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GENERALIZED HAMILTON FLOW AND POISSON
RELATION FOR THE SCATTERING KERNEL

BY LUCHEZAR STOYANOV 1

ABSTRACT. - The generalized Hamilton flow determined by a Hamilton function on a symplectic
manifold with boundary is considered. A regularity property of this flow is proved, which for "Sard's
theorem type applications" is as good as smoothness. It implies in particular that the generalized Hamilton
flow preserves the Hausdorff dimension of Borel subsets of its phase space. As an application, it is shown
that in scattering by obstacles, the so-called Poisson relation for the scattering kernel s(t, 0, uj) becomes an
equality for almost all pairs of unit vectors (0,uj). © 2000 Editions scientifiques et medicales Elsevier SAS

RESUME. - On considere Ie flot hamiltonien generalise determine par une fonction de Hamilton sur
une variete symplectique a bord. On prouve une propriete de regularity du flot qui pourrait remplacer
la regularite usuelle dans les applications associees au theoreme de Sard. En particulier, cette propriete
implique que Ie flot generalise hamiltonien preserve la dimension de Hausdorff des ensembles de Borel sur
Fespace de phase. Comme application on montre que dans Ie cas de diffusion par des obstacles la relation
de Poisson pour Ie noyau de diffusion s(t, 0, uj) devient une egalite pour presque tout (6, uj) C S^1. © 2000
Editions scientifiques et medicates Elsevier SAS

1. Introduction

The generalised Hamilton (^characteristic) flow (GHF) Ft generated by a Hamilton function
p on a symplectic manifold with boundary S was introduced by Melrose and Sjostrand (see [8,
9]) motivated by investigations on propagation of singularities of differential operators. This flow
appears naturally in a variety of problems in spectral and scattering theory. In fact, special cases
of it had been studied and used in one way or another before the works of Melrose and Sjostrand
(see e.g. [6,10,16]). A detailed consideration of this flow was later given by Hormander in [4]
(see Section 24.3 there).

In general the behavior of the GHF is rather complicated. In fact, as an example of M. Taylor
[16] shows (see also Section 24 in [4]), in some cases this is not a flow in the usual sense of
dynamical systems, since there may exist two different integral curves issued from the same
point in the phase space. Even when this flow is well-defined, there are still essential difficulties
that encounter — presence of diffractive points, integral curves contaning non-trivial gliding
segments on the boundary, etc.

An additional condition on S and p (cf. A3 in Section 2) guarantees [9] that the GHF is well-
defined. It turns out that, though Ft is not smooth in general, it has some of the important features
of a smooth flow. Clearly, at points of transversal reflection at 9S the flow Ft is discontinuous.

1 Partially supported by Australian Research Council Grant 412/092.
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362 L. STOYANOV

To make it continuous, consider the quotient space S = S/ ~ of S with respect to the following
equivalence relation: p ^ a if and only if p = a or p, a e 95' and either limi/'o ̂ (p) = cr or
linit^o^tCp) = cr. Melrose and Sjostrand [9] proved that the natural projection of Fi on S is
continuous.

We may assume that S is contained in a symplectic space V of the same dimension and without
boundary and p is a smooth function defined on V. Given a metric do on V that generates its
topology and is equivalent to the natural distance on symplectic charts near 9S, one can define a
related to it pseudometric d1 on V such that d ' ( p , a) = 0 in V if and only if p ~ a (cf. Section 2
for details). Then the projection of d to S generates the quotient topology, so ^i is continuous
on S with respect to d. In what follows we mainly work with Fi as a flow on S using the metric
do and the pseudometric d (whichever is more appropriate) to express Lipschitz properties and
Hausdorff dimension.

The natural phase space of the GHF is the zero bicharacteristic set E = p'^O). In Section 3
below we prove that for each T > 0, S can be represented as a countable union of Borel subsets
Si such that on each Sz , {^lo^t^r coincides with the restriction of an one-parameter family
Q^ of Lipschitz maps (with respect to the appropriate metrics) defined in a neighbourhood
of Si, taking values in V and such that for all but finitely many t, Q^ is smooth and its
restriction to smooth local cross-sections is a contact transformation (cf. Theorem 2.1 for the
precise statement). For "Sard's theorem type" applications this regularity property is as good as
smoothness. A consequence of it is the following.

THEOREM 1.1.- The generalised Hamilton flow Ft preserves the Hausdorff dimension of
Borel subsets of the phase space Z'.

Let K be a compact subset of R^n ^ 3,n odd, with C°° boundary 9K such that QK =
Rn\K is connected. Such a set K is called an obstacle in R71. The scattering operator related
to the wave equation in R x j7 with Dirichlet boundary condition on R x 9Q can be represented
as a unitary operator S'.L^R x S7'"1) -^ L2^ x S""1) (see [5]). The Schwartz kernel of
S - Id is a distribution SK(t,0^) G 2V (R x S71"1 x S^^) called the scattering kernel. For
fixed uj,6 e S71"1 the singularities of SK(t,0,(^) are related to the so-called (c<;,0)-rays in QK
which are generalized geodesies on the manifold with boundary QK incoming from infinity with
direction uj and outgoing to infinity with direction 0. The generalised geodesies on QK are the
natural projections of the integral curves of the GHF Ft on S = T*(QK x R) generated by the
principal symbol p of the wave operator (see Section 2 for details).

V. Petkov [11] established that, under certain assumptions about K, we have

(1) sing supps^,6>,cc;) C {-Ty: 7 € £^(^)},

where £uj,e(^K) is the set of all (cj, 0)-rays in QK and Ty is the so-called sojourn time of 7 (cf.
Section 2). Apart from that, Petkov gave a sufficient condition for a number —T to belong to
sing supp SK(t, Q^ ̂ ). In the general case proofs of these results can be found in [12]. In analogy
with the well-known Poisson relation for the Laplacian on Riemannian manifolds, (1) is called
the Poisson relation for the scattering kernel. Following the same analogy, the set of all Ty, where
7 ̂  £o;,6>(^x), (^ 0) ̂  ̂ n~l x S7^"1, is called the scattering length spectrum of K (or QK)'

Roughly speaking condition A3 in Section 2 reads: for (a-,0 € T^(9K\ if the normal
curvature of 9K at x vanishes of infinite order in direction ^, then 9K is convex at x in direction
^. Denote by /C the class of obstacles K which have this property. It should be mentioned that 1C
is of second Baire category in the space of all obstacles with smooth boundary endowed with the
Whitney C°° topology. Using the regularity property of the GHF mentioned above and results
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GENERALIZED HAMILTON FLOW 363

from [11] and [13], we prove that for most obstacles and most pairs of directions (uj,6) the
Poisson relation (1) becomes an equality.

'n-lTHEOREM 1.2. -Let K C 1C. There exists a subset K of full Lebesgue measure in S71"
S7'"1 such that

singsuppsj<(t,0,ci;)== {-TY: 7 e C^,e]

holds for all (o;,0) C 7Z.

The proof of this theorem uses essentially the sufficient condition from [11] (see also Theorem
9.1.2 in [12]). Applying Theorem 2.2 below which is a consequence of the regularity property
of the GHF discussed above, we find a subset K of full measure in S7'1"1 x S""1 such that for
(a;, 0) C K the (a;, 0)-rays in ^K are never tangent to the boundary and, using also a result in [13],
for any T ̂  0 there is at most one (uj, (9)-ray 7 with T^ = T. Then Petkov's sufficient condition
implies that K has the property required in Theorem 1.2. It can be seen from the proof that the
set 7^ is also of second Baire category in S^"1 x S71"1.

In the special case when K is a finite disjoint union of convex bodies the statement of Theorem
1.2 was proved in [ 13].

The above theorem is related to some problems in the inverse scattering theory. It shows that
for most obstacles K the singularities of the scattering kernel are completely determined by
some geometrical objects — the scattering length spectrum of K. In general these objects are
not enough to recover the obstacle (see Chapter 5 in [7]). One may conjecture that for obstacles K
satisfying a natural accessibility condition the scattering length spectrum completely determines
K. This is indeed so for some special classes of obstacles (cf. [14]).

Part of the results in this paper were announced in [15].
Thanks are due to Vesselin Petkov for helpful discussions and to the referee whose criticism

of the first version of the paper led to substantial improvement of its presentation and correction
of several mistakes.

2. Generalized Hamilton flow

For convenience of the reader we present here the definition of Melrose and Sjostrand [8,9]
of the generalized Hamiltonian flow in the symplectic invariant form given by Hormander in [4]
(see Section 24.3 there).

Let S be a symplectic manifold with boundary 9S, dim S = 2n, n ̂  2, and let p : S —^ R be a
smooth function. Throughout the paper "smooth" means C°°. We assume that S is a-compact,
i.e. a countable union of compact subsets. Let (p e C°° (S) be a defining function of 9S, i.e. (p > 0
in S \ OS, (p == 0 on 9S and dip -^ 0 on 9S (^p may be only locally defined on a neighbourhood
of 9S). The first assumption that we make about S and p is the following.

Al. - dp\Qs ¥- ° and {^ {^^P}}(?) T^ ° whenever p e 9S and {^,p}(p) = 0.

Here {/,?} denotes the Poisson bracket of / and g. Denote by Hp the Hamilton vector
field determined by the function p and consider the following subsets of S: G = [a € S:
^p(a) = Hp(p(a) = 0} (glancing set), Gd = [o- G G: H^(a) > 0} (diffractive set), Gg =
[cj G G: H^(a) < 0} (gliding set), G^ = {a C G: H^(a) = 0, j = 0,1,.... k - 1} and

G°° = n^2 Gk' The aiding vector field H^ on G is defined by H^ = Hp + ̂ Hy. In fact,
H0 is a well-defined and smooth vector field in a neighbourhood of G in 5'.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



364 L. STOYANOV

In order to properly define the GHF, one should be able to define a "reflected trajectory" at a
point p e OS where the flow of Hp hits transversally 9S. This requires some sort of hyperbolic
structure of Hp near such points.

