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RIGIDITY OF FURSTENBERG ENTROPY FOR
SEMISIMPLE LIE GROUP ACTIONS

BY AMOS NEVO 1 AND ROBERT J. ZIMMER 2

ABSTRACT. - We consider the action of a semi-simple Lie group G on a compact manifold (and more
generally a Borel space) X, with a measure v stationary under a probability measure p, on G. We first
establish some properties of the fundamental invariant associated with a (G, /^)-space (X, ̂ ), namely the
Furstenberg entropy [3 ], given by

h^X^)= { { -log^^^Wd^d^g).
1=//-

G X

We then prove that when (X,v) is a P-mixing (G^/^-space [14], and R-rank (G) = r ^ 2, the value of
the Furstenberg entropy must coincide with one of the 2^ values hp,(G/Q, ̂ o), where Q C G is a parabolic
subgroup. We also construct counterexamples to show that this conclusion fails for both non-P-mixing
actions and actions of groups with R-rank 1. We also characterize amenable actions with a stationary
measure as the actions having the maximal possible value of the Furstenberg entropy. We give applications
to geometric rigidity for actions with low Furstenberg entropy, to orbit equivalence and to the cohomology
of actions with stationary measure. © 2000 Editions scientifiques et medicales Elsevier SAS

AMS classification: 22D40; 28D15; 47A35; 57S20; 58E40; 60J50
Keywords: Semi-simple Lie groups; Furstenberg boundary; Stationary measure; Entropy;

Radon-Nikodym derivative cocycle; Parabolic subgroups; Mixing ergodic actions

RESUME. - Nous considerons 1'action d'un groupe de Lie semi-simple G sur une variete compacte, et
plus generalement sur un espace borelien X muni d'une mesure v qu'on Suppose ^-stationnaire par rapport
a unemesure de probabilite p, sur G.

Nous etablissons tout d'abord certaines proprietes de 1'invariant fondamental associe a un (G', ̂ )-espace
(X, v}, Fentropie de Furstenberg [3], donnee par

h^(X^)= [ [ -\ogd9^(x)d^(x)d^g).
G X

Nous prouvons alors que, lorsque (X,v) est un (G, /A)-espace P melangeant, [14] dont Ie R-rang est
r ^ 2, la valeur de Pentropie de Furstenberg doit comcider avec une des 2r valeurs h^(G/Q,vo), ou Q
est un sous-groupe parabolique de G. Nous construisons aussi des contre-exemples qui montrent que cette
conclusion est fausse dans Ie cas d'actions non P-melangeantes et d* actions de groupes dont Ie R-rang
vaut 1. Nous caracterisons aussi les actions moyennables avec mesure stationnaire en prouvant que ce sont
les actions ayant une entropie de Furstenberg maximale.

1 A. Nevo was supported by the fund for promotion of sponsored research, Technion.
2 R.J. Zimmer was supported, in part, by NSF.
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322 A. NEVO AND RJ. ZIMMER

Nous donnons des applications a la rigidite geometrique pour des actions a faible entropie de Furstenberg,
a Inequivalence d'orbites et a la cohomologie des actions a mesure stationnaire. © 2000 Editions
scientifiques et medicales Elsevier SAS

Introduction

If a locally compact second countable (Icsc) group G acts on a compact metrizable space X,
there is always a natural family of G-quasi-invariant measures on X, namely those equivalent
to a probability measure which is stationary under an admissible probability measure on G.
When G is a semisimple Lie group, the study of stationary probability measures on compact
homogeneous spaces was developed by H. Furstenberg in [2-5] in connection with his study of
harmonic functions and random walks on these groups. This study reveals a close connection
between stationary measures and the parabolic subgroups of G. It is natural in light of these
results to ask whether every action of G with a stationary measure is measurably equivalent to
an action induced from a parabolic subgroup.

This question was answered in the affirmative in [14] for a natural class of actions with
stationary measure (namely P-mixing actions — see Section 2 for the definition), when R-
rank(G) ̂  2. More precisely, the following was proved:

THEOREM A ([14]). - Let G be a connected semisimple Lie group with finite center and R-
rank(G) ̂  2. Let (X,i/) be a (G,^)-space, namely v is a stationary measure with respect to
an admissible measure IJL on G. Suppose further that the action ofG on (X,v) is P-mixing.
Then there is a parabolic subgroup Q C G and an ergodic Q-space (V, A) with \ a Q-invariant
probability measure, such that the G-action on (X, v) is measurably isomorphic to the G-action
induced from the Q-action on (V, A). We have Q=G if and only if the stationary measure v is
G-invariant.

As shown in [14, Theorem B], the conclusion in Theorem A fails to hold for any group of
R-rank 1. Thus the result stated in Theorem A is truly a higher rank phenomenon.

In this paper we develop these ideas further, providing applications of Theorem A and
alternative ways of viewing the result. In particular, we consider the relationship to the
Furstenberg entropy, a numerical invariant of an action with stationary measure introduced by
Furstenberg in [3] (see also [4]).

The paper is organized as follows.
In Section 1, we develop some basic features of Furstenberg entropy and of the Radon-

Nikodym factor (introduced in [9] for countable groups). We also explain the connection between
stationarity of the measure v and J^-cohomolgy invariance of the entropy. In Section 2, we apply
Theorem A and deduce the following result on rigidity of Furstenberg entropy for actions of
higher rank groups.

THEOREM 2.7. - Let G be a connected semisimple Lie group with finite center and R-
rank(G) ̂  2. Suppose ^ is an admissible measure on G, (X, u) is a (G, ii)-space, and the
action is P-mixing. Then the Furstenberg entropy h^(X, v) takes on one of the finitely many
values h^,(G/Q, v^for some parabolic subgroup QcG (and the unique ^-stationary measure
VQ on G/Q). Furthermore, for some Q with h^(X, v) = h^G/Q, VQ\ X is induced from a finite
measure preserving action ofQ.

We remark that for volume preserving smooth ergodic actions on compact manifolds, there
is a different but somewhat analogous result for the possible values of the Kolmogorov-Sinai
entropy, which follows from superridgidity for cocycles. See [20] for details and discussion.
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RIGIDITY OF FURSTENBERG ENTROPY FOR SEMISIMPLE LIE GROUP ACTIONS 323

In Section 3, we provide examples showing that rigidity of Furstenberg entropy fails to hold
in general for R-rank 1 groups. More precisely, we prove:

THEOREM 3.1. - Let G = PSL(2, M) and fix an admissible measure on G. Then there exists an
infinite sequence of compact metric (G, i^-spaces (Xi, vi) (in fact smooth manifolds), where the
action is P-mixing, and the Furstenberg entropies h^(Xi, vi) are all distinct.

We remark that we do not determine precisely what these values are, nor the full set of possible
values for Furstenberg entropy of G-actions. In particular, it is unknown whether the set of values
contains an interval. We do note however (see Section 2) that the Furstenberg entropy is always
bounded above by h^(G/P, VQ\ where P is a minimal parabolic subgroup. Furthermore, if an
Icsc group G has property T of Kazhdan, then h^(X, u) ̂  a(fi) > 0, for some positive constant
a(fi) independent of (X, i/), unless v is G-invariant (see [13] for a proof).

The previous examples can be used to show that general non-P-mixing actions of higher-rank
groups exhibit the same phenomenon:

THEOREM 3.4. - Let G be a simple Lie group with ̂ .-rank(G) ̂  2 with a parabolic subgroup
QoCG that maps onto PSL(2, R). Then:

(a) The Furstenberg entropy for actions of G on smooth compact manifolds with ergodic
stationary measure takes on infinitely many values.

(b) There is a smooth compact manifold (X, v) which is a (G, ti)-space with ergodic stationary
measure of positive Furstenberg entropy, such that (X,v) does not have relatively G-
invariant measure over any G-space of the form G/Q, where Q is a proper parabolic
subgroup.

(c) The Radon-Nikodyn factor (X, v) of the space (X, v) of(b) is not a Furstenberg boundary
ofG.

