv). If I = 1 in (11.9)(a) Taylor's formula gives, with (3(a,rj) = (A.A) and
M = a\ + 02 + ̂  + 04 - 05,

p(/?(a,77)) =^(/?(a,77)) -p(M^,A;i(MO)
1 ^2^

(11.12) =^^(A^i(A)+5[/?2-^i(A)])-(A-fci(A))
^^STV

for some 0 < s < 1. By (11.9)(c) the first factor on the right in (11.12) had modulus ̂  C^l772"2.
The second factor, in the case where M > 0 equals

(11.13) [a2(fc2-A:i)+a3(A;3-A;i)]2

since (11.9)(d) implies 04 = as = 0. Arguing just as in (a) we see that except for 77 in a set of
^ Crj a ~2~e. The case M < 0 is treated similarly (seemeasure zero, this factor has modulus ^ Crj a 2 £. The case M < 0 is treated similarly (see

below).
When I = 2 or 3 in (11.9)(a), argue as above using (11.9)(b) instead of (11.9)(c).
Finally, if I = 4 in (11.9)(a), one obtains a product similar to (11.12) in which the first factor

has modulus ^ C^l77'"1 by (11.9)(b). The second factor (^ - fc^i)) in the case M > 0 equals

(11.14) [ai(A;i - 04) + o;2(A'2 - 04) + a^(k3 - 0-4) + ̂ 4(205 - a\ - 02 -o^)]-

If2a5 — ai — 02 — ̂  ̂  0, the modulus of (11.14) is ^ C\r]\. If2o;5 — a\ — az — 03 = 0, then
(ai, 02, as) 7^ 0 and |/?2 — k^\)\ reduces again to (11.6).

When M < 0 write

A4(A) = hW) = k^-W) = -\M\W).

The second factor now equals

(11.15) [c^\(ki — 04) + 02(^2 — 0-4) + ̂ (^S — 0-4) + ̂ 4(204 + Of,\ + Q;2 + 03)]

and is handled like (11.14). D
Remark 11.1.- (a) In the analogue of Proposition 11.2 for the case when precisely k glancing

modes are present instead of just one, B should be replaced by an open subset of M^"^ \ 0.
(b) Part (b) of Theorem 11.1 may be used to identify explicit choices of ^/ for which the small

divisor condition holds.

Part III
Examples of blow-up

12. Examples of blow-up caused by high-order glancing modes

In Theorems 6.1 and 6.3 we assumed that p(^,^v) = 0 had real roots ̂  of multiplicity at
most two. Here we present examples showing that when real roots of order ^ 3 are present, the
time of existence Tg can shrink to 0 as e —> 0.

Example 1. -We work on M_^ = {(x,t,y): x ^ 0} and denote dual variables by (^,T,T/).
In this example part of the boundary data oscillates at a boundary frequency (ro, rjo) such that
p(^ ^o» ^7o) = 0 has a triple real root ^o-
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Let P(D) be a third-order scalar operator with total symbol

(12.1) P(^r,ri) = (^ - 7;)3 + 3r(^ - ̂ )2 + (3^2 - r3)

and consider the semilinear system for Ue, Ve

(a) PCD)^==O,

^|rc==0=0,

(12.2)
^^l^o^^G^^e^0^^^, .

Ue=0 int<-T (T>0),

(b) ((9,+c^=|^^2,

v, |̂ o = ̂ , ̂ e^0-^/5, H(0) > 0,

^ = 0 in t < -T.
Here (TO, 770) = (0,1), (Ti,77i) 7^ O is arbitrary, H and C? are supported in —T ^t ̂ T, and for
7 < 1 to be chosen we take

(12.3) G(t,y)=e^g,(t)g2(y\
where g\(t), gz(y) are smooth functions, and

(a) ^i(T)>0, ^ i > l on [-&,&]

(12.4) (b) g^rj) ̂  0, supp^W C {|^| ^ 71+<?} for some

0<^<1/3 , ^(^)>1 on |^| ^ 71+<f72.

LEMMA 12.1 (Cardano).- Consider the cubic p(Q = C3 + 3j?C + ^ w^r^ p,q € R. T/*
92 + 4p3 < 0 (respectively > 0, = 0), ?/^M p(^) /?a^ 3 distinct real (respectively, 1 r^Z an6? 2
complex conjugate, repeated real) roots.

The lemma applied to (12.1) implies that P(D) is strictly hyperbolic with respect to t.
Thus, (12.2) is a system with 2 blocks, with each block satisfying the Kreiss condition and
noncharacteristic with respect to x = 0.

Remark 12.1.- To see that two is the correct number of boundary conditions for Ue in (12.2),
observe that for 7 > 0 p(^, —^7,0) = 0 has 2 roots with Im ^ > 0, one with Im ^ < 0. The same
therefore holds for the roots ofp(^, r — ^7, rj) = 0 for any (r, 77) 7^ O.