In what follows we make the following assumption about the symplectic manifold S and the
function p:

A2. - For every point po € 9S D p~l(fl) there exists an open neighbourhood 0 of po in S and
symplectic coordinates (x, ̂ ) = (x\,..., Xn\ <^i, • • • , S,n) m 0 such that (p(x, 0 = x\ in 0, that is
5'n0={0r,0: xi ̂ 0],9SnO={(x^): xi =0}, and such that

(2) pCr, 0 = g(x, 0 [̂  - r(^, Q], (x, Q e 0,

for some smooth functions g(x^) and r(x^') with |^(a;,^)| ^ a > 0 in 0 for some constant
a>0.

Here we use the notation x ' = ( x ' z , . . . ,Xn), ̂ f = ($2. • • • ̂ n). In all cases known to the author
where the generalized Hamilton flow has been involved (e.g. propagation of singularities for
second-order linear differential operators), the condition A2 has been satisfied. Notice that when
po e G, then A2 follows from Al and the Malgrange preparation theorem (see [8] or Section
24.3 in [4]). Moreover in this case we can choose the coordinates (x, Q so that they are centered
at po, i.e. po =(0,0).

The following definition is due to Melrose and Sjostrand [8,9]. Here we consider it in the form
given by Hormander (cf. Definition 24.3.6 in [4]).

DEFINITION. - Let I C R be an interval. A curve r:I —^ S is called a generalised integral
curve ofp if there exists a discrete subset B of I such that'.

(i) ift e I \ B and F(t) e (S \ 9S) U Gd, then there exists r\t) = Hp(F(t))',
(ii) ifteI\B and r(t) C G \ Gd, then there exists r ' ( t ) = H^(r(t))\

(iii) for each t C B, F(t + s) G S \ 9S for all small s ^ 0 and there exist the limits
r(t — 0) 7^ r(t + 0) "which are points of one and the same integral curve of(p on 9S.

We will consider integral curves mainly on the zero bicharacteristic set E = p~l(0). Set

G^ = {a € G^: Hp(a) < 0}, G^ = {a e Gk: H^a) > 0}, k ̂  2.

The third assumption that we make about S and p is the following:

AS.-G^nlJ^^^-
In this case one can define a (local) flow ̂  == ̂ K): S -^ S , t e R, such that {^(a): t G R}

is an integral curve ofp for each a € S. This flow is called the generalized Hamilton flow (GHF)
generated by p.

Recall from Section 1 that S = S/ ^ is the quotient space with respect to the following
equivalence relation on S: p ~ a if and only if either p = a o r p e S r \ 9S, a e S ft <95 and
p and a lie on one and the same integral curve of (p on 9S. Using the natural map TT : S —> 5, the
flow Ft gives rise to another flow Ft'.S —> S, called the compressed Hamilton flow.

Let r: I —> S be a generalized integral curve ofp. We say that F is gliding on 9S if the set of
those t G I such that r(t) e Gg is dense in I . In this case the trajectory [r(t)\ t 6 1} is called
a gliding segment ofp on 9S. If F(I) H Gg = 0, then jT is called a reflecting integral curve ofp
and [r(t): t G I ] a reflecting trajectory.
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GENERALIZED HAMILTON FLOW 365

Remark l.—The maps Fi depend on (p and in general (p is only locally denned near 9S,
however the integral curves of Ft are globally denned and do not depend on the choice of (p.
Since the behaviour of Ft away from 9S is trivial (a smooth Hamilton flow on a symplectic
manifold without boundary), the emphasis here is on the study of Fi near 9S.

Without loss of generality we may assume that S is part of a symplectic manifold V of the
same dimension and without boundary and that p is a smooth function on V. Denote by Hp
the Hamilton vector field on V determined by p and by <?i the corresponding smooth Hamilton
flow on V. Clearly, if p e S \ 9S and Ft(p) e S \ 9S for all t C I = (a, b\ then Ft(p) = ̂ t(p)
for all t G I . The apparent difference between Ft and <^i is that the latter is smooth and has no
reflections at 9S; in fact the trajectories of <^ can cross 9S and enter V \ S. Set2 V = V/ ~,
where ~ is the same equivalence relation by means of which we defined 5'.

For every point p 6 9S there is a symplectic chart 0 in V with the properties described in A2.
(In fact, V can be constructed by gluing such charts around 9S.) There exists a metric do on V
which is equivalent to the standard metric \\x — y\\-\-\\£,— y?|| on each chart 0. In what follows
do will denote a fixed metric on V with this property.

There exists a pseudometric d on V such that

cmm{do(p\a): ^(p') = ̂ (p)^(a) = 7r(a)}

(3) ^ d(p,a) ̂  Cmm{do(p\a/): 7r(p') = TrQo),^) = 7r(a)}

for all p, a e V, where C > c > 0 are constants. Given a coordinate open subset 0 of S defined
by a Darboux chart as in A2 with do equivalent to d^x, 0, (y, 77)) == ||;r — ?/|| + ||$ — ^|| on 0,
we can define a pseudometric d' on 0, say by

d7 (Or.O, (^)) = ||o1 - y\\ + ||̂ - 2/i77|| +min{||^- r]\\, ||^ -77||},

where 77 = (—771,772, • • • , T/n). Being the sum of three pseudometrics on 0, d! is a pseudometric,
too. Moreover, (3) holds with do and d, replaced by do and d', respectively. Gluing appropriately
the above locally defined pseudometrics, one gets a globally defined pseudometric d on V
satisfying the condition (3). Then the projection d of d to V is a metric. Since the projection
of Ff to E is continuous with respect to the metric d [9], the flow Fi on S is continuous with
respect to the pseudometric d.

Remark 2. - One can easily see that for any Borel subset B of E, dimjj(B) calculated with
respect to the metric do is the same as dim^(B) calculated with respect to the pseudometric d.
To check this it is enough to consider separately three cases: B c S \ 9S (trivial, since do is
equivalent to d locally in S \ 9S), B c G (trivial since do is equivalent to d on G), and B c
9S \ G. Consider the last case. Then B = B- U B+, where B- = [a e B: a = lim^o Ft(a)}
and B-\- is defined similarly. Then £?± are Borel subsets of E and it is enough to show that
dimjf(B±) is the same with respect to do and d. However this follows trivially, since d is a
metric on each of the sets B± equivalent to do. From the last case one also obtains that for any
Borel subset B of S we have dim^(£?) = dim^(7r(B)).

Given a € 5, denote

i((r)=[Ft(aY O^t^T].

2 This notation is introduced just for convenience; the set V does not have some geometric importance and will not be
used significantly below.
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366 L. STOYANOV

THEOREM 2.1. -Let T > 0. ZT^r^ exists a representation of E as a countable union E =
UzeJ ̂  ofBorel subsets Si such that for each i G I there exist an open neighbourhood Vi of Si
in V and a family of maps Q^ : Vi-^ V (0 ̂  ̂  T) with the following properties:

(a) ^(a) = Ft(p)for all a e Si and all t € [0, T];
(b) For every a e Si and every t G (0, T] r/^n? <?.m^ an open neighbourhood W = W(a, z, t)

of a in Vi such that Q^: (W, d^) -^ (V, d^) is Lipschitz, where di = do if a- G (S \ 9S) U G
and di = d if a G 9S \ G, ̂  similarly dz = do if ft(cr) e(S\9S)UG and d^ = d if
^(a)e<95'\G;

(c) If a e Si H [(5 \ 95) U G] and t C (0,T] is such that ^(a) € (S \ OS) U G, then there
exists an open neighbourhood W = W(a, z, t) of a in Vi such that the map Q^ : W —^ V
is smooth. If moreover both a and ^t(a) are not ends of gliding segments of {^s(a): s e
[-£, T + e]} for any small e > 0, then W can be chosen in such a way that the restriction
°fQ^ to ^Y smooth cross-section in W at a is a contact transformation.

The latter means that if M. is a smooth local submanifolds of W of codimension 1 containing
a and transversal to £(a\ then G^^'.M -^ G^^M) is a contact (canonical) transformation
with respect to the standard contact structures on M. and Q^^M) inherited from the symplectic
structure of V (cf. for example Section 5.2 and Proposition 8.1.3 in [1]). In particular, M n E
and G^^M D E) are symplectic submanifolds of V of codimension 2 and the restriction
G^ : M H E —^ G(t^\M n E) is a symplectic map. However, in general E is not invariant under
G^\ that is G^\Vi n E) is not necessarily a subset of E.

It follows from [9] that for any given a- e E, the trajectory £(a) has only finitely many
transversal reflection points and finitely many gliding segments, so part (c) in the above theorem
concerns all but finitely many t € [0, T]. It can be seen from the proof of Theorem 2.1 that Q^
is actually a "finite combination" of local Hamilton flows in V.

Clearly Theorem 1.1 would have been trivial (and Theorem 2.1 would have been unnecessary
for its proof) if the maps Ft were Lipschitz. However, it is well-known and easy to see that this
is not the case. Locally near a point p e S, the map Ft is Lipschitz on a neighbourhood of p for
small |^| when p ^ 9S or p is a transversal reflection point. Whenever p e G, the map Ft is not
Lipschitz (cf. [8] or [4]). For example, in the simplest case of a diffractive tangent point p c G^,
the map Ft has a singularity of "square root type" at p, so it is clearly not Lipschitz.

Theorem 2.1 is proved in Section 3. As a consequence of it one obtains Theorem 1.1.

Proof of Theorem 1.1. - It is enough to show that for each t the map Ft: E -^ E does not
increase the Hausdorff dimension of Borel subsets; then using the same property for F-i, one
concludes that Ft actually preserves dim^. For a similar reason it is enough to consider the case
t>0.