In Section 4 we discuss amenable actions with stationary measure. The structure of amenable
actions with a quasi-invariant measure in general was studied in [18], where it was shown that
every amenable action of a semisimple Lie group is induced from an action of an amenable
algebraic subgroup. If the measure is not just quasi-invariant but equivalent to a stationary
measure, we establish the following sharper result. (We remark that this is independent of the
rank of G, and does not require the P-mixing assumption.)

THEOREM 4.1.- Let Gbea connected semisimple Lie group with finite center and no compact
factors. Suppose G acts ergodically on a space X with stationary measure v. Then the following
are equivalent'.

(i) The G-action is amenable.
(ii) The G-action is induced from a probability measure preserving action of a minimal

parabolic subgroup P.
(iii) h^X^)^h^G/P^).
(iv) h^X^)=h^(G/P^o).

We will also show in Section 4 that when h^{X,v) < /i^(G/P,^o) and the action is non-
amenable, there need not exist a non-amenable parabolic subgroup which preserves the measure
A, in contrast to the case of P-mixing actions of higher-rank groups.

THEOREM 4.2. - Let G = SL^(R) and IJL an admissible measure on G, with h^(G/P, VQ) < oo.
Then there exists a compact manifold (M, v) which is a (G, p)-space, with ergodic stationary
measure v satisfying h^(M, v) < h^(G/P, ]^o), but no non-amenable parabolic subgroup has an
invariant probability measure on M.
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324 A. NEVO AND RJ. ZIMMER

In Section 5 we will discuss some geometric applications of Theorem A. We note first that part
of the utility of Theorem A is the assertion of existence of a Q-invariant probability measure A on
X, for a certain parabolic subgroup Q c G. Actions with finite invariant measure of higher real
rank simple groups exhibit a number of rigidity properties both in terms of the topology of the
underlying space and the structure of the actions themselves (see [11,20], for example). These
derive in part from geometric consequences of the Borel density theorem and super-rigidity for
cocycles, both of which depend upon the existence of a finite invariant measure. (Note however
[7], where finite invariant measure is replaced by suitable recurrence conditions.) Theorem A
allows us to generalize these results, in a modified form, to actions without an invariant measure,
provided that the parabolic subgroup stabilizing the measure A has a simple higher-real-rank
subgroup contained in its Levi component. This condition, for a P-mixing action on (G, /z)-
spaces (X, y\ amounts to the assumption that the Furstenberg entropy is sufficiently low (the
case h^(X, v) = 0 is corresponds to Q = G, and v being G-invariant). Some applications of this
type are discussed in Section 5, where we will also deduce from Theorem A some results about
orbit equivalence and the real cohomology group of the action.

1. Stationary measures and Furstenberg entropy

1.1. The Radon-Nikodym cocycle

We will briefly recall some definitions and results regarding stationary measures, Purstenberg
entropy and Radon-Nikodym cocycles for locally compact groups. A further discussion of these
matters can be found in [ 13].

Let G denote a (Hausdorff) locally compact second countable (Icsc) group, and let (X, B) be
a compact metric space, B the Borel cr-algebra. Assume G has a (jointly) continuous action on
X, denoted (g, x) ̂  gx. There are natural associated actions on

C(X) ={f:X^C\f continuous}

and on

P(X) = [v: B -^ [0,1] [ v is a Borel probability measure}.

These are given by (gf)(x) = f(g~^x) and (gv)(A) = v(g~^A\ so that

(gv)(A)=v{g-^A} = y Xg-^AWdi^== ^A(gx)d^= (\A(x)d(gv)
x x x

andforany/eG(X):

(^)(/)= If(x)d(gu)= I f(gx)dv=u{g-^f}.

x x

Let P(G) = {/^ | fi is a Borel probability measure on G}. Fix fi e P(G) and consider the affine
map ̂ : P(X) -^ P(X) given by ^ * u(f) = f^ v(g-1 f) d^i(g). Define

P^X)=[v^P(X) ^*^=z.},

and note that for every ̂  e P(G), P^(X) ̂  0, by [3, Lemma 1.3].
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RIGIDITY OF FURSTENBERG ENTROPY FOR SEMISIMPLE LIE GROUP ACTIONS 325

DEFINITION 1.1.-
(i) y "will be called ^-stationary if ̂  * v = v.

(ii) ^ will be called admissible if some convolution power ̂ k is absolutely continuous with
respect to Haar measure me on G, and the support C of^ generates G as a semigroup'.
U^iC'"=G.

(iii) ft G P(G) is called of class Boo (see [2]) if it is admissible and some convolution power
has bounded density of compact support.

(iv) A bounded Borel function F on G will be called (right)-^-harmonic if for every g G G,
F(g)=^F(gh)d^h).

The following fact is well known (see, e.g., [14] for a proof):

LEMMA 1.2. - Let G be an Icsc group, X a Borel G-space. If^i G P(G) is admissible and
y G P^(X) is ^-stationary, then v is G-quasi-invariant, namely for all g C G, v and gv are
mutually absolutely continuous measures on X.

Now fix an admissible measure ^ on G, and let (X, B, v) denote a Borel measurable G-space
with ^-stationary v G Pp.(X). The pair (X, v) is called a (G, /^)-space. We will denote by C the
completion of the cr-algebra B with respect to v.

DEFINITION 1.3.- The function

dq^v
r^(g,x)=——(x)

dv

is called the Radon-Nikodym cocycle of (X,^). For each g G G, r^(g,') is defined up to
equivalence modulo y-null functions on X.

We note the following standard facts (see [5]):

LEMMA 1.4.-
(i) r^(g,x) satisfies the cocycle identity, i.e., for each g,h and for v-almost all

x € X: Tv(gh, x) = r^(g, hx) r^(h, x).
(ii) For v-almost all x G X, g i—> ry(g~v, x) is a right-fi-harmonic function on G.

Consider now the following quantity, which was introduced in [3] and [4], and will be refered
to here as the Furstenberg entropy of the (G, p) space (X, v):

h^(X,v)=- j logr^(g,x)di^(x)dp,(g).
G x

Here we assume that for /^-almost all g C G, the function logr^(g,x) is in L^X.i/), and the
function g \—> f^ — \ogr^(g, x) dy is in L^G, p). We note that if ^ is of class Boo, then in fact
log^(^ x) € L°°(X, v) C L^X, v) for every g e G, and also h^(X, v) is finite and bounded by
a fixed constant for any action. For more on these facts see [13].

We now note the following well known facts (see [3], Corollary to Lemma 8.9):

LEMMA 1.5.-
(1) 0 ̂  h(X, v) < oo.
(2) h(X, v) = 0 if and only ifv is invariant under G.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



326 A. NEVO AND RJ. ZIMMER

Proof. - By Jensen's inequality and the convexity of — log:

— l o g / / r^(g,x)dyd^= —logi =0 ̂  / —\ogry(g,x)dyd^=h(X,y).
G x G x

If h(X, v) = 0, then — logr^(p, x) = 0 for ^ x ^-almost all (g, x) by strict convexity of — log.
Hence

d-g-^(x)=l
dv

for ^-almost all x € X, for a set of/^-measure 1. It follows that g~1^ = v for /^-almost all g. Now
recall that X can be assumed to be compact metric and the G-action continuous (see [14, §1]).
Then the action of G on P(X) is continuous and it follows that the stability group of a measure
is closed. Consequently gv =- v for all g € C = supp(/^), hence for all

g^{^Cn=G. D
n>l

Furstenberg entropy is a remarkably powerful numerical invariant. Before exhibiting and
utilizing its properties, we note some preliminary facts on Radon-Nikodym cocycles that will
be used in the sequel.

LEMMA 1.6. - Let ( p : (X, 23, v) —» (X\ B\ v ' ) be a factor map between measurable spaces,
namely <^)(u) = v ' . LetE denote the conditional expectationoperatorE:L^(X,v) —^ L^^X'.v').
Then

(1) (See [4, Lemma 5.5].) For anyf>0 with log / € L\X, B, v\

-iogE(f)(xf) <i ^(-log/Xa:7) fory'-a.e. x ' e X\

with equality (u'-a.e.) if and only iff is measurable with respect to y~1(C'). Also, the
following inequality holds'.