LEMMA 12.2.- Regarded as a cubic in ^, p(^,r,77) as in (12.1) has 3 distinct real
(respectively, 1 real and 2 complex conjugate, repeated real) roots, -when

-T2 (r2 - 3772) (r2 + rj2) < 0 (respectively > 0, = 0).

Indeed, ifr = 0, ^=r] is a triple root, while if r 7^ 0, r2 — 3rj2 = 0, ̂ /z ^ = r] is a double root
and ^=T] —3r a simple root.

Proof. -Set (3 = ̂  - T] m (12.1) and note that /33 + 3rf32 + (3r7?2 - yy3) takes the form
C3 + 3p( + 9 as in Lemma 12.1 if ( = f3 + r and p = —r2, q = r3 + 3r772. Thus,

g^p3-^2^2^2)^^2).

The last sentence of the Lemma is obvious. D
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Remark 12.2. - /?o = (^o?^o»^o) = (1»0,1) is a glancing mode of order 3 for P(D). That is,
^o = 1 is a triple root ofp(^, TO, 7^0) = 0.

The solution to (12.2)(a) is given by

r rn r7o pix^(X) _ ^ix^m
(12.5) u,(x^y)= / e^-^^^+^^T-n^)————————drdr].

J $l(A)-^,2(A)

Here X = ((ro,r]o)/e) + (r - ry,^), ^i(X), £,2(X) are the roots of p(£,,X) = 0 with positive
imaginary parts, and we ignore factors of 1/27T. For a > 0, b\ > 0, b^ > 0 small and \t\ ̂  b^e0',
x ~ ̂ ^V^ |7/| ^ &2, we estimate

(12.6) |ft^| - e^| [e^tT^egt(T)g2(rJ)Q(X)drdr]\

from below. In (12.6)

(12.7) Q(X)=
^(^C^W _ ̂ )^2(X)

^(X)-^(X)

Remark 12.3. - Blow-up will be caused by the fact that for r,7,£ small enough, |^i(^0 —
^2(^)| ~ e~2/3 since f3o is glancing of order 3. If f3o were hyperbolic or glancing of order 2, we
would have e~1 instead. Along with the factor of e in (12.6), this would exactly cancel the \/e1

from £^(X) and S^(X), and blow-up would not occur. Roughly speaking, the boundary data in
(12.2)(a) is oscillating with a single linear phase that "resonates" with a structural defect in the
solution operator denned by (12.5). This mechanism is completely different from the focusing
mechanisms in free space identified in [8]. The latter mostly involve phases with critical points.

1. With YQ = (TO, 770), Y = (TO, r]o) + e(r — 27, r]) we use a classical argument (e.g., Sakamoto
[16]) to compare the zeros ofp(^, Y) to those ofp(^, Yo). We have

(12.8) p(^Y) = (^ - ̂ o)3 + h^(Y)(^ - ̂ o)2 + h,(Y)(^ - ̂ ) + ho(Y\

where hj (Yo) = 0, j = 0,1,2. Here ho(Y) == p(^o, Y) satisfies

(12.9) ahQ(Yo)=3ri2o=Co>0.or

Write

ho(Y) = CQE(T - n) + ̂ (^o)^ + O(KT - n^)|2)

and set q(£,,Y) = (^ — ^o)3 + Co^O" — n)- For 7 < 1, \r]\ < 71+<$ (as is the case on supp gz(r])\
Gi > Co, and |^ - ̂ o| ^ (Gi£-|T,7|)1/3 we obtain

(12.10) \p(W - q(W\ ̂  C{£^3 T.71473 + e^6 + ̂ |T,7|2),

where C will always denote a constant independent of (e, T, 7,77).
Suppose now

(12.11) r <e~a f o r s o m e 0 < a < _ .
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(12.10) implies there exists an ^0(7) such that for e < ^0(7)

(12.12) \P(W-q(^Y)\^3Ce^^

Write the roots of q(^ Y) as

^^o+[Co^7-T)]y3, .7=1,2,3,

where Im^ > 0 for j = 1,2. Let k e {1,2,3}, fix M > 0, and note that for 7(M) < 1 small
enough, if |^ - ̂ | = M^/3^/^, then \^-^\^ (de\T^\)1/3 and [^ - ̂ | ̂  (Coe\r^\y/\
for j 7^ A-. Thus,

(12.13) \Q(^Y)\ = JJ |̂  - ̂ | ̂  (Co^ T.71)273 • M^/V/3^ ^ ̂ M^1^.
j=i

For M such that C^M > 3C (C as in (12.12)), (12.12), (12.13) and Rouche's Theorem imply

(12.14) ^(Y) = ̂  + O^1/^173^) - ̂ o + [Go^7 - T)];/3 + O^1/^1/3^).