Let B be a Borel subset of E and let t > 0 be a fixed number. We have to show that
dimH(Ft(B)) ̂  dim^(B). From the properties of Hausdorff dimension (cf. for example [2]) we
have dim^(B) = maxims dim^(B,), where B = Bi U B^ U B^ with Bi = B \ 9S, B^ = B n G,
BS = (B n 9S) \ G. So, it is enough to prove that dim^(^(B,)) ̂  dim^(B,) for i = 1,2,3. This
essentially means that we have to consider separately three cases: B c S \ 9S, B c G and
Bc9S\G.

First, assume that B c S \ 9S. Take an arbitrary T > t, and let E = \J^ Si be a
representation of E as a countable union of Borel subsets Si of S with the properties listed in
Theorem 2.1. To prove dim^(J^(B)) ̂  dim^(B), it is enough to show that dim^(^(B n Si)) ̂
dimH(B n Si) for each z, for which in turn it is enough for each a- G B n Si to find an open
neighbourhood U of a in S such that dimn^B U Si U U)) ̂  dim^B n Si H [/). Fix for a
moment % and a e B H Si. Then by Theorem 2.1(b), there exists a neighbourhood W of a in
^ such that Q^ : (W, do) -> (V, cb) is Lipschitz, where dz = d or do depending on where ^(cr)
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GENERALIZED HAMILTON FLOW 367

belongs. Since d < const do, it follows that Q^ : (W, do) —^ (V, d) is Lipschitz. Moreover, we can
take W such that W is compact and has no common points with 9S. Then do is equivalent to d
on W, and so Q^ : (W, d) -^ (V, d) is Lipschitz. Using this and the fact that Q^ = Fi on Si (cf.
condition (a) in Theorem 2.1), we get

dimn {ft(B H Si H W)) = dimn (G(t\B H Sz U IV)) ^ dim (̂B n 5, H TV).

Denote U = W D i7; then L^ is a neighbourhood of cr in E having the desired property. This
completes the proof in the case B c S \ 9S.

The case B c G is very similar to the first one — since do is equivalent to d on G, one can
use Theorem 2.1(b) again as above.

Finally, consider the case B c OS \ G. It is enough for each a € B n Si to find an open
neighbourhood U of a in E such that dim^(J^(B H Si U [/)) ^ dim^(B n Si H [/). By
Theorem 2.1(b) there exists an open neighbourhood W of a in Vi (the domain of Q^) such that
^z): (W, d) —^ (V, cy is Lipschitz, where again cfc = do or d. As in the first case, one concludes
that Gf : (W, d) -^ (V, d) is Lipschitz and that dim^(^(B n 6', H U)) ̂  dim^B H 5, U (7),
where U = W n E. This completes the proof of dim^(JFf(B)) ̂  dim^(B). D

Given T > 0, denote by TT the set of those p <E E such that [Ft(pY 0 ̂  t ^ T} n Gg + 0,
that is the trajectory {^(p): 0 ̂  ̂  T} contains a non-trivial gliding segment on 9S.

THEOREM 2.2. - Let Co be an isotropic submanifold ofE \ 9S of dimension n — 1 such that
Hp(p) is not tangent to Co at any p € Co. Then for every T > 0 we have dimj^.FrC^r n Co)) ̂
n — 2. Moreover, if for a given T we have fr^Co) C S\ 9S, then there exists a countable family
[Tm} of smooth (n — 2)-dimensional isotropic submanifolds of S such that TT^T Fl Co) C
Um2'771'

Remark 3. - The above statement is not true if we replace TT by the set TT of those p e ^
such that [Ft(pY 0 ^ t ^ T ] r \ G ^ 9 . Using simple caustics in the plane, one can easily
construct examples when dim^(^r(771 n Co)) = n — 1.

We refer to reader to [1] or [4] for the definition of an isotropic submanifold.
Theorem 2.2 is proved in Section 4. We are now going to use it and prove Theorem 1.2.
Let J? be a domain in W1. Consider the symplectic manifold S = T*(Q x R) and the smooth

function p(x,t',^r) = ̂ ^ ̂  — r2. Since both vector fields Hp and H^ do not depend on t,
we have r = const along each generalized integral curve of p. The change of r can only affect
the parametrization along a generalized integral curve which is not important for our aims. Thus,
we may assume that r = d= 1. There is a natural correspondence between the generalized integral
curves ofp with this property and the generalized integral curves of the Hamilton function

n

(4) PfcO-^^-1

on the symplectic manifold S = T*(^7); the correspondence being given by (x(t),^(t)) \—>
(x(t),t'^(t),±l). Let Ft be the generalized Hamilton flow on r*(^2) \ {0} generated by the
function (4). Notice that the submanifold E = p~l(0) of S coincides with the cosphere bundle
S*(^). The restriction of ft to 5*(^7) defines the so-called generalized geodesic flow

(5) ^:5'*(^)^5*(J7), t^R.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



368 L. STOYANOV

Let pr^ :T*(J7) -^ ^? and pr^T*^) -^ M72 be the natural projections. A curve 7 in ^? is
called a generalised geodesic in j7 if there exist an interval I and p 6 T*(>f2) such that
7 = {pr^^/?)): t C J}. We will say that 7 is a gliding segment on 9Q (respectively reflecting
ray in J?) if {^(p): ^ G J} is a gliding trajectory (respectively reflecting trajectory) of p.

Next, assume that Q = QK for some obstacle K in W1 and uj,0 e S^1"1. Let 7 =
{pr^r(t)): t e R}, where F: R ̂  5*(^) is a trajectory of Ft. The curve 7 is called an (cj, (9)-
ray in J7 if pr^F^)) = uj for ^ <C 0 and pr^F^)) = 0 for t ^> 0. If 7 is a reflecting ray, i.e. it
does not contain gliding segments on 9Q, and has only finitely many reflection points, it is called
a reflecting (a;, 0)-ray in Q. By C^^g(K) we denote the set of all (uj, 0)-rays in QK.

Fix an open ball U which contains K. Given ^ G S71"1 denote by Z^ r/^ hyperplane in W1

orthogonal to ^ and tangent to U such that U is contained in the open half-space R^ determined
by Z^ and having $ as an inner normal. Given an (uj, 0)-ray 7 in Q, the sojourn time Ty of 7 is
defined by T^ = 7^ — 2a, where T^ is the length of that part of 7 which is contained in R^ D R-e
and a is the radius of the ball U. It is known (cf. [3]) that this definition does not depend on the
choice of the ball U.

In what follows we denote by 1C the class of obstacles K such that condition A3 is satisfied
for S = r*(J?j<) \ {0} and the function (4). Assuming Q = QK with K e /C, it follows from
results ofMelrose and Sjostrand [9] (see also [4, Theorem 24.3.9]) that every (uj, 0)-ray 7 in QK
which does not contain gliding segments is a reflecting (uj, ̂ )-ray, i.e. it consists of finitely many
straight line segments in Q (two of them being infinite rays).

Proof of Theorem 1.2. - Let K be an obstacle in W1 of the class /C. We are going to show that
there exists a subset K of full Lebesgue measure in S71"1 x S72"1 such that for each (a;, 0) e 7^
the only (c^, 0)-rays in QK are reflecting (uj, 0)-rays.

Consider the domain Q = QK, the symplectic manifold S = T*(Q) and the corresponding
generalized geodesic flow (5) of the function (4). As above, denote by U an open ball in W1

containing the obstacle K and by C the boundary sphere of U. Fix uj e S^^ XQ e C and
consider the generalized geodesic (x(t),^(t)) = ̂ (rz-o,^). Let T > 0 be such that x(T) e C.
Denote

SQ = {(.r, ̂ ) e S: x e C, ^ is transversal to C}.

Since E = p-^O) = 5'*(J7), using the notation %(^7) = {(rr,0 £ S'*(^): a; 6 C7}, we have
5'Q = So H ̂  = {(rr,0 e %(J7): $ is transversal to (7}. Then 5^ is a symplectic submanifold
of 5'. Let P: SQ —^ So be the local map defined in a neighbourhood of (XQ,UJ) using the shift
along the flow Ti, then P(So) C SQ. Consider the Lagrangian submanifold

/^{(^Oe^^o;}

of SQ. Setting T = TT and applying Theorem 2.2 to Co, give that ^r(^o H ^) is contained
in a countable union of isotropic (n — 2)-dimensional submanifolds of 6'. Since locally near
(xo, uj) the map TT '• So —> FT(SQ) is smooth, ̂ (So) is a (In — l)-dimensional submanifold of S
transversal to the flow Tt at J^T^Q, uj). Consequently, locally near J^T^Q, uj) e ^FT(SQ) Fl 5'o the
shift Q along Ft from .Fr(So) to 60 (forwards or backwards) is a smooth map. Moreover Q maps
fT(So) into 5'o (since p'^O) is invariant under the flow Ft), the restriction Q'.^T^SQ) -^ SQ
is a local symplectic map, and P = Q o FT. Hence the set P(CQ H T) = Q(^r(^o n T))
is contained in a countable union of isotropic (n — 2)-dimensional submanifolds of 5'. The
projection J : S Q —>• S71"1, j(x,^) = ̂ , is smooth, so Sard's theorem gives now that the set
JCP^CQ n T)) has Lebesgue measure zero in S71"1. Hence there exist a neighbourhood U of XQ
in C and a subset K^(U) =Sn~l\ j(P(C n T)) of full Lebesgue measure in S71-1 such that for
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x e U every generalized (uj, 0)-ray in Q passing through x with 0 € ^cj(U) is a reflecting (c<;, ̂ )-
ray. Covering C by a finite family of neighbourhoods L^, we find a subset 7\^ = rii^(^)
of full Lebesgue measure in S71"1 such that every (cj,^)-ray in >f2 with 0 e 7^ is a reflecting
(uj, 0)-ray. It now follows from Fubini's theorem that

^^{(c^es71-1 xs71-1: een^}

is a subset of full Lebesgue measure in S^"1 x S71"1. Moreover it is clear that for (a;, 0) e 7^/,
all (cj, 0)-rays in >f? are reflecting ones.