/ - log Ef(xf) dy1 < - log f(x) du
x ' x

unless f is measurable with respect to C', in which case equality holds.
(2) Assume in addition that X, Xf are Bore I G-spaces, and v, v' are G-quasi-invariant. The

Radon-Nikodym cocycle r^'(g, x') = 9^ (x') equals E(ry(g, -))(x'), u'-a.e.

Proof. -
(1) When —log/ C L^(X,y), Jensen's inequality and the convexity of —log imply that

— \og(Ef)(x') ̂  E(—\ogf)(x') for ^'-almost all x ' e X ' . As is well known, equality
holds in Jensen's inequality above iff / is measurable with respect to ^^(C') (see [4,
Lemma 5.5]), and the first claim follows. The second claim follows from strict convexity
of — log, by integration over X.

(2) Let x ' = ̂ (x), and C = (p~^(C\\ C\ € C!. Since E is the conditional expectation on
-L^jr.z/Q.wehave:

I XcWf(x) dv= [ ̂  (x')E(f)(x') d^A IT'/ f\/'^.f\ ^7,/

X X'
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RIGIDITY OF FURSTENBERG ENTROPY FOR SEMISIMPLE LIE GROUP ACTIONS 327

and hence, using the G-equivariance of (p:

\^d.=f^d.=f^')E(^^/>xc(^)^=y^^^=yxc,(^)£;(^)(a•/)^/
X X X'

= I Xc^d^ = Ixc^x')^^)^'.
X' X'

Hence r^(g~\x') = E(ry(g~\ '))(x'\ ̂ -a.e. x ' C X ' . D

We now recall the following (see [14, §2])

DEFINITION 1.7. - Suppose ( p : (X, 77) —> (Y, v) is a factor map of G-spaces with G-quasi-
invariant measure, and consider the disintegration of the measure 77 with respect to v. Write
rj = f rjyd^(y) where rjy is supported on ^(y). We say that (X,r]) is an extension with
relatively G-invariant measure over (V, v) if the following equivalent conditions are satisfied:

(i) for each g, g^rjy = rjgy for v-a.e. y G Y.
(ii) /// <E L\X) and If(y) = f fdrjy, then Ig.f(y) = I^g^y^for v-a.e. y G V.

(iii) (ii) holds for a dense subset off € L^(X).
We now note the following facts, whose verification is included here for completeness.

PROPOSITION 1.8. - Let G be an Icsc group. Let ̂ : (X, v) —> (X, v) be a factor map ofBorel
G-spaces with G-quasi-invariant measures. Then the following conditions_are equivalent:

(i) (X, v) is an extension with relatively G-invariant measure over (X, v).
(ii) For every g e G, r^(g, x) = rp(g, ̂ (x))for v-a.e. x C X.

(iii) In the disintegration v = f^ ̂  dv(b) of v over F, for every g G G, ^^(aQ = 1, for
Ub-almost all x G X, for v-almost all b € X.

Proof. - Consider the factor map ^: (X, v) —> (X, v) and disintegrate v with respect to v.
Denoting the variable on X by b, we have v = f^ ybdv(b). Using the disintegration of the
measure v over the measure v, we can write:

Qv{f)=v(L^f)=i(L^fi(x)dv=]v^(L,-^

x x

= [ ( ( Lg-.f(x)dvb\ du(b).
j \ j /
X Xb

Here Xb is a fiber of the map ̂  over b G X, and ^b(Xb) = 1, ^-a.e. Now change variables in the
inner integrand via the chain rule. If Xb -^ Xgb —^ M, then

[Lg-.f(x)d^= I f(gx)dvb= I fW^Wd^y).
Xb Xb Xgf)

Denoting the last expression by Fg(b), set f3 = gb so that

IFg(b)dv(b)= [Fg(g-lf3)dg^(/3)= ( ( ( /(rr)^-^(.r)d^(^ dgD((3)

- j'U'/<^^)t?~
X Xft
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On the other hand note that:

g^(f) = f f(gx) dy = f fW^x) dv.
X X

Proof of (ii) => (Hi). - Suppose now that the Radon-Nikodym cocycle r^(g,x) depends only
on zl;(x) = (3, namely:

——(x)=rv(g~\x) =rv[g~\^(x))

so that the last expression is (disintegrating v over v)

9^f) = I fWr^ (g~\ x) dv(x) = ( ( f f(x) d^(x)\ ̂  [g-\ (3) dP(f3).
X X Xft

Therefore in this case we obtain two disintegrations of gy with respect to g p , namely:

9^= fv^{g-\f3)dvW= /'^-^^r,^-1,/?)^^).
x x

By uniqueness of the disintegration, we get

d-gv^(x)=\
dY(3

for ^-almost all x G Xp, for ^-almost all /3 € X. Hence the action of G is measure preserving
on the fibers of ^, namely for all g e G, g • Vg-^b = ̂ b for ^ almost every b € X.

Proof of (Hi) ̂  (i). - By definition, the condition -^-^(^) = 1 (for every g e G, z^,-almost
all x € X, and ^-almost all b € X), is equivalent to gu^ = ̂ gb for ^-almost all b € X, which is
our definition of an extension with relatively G-invariant measure.

Proof of ( i ) => (ii). -As just noted, if (i) holds, then — 9 - l f 3 (x) = 1, and we obtain two
disintegrations of gv over gv given by

^(/)= / ( If(x)d^(x)\rp(g-\b)dy(b)= ( ( [ f(x)r^{g-\x) d^(x)\d^b).
X Xb X Xb

Again by uniqueness of disintegration the measure ry(g~^,b)dvb is equal to the measure
r^(g~l,x) dvb as measures on Xb, for ^/-almost all b G X. Hence the function ry(g~^,x) must be
Vb -essentially constant when restricted to X^, for ^-almost all b € X, and the constant is equal
torp(g~\b). D

We now consider the case of (G, /^-spaces (X, i/), namely when the measure v is /^-stationary:

^PROPOSITION 1.9. - Let G be an Icsc group, ^ an admissible measure on G. Let ̂  : (X, v) —^
(X, v) be a measurable factor map ofBorel (G, ^-spaces. Then

4® SERIE - TOME 33 - 2000 - N° 3



RIGIDITY OF FURSTENBERG ENTROPY FOR SEMISIMPLE LIE GROUP ACTIONS 329

(i) h^(X^) < h^(X^).
(ii) When h^(X, v) < oo, we have h^(X, v) = hp,(X, v) if and only if(X, v) is an extension

of(X, v) with relatively G-invariant measure.
(iii) Assume that (X, v) is a transitive G-space: (X, F) = (G/Q, vo), Q a closed subgroup. If

h^(X, v) = h^(G/Q, VQ) < oo, then X is induced from a probability-measure-preserving
action ofQ, i.e. (X, v) = (G/Q ix XQ, i/o x A), where X is a Q-invariant measure on XQ.
Here I^Q is the unique )i-stationary measure on G/Q.