Thus,

(12.15) ^(X) = ̂  + ̂ -2/3 [C7o(n - T)]/3 + ̂ C^/3^)

for

(12.16) 7=7(M), e<eo(^), |77|^71+^ |T| ^ s-0, 0 < a < l / 3 .
2. We now determine the magnitude and direction of eQ(X) (12.7) when X = ((TO, rjo)/e) +

(r — %7,77) is in the range defined by (12.16) and

(12.17) x = Xe^^3 for 0 < <5i < A < 6^ <?i, 62 small.

(12.15) implies the main contribution to eQ(X) is given by

(1218) . ̂  ̂ -w f ^AC«/3ga/3<t7-T)i/3 - e^3^-^31
I ^/^o^Kn-T);/3-^-^/3] J'

The remainder is smaller by a factor of c(e, 7) <^ 1.
Since |T-| ^ e"0, for ̂  small enough the numerator inside the braces in (12.18) equals

(12.19) iXC^e^^-r^-a^-r)^3] .F^r),

where \F - 1| < 1/10 for (£,7,r) as in (12.16). Thus,

(12.20) (12.18)= {iX^e^^3) • (^a-1)/3) . F.

The important property of (12.20) is that it blows up like ^a-1)/3 and maintains a nearly fixed
direction (for fixed e, X) for all r| ^ e-0-. For £1 < ^0(7) small enough, eQ(X) has the same
property for e <e\.
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3. Consider the integral (12.6) over the region |r| ^ ^-a, \r]\ ^ 71+<$ for e < e\, \y\ < b,
t ~ ^(2+")/3^ and x as in (12.17). (12.4) and the fact that e^^^ ~ 1 imply there is essentially
no cancellation of the contributions from (12.20) for |r| ^ b. Thus, the modulus of the integral
over |r| ̂  e~a, \T]\ ̂  71+<5 is bounded below by

(12.21) C^,^0-^3, 0 < a < 1/3.

4. Since g\(r) is rapidly decreasing in rand |e^W| < 1, any polynomial (in Ir^"1]) upper
bound on |$i(X) - ̂ (X)\~1 for |r| > e'0' will imply that the contribution to (12.6) from the
region |r| ̂  e"", \T]\ ̂  71+<? is negligible.

Let

S = [Z = (r,7,77): |r, 7, T]\ =1,7^ 0}.

For 63 small let

s,={zes: ^^-(O^l^lrl4/3^3}
S 2 = { Z e S : [(^-(O^o)!^3, M^s}.

Since j?(^, r, rj) has triple zeros in ^ only when T == 0, we have

(12.22) \^(Z)-^(Z)\^C>0 forZe52.

For Z 6 5'i an argument using Rouche's Theorem as in part 1 of this proof shows

(12.23) \^(Z)-^(Z)\^C\T\1/3 forZe^i.

Using the homogeneity of ^j(X), we see that if X = ((ro,?7o)/£) + (r - 27,77) projects to £'2
(respectively 5i) under X -^ X/\X\, (12.22) and (12.23) imply

\W)-W)\^C\X\
(12.24)

(respectively \^(X) - ̂ (X)\ ̂  C\X\^\r\^Y

Provided 0 < a < 1/3 and (4/3)(1 — a) < 1, the restrictions on (r^,r],e) imply these are the
only X we need to consider. From (12.21) and (12.24) we conclude for such a

(12.25) Ic^l^A,^)^-^3,

for \t\ ̂  ̂ a, x = A^^^/3, 0 < Si < X < 6^ \y\ ̂  b^
5. As in [8] we demonstrate blow-up in v^ using a simple fact about ODEs.

LEMMA 12.3. - Suppose a(t) is a smooth nonnegative function on [0, oo) and f°° a(t) dt >
l/7/o. The maximal interval of existence [0, To) for the initial value problem

y' = a(t)y2, y(0) = yo > 0

is given by f^° a(t) dt = 1/yo.

Consider Ve on the characteristic of 9f + Qx starting at (x, y , t) = 0. (12.25) and Lemma 12.3
imply that if /? is large enough (f3 > (2 + a)/(l - a)), the maximal time of existence on this
characteristic is less than C^^")/3.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



430 M.WILLIAMS

6. The example is not yet completely satisfactory since the data in (12.2) is supported in
t > -T, and we have not ruled out [-T, -T/2], for example, as an interval of existence for v^
independent of e. To rectify this defect replace G(t, y) and H(t, y) in (12.2) by

Gk(t,y)= ̂ G(kt.y\ H^y)= ̂ H(kt,y).