According to Theorem 3.1 and Proposition 4.1 in [13], there exists a subset 'R" of full
Lebesgue measure in S71"1 x S71"1 such that for (uj,0) € T^" every reflecting (cj,0)-ray in >f2^
has no tangencies to 9K and Ty 7^ T<$ whenever 7 and ^ are different reflecting (a;, ̂ )-rays in
J?K. Then K = K1 ^}'R" has full Lebesgue measure in S71"1 x S71"1. Given (a;, (9) e %, it follows
from the results of Petkov [11] (see also Section 9.1 in [12]) that —Ty e sing supp 5j<(^,ci;)for
all 7 e C^^e(^K)' Combining this with (1) completes the proof of the theorem. D

Using Theorem 1.2 we will now give another (and more rigourous) proof of Theorem 1.6.2 of
Lax and Phillips [5]: most rays incoming from infinity are not trapped by the obstacle K. Recall
that Q,. is the closure of the complement of the convex hull K of K. Below it is important that we
consider points (x, 0 G 5'*(i7--). In general it is not true that the trapped points (x, Q e S*(QK)
(with x C K\ i.e. the points that generate bounded trajectories, form a set of Lebesgue measure
zero in 5'*(J7j<). The example ofM.Livshitz (cf. Example V.4.0 in [7]) shows that in some cases
the set of trapped points may even contain a non-trivial open subset of 5'*(^7j<).

PROPOSITION 2.3. - IfK e 1C, then the set of those (x, Q e 5'*(J?^) such that the trajectory
{^(o*, 0: t ̂  0} is bounded has Lebesgue measure z.ero in 5*(J?_).

Proof. - Let K G /C, U be an open ball containing K and C be the boundary sphere of U.
Set Q = QK' For (x,u) e %(^2), let 6(x,uj) be the generalized geodesic in QK issued from
x in direction uj. Assume that there exists a subset W of positive Lebesgue measure in S^(Q)
such that 6(x\uo) C U for all (x,u)) e W. According to Theorem 2.2 above and Theorem 3.1 of
[13], we may assume that for all (x,uj) e W the generalized geodesic 6(x, u) does not contain
gliding segments on 9Q and has only transversal reflections at 9K. Given (x,uj) e W, denote
by x ' the first common point of 6(x,uj) with 9K and by w' the reflected direction of 6(x,uj) at
x\ i.e. uj' = uj — 2(uj, ̂ (a/))^(a/), where v(x') is the outer unit normal to K at x ' . Then the set
W = [(x' ,uj')\ (x,u) C W] is a subset of positive Lebesgue measure in S'Q^(Q).

Denote by M the set of those (y, rj) € 5^(J?) for which the standard billiard ball map B is
well-defined. The map B (as a local map) preserves the so-called Liouville's measure fi on M
which is absolutely continuous with respect to the Lebesgue measure on 5^(J7).

Next, we use the argument from the proof of the Poincare Recurrence Theorem in ergodic
theory. It follows from the definition of W that Bk(W/) C M and ^(B^TVQ) = ̂ (W) > 0
for all k = 0,1,2,. . . . On the other hand, in the situation under consideration we clearly have
P'(\J(^^oBk(Wf)) < oo. Therefore there exist non-negative integers k < m with Bk(W/) H
B^^W) 1=- 0. Since B is invertible, this means that there exists (x'\^) e W H Bm~k(W/).
Then (a/, a/) = B(y,rj) for some (y,rj) C B^-^^W) C M. Now the choice of W and the
definition of W show that W has no common points with B(M). This is a contradiction which
proves the proposition. D
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3. Regularity of the generalized Hamilton flow

This section is devoted to the proof of Theorem 2.1. Throughout S will be a 2n-dimensional
symplectic manifold, p a smooth function of S satisfying the conditions Al, A2 and A3, and
T > 0 will be a fixed real number.

Let po e 9S \ G. There exist a neighbourhood U of po m 5 and T ' > 0 such that for every
p e U the trajectory {^(p): 0 < ̂  T ' } has at most one common point with 9S which is a
transversal reflection point. In fact, taking T ' > 0 and U sufficiently small, for every p e U there
exists a unique real number t(p) with \t(p)\ < T ' such that ^Ft(p)(p) e 9S.

The following fact is probably well known. We prove it here for completeness.

LEMMA 3.1.- Under the assumptions above, if the neighbourhood U is taken sufficiently
small, then the family of maps Ft: U —^ S, 0 ̂  t ̂  T ' , is uniformly Lipschitz. mth respect to the
pseudometric d on S. That is, there exists a constant C > 0 such that d(Ft(p), ̂ (cr)) ̂  Cd(p, a)
for all p, a € U and all t € [0, T'}.

Proof. - It is enough to show that the map U 3 p i-» t(p) is uniformly Lipschitz with respect
to the pseudometric d. The rest follows from the smoothness of the Hamilton flow of Hp, its
transversality to 9S at po, and the fact that the pseudometric d is equivalent to the metric do on
any subset W of S such that a = \imt\o^t(^) for any a € W (or a- = limt^o^tW for any
aeW).

Let 0 be a coordinate neighbourhood of po of the type described in A2. Then for po =
(x^, ̂ ) we have ̂ 0) ̂  0. Take U so small that |^i | > 2|^0) |/3 for every p = (x, Q e U. Notice
that since |^i | is uniformly bounded from below, we have \t(p)\ < consta;i for all p = (x, Q € U,
where const means a positive constant that does not depend on p (and a later on).

Given p = (x, Q e U and cr = (^/, rj) e (7, we have to show that

(6) \t(p) - t(a)\ ̂  constd(p, cr).

If both t(p) and t(a) are non-negative or non-positive, this follows again from the smoothness
of the flow of Hp. Assume t(p) > 0 and t(a) < 0 (the other remaining case is similar). Then
^i < 0 and rji > 0. It follows from the main property of d that |a;i^i — y\r]\ \ ^ constd(p,a).
Hence x\ + y\ ̂  constd(p, a), so x\ ̂  const d(p, a) and y\ ̂  const d(p, a). This implies \t(p)\ ̂
consta;i ^ constd(p,a) and similarly |t(a)| ̂  constd(p,a). Thus, (6) holds in all possible cases
for t(p) and t(a). D

To every p e E we will now associate a string

(7) Oi = (ko,ki,. . . ,A^,A^+i;ZoJb. • •^m^m+l;90»9l,- • -,9m^)»

of integers that roughly describes the geometry of the trajectory £(p). For example, m will be
the number of different gliding segments contained in the interior of £(p\ ki and k will be the
orders of tangency of £(p) to 9S at the initial and terminal point of the zth gliding segment, and
qi will be the number of transversal reflections of £(p) between the zth and the (z + l)st gliding
segments. The numbers fco, lo, fcyn+i, Im-^-i will describe the combinatorial type of t(p) at its
initial and terminal point. For example, if p ^ 9S, we will have ko = IQ = -1; if p e 9S \ G,
then ko= IQ= 0, if £(p) begins with a gliding segment, then ko and ^ will be the orders of
tangency of this segment to 9S at its initial and terminal points, etc. The pair km+i,lm-^i will
play a similar role at the end of the trajectory £(p). Finally, 1/q will be (roughly speaking) a
lower bound of the distance to the set G at any transversal reflection of £(p) at 9S.
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For the precise definition it is better to start with a given a and define the set of points p G S
whose type is represented by a.

Notice that a point p e S belongs to a gliding segment if there exist a < b such that 0 € [a, b]
and {ft(p)'- a ̂  t ̂  b] is a gliding segment on 96' (cf. Section 2). Then p C G but in general
we do not necessarily have p e Gg. However, according to condition A3, we do have p ^ G°°,
hence p e G^ \ G^1 for some k ̂  2.

Let (7) be a string of integers, where m = m(a) ^ 0, ^ ^ 3 , ^ ^ 3 ( l ^ z ^ m),
^o^o^m+i^m+i ^ — 1 » 9 % ^ 0 ( 0 ^ % ^ m), and ^ ^ 1. We will say that a is admissible if
whenever fco ^ 1 (respectively ^yn+i ^ 1) we have IQ == A:o (respectively km-\-\ = ̂ m+i) ̂ d when
ko ̂  2 (respectively ^n+i ^ 2) we have Zo ^ 2 (respectively km-\-i ^ 2).

DEFINITION 3.2. -Let a be an admissible string of the form (7). Denote by Sa the set of
those p G ^ for which there exists a sequence of real numbers

(8) 0 = to(p) <i So(p) < ti(p) < Si(p) < • " < tm(p) < Sm(p) < ̂ m+l(p) ̂  Sm^l(p) = T

with the following properties:
(i) For every i == 0,1,..., m the curve [Ft(p)'- t G [^(p), ̂ +i(^)l} has exactly qi transversal

reflections at 9S and no common points with Gg;
(ii) For all i = 0,1,..., m, m + 1, {^(p): t G [ti(p), Si(p)]} is an integral curve of the vector

field H^ on G and Ft(p) € Gg for almost all t <E [^(p), 5,(p)];
(iii) For every i - 1,... ,m we have Ft^(p) e G^ \ G^+1 andFs^(p) € G11 \ G^+1;
(iv) Ifko ̂  1, r/z^ to(p) = ^o(p) = 0 and: p ^ QSfor ko=-l, pe9S\ Gfor ko = 0, p € G

^ p ^o^s' no^ belong to a gliding segment for ko = 1. If ko ^-2, then p belongs to a
gliding segment, p € G^ \ G^^ and J^o(p)(P) ^ G10 \ G^o+ l;

(v) Iflm+i ^ 1, then ^n+i(p) = 5^+i(p) = T and', ^(p) t 9S for ^+1 = -1, ^r(/?) €
9S \ G for lm+\ = 0, FT^P) ^ G but FT^P) does not belong to a gliding segment
for Im-^-i = 1. If ^m+i ^ 2, r/z^n ^r(p) belongs to a gliding segment, ^+i(p)(p) e
^m+i \ G^+i+i and^T(p) € G^1 \ G^m+ l+ l.