Proof. - To prove (i), note first that if h^(X, v) = oo there is nothing to prove. Otherwise, for
^-almost all g G G we have by Lemma 1.6:

- / \ogrv(g,b)d^(b) ̂  - / \ogr^(g,x)di^(x)
x x

and the result follows by integrating with respect to IJL.
To prove (ii), it is enough, by Proposition 1.8 to show that (for ^-almost all x) ry(g,x) =

r^g, ̂ (x)) if and only if h(X, v) = h(X, v).
Disintegrating v over v we have:

h(X, i^)=- / log r^(g, x) dv(x) dfi(g)
G x

\ogr^(g,x)d^b(x) j di^(b)dfi(g)

- ( ( E{\og(r^g^)}(b)dy(b)d^g).
G x

On the other hand, by Lemma 1.6 E(r^(g, •) = rp(g,^(x)) where E is the conditional
expectation operator, and therefore

h(X,v)=- ( [\ogr^g^)di^(f3)d^g)=- { (\ogE(r^g^))(b)dv(b)d^g).
G x G X

Applying Lemma 1.6(1) to the measure space Xb, the measure ^ and the conditional
expectation corresponding to the trivial factor (namely the operator of integration with respect to
^b), we obtain, for ^-almost all g e G

E{- logr^, •))(&) > - logr^, b)

unless the function r^(g, x) is constant z^-a.e. when restricted to Xb. Hence equality of entropies
h^X,^) = h^(X,v) is equivalent to the condition r^(g,x) == ry(g,^(x)) ^ x z/-a.e. (g,x). To
see that this holds for all g € G, note that v is stationary under ^n, and furthermore, by a
straightforward computation, for any (G, /^)-space space (X, v}\

( [-\ogr^g,x)d^x)d{^n)(g)=nh(X^).
G X

Therefore, the same conclusion applies to /^-almost every g G G. Since p, is admissible and
Un>o ̂ n = G, (G = supp/^), it holds for Haar-almost all g € G, and in particular, for a dense
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set in G. By Proposition 1.14 proved below, it follows that ry(g, x) is measurable with respect to
^p~^(C) for every g c G and (ii) is proved.

To prove (iii), note that if ^: (X, v) -^ (G/Q, UQ) is an extension with relatively G-invariant
measure, then for ^-almost all b == gQ <E G/Q, the subgroup gQg~1 leaves invariant the
probability measure ^ on the fiber Xb = ̂ ~\gQ\ If p. is admissible, then UQ is G-quasi-
invariant ([14, Lemma 1.1]), and then (X,v) is G-isomorphic to the action of G induced by
the action of Q on the measure space (^([Q]), ̂ [Q]). This fact is well known, and can be found
in [18]. D

1.2. The Radon-Nikodym factor

Given a (G,/^)-space (X,^), recall that C denotes the completion of the cr-algebra B with
respect to the measure v. Each function r y ( g , ' ) is defined up to equivalence modulo z^-null
functions, and is measurable with respect to C.

We now define, following [9], a G-invariant sub-a-algebra of C.

DEFINITION 1.10.- The Radon-Nikodym a-algebra associated with the (G, fJi)-space (X, v)
is defined by: KAf =^{C/ c£ C is a v-complete sub-o--algebra, and for every g e G, r^(g, •)
is measurable with respect to C}.

We then have the following:

LEMMA 1.11.-
(1) 7<W C C is a v-complete G-invariant cr-algebra, and each function r^(g, •) is measurable

with respect to 7^A/'.
(2) There exist a standard Borel G-space (X, 0, v) and a Borel measurable G-factor map

^:(XI,B,^) -^ (X,B,v),_satisfying ^~\C) = HAf, and ^(v) = v. Here X^ is a G-
invariant co-null set, and C is the completion ofB with respect to v.

(3) The Radon-Nikodym cocycles satisfy: r^(g,x) = rp(g,y(x)) for v-almost all x C X.
Furthermore, if ^ : (X,B^\-> (X\J3\^) is another G-factor map, with r^(g,x) =
r^(g, ̂ (x)) v-a.e., then (X, B, v) is a measurable G-factor of(X\B\ i/).

Proof. -
(1) If /i and /2 are measurable with respect to C\ then so is /i//2. Therefore if r(g, •) is

measurable with respect to £' for all g e G, so is r(gh, ' ) / r ( h , •) = r(g, h-) for every (g, h).
Hence, if A = r(g, -)~\U) e C' for some open U C M, it follows that h-^A e C' also, for
all h e G. Since these sets generate KU (modulo null sets), it is G-invariant. Finally,
since each C' measures each of the functions r^(g, •), so does their intersection.

(2) This part follows from the point realization theorem due to G.W. Mackey [20, Theo-
rem B.10] using the fact that KM is G-invariant a-algebra. (Note however that the choice
of the Borel structure, namely a countably generated and countably separated cr-algebra B
with completion C ̂  7<W is not unique.)

(3) The equality r^(g,x) = rp(g,(p(x)) z/-a.e. for each g e G holds by definition. If also
r^(g,x) = r^(g,^(x)) ^-a.e. then the cr-algebra ^CC') measures all the Radon-
Nikodym derivatives r^(g,-), and hence contains KAf. The claim now follows as
in (ii). D

DEFINITION 1.12.- The G-space (X,7Z./V,^) is the Radon-Nikodym factor of(X,B^). It
was introduced for countable groups in [9].

We note the following properties:

LEMMA 1.13. - Assume (X, v) is a (G, ^)-space, and h^(X, v) < oo. Then
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(1) (X,i/) and the Radon-Nikodym factor (X,^) have the same Furstenberg entropy,
hp,(X,v) = ft^(X,F). Therefore (X,v) is an extension with relatively G-invariant
measure of its Radon-Nikodym factor (X, v).

(2) Every non-trivial G-factor of the Radon-Nikodym factor (X, v) has strictly smaller
Furstenberg entropy.

Proof. -
(1) By Proposition 1.9 /^(X, v) ̂  /^(X, v), since it is a factor. By Lemma 1.6 equality holds,

since each function T y ( g , ' ) is measurable with respect to the factor, by definition.
(2) Let ip: (X, F) —^ (V, z/) be a G-factor map. By Lemma 1.6 we have E(r^(g, x)) = r^i (g, y)

(y = (p(x)\ and

0^- \Qgrv'(g,y)dv1 < - \ \o^Ty(g,x)dv,

Y X

unless Ty(g,x) is measurable with respect to (^"^/^(Y)). Hence if h^(X,v) = h^(Y,^) it
follows that ry(g,x) is measurable with respect to ^^(^(Y)) for /^-almost all g C G. To see
that this holds for all g G G, again since v is stationary under ^sm, and

( [-\ogr^g,x)d^(x)d(^n)(g)=nh(X^)
G X

the same conclusion applies to ^^-almost every g e G. Since ^ is admissible and Un>o ̂ n =

G, (G = supp/^), it holds for Haar-almost all g e G, and in particular, for a dense set in
G. By Proposition 1.14 proved below, it follows that ry(g,x) is measurable with respect to
(p~\£(Y) for every g e G. Hence ̂ C(Y) = C(X) and so (X, v) and (V, z/) are measurably
G-isomorphic. D

We now prove the following result, used in Propositions 1.9 and 1.13:

PROPOSITION 1.14. - Let (X, £, u) be a G-space with a quasi-invariant measure v, r^(g, x)
the Radon-Nikodym cocycle. IfV C C is a y-complete sub-a-algebra, and the functions r^(g,')
for every g in a dense subset ofG are measurable with respect to V, then the functions Ty(g,')
are measurable with respect to V for every g G G.

Proof. - Consider the unitary representation TH of G in the space L^X, B, v), defined by the
formula:

^^g)fW=^r^z^f[g-vx).

The representation is strongly continuous, so that if hn —> h in G, then TH (/in)l —» TH (h)l in L2-
norm. Assume that the functions r^(gk, •) are measurable with respect to P for some sequence
gk dense in G. Then if hn = gkrz converge to h G G, it follows that for some subsequence hnj,
the sequence \/ry(hn^x) converges pointwise almost everywhere to ^/ry(h,x). It follows that
Ty{h, x) is measurable with respect to V for every h e G. D

1.3. Cohomology invariants and stationary measures

In this section we show the relevance of the assumption that the measure v on a G-space X is
stationary, rather than just quasi-invariant. We assume throughout this section that the measure
[t is of class Boo, namely it is admissible and has a convolution power with bounded density of
compact support. Then r^(g, x) is a bounded function of a; € X, for every g C G, and the same
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holds for r^(g,x)-1 (see [13]). It follows that if F e L\X, z/), then also F o g e L\X, v) for
every g e G, so that L^X, v) is a G-module with G acting by translations.