This data is supported in t ̂  -T/k and for any s, the H8 norm of (G/c, Hk) is uniformly bounded
with respect to k G {1,2,3, . . .}, provided M = M(s) is big enough. Let Ue,k, Ve,k be the solution
to (12.2)fc denned by this new data. The preceding argument shows

(12.26) \Q^\ ̂  COU^,^-^3,

and the maximal time of existence of Ve,k on the characteristic of 9t + 9x through 0 is less than
CW^^/3. Theorem 4.2 of [17] shows that if p(^ T, rj) = 0 had real ^ roots of multiplicity at
most two, a uniform (in k) bound \Gk, Hk \H8 ^ Cs for s > 3/2 would imply a time of existence
T(Cs) for solutions to (12.2)/c independent of (k, e).

Example 2. - Consider (12.2) again where the boundary data for D^Ue is replaced by

00

(12.27) e ̂  .-^G(t,y)e^(rkfr1kHt^£,
k=M

where (TA;,^) = (l/k,rjo + (l/^^0'))) ̂  (ro.^o) = (0,1) as k -^ oo and M^,a are positive
constants to be chosen. In the notation of (3.11) we have for k large

(12.28) ^(Tfc, r]k) = E^ (A(^, rjk)) C E^ {^(r^ ̂ )),

where f3\(rk, r]k) is an outgoing hyperbolic mode and ^{r^ r]k) an elliptic mode with Im ̂  > 0.
Observe that the projections P(A(^ ̂ )) of E~^(rk, ̂ ) onto its components in (12.28) blow up
as k -^ oo (recall Remark 3.2).

1. The solution to (12.2) with this new data is Ue = ]CA^=M n^' where

(12.29) ^^^^e^^+^^^ye^+^^iM^WQ^)^^^

Xk = ((Tfe, r ] k ) / e ) + (r - n, 77), and Q(X) is denned by (12.7). For 0 < a < 1/3 as in Example
1, b\ > 0, &2 > 0 small, and |^| ^ b^, x ~ ^(2+a)/3, \y\ ̂  ̂ ^ we proceed to estimate

(12.30) ^ 9 ,̂̂
k=M

from below. Rewrite (12.30) as

(12.31) ^ 3^+ ^ 9lu^=S^Sz.
M<A;^(4£l-a)-l /i;>(4£l-a)-l

2. Choose a such that

(12.32) ( l -a ) ( l+a)=l ,
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and note that for t,y as above and k > (4£l-a)-l, e^t-7^+^^L+7^ stays close to e^. An
analysis similar to the one in parts 1-3 of Example 1 shows that each term in 62 has magnitude
^ (C/k^^e^-^/3, and these contributions have a nearly fixed direction independent of k (but
not e). In this argument (I/A;) + e(r - 27) plays the role of e(r - 27) in Example 1. Thus,

(12.33) \Sz ^^-^ V l=CL^-w/3-^^z-^ k 1 1 ^ n
fc>(4£l-a)-l ^

3. We claim that each term in S\ has magnitude <

(12.34) ^(fci/3+^ foranyB>0.

The e3 piece corresponds to the integral over |T[ ^ ̂ -a (recall g\(r) is rapidly decreasing). The
A:1/3 piece appears since

W,) - W,)\ ~ ̂  for ̂  > ̂  4£1-0, \r\ ̂  e-\

if M is large enough. Thus,

„ . .(a-l)(l/3-^)
(12.35) |5i|^C ^ ^/^-^^^G^————.

M<A;<(4£l-a)-l 3 — ^

4. 162! blows up as e —^ 0 for 0 < ^ < 1/3 and is much larger than the right side of (12.35)
for IJL near 0. The argument of Example 1, Part 5, shows that Ve blows up for t ~ ^(2+a)/3 in this
example.

As in Part 6 of Example 1, we may replace G(t,y) in (12.27) and H(t,y) in (12.2)(b) by
Gj(t,y) = (I/^GC^, y\ Hj(t,y) = (l/j^H^y) to obtain data supported in t ̂  -T/j,
j C { l , 2 , . . . } . S e t

(12.36) g,(t^6') =(f^ ^^^^e^^^',^^^^1^0-0'] .
\A;=M /

For any 5, \gj A^^H3) ^ Cs for all j, provided L = L(s) is large enough. If there were no
glancing modes of order > 2, Theorem 4.2 of [17] would yield a time of existence T(s), s > 3/2,
independent of (j,e) for solutions to (12.2)^ defined by the data (12.36). In our example the
maximal time of existence of v^j on the characteristic of Qi + 9x through 0 is ^ C70')£(2+a)/3.

Remark 12.4. - The blow-up in this example depends on a delicate balance between the size
of the convergence factor 1/fc1'^ in (12.27), the rate of blow-up of individual terms £(a-l)/3,
and the rate of convergence (r^,^) —^ (TO, rjo) (recall (1 - a)(l + a) = 1). For example, if
(1 — a)fJi > 1/3, blow-up does not occur.
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