(vi) For every t C [0, T] ^MC/Z r/za? ̂ (p) e 9S \ G we have d(Ft(p\ G) > 1/q.
One can check that each Sa is a Borel subset of E (this can be derived using arguments from

the proof of Lemma 3.4 below). Notice that some of the sets Sa may be empty and any p c S
belongs to many (in fact, infinitely many) Sa.

Remark 4 (An important remark). - Notice that condition (i) does not exclude the possibility
that [Ft(p)'- t G (si(p),ti^-\(p))} has some other common points with 9S apart from the qi
transversal reflections. In general 9S D {^(p): t € (5z(p),^+i(p))} may be a very complicated
set (e.g. a Cantor set). Most of the points in this set (in fact all except the qi transversal reflections)
will be points from the set G°° U U/^=2 ̂ ^ which according to condition A3 is far from Gg.
Because of this possibility the construction of the maps Q^ is a bit more complicated than
perhaps anticipated.

LEMMA 3.3. - We have E = |ĵ  Sa, where a runs over all admissible strings.

Proof.-Let p C S. It follows from [8] that [Ft(p)\ 0 <^t ^ T ] has only finitely many
transversal reflections at 9S and finitely many gliding segments on 9S. Take a small e > 0
and let

E = [t e [-£,r+ e]: Ft(p) e Gg} n [O,T].
Then E is a finite disjoint union of closed subintervals of the interval [0,T]. If 0 ^ E, set
so(p) = 0 and: ko=lo=-lifp^ 9S', ko=lo=0if pe9S\G\ kQ=lo=l if peG.
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If 0 e E, then [0, so(p)] is part of a connected component of E for some so(p) ^ 0 (i.e.
p belongs to a gliding segment). Consequently, there exist ko ^ 2 and ^ ^ 2 such that p e
G^0 \ G^ and Fs,(p)(p) e G^ \ G^. Notice that so(p) > 0 implies Zo ^ 3 (cf. Section 24.3
in [4]), while 0 = so(p) yields ko = lo ^ 3. This defines completely the pair of integers ko, lo. In
a similar way one defines the pair fcyn+i. ^m+i.

Since ^(p) has only finitely many transversal reflections, there exists an integer q ^ 1 such
that d(^Ft(p).G) ̂  1/q whenever ft(p) is a transversal reflection point (0 ^ t ^ T). If every
connected component of E contains either 0 or T, set m = 0 and a = (ko, k\; <o^i; 9o; q), with
A;o, ^o and k\, l\ already defined and qo being the number of reflections of£(p).

Assume that the union of connected components of E that do not contain 0 or T is not empty;
it then has the form |ĵ  [tz(p), Si(p)]. For each i = 1,..., m, according to assumption A3 again,
there exist integers k ^ 3, kz ^ 3 such that condition (iii) in Definition 3.2 holds. Finally, denote
by qi the number of transversal reflections of {^(p): Si(p) <t< ̂ +i(p)} at 9S and define a
by (7). Then p e 5a, which proves the assertion. D

Theorem 2.1 follows immediately from the following.

LEMMA 3.4. - Let a be an admissible string of the form (7). For every p e Sa there exist an
open neighbourhood V(a,p) ofp in V and a family of maps Q^^ : V(a,p) —> V, 0 ̂  ̂  T,
such that:

(a) 0^(0) = ̂ tWfor all a C Sa U V(a, p) and all t G [0, T];
(b) For every a e Sa H V(a, p) and every t G (0, T] there exists an open neighbourhood

W = W(a,a,t) of a in V(a,p) such that ^'p): (TV,di) ̂  (V,^) is Lipschitz, where
the meaning ofd\ and d^ is the same as in Theorem 2.1(b);

(c) If a G Sa U V(a, p) H [(S \ OS) U G] and t e (0, T] is such that ^(cr) G (S \ 9S) U G,
then there exists an open neighbourhood W = W(a, a, t) of a in V(a, p ) such that the
map Q^ :W —>V is smooth. If moreover both a and ^(cr) are not ends of gliding
segments of {^(a): s (E [-e,T + e]} for any e > 0, then W can be chosen in such a
way that the restriction ofG^^ to any smooth local cross-section at a in W is a contact
transformation.

Proof ofTheorem 2.1. -Fix for each p e Sa a neighbourhood V(a,p) and a family of maps
g(a,p) ̂  ̂  ̂  above lemma. For each a there exists a countable open cover of Sa consisting
of sets of the form V(a,pj(a)) (j = 1,2,...). Then the set I of pairs % = (aj) with a an
admissible string of the form (7) and j a positive integer is countable. For each i = (a,j) set
Vi = V(a,pj(a)\ Si = Sa H V, and Q^ = ̂ ^(a)) (0 ^ ̂  T). According to Lemma 3.4,
these objects have all the properties required in Theorem 2.1. D

The rest of this section is devoted to the proof of Lemma 3.4.
Before we go on let us briefly describe the idea of the construction of the maps C^'^.
Recall the gliding vector field H^ from Section 2. We will slightly change it to make a

Hamilton vector field in V. The function -j^- is well-defined and smooth near 9S. Fix an

arbitrary smooth extension / of -^p- to V and denote

P=P+f^

thus obtaining another smooth function on V. Notice that p = p o n 9S, so ^(O) D 9S =
^(0) H 9S. Moreover, Hy= Hp + fH^ = H^ on 9S.
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Denote by ̂  the flow of the Hamilton vector field H^ on V. Since the flows <?t and ̂  are
smooth on V, the families of maps {<?t}o^T and {^}o<^r are uniformly Lipschitz on any
subset V of V with U ' compact.

Idea of the construction of the maps ^Q;'P). For simplicity consider the case a =
((Ui,0;(Ui,0;l,0;g). Given p e 5a, we have 0 = so(p) < ti(p) < si(p) < tz(p) = T, and
£(p) has exactly one transversal reflection whose time a € (0,t\(p)). Take b and c very close
to t\(p) such that 0 < b < a < c < t\{p) and Ft(p) eS\9S for all ^ G [&, a) and t C (a, c]. Con-
sider arbitrary smooth local cross-sections B and C in 5 to Ft containing the points Fb(p) and
Fc(p\ respectively. Choosing appropriately small neighbourhoods U\ and W\ of Ft^p)(p) and
^(P)(P) in V, set Mi = {a € ?7i: H^-^(a) = 0} and A/i = {a e W,: ^-^(a) = 0};
these are then smooth local cross-sections to Ft at Fi^p)(p) and Fs^p)(p), respectively. On
a small neighbourhood V = V(a,p) of p in V "the flow" Gt = G^ is defined as fol-
lows: it carries a G V along the trajectory ^(cr) until it hits the hypersurface B; between
the hypersurfaces B and C "the flow" Gt coincides with Fi\ between C and M\, Gt acts
as ^i again, between M\ and A/i, Gt coincides with the flow ^ of H-\ and finally from
A/i "onwards" ^ coincides with ^. As one can see, the idea is quite simple — the ac-
tion of Qt between any two consecutive distinguished cross-sections (23, C, .Mi, M) coin-
cides with the action of one of the flows ^, ̂  and Ft (the first two being smooth Hamil-
ton flows in V). Notice that <^i = Ft near B and C, so there is no loss of smoothness
there. The places where we can (and actually do) loose smoothness are the transversal re-
flections and the cross-sections at ends of gliding segments (A^i and A/i in our example).
One can easily observe that, if V is chosen sufficiently small, then GtW = Ft(o~) whenever
a c Sa n v.

Fix p e S and an admissible string a of the form (7) such that p e Sa' We are going
to define the neighbourhood V == V(a,p) and the family of maps Gt = G^^ required in
Lemma 3.4.

There are several possible cases for the pairs ko, lo and fcyn+i, ̂ +1 described in (iv) and (v) in
Definition 3.2. We will consider in details one of these; the others can be dealt with in the same
way with minor modifications at the ends of the trajectory £(?)', see the end of this section for
some details.

We will assume that

(9) ko=-l, ;m+i^2.

Let tz = ti(p), Si = Si(p) be the corresponding numbers from (8). The assumption (9)
implies that (cf. (iv) and (v) in Definition 3.2) 0 = to(p) = so(p), p ^ 9 S and FT(?) belongs to a
gliding segment. Thus, {Ft(p)\ tm+i ^ t ̂  T] is a gliding segment on 9S if tyn+i < s^+i = T,
and [Ft(pY r^^T+£}isa gliding segment on 9S for some e > 0 if tm+i = 5yn+i = T.

For every i = 1,2,..., m + 1, p G Sa gives that Fi, (p) G G^ \Gki^\ thus H^ ̂ (Fi, (p)) ̂  0.
From Definition 3.2 it also follows that Ft(p) G S \ 9S for t < ti sufficiently close to tz.
This is only possible if H^^Ft^p)) < 0 (cf. Section 24.3 in [4]). In the same way one gets
H^(F^p))>0.

Fix small open neighbourhoods Uz of F^ (p) (1 < i ̂  m + 1) and Wz of Fs, (p) (1 < i ̂  m) in
V such that H^(p(a) < 0 for a e Uz (1 ̂  i ̂  m + 1) and H^^a) > 0 for o- G W, (1 ̂  i ̂  m)
and ̂ ^(a) < 0 for a G Wm+i. Define

Mi = {p e [/,: H^^p) = o}, X = {p e w,: H^-^(p) = 0}
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for 1 ̂  i ̂  m + 1 and 1 ̂  i ̂  m, respectively. Since {p, H^-1^}^^?)) = H^(^(p)) + 0,
shrinking the neighbourhood Uz if necessary, we have that Mi is a smooth (In - 1)-dimensional
submanifold of V containing fti(po) and transversal to the flow ̂  at this point. Similarly, A/^
is a smooth (2n - 1)-dimensional submanifold of V containing Fs (po) and transversal to Ft at
^.(Po).