Let Z\G, X, v) denote the space of real-valued measurable additive cocycles for the action.
Define now:

LlZl(G,X^)=^s(g,x)eZ\G,X^): (\s(g,x)\dv < oo for alley e G\.
- Jv 'x

Two cocycles in L^Z\G,X,v) are called Z^-equivalent if they satisfy s^g,x) = s^g, x) +
F(gx) - F(x\ where F e ^(X^). The set of equivalence classes will be called the L1-
cohomology space (of measurable real valued additive integrable cocycles) denoted
L^H^G^X^).

Given any cocycle s(g,x) C ^^(G.JC.z/), we can consider the expression h^X,y,s) =
fc fx 5^ x^ dv(x) dfJi(g\ which may be finite or =Loo.

The Furstenberg entropy of a stationary measure of class Boo constitutes an invariant of the
L^cohomology class of the cocycle logr^(g,x). More precisely:

PROPOSITION 1.15. - Let G be an Icsc group, ^ a probability measure of class Boo. Let
(X, v) be a (G, fi) space. Then:

(1) The additive cocycle - logr ,̂ x) belongs to the space L^Z^(G, X, v\ and the Fursten-
berg entropy h^(X, v) is finite.

(2) Let v' be a probability measure equivalent to v, satisfying ̂  = f(x) where f > 0, log / C

L\X, v\ Then r^(g, x) -= ̂ ^(.r) satisfies h^(X, v) = h^X, u1).
(3) Conversely, if for some G-quasi-invariant probability measure v on a G-space X,

h^(X, v) is finite and constitutes an invariant of the L1 -cohomology class of the cocycle
l0^^^ x), then the measure v is necessarily fi-stationary.

Proof. -
(1) The function g i-> f^ log r^(g, x) du is a continuous function on G, provided v is stationary

with respect to a measure of class Boo (see [13]). Hence it is integrable over G with respect to
the measure ^, and h^(X, v) is finite.

((2) and (3)). To show that the Furstenberg entropy is an L1 -cohomology invariant of r^ (when
finite) if and only if v is stationary, we compute, putting r^(g, x) = f(gx)r^(g, x)f(x)~1:

h^X,y')=- j logr^(g,x)d^(x)dp.(g)

G x

=- ^gr^(g,x)d^(x)d^(g)- ^ ^ log f(gx) dv(x) d^i(g)
G X G X

+ I l^f(x)dy(x)d^g)
G X

= h^X, v)- log f(x) d(^i * u)(x) + / log f(x) dv(x)
x x

by definition of the convolution IJL * y. It follows that if ^ * v = v and log/ <E L\X, v), then
h^(X, u) = h^X, v ' ) . Conversely, when the entropy is finite and is an L1-cohomology invariant
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of the cocycle log Ty(g, x), it follows that for any F = log / G I/1 (X, v)

( IF(gx)d^x)d^(g)= [ F(x) d(^ * v)(x) = ( F ( x ) d y
G X X X

so that IJL * v = y. D

Remark. -
(1) Let q be any cocycle q e LlZl(G,X,y), such that the function g ̂  f^ \q(g,x)\ dv is

bounded on compact sets in G. If ^ is of class Boo, the (finite) quantity

h^(X,v,q)= j q(g,x)d^(x)d^g)

G X

is an invariant of the Z^-cohomology class of q if and only if v is /^-stationary, as follows
from the previous argument.

(2) For an arbitrary admissible /^, it is natural to consider the space of (jn x z/)-integrable
cocycles:

^s^Z\G,X,v): [ [ \s(g,x)\dyd^<oo\.

G X

This space was introduced by H. Furstenberg in [6], and it was shown there that (/^ x v)-
integrable cocycles satisfy a strong law of large numbers on (X, v).

2. Rigidity of Furstenberg entropy

We now specialize to the case in which G is a semisimple Lie group. We begin by recalling
some important facts regarding the structure of a stationary measure v on a general (G, p)- space
(X, z/), which are due to H. Furstenberg (see [2,3]).

THEOREM 2.1 ([2,3] see also [14]). - Let G be a connected non-compact semi-simple Lie
group with finite center, and fi an admissible measure on G. Let X be an Icsc space with a
continuous G-action, and consider the w*-toplogy on P(X) = CQ(X)*. Then

(1) There exists a w* -continuous affine isomorphism between the set Pp.(X) of probability
measures on X stationary under fi, and the set Pp(X) of probability measures on X
invariant under a given minimal parabolic subgroup P [3, Theorem 2.1].

(2) Let z>o be any probability measure on G, which under p'.G —> G/P satisfies p(i>o) = ̂ o,
where T/Q is the (unique, see [3, Theorem 2.2]) ji-stationary measure on G/P. Then the
map A i—)- VQ * A implements the isomorphism above Pp(X) \—>- P^(X). In particular, ifX
is P-invariant, then i/o * A is ^-stationary, and conversely, every {^-stationary measure v
has a representation in the form v = VQ * A, where A is a uniquely determined P-invariant
measure [3, Lemma 2.1].

(3) Every A G Pp(X) determines a continuous map G/P ^—> P(X), given by gP \—^ \gp =
g\. Every v G P^(X) is a convex combination of the form v = f^/p \gp di^o(gP), and A
and v determine each other uniquely.

Given a P-invariant probability measure A on an Icsc G-space X, and any measure I/Q on
G/P, we denote by ^o * ̂  the measure z>o * A. This definition is unambiguous by Theorem 2.1.
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It is useful to extend Theorem 2.1 to measurable actions on measurable spaces. The following
result is proved in detail in [15].

PROPOSITION 2.2. - Let G be a connected non-compact semi-simple Lie group with finite
center, [i an admissible measure on G. Let (X, B) be a Borel G-space. Then

(1) The set of P-invariant Borel measures XonB is in one-to-one affine correspondence with
the set of IJL-stationary measures v on B. The correspondence satisfies: For every bounded
Borel function f, v(f) = S G / P 9^f) ̂ o(^-P)» or equivalently v = VQ * A.

(2) If<j)'. (X, B, v) —> (X, B, v) is a G-equivariant Borel factor map, and v = VQ * A, v = VQ * A,
where A and A are P-invariant probability measures, then (/)(\) = A.

(3) In particular, (f): (X, B, A) —> (X, B, A) is a P-equivariant measurable factor map.

DEFINITION 2.3. - The G action on a (G,^)-space (X, v) will be called a P-mixing action
if the P-action on (X, A) is mixing in the usual sense for probability-preserving actions, namely
for every f G L^(X, X), the matrix coefficients (7r(p)f, f} —> 0 as p leaves compact sets in P.
Note that when the action is P-mixing, A is P-ergodic, so that v is ergodic under G by Theorem
2.1(1).

Now let (X,u) be a (G,/z)-space, and A the P-invariant measure on X corresponding to v
under Theorem 2.1. Let Xo be the support of A, and G x p XQ ̂  G / P K XQ the G-space induced
by the P-action on Xo. (See [14] for details, discussion and references.) We have:

PROPOSITION 2.4 ([14, Proposition 2.5]). -
(1) The G-space (X, v) is a measurable G-factor of the G-space (G/P x XQ, VQ x A).
(2) If the measure A corresponding to v in Theorem 2.1 is invariant under a parabolic

subgroup Q, then (X, v) is a G-factor of the G-space (G/Q x Xo, VQ x A). (We also
denote by UQ the canonical projection ofvQ G P(G/ P) to a measure on G/Q).

We therefore have

COROLLARY 2.5.-
(1) For any (G, p,)-space (X, u)

0 ̂  h^(X, v) ̂  ̂ (G/P, VQ).

(2) If the measure A corresponding to v in Theorem 2.1 is invariant under a parabolic
subgroup Q, then h^(X, v) < h^(G/Q, VQ).

Proof. - ( G / P K XQ, i/o x A) —^ ( G / P , z^o) is a G-factor map with a relatively invariant
measure. Now apply Proposition 1.9 twice. The same argument applies when A is Q-invariant,
using also Theorem 2.1. D

We now note the following useful fact, which is an immediate corollary of Proposition 2.2.