It follows from the definition of the numbers tz, Sz that the part {^(p): Si ^ ̂  t,+i} of the
trajectory of p does not contain gliding segments to 9S and has exactly ̂  transversal reflections
at 9S. However it may have some other common points with 9S (cf. Remark 4 earlier in this
section). Our plan is to isolate the times of transversal reflections in small open intervals; then
on the rest of [Sz, ̂ +i], which we denote by J,(p), the trajectory of p will be an integral curve of
Hp in S and therefore of ̂  in V. The latter is smooth and we can use it to define the orbit of Gt
over Ii(p) for any point a- G V sufficiently close to p.

Let i = 0,1,.... m be such that qi > 0 and let a^ < • • • < a^ be the times of the transversal
reflections of {^(p): Si^t^t^i}. For each j = 1,. . . , q,, fix arbitrary numbers b^ and c^
close to a^\ such that

^ < b^ < a^ < c^ < b^ < ̂  < ̂  < . . . < b^ < a^ < c^ < s^

and ̂ t(p) € S \ 9S for te [ '̂), a^) U (aff\ c^], j = 1,2,. . . , q,.
Next, choose arbitrary smooth local (2n - 1)-dimensional submanifolds B^ and C^ of

S so that B^ (respectively C^) contains ^o)(p) (respectively ^o)(p)) and is transversal
to T^p at ^o)(p) (respectively at ^(j)(p)). We take these submanifolds in such a way that

B^ n 9S = Cy H 9S = 0. Using the continuity of the flows J^, <^ and ^, and a simple
(backward) induction, we may assume that these local cross-sections are such that:

(C) the shift along the flow <^ maps C^-° to Mi (1 ̂  i ̂  m with q, > 0);
(M) the shift along the flow ̂  maps M.z to A/^ (1 ̂  i ̂  m);
(N) the shift along the flow ̂  maps A/^ to B^ if q, > 0 and to A^,+i if g, = 0 (1 ̂  i ̂  m);
(B) the shift along the flow ̂  maps B0^ to C^ (0 ̂  % ^ m with 9, > 0, 1 ̂  j ̂  q,).
Finally, using again the continuity of F^ choose an open neighbourhood V = V(a, p) of p in

S (hence in V) such that the shift along the flow <^ maps V into B^ if QQ > 0. If qo = 0, we
choose V so small that ^(a)(cr) <E A^i for all a e V.

DEFINITION 3.5.-Given a € V, consider the curve [Qt(o-)\ 0 ̂  t ^ T] in V with the
following properties:

(i) There exist numbers ti(a) (1 ̂  i ̂  m + 1) an^ ̂ (a) (1 ̂  i ̂  m) m^

0 < ti(a) < 5i(a) < • • • < tm((r) < Sm(cr) <•-< t^^(a)

such that Gti(a)(cr)e Mi for i= l , . . . ,m,m+ 1, andGsi(a)(cr) eATifor i= l , . . . ,m.
(ii) For every i = 0,1,..., m with qi > 0 anJ 6?V6?ry j = 1,. . . , qi there exist numbers a^\(j\

b^\o-) and 0^(0) such that

s,(a) < b^\a) < a^\a) < c^(a) < • . • < b^\a) < a^\a) < c^\a) < t^(a),

^)(.)(^) ^ ̂ \ ̂ )(.)(a) ^ ̂  ̂  ̂ )(.)(a) ^ Q^
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(iii) [Gt(^)'- t € I] is a trajectory of:
• ^>i for any interval I contained in

I,(a) = [^(a),^i(a)] \ Q (b^\c^\a)}
j=i

for some i = 0,1,..., m;
• ^tforI=[ti(a),Si(a)], i== l , . . . ,m,m+ 1;
• ^ ̂ r I = [&°V), a°V)) or I = (a0'^), c^\(j)} for any i = 0,1,..., m with q, > 0

andj=l,...,qi.
Clearly the definition of Qt can be carried out step by step — first on the interval [0, b^\a)]

(assuming 90 > 0), then on [b^\a\c^\a)], [c^\a\b^\(r)], etc. The numbers b^^a), a^(a),
c^\a), ^i(a), 5i(a), etc., are also defined step by step following the inductive construction.
From this procedure, which is effectively described by Definition 3.5, one can see that if the
neighbourhood V = V(a, p) of p in V is taken sufficiently small, then the curve {Qt(cr): 0< t <
T} is well-defined for all a € V. Moreover, we can choose V in such a way, that

d(^o)^(a),G)^^-, aeV.

for all i = 0,1,.... m with qi > 0 and j = 1,..., qz. Notice that in (i) it may happen that
t^+i(a) > r. For such a in the corresponding parts in (iii) the last interval involved will be
[5^(0), T] if qm = 0 and [c^(a), T] if Qm > 0.

In what follows we will use the notation I^\a) = (b^\(T),c^\(j)). Clearly, it makes sense
only when qi > 0.

Proof of Lemma 3.4. -We will show that V = V(a,p) and the maps Qt = G^^ have the
properties listed in Lemma 3.4. We are still considering the case (9). As promised earlier, at the
end of the proof we will say how to deal with the other possible cases.

Step 1. We will show that the real-valued functions ti (a), ^(a), a^Or), ^(a), c^^cr)
(z < m) and the corresponding points Qi^ (^)» Gsi(a)(o'\ Ga^^a)^9 ^V^)5 ^c^a/^
depend smoothly on a e V. If qo = 0, then ti(a) is just the (first) time when the trajectory
{^tW'' 0 ̂  t ^ T} hits the cross-section M\. Since ̂  is a smooth (Hamilton) flow in V, it
follows that both ti(cr) and Gti^W depend smoothly on a e V. If go > 0, the first number we
have to define is b^\a). This is the time when {^(cr): 0 ̂  t< T) hits the cross-section B^\ so
for the same reason as above, b^\a) and ^(i)^^(a) depend smoothly on a. From B^ to9S our
trajectory follows Ft which in S \ 9S is a smooth Hamilton flow (= ̂  in S \ 9S) transversal to
9S at G ^(a^)' Hence a^\o-) — b^\a) and therefore a^\a) depend smoothly on a. This also
implies that G^(^°') ls smooth. The corresponding statement for c^\a) follows similarly.

Next, suppose we have shown that ti(cr) and Gt^a)W ^ M\ depend smoothly on a e V.
From the cross-section M.\ to the cross-section A/L Gt acts as the smooth Hamilton flow ̂  in
V. Thus, s\(a) - ti(a) (and therefore 5i(a)) and Gsi(a)W depend smoothly on a. Proceeding
in this way inductively, one completes Step 1. By the same procedure it follows that ^m+i(^) is
a smooth function of a € V(a, p). However, as mentioned earlier if ^m+i(p) = T, then we may
have tm-\-i(cr) > T for some a G V(a, p) arbitrarily close to p.

Step 2. We are going to show that Gt = Fi on Sa H V\ this will prove (a) of Lemma 3.4. Let
a C Sa H V. It follows from the choice of the neighbourhood V and the definition of the numbers
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ti(a) and ^(cr), that ^,(a)(cr) e A^, ^,(a)(cr) e A/^. Moreover, the definition of Qt gives that
on each interval contained in Io(a), Qt acts as the flow ^i. However, a- e Sa implies that ̂ (a)
has no transversal reflections or gliding segments on Io(a)', so on any time interval contained
in Io(a) the action of the flow T is the same as that of ^. On the intervals I^\o-) containing
the times of transversal reflections, Qt acts as Fi by definition. Therefore Qt(o-) = ̂ (a) for all
^e[(Ui(a)].

Next, a e Sa implies that {^(a): t € [^i(a),5i(a)]} is an integral curve of the vector field
H^ contained in G C OS. Since H^= H^ on 9S, it follows that {^(cr): ^ e [^i(a), 5i(a)]} is an
integral curve of the vector field H-, too. This agrees with the definition of Qt, so ̂ (a) = Qt(a)
for all t C [(Ui(cr)]. This and the definition of Qi yield ^(cr) = ^(cr) for t e [0,52(0)], etc.
Applying the above procedure inductively, we get ̂ (o) = Gt(cr) for all t € [0, T].

Step 3. Next, we check condition (c) of Lemma 3.4. Let a e Sa H V U [(5 \ 95) U G]
and t c (0,T] be such that ^(cr) ^ (S \ 9S) U G, and let M be an arbitrary smooth cross-
section to the flow Ff with a e M C V. First, consider the case 0 < t < t\(a). If 90 = 0, then
Io(a) = [(Ui(cr)], and so Qs(o-) = ̂ s(cr) for all s C [0,^i(a)]. Moreover for a' in a small open
neighbourhood TV of a in V we have Qs{cr') = ̂ s(cr') for all s e [0,^]. Since ^s is a smooth
Hamilton flow in V, it follows that Qi: IV -^ V is smooth and ̂  : .M n W -^ Gt(M H W) is a
contact transformation. Let qo ^ 1. Then [Fs(cr)\ 0 ^ 5 ^ ^i(cr)} has transversal reflections for
s= a^ (j = 1,..., qo) and possibly some other common points with 9S. For s G [0, b^\a)] we
have Qs(o-) = ̂ s(cr), so for t ̂  b^\a), the map ̂  : V -^ V is smooth and Qi'.M-^ Qi{M) is a
contact transformation. Also notice that

^^-^w^)^
depends smoothly on a ' e V and defines a contact transformation from M to B^\

Let ̂ (a) < ̂  (^(a); then the definition of Q implies

Gi^^^t-^-^^)

on a small neighbourhood W of cr in V. The only 5 € [^(cr'), c^a')] with ̂ (a7) = Qs(cr') e
95 is 5 = a^^cr'), the time of the corresponding transversal reflection. Assuming t -^ a^\a),
we can take the neighbourhood W so small that Gt(W) H 9S = 0; then Qi is smooth on W and
Qt'. M. H W —> Qt(M H TV) is a contact transformation. Moreover,

CoV')^ - ̂ (aQ-^VQ 0 ̂ (a^)Q.

is smooth on the whole V and defines a contact transformation between M and C^\ Continuing
in this way by induction, one checks that condition (ii) in Lemma 3.4 holds for t < ti(a). Apart
from that, we get that the map V 3 cr' h-> Qt^'^cr') <E M\ (which is smooth by Step 1) defines a
contact transformation between M. and .Mi.

Next, consider the case ^i(cr) < t < Si(a). On this time interval Qi acts as the smooth Hamilton
flow ̂ , so condition (ii) is again trivially satisfied. More precisely, we have ^(cr') = ̂ -t^a') °
^tiOT7)^) on a small neighbourhood W of a in V. Moreover, V 3 af ̂  Qs^cr')^') € A/i is
smooth and its restriction to M defines a contact transformation.

Proceeding in this way we show that for every t which (in the case under consideration) is
different from ti(a) (i = 1,.. . , m + 1), Si(a) (i = 1,..., m) and a^\(j) (% = 0,1,..., m with
qi > 0 and j = 1,..., qi) there exists an open neighbourhood W of a in V such that Qt'.W —>V
is smooth and Qt: M D W -^ Qi(M H W) is a contact transformation.
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Step 4. Let us now prove (b) of Lemma 3.4. Let a C Sa H V and t C (0, T]. If t is different
from all ^(cr), Si(a) and a0^), then it follows from the previous step that Q^ W —^ V is smooth
for some neighbourhood TV of a in V, thus (possibly shrinking W so that W is contained in the
domain of smoothness of Gt), Gt'' (W, do) —^ (V, do) is Lipschitz.

Next, assume that t = a^\(7) for some % = 0,1,..., m with qi > 0 and some j = 1,..., qi.
Then by Definition 3.5, Gt^) = ̂ -b^^) ° G^^a'^ for a11 <7/ e y- since

V3a^Q^^')E^

is smooth, it is Lipschitz with respect to the metric do on every neighbourhood W of a in V
with W compact and contained in V. On the other hand, 23°) D 9S = 0 shows that d and do are
equivalent on 23°). Thus, taking W sufficiently small, Lemma 3.1 gives that Gt '• (W, do) —> (V, d)
is Lipschitz.

Finally, assume that t = ti(a) for some z = l , . . . , m , m + l (the case t = Si(a) is almost
identical). Take some r < t close to t so that GrW e S \9S (such r exists according to
Proposition 24.3.8 in [4]). Then by Step 3, Gr : W -^ V is smooth for some small neighbourhood
W of a in V. For a ' G IV we have ̂ (a') = ̂ -r o ̂ (a') if t^a') ̂  ^ and Gt(^) = ̂ -t,(a') o
^(a^-r ° Gr((T') if^cr') < ^. From this it follows easily that Gt: (W, do) -^ (V, do) is Lipschitz.

With this the proof of Lemma 3.4 in the case ko = —1 and l'm^\ ̂  2 is complete.

Step 5. Let us now explain how to deal with the other possible cases for ko and lm+\ •

Case 2. ko = 0, ^n+i ^ 2. Given p e So, we have that p C 9S \ G. Take an arbitrary Co > 0
close to 0 such that {^(p): 0<t^co]CS\OS and a smooth local cross-section Co at ^co(p)-
We take Co such that Co H 9S = 0. Then do is equivalent to d on Co. Taking a sufficiently small
neighbourhood V of p in V we now define Gt slightly changing Definition 3.5 in the following
way: 0t(a) = Tt(o} for t ̂  co(a), where ^co(a)(^) ^ Co. From the cross-section Co "onwards"
we define the action of Gt as in Definition 3.5. One proves (a) of Lemma 3.4 as in Step 1. To
prove (b), consider arbitrary a e V and t e (0, T]. Using Lemma 3.1 as in Step 4, one shows that
if ̂  co(cr), then Gt: (W, d) -^ (V, d) is Lipschitz. Let t > co(a). Then for t^a') = t - ̂ (crQ we
have Qt(cr') = G t ' ^ ' ) ° Gco(a^)' For the map a ' ̂  Gt^a') we can apply the arguments in the
previous steps. Since d is equivalent to do on Co, condition (b) of Lemma 3.4. follows. Condition
(c) does not apply to the case under consideration.

Case 3. ko ^ 2, lm^\ ̂  2. Then p e Sa implies that p belongs to a gliding segment. Taking a
small open neighbourhood V of p in V, set Mo = {?' e V: H^~^(p(p1) =0}. Change Definition
3.5. in the following way: for a € V there exists so(o~) (which may be negative if so(p) = 0) such
that ^o(<r)(^) ^ A^o; if so(cr) > 0, then ^(a) = ^(cr) for 0 ̂  t ^ 5o(cr)}, while for t > so(cr)
the orbit GtW is defined as in Definition 3.5; if 5o(a) ^ 0, then the orbit GtW is defined as
in Definition 3.5 One proves (a) and (b) as in the first case with minor modifications. The only
difference comes when one deals with condition (b) of Lemma 3.4. Now W has to be considered
with the metric do. The rest is the same.

Case 4. ko = -1, ^m+i = -1. This is in fact the easiest case to deal with. Now p C Sa
implies that both p and ^T(p) are in S \ 9S, and we can take V = V(a, p) in such a way that
V H OS = 0 and J'rO7) n 9S = 0. The rest is the same.

Case 5. ko = —1, l-m-^-i = 0- Similarly to Case 2, take a smooth local cross-section ZSyn+i at
some point J^brrz+^p^P^ where bm^-\(p) is less than but very close to r. We take ffyn+i such that
Bm-\-i H 9S = 0; then do is equivalent to d on Bm+\' We change Definition 3.5 so that for any
o~ € V, Gt acts as Ft on the interval [5^+i(cr),r], where ft^+i(cr)(^) ^ Bm+i- Given a C V and
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t € (0, &m+i(^")L the corresponding statements in Lemma 3.4 follow immediately from the first
case considered. For t > 6m+i(^) we have Gt(cr') = ft-bm+i^') ° ̂ m+i^7)^') o11 a sufficiently
small neighbourhood W of a in V. Moreover, as in the first case one shows that Gbm+i^')^)
is smooth on V (provided the latter is small enough). Combining this with Lemma 3.1, one
derives that Gt'- (W, do) —> (S, d) is Lipschitz for a sufficiently small neighbourhood W of a. If
a € So Ft V and t > bm^cr) is such that ̂ (a) = Gt(o') C (6' \ 55') U G, then as in the first case
we derive that Gt is smooth on a small neighbourhood W.

Cases 6, 7, 8, 9. The remaining cases can be easily dealt with combining arguments from
the previous cases considered. We leave the details to the reader. D

4. Proof of Theorem 2.2

Let Co be an isotropic submanifold of E \ 9S = p~l(0) \ 9S of dimension n — 1 such that
Hp(p) is not tangent to Co at each p e Co and let T > 0. It is sufficient to consider the case when
Co is contained in a small open neighbourhood of some of its points. That is why, we may assume
that there exists a (In — l)-dimensional submanifold So of S which is transversal to Hp and such
that SQ = So Flp'^O) is a (2n — 2)-dimensional symplectic submanifold of S containing Co. The
main point is to prove the following local version of Theorem 2.2.

LEMMA 4.1.- For every admissible string a of the form (7) and every p C TT D Co H Sa there
exists an open neighbourhood W = W(a, p) of p in S such that dimn^T^T H Co H Sa D W)) ̂
n — 2. Moreover, ifFr^p) ̂  9S, then W can be chosen in such a way that FT^TT 1^1 Co H Sa D W)
is contained in an (n — 2)-dimensional isotropic submanifold of S.

Let us first show that Theorem 2.2 is a consequence of Lemma 4.1.

Proof of Theorem 2.2. - Assume that for each string a of the form (7) and each p G TT H
Co Ft Sa there exists a neighbourhood W(a, p) as stated in Lemma 4.1. Since TT Ft /^o n 5^ is a
separable metric space, there exists a sequence pi (a),..., pyn(a),... of elements of TT H £o n 5o;
such that 7r n Co H 6^ C U^=iw^ PmW). Thus, we have

00

FT(TTC\CO^SO)^ (J ^r(Trn£on^n^(a,^(a))),
m=l

which implies dim^ ̂ rCTr n Co H So) ^ ^ - 2. Since 7r H Co C Uc/7^ n ^o H So:), where
a runs over the countable set of all configuartions of the form (7), it now follows that
dim^CTr H Co) ̂  n - 2.

In the case ^(Co) C S\ 9S, we may assume (according to Lemma 4.1) that each FT^T ^
Co n Sa H ^((^/^(a))) is contained in an (n — 2)-dimensional isotropic submanifold of 5'.
Then FT^TT ^ Co D Sa) is contained in a countable union of (n — 2)-dimensional isotropic
submanifolds of S, and so FT^TT l^l ^o) has the same property. D

For the proof of Lemma 4.1 we need the following fact.

PROPOSITION 4.2. - Let Af be a symplectic manifold -without boundary with dimAf = 2k,
k ^ 2, and let £ be a symplectic submanifold ofM with dim<? = 2k — 2. For every Lagrangian
submanifold C ofJ\f and every po C C D £ there exist an open neighbourhood!^ of po in At and
a Lagrangian submanifold C' of £ such that po G C H £ D U C C'.
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Proof. - Since the statement is of a local nature, we may assume At =Rk x M^ with the
standard symplectic form uj and po = 0. Given C with 0 C C D <?, denote £' = Tb<? and L = 7o£.
Then E is a symplectic linear subspace of N = ToJ\f = R^ x M^ with dimE = 2k - 2, while
L is a Lagrangian subspace of N. ¥or A C N set A1- = [v e N: u(v,u) = 0 VIA C A). Now
the assumptions on L and E imply L = L1- and E H E^ = {0}. It then follows that £J-1- is not
contained in L. Indeed, if E1- C L, then L = L^ C E and therefore E1- C L C E which is a
contradiction since dimi^ = 2 and EnE± = [0]. Hence the linear subspace E1- D L is either
zero- or one-dimensional.