LEMMA 2.6. - Let (G, p) be as in Proposition 2.2. If(X, u) is (G, ii)-space and v = VQ * A,
then for any (G, ^-factor space ̂ : (X, i/) —^ (X\ u'),

(1) (XQ, A') is a P-factor of(Xo, A), where v ' = VQ * A'.
(2) In particular, if(X, v) is a P-mixing action, so is any factor (X\ u').

For G of R-rank ^ 2, we now deduce from Theorem A and Proposition 1.9:

THEOREM 2.7. - Let G be a connected semisimple Lie group with finite center, and R-
rank(G) > 2. Suppose p 6 P(G) is admissible, h^(G/P, VQ) < oo, (X, v) is a (G, p,)-space and
the action is P-mixing. Then the Furstenberg entropy hp,(X, v) takes on one of the finitely many
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values h^(G/Q, vo)for some parabolic subgroup Q C G (and the unique ^-stationary measure
VQ on G/Q.) Furthermore, for some Q with h^(X, v) == h^(G/Q, z/o), (X, u) is induced from a
finite measure preserving action ofQ.

We now consider the following corollaries:

COROLLARY 2.8. - Let (G, 11) be as in Theorem 2.7, and let r = R-rank (G). For each i, let
(Xi, Ui) be (G, jj^-space, and assume there exists a G-factor map pi: (JQ, ̂ ) —^ (Xi-\,vi-\) for
each i. If the G-actions on (Xi, i/i) are P-mixing, then for all but at most 7^-values ofi, (JQ, z^)
is an extension with relatively G-invariant measure over (Xi-\, Vz-\).

Proof.-By Theorem 2.7, the entropies /i^(JQ,z/o) can take at most 27" different values.
Therefore the result follows from Proposition 1.9. D

COROLLARY 2.9. - Let (G, }ji) be as in Theorem 2.7. Then for any P-mixing action with
stationary measure (X,v), the Radon-Nikodym factor (X,7^A/',^) of(X,v) is a transitive
G-space, of the form (G/Q,vo), Q a parabolic subgroup, where h^(X,v) = h^(X^) =
h^G/Q^o).

Proof. - By Proposition 2.6 the Radon-Nikodym factor is a P-mixing action and by
Proposition 1.9 it has the same Furstenberg entropy as (X, v). By Theorem 2.7 and Proposition
1.9 it is an extension of a space (G/Q, UQ) with relatively G-invariant measure, and in particular
with the same Furstenberg entropy. But by Lemma 1.13, any proper factor of the Radon-
Nikodym factor has strictly smaller Furstenberg entropy, and the corollary follows. D

Another corollary of Theorem 2.7 is the following:

COROLLARY 2.10. - Let (G,/2) be as in Theorem 2.7, and define

hmW = min{/^(G/Q, i^o)'- Q is a proper parabolic subgroup ofG}.

Let (X,i^) be a P-mixing (G,^i)-space, with h^(X^) < hm.W- Then the measure v is G-
invariant, namely h^(X, v) = 0.

We remark that a similar conclusion holds for any (G, /^)-space (X, v) provided G is a Icsc
group satisfying property T of Kazhdan (see Section 1.1. and [13]).

3. Furstenberg entropy for actions in R-rank 1 and non-mixing actions in higher rank

The aim of this section is to prove that rigidity of Furstenberg entropy stated in Theorem 2.7
fails for P-mixing actions of R-rank one groups. Furthermore, we will show that it fails also for
actions of higher rank groups, which are P-ergodic but not P-mixing.

THEOREM 3.1. - Let G = P5'L(2,R) and fix an admissible measure on G. Then there exists
an infinite sequence of compact metric (G, p^-spaces (Xi, vi) (in fact smooth manifolds), where
the action is P-mixing, and the Furstenberg entropies h^(Xi, z^) are all distinct.

We first note the following fact:

LEMMA 3.2. - Let (p: (X, B, r j ) —^ (X\ B\ T]') be a Borel measurable G-factor map between
two Borel measurable G-spaces with quasi-invariant probability measures. Then

(1) If(X,rj) is an extension of(Xf,r]f) with relatively G-invariant measure then there exists
a measurable G-equivariant map ip: X' —> P(X), such that the ^^(x/)((p~l(xf)) = 1 for
r]1-almost all x' € X', namely the measure ̂ (x') is almost always supported in (p~l(xf).
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(2) Conversely, if such a measurable G-equivariant map ^ : X / — > P(X) exists, then the
measure rj = f^, '^(x1) dr]' is G-quasi-invariant, and (X,r]) is an extension of (X',r]1)
"with relatively G-invariant measure.

Proof. - (1) The map ^: X' —>• P(X) given by '0: x ' i—^ r]^i, where 77 = f^, r]^ drj^x') is the
disintegration of r] with respect to T/', is measurable. Furthermore, ̂  is G-equivariant if and only
if the extension has relatively G-invariant measure, and the claim follows.

(2) Here the condition of disjoint supports, (p~l(xi)n ̂ ^(xz) = 0» as well as ip(x\)(<^~^ (x'^))
= 0 if x\ ̂  x^ are satisfied (7/-a.e.). Together with uniqueness of disintegration of measures,
they imply that the disintegration of rj with respect to T/ is given by the integral defining 77. Since
'0 is G-equivariant, the extension has relatively G-invariant measure by definition, and the claim
follows. D

Proof. - To prove Theorem 3.1, it suffices by Propositions 1.8 and 1.9 to show that for each TV,
there is a length N sequence of P-mixing (G, /^-spaces (Xi, z^), 1 ̂  i ̂  N, and G-factor maps
(pi: (Xi, Vi) •—> (Xi-i, z^-i), such that (Xi, Ui) does not have relatively G-invariant measure over
(X,-i,^-i).

Fix N simple non-compact Lie groups, say P^, 1 ̂  i ̂  N , which may be the same or different.
Let Pi c Li be a minimal parabolic subgroup. We can then find a finitely generated free group
F and a homomorphism

N

7T:P^JJP,

1

(with projections denoted by TT^ : F —^ Li) such that:
(i) 7r(P) is dense in Y[\ ^i\ ̂ d

(ii) for each j, there is some gj G F such that TT^^) == e for % < j, and TTj(gj) is not of finite
order.

Now choose a cocompact lattice F cG = P^Z^R) and a surjective homomorphism 0\r —> F.
Let

j^•-n^/^i
which is a compact P-space via the homomorphism TT o 6. By projection, Yj —> Yj-\ is an
extension of P-spaces, with fiber Pj/Pj. Let Xj be the G-space induced from the P-action
on Yj\ namely Xj = G/P K Yj. Using the previous projection, we construct the natural G-factor
map ( p j : Xj —> Xj-\, again with the same fiber L j / P j . Fixing an admissible measure /z on G,
and an ergodic /^-stationary measure v^ on JQv, we let Vj-\ = ̂ j(^j)» so that ipj becomes a
factor map of G-spaces with stationary measures.

We note that a (G, /^-stationary measure vj on Xj projects to the invariant probability measure
m on G/P, under the natural map Xj = G / F xYj —> G/P since the latter is the unique (G, /^)-
stationary measure (see [14, Lemma 6.3]). However the fiber measures a^p on Yj occuring in
the disintegration (Xj, uj) —> (G/P,7n) may be singular with respect to the Lebesgue measure
class on Yj.

We now claim that the extension (Xj.Vj) —> (Xj-\, Vj-\) does not have relatively G-invariant
measure.

If it did, then consider the disintegration vj = fc/rxY•- ^r^-o^-i. The measure
^{hr^y -i) is supported on the set

^\hr^,)={(hr^^)} x L . I P , ex,.
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The map ̂  : (AP, 2/7-1) »—^ z^r^-i) is a G-equivariant measurable map ̂  : Xj-\ —^ P(Xj).
Since X^-i = G/P x Yy-i, for m-almost all hr e G/P the restriction of ^ to the set

[hF] xYj-i satisfies h^h~l^j(h^,yj-t)=^j(h^,r(h)^r(h)~iyj-i),(a^Fl-^i.e.), where r(h)
is a fixed element of r (see [14, §6]).

Fixing such a point /iP, the restriction of ̂  implements a P-equivariant map ̂  : Y^_i —»
P(X^). Here P acts (o^T11 -ergodically) on the first space via conjugation by r(h), and on the
second via conjugation by /i, and ̂  is defined o^T11 = Q/J-1 -almost everwhere.

Now project the measure ^(/ir,^_i) supported on {(/iP,%_i)} x L j / P j , to a measure on
L j / P j . The projection is P-equivariant, where r acts on Lj/Pj via conjugation by r(h) e P.
Hence by composition we obtain a measurable P-map, defined almost everywhere with respect
tOQ^"1:

0:y,_i^ P(L,/P,),
where as above P(-) denotes the space of probability measures. The action of Lj on P(Lj/Pj) is
tame with real algebraic amenable stabilizers (see [20, Chapter 3]). The P action on O^-i, a-7""1)
is ergodic, and it follows that for a-^-almost all %-i, Cjd/j'-i) is belongs to a single Lj-orbit,
and so we can view C,j as a P-map

^-.Y^^L,IH,
for some amenable algebraic subgroup Hj. The measure (Cj)^0^"1) is a P-quasi-invariant
measure on L j / H j . Since the image of P is dense in Lj, the support of this measure must
coincide with L j / H j . However, since gj acts trivially on Y^-i, and ̂  is a P-map, ̂  must act
trivially on almost all points of L j / H j with respect to the pushed forward measure. Since this
measure has full support, gj acts trivially on L j / H j . Hence TTj(gj) is contained in the intersection
of all conjugates of Hj, a closed normal subgroup of Lj. But since Hj is amenable, it is a proper
subgroup, hence TTj(gj) is contained in the finite center of Lj. Since TTj(gj) has infinite order, this
is impossible, and so (Xj, vj) —> (Xj-\, ̂ j-i) does not have relatively G-invariant measure.

Now suppose (as we may) that each Li is of M-rank 1. To complete the proof of the theorem,
it suffices to see that the action of G on (Xj, vj) is P-mixing. Fix j, and if A is a P-invariant
measure on Xj = G/P K Yj, then write

A = / \z dm(z),

G / r

where \z is supported on the fiber of Xj —> G/P over z, which we can indentify with a measure
on Yj. For each i ̂  j, let \\ denote the projection of \z to a measure on L i / P i . The argument
in the proof of [14, §6, Theorem B] shows that for a.e. z e G/P, A^ is supported on a single
point of Li/Pi. This implies that \z itself is supported on a point, and hence as in [14, §6], the
P-action on (Xj, X) is P-isomorphic to the P-action on (G/P, m). It follows that L2(Xj, A) is a
mixing representation of P (see, e.g., [20]). D

COROLLARY 3.3. - There is a PSL(2,R) action on a compact manifold M with measure v,
stationary under an admissible measure 11, which is P-mixing, but whose Radon-Nikodym factor
(M, 7 .̂A/', v) is not a transitive action of PSL(2, R), and in particular, it is not a Furstenberg
boundary of G.

Remark. - Theorem 3.1 holds for the groups S0(n, 1), N > 2 as well, since they also contain
a uniform lattice mapping onto a free non-Abelian group, by [10].
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For actions of higher rank groups, both Theorem A and Theorem 2.7 fail if one assumes only
P-ergodicity and not P-mixing. We will show:

THEOREM 3.4. - Let G be a simple Lie group with R-rank(G) ̂  2, containing a parabolic
subgroup QoCG that maps onto PSL(2, R). Then:

(a) The Furstenberg entropy for actions of G on smooth compact manifolds with ergodic
stationary measure takes on infinitely many values.

(b) There is a smooth compact manifold (X, v) which is a (G, p^-space with ergodic stationary
measure of positive Furstenberg entropy, such that (X,i/) does not have relatively G-
invariant measure over any G-space of the form G/Q, where Q is a parabolic subgroup.

(c) The Radon-Nikodyn factor (X, v) of the space (X, v) of(b) is not a Furstenberg boundary
ofG.

Proof. - To prove (a), let Xz be as in the proof of Theorem 3.1, so that JQ is a compact
PSL(2, R)-space. We can then view Xi as a Qo-space via the (surjective) homomorphism
QQ —>P5'L(2,R). Let Wz be the G-space induced from the Qo-action on Xi. Then we have a
continuous G-map of compact G-spaces, Wz —>• Wi-\, with fiber Li/P^ as before. It suffices
to show that no G-quasi-invariant measure (in fact stationary measure) on Wz is a relatively
G-invariant measure over Wi-\.

However, the existence of such measure on Wi implies the existence of a QQ -relatively
invariant measure for Xi —^ -A^-i. This follows for the pair (G,Qo) employing the same
argument used the proof of Theorem 3.1 to establish the same property for the pair (PSLz(R),r\
namely by restricting to an appropriately generic fiber. Clearly, it then follows that Xz —^ Xi-\
is an extension with relatively P5'L2(K)-invariant measure (since Qo acts via the homomorphism
QQ —> PSL^(R)), which the proof of Theorem 3.1 shows is impossible.

As to (b), if (X, v) is a measure-preserving extension of (G/Q, i^o) then their Furstenberg
entropies are equal by Proposition 1.9. Since there are finitely many parabolic subgroups
(containing a given minimal parabolic P), and infinitely many distinct values for the entropy
by (a), the conclusion follows.

Finally (c) follows from (b), since by Proposition 1.13 and 1.9 (X,u) is an extension with
relatively G-invariant measure of its Radon-Nikodym factor. D

4. Amenable actions with stationary measure

The aim of this section is to describe the amenable actions with stationary measure. We recall
that any amenable ergodic action with quasi-invariant measure of a semisimple Lie group is
induced from an action of an amenable algebraic subgroup [18]. When the measure is stationary,
we have:

THEOREM 4.1.- Let G be a connected semisimple Lie group with finite center and no
compact factors. Suppose ^ € P(G) is admissible, h^(G/P, vo) < oo, and G acts ergodically
on a space X with fi-stationary measure v. Then the following are equivalent'.

(i) The G action on (X, v) is amenable.
(ii) The G-action on (X,v) is induced from a probability measure preserving action of a

minimal parabolic subgroup P.
(iii) VX,^/^(G/P,^)).
(iv) h^(X^)=h^G/P^o).

Proof.-If G acts amenably on (X,^), then by [18] there is a G-map X —> G / S where
S is amenable and algebraic. If v is stationary, this implies there is a stationary measure on
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G / S , which by a result of Furstenberg [3, Lemma 2.4] implies S C P. Thus, there is a G-map
X — > G / P . By Corollary 2.5 it follows that h^(X^) == h^G/P^o) and by Proposition 1.9
X —^ G / P is an extension with relatively G-invariant measure. This implies (cf. [14, Proposition
2.3]) that X is induced from a probability measure preserving action of P.

In light of Propositions 1.9 and 2.5, to prove the theorem it suffices to show that h^(X, v) =
/i^(G/P,^o) implies that (X,v) is an amenable action. Let (Xo,A) be the P-space as in
Proposition 2.4 (where A is a P-invariant measure), so that G/P K XQ ^ G Xp XQ —» X is
a factor map. By Corollary 2.5, /i^((G/P K XQ), z/o x X) = h^(X, v) and hence (by Proposition
1.9) (G/P x XQ^Q x A) has relatively invariant measure over (X,i/). This implies there is a
measurable G-map X —^ P(G/P ix Xo), where P(-) denotes the space of probability measures.
By projecting G/P K XQ to G/P, we obtain a measurable G-map ̂ : X —> P(G/P). The action
of G on P(G/P) is tame with amenable algebraic stablizers. Since the G-action on (X, v) is
ergodic, ̂ (x) will lie z^-a.e. in a single G-orbit and so we can view ^ as a map ̂  \X —> G / S
where S is amenable. Thus X is induced from an action of an amenable subgroup of G, and
hence the G-action on X is amenable [18]. D

It is interesting to determine whether, when the Furstenberg entropy is strictly smaller than the
maximum value (i.e. h^(X^) < /^(G/P,z/o)) and the action of G is therefore not amenable,
the probability measure A satisfying v = VQ * A is invariant under a non-amenable parabolic
subgroup Q. Even for higher rank simple groups, however, this is not always the case:

THEOREM 4.2. - Let G = 5'L3(R) and ji an admissible measure on G, with h^(G/P, z^o) <
oo. Then there exists a compact manifold (M, v) which is a (G, ji)-space, with ergodic stationary
measure v satisfying h^(X, v) < h^(G/P, z/o), but no non-amenable parabolic subgroup has an
invariant probability measure on M.