Case 1. dim^E^ H L) = 0. Then N = E -h L, so £ and C are transversal at 0. Hence there
exists a neighbourhood U of 0 in ^V such that C" = f H £ H M is smooth submanifold of £ with
codimension 2 in £, i.e. dim/Y' =k-2. Being a submanifold of £, £" is isotropic, so (possibly
shrinking U) it is contained in a Lagrangian submanifold C' oi£.

Case 2. dim^^ D L) == 1. Locally near 0, we may assume that £ = /^(O) H ^(O),
where / and ^ are smooth functions such that df(p) and dg(p) are linearly independent and
{/ , g ] ( p ) = 1 for each p in an open ball U with centre 0 in Af. Then E1- = span {Xj(0), X^(0)}
and therefore there exist a,b C M, (a, 6) ̂  (0,0), with aX/(0) + &X^(0) € L. We may assume
that Xg(0) G L; otherwise one can replace g by an appropriate linear combination of / and g .
With this assumption we have Xg(0) C E1- H L.

Since (£^ + L)-1 = E-1 H L is one-dimensional, dim(£J + L) == 2/c - 1 and therefore dim(E H
I/) = k - 1. Fix an arbitrary basis v^... ,Vk in E H L and set ^i = Xg(Q). Then ^i e ̂ J- H L,
and EnE^ = {0} implies that ^i, z;2, • • • ̂ fc is a basis in L.

Set ^i = Xy(0). Then u^ C ̂ J- gives uj(u\, Vi) = 0 for all i = 2, . . . . k. Moreover uj(u\, v\) =
cj(Xf(0),Xg(0)) = {/,^}(0)= 1. There exists uz,...,Uk^E such that ^2,.. .,^,^2,. • .^fc
form a symplectic basis in E. From ^1,^1 € E-1, we get u:{u\,Ui) = uj{v\,Ui) = 0 for all i =
2,. . . , k which shows that u\, uz,... ,Uk,v\ ,V2,. • • ,Vk is a symplectic basis in TV. Then shrinking
^ again if necessary, there exist symplectic coordinates x\ = g, x^..., x^\ = /, ̂ 2, • • • , £,k such
that ^^ = X^(0) = -— ^ = X^(Q) = -^ for all i = 1,..., fc. In these coordinates we have
£ U U = [ p = (x, 0 € ̂ : rri = $1 = 0}. Moreover,

{ f^\ r^ '\

L=span{2; i , . . . ,Vfc}=span Q—---Q— ̂ ^ x {0}-

Therefore, taking U small enough, the Lagrangian submanifold C^U can be written as a graph
of a smooth map: C^U = [(x, h(x))\ x 6 W], where IV is a neighbourhood of 0 in R^ and
/^(.r) = (fai (x),.... /ifc(^)) is smooth in W. Then

(10) 9b±(x)=9'-h-(x\ zj=l,. . . ,^ew
(±Cj (7^1

This follows, for example, from the fact that C H U is the graph of the 1-form f3(x) =
S?=i hi(x)dxi. It is known (cf. for example [1]) that in such a case £ H U is Lagrangian if
and only if (3 is closed, i.e. df3 = 0 on U. Since

\-^ „ , \-^\•l•^Qh^ , , v-^ f 9hi 9hj \d0=^dh^dxi=^^^dx^dxi=^l-^--^\dxj/\dx^
t=l i=l j'=l •7 j<i v 3 1 /

it is clear that df3 •= 0 on U is equivalent to (10).
Locally near 0 we have

£n£={(0,^;0,/l2(0,^),...,^(0,a l /)): /ii(0,;z/)=0},

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



380 L. STOYANOV

where a;' = (a:2,..., xj,) € M^-1. Consider the local submanifold

£/={(0,xf^h2(0,xf),...,hk(0,xf)):xfeRk-^}.

It follows from the above argument and (10) that C' is a Lagrangian submanifold of R^"1 x
R^-i = ({0} x R^-1) x ({0} x M^-1) c At. Since £ n £ C C' locally near 0, this proves the
assertion. D

Proof of Lemma 4.1. - Let a be a string of the form (7) and let p e TT H CQ H 6a. We have
to find a neighbourhood W = W(a, p) of p in 5 with dim^(^r(7r H £o n IV H 5a)) ̂  n - 2,
and in the case FT^P) ̂  05 such that FT(TT ^CoHWnSa) is contained in a smooth (n - 2)-
dimensional isotropic submanifold of S. Using Lemma 3.4, there exists an open neighbourhood
V = V(a, p ) of p in V and a family of maps Q^ : V(a, p) -^_V, 0 ̂  t ̂  T, with the properties
listed in Lemma 3.4. Since p e S \ 9S, we can take V c V C S \ 9S. Moreover we have
A;o=-l.

From p e TT we get Ft(p) e Gg for some ^ e [0, T]. Therefore either the number m = m(a)
in (7) is positive or m = 0 and FT^P) belongs to a gliding segment, so we must have t^p) <
5i (p) = T. (It is impossible to have t^p) = T, since Ft(p) e Gg for some t ̂  T.) Here ̂  = tz(p)
and 5, = 5,(p) are the numbers given by (8). In both cases there exists c with ti < c < s^
and Fc(p) € Gg. Then we can take an open neighbourhood W of p in V so small that for all
a € W n 6a we have ^i(cr) < c < 5i(a) and Fc(cr) e G^ (the latter is possible, since Gg is an
open subset of G). Using Lemma 3.4 (c) with a = p and t = c, we can take the neighbourhood
TV of p in such a way that Qc: W -^ V is smooth and Qc: So H IV -^ Gc(So H TV) is a contact
transformation.

For p ' = Qc(p) = Fc(p) there exists a symplectic submanifold A/7 of 5 of dimension In - 2
such that A/7 C p'^O) and £ = A/7 n G is a symplectic submanifold of S of dimension 2n - 4.
Indeed, take local symplectic coordinates x^ in a neighbourhood 0 of ^/ in V as in condition
A2 in Section 2. Then G = {(^,0: a-i = $1 = 0}. Since [ x ^ p ] = {^,p} = 0 on G, the Darboux
lemma implies that there exists a smooth function ^ in 0 (possibly shrinking 0) such that
{^1,9} = {^i,g} =0, dg 7^0 and {p,^} = 1. Consequently

X' = {Or, 0 C 0: p(.r, 0 = g(x, Q = 0}

and £ = J\T' n G are symplectic submanifolds of V of dimension 2n - 2 and In - 4, respectively.
We will also need the submanifold Af = g~\0). Clearly, this is a (In - 1)-dimensional
submanifold of V containing the point Fc(p) and transversal to Hp(p). Notice that

M' =A/'nj9-l(0)=.Vn^\

Assuming W is small enough, for each a- e W the curve {^(^): ^ <E [0,T]} intersects
transversallyA/' at some point 7^ (a). As in the proof of Lemma 3.4 one shows that the resulting
map P^ : W -^ U is smooth and its restriction P^: W H So -^ P^(W H So) is a contact
transformation. Next, define the map P^'.Af -^ V by P^(P^((T)) = ̂ r(o-). Using again an
argument from the proof of Lemma 3.4, it follows that 7^ : (A/", do) -^ (V, d) is a Lipschitz map
(cf. also the argument in the proof of Theorem 1.1 in Section 2). Finally, define V : W n 5o -^ Af
like P^ using the flow Ft instead of ̂ , and set P'^P^a)) = FT^P) for a e IV.

It follows from Lemma 3.4(a) that Qt = Ft on V H 5c, for all ^ c [0, T]. Consequently P' = P/

onWnSa and ̂ / = V" on P^TV n ̂ ). On the other hand, it follows from the choice" of W
and the definition of P ' that P\W n S^) c G. Since p-^O) is invariant under the flow Ft and
A/'7 =A/" np-^O), we have P\SQ H W n 5'c,) C A/7 H G = £.
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Recall from above that P^: W H So —^ V^W D So) is a contact transformation. Hence
C = V'^W U Co) is a Lagrangian submanifold of V'^W H 5'o), and

P'CCo n w n Sa) = Pa^o n w n 5J c £ n <?.

Now Proposition 4.2 implies that if the neighbourhood 0 of // = Fc{p) is sufficiently small,
then 0 Ft £ H £ is contained in a Lagrangian submanifold £' of <?. Without loss of generality
we may assume that P^(W) C 0\ then 7^(£o UWnSa)C C' . Since dim/:' == n - 2, we have
dimjf(/y) = n — 2. As we observed above P^: (A/", do) —^ (V, d) is a Lipschitz map. Moreover
(as we mentioned in Section 2), for Borel subsets of E = p~l(0), dim^ calculated with respect
to do or d is the same. Hence dimj^T^/Y)) ̂  n — 2. This and

^r(£o n w n Sa) = P^ o ̂ (£o n w n 5,) c W)

yield dim^(^r(£o H IV H 5^)) ̂  n - 2.
Next, assume that ^rCp) ̂  S\9S. Shrinking IV if necessary, we may assume that

rT(W)cS\QS.

In this case, as for P^, one shows that P^ is smooth and its restriction P^ :Af —»P^(J\f) is
contact. Consequently, Sr = P'a(M1) is a symplectic submanifold of 5' of dimension In — 2 and
7^ : A/'' —^ 5'T is a local symplectic map. Clearly CJ (being a Lagrangian submanifold of £) is
an (n — 2)-dimensional isotropic submanifold of At, so Z == P^C') is an (n — 2)-dimensional
isotropic submanifold of ST. Moreover, it follows from above that FT^Q r\W Fl Sa) C I . This
proves the lemma. D
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