Proof. - Let Qo and Q\ denote the two maximal parabolic subgroups of G containing a given
minimal parabolic subgroup P. Fix a surjective homomorphism Qo —> PSL^(R). Let Xj be the
compact P5'L2(R)-spaces constructed in the proof of Theorem 3.1, where we assume that all
the groups Lj have real rank one. Consider Xj as a Qo-space via the surjective homomorphism
Qo —^ PSLz(R). We note that by construction, PSL^(R) does not have an invariant probability
measure on Xj, as follows from [14, Lemma 6.1]. As in the proof of Theorem 3.4 let Wj
be the action induced to G. By Proposition 2.5 the values of hp,(Wj,yj) are all bounded
by /i^(G/P,^o), and since there are infinitely many distinct values, we can choose (W,i^) =
(WJQ, z/jo) satisfying 0 < hp,(W, p) < /i^(G/P, z^o). W is a compact G-space, with a continuous
G-factor map ^ p : W —^ G/Qo. Hence any probability measure A on W, which is invariant under
a parabolic subgroup Q, gives rise to a probability measure <^*(A) on G/Qo which is invariant
under Q. As is well known, such a measure is supported of the fixed points of Q in the variety
G/Qo. Since Q\ is not conjugate to a subgroup of Qo. Qi has no fixed points on G/Qo. and
hence there exists no Qi-invariant probability measure A on W. If A is invariant under Qo, the
the support of (^(A) on G/Qo is the unique fixed point of Qo, namely the coset [Qo]. Since
W = G/Qo ix X, it follows that Qo and hence PSL'z(R) has an invariant probability measure
on X, which is a contradiction. Clearly, G itself does not have an invariant probability measure
on W, since there is no G-invariant probability measure on G/Qo' Hence no non-amenable
parabolic subgroup leaves invariant a probability measure on W. D

Remark 4.3.-In [14] and the present paper we have restricted attention to proving the
existence of quotients of the form G/Q, Q parabolic, for actions of G with stationary measures.
For an action of G with a general G-quasi-invariant measure on a compact manifold, it is easy
to see that such quotients usually do not exist. Namely, given any algebraic subgroup H C G, by
Chevalley's theorem there will be an action on a compact projective variety which has an open
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orbit of the form G / H . Thus, if H is not contained in a parabolic subgroup, the action on this
variety (with the Lebesgue measure class on G / H ) will not admit a measurable quotient of the
form G/Q.

5. Geometric applications

5.1. P-mixing actions with low Furstenberg entropy

As we briefly discussed in the introduction, actions of semisimple Lie groups with finite
invariant measure exhibit strong topological and geometric rigidity properties. When there is
no finite measure preserved, much less has been known. Theorem A implies that in a P-mixing
action on a (C?,^)-space (X,u) with h^(X,v) < h^(G/P,vo) the P-invariant measure A is in
fact invariant under a non-amenable parabolic subgroup Q, whose Levi component contains a
non-trivial semisimple group L. Thus, one can apply rigidity results to the ergodic measure-
preserving action of L on (Xo,A), if the M-rank of L is ^ 2. Furthermore, the lower the
Furstenberg entropy is, the larger is the stability group for A, and the higher is the R-rank of
its Levi component.

We will develop this theme in greater detail elsewhere, and present here some applications to
illustrate the point.

DEFINITION 5.1. - Let G be a connected semisimple Lie group "with no compact factors, G
the universal covering group, and ^ an admissible measure on G. Let X be a smooth compact
manifold (or more generally, a compact space for which covering space theory holds) which is
a G-space. Let v be a [t-stationary P-mixing measure on X. We say the action of G on (X, v)
is engaging if the action ofG1 on (X\ z/) is P/-mixing for all finite covers X' —^ X, where v ' is
the lift ofv to X ' , and G' is a finite covering group ofG that acts on X'.

Remark 5.2. - For actions G with finite invariant measure, this definition coincides with
the notion of engaging used in [11] for example (and is slightly more restrictive than the one
introduced in [21]).

DEFINITION 5.3. - Let Gbea connected semisimple Lie group with finite center and no com-
pact factors, and fix an admissible measure fi of finite entropy. Define ^(G) = sup{c \ for any par-
abolic Q with hp,(G/Q, ̂ o) ̂  c, ̂  have Q D L where L is a simple group of R-rank at least 2}.

Remark 5.4. -
(i) ^(G) is explicitly computable since h^(G/Q, VQ) takes on only finitely many values. Of

course, ^(C?) = 0 unless the real-rank of G ̂  3.
(ii) For n ̂  5, $(5L(n, R)) > 0.

THEOREM 5.5. - Suppose G is a connected semisimple Lie group with finite center and no
compact factors and that (X,v) is a connected compact manifold which is a (G,^i)-space, IJL
an admissible measure. Suppose the action is engaging. Let a be any linear representation of
7Ti(X) over C and suppose (j(jv\(X)) = P is infinite. Finally, suppose h^(X,v) < ̂ (G). Then
r contains an arithmetic group A which is commensurable to H^ where H is a real-algebraic
Q-group with () D L Here 1 is the (non-empty) product of the simple factors of^-rank ̂  2 in the
Levi component of a parabolic subalgebra of Q.

Proof. - By Theorem A, since the action on (X, u) is P-mixing, it is induced from a measure-
preserving action of a parabolic subgroup Q. Since h^(X, u) < ̂ (G), the parabolic Q contains a
simple subgroup of real rank at least two. Clearly, Q has an invariant probability measure A on
X (satisfying v = VQ * A). Let ( p : X' —^ X be a continuous finite cover, and A' the canonical lift
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of A with (^(A') = A. Let G' denote a finite cover of G that acts on X\ and // the canonical lift
of ^. Then z/ = i/o * ̂ / is a (G',/^-stationary measure, satisfying (^(z/) = ^, by Theorem 2.1.
(Note that G' also has finite center, so that Theorem 2.1 applies.) Since the G-action on (X, v) is
assumed engaging, the action of P ' on (X', A') is mixing, hence ergodic. It follows that Qf acts
ergodically on (X', A'), and so the Q action on (X, A) is engaging in the sense of [11]. Therefore
the conclusion follows from [11, Theorem B]. D

Another immediate consequence of Theorem A is:

COROLLARY 5.6. - Let G be as in Theorem A. Then any G action with a P-mixing stationary
measure is orbit-equivalent to a finite measure preserving action of a proper parabolic subgroup.

We conclude this section with an application to cohomology. Let the group G act on a
space (X,i/) with v quasi-invariant, and let R be an Icsc group. Consider the cohomology
space of R- valued measurable cocycles, denoted by H1(G,X,^,R). When R = R, (or more
generally when R is Abelian), it can alternatively be described as H^^(G',F(X',R)\ where
f^meas denotes group cohomology with measurable cocycles, and F(X,R) is the Abelian G-
module of measurable R-valued functions with the topology of convergence in measure. If
(X, v) = ind^(Xo, A) for some closed subgroup Q c G, then by [19, Proposition 2.2], for any
Icsc group R

H\G,X^,R)^H\Q,XQ,\R).

(This can be viewed as a version of Shapiro's Lemma in a measurable setting.)

THEOREM 5.7. - Let (G, p), (X, v\ Q and A be as in Theorem 2.7. Suppose h^(X, v) < ^(G)
(Definition 5.3).

(1) IfRis any Icsc amenable group without non-trivial compact subgroups, then there exists
a canonical surjective map

}^om(Q\R)^H\G,X^,R).

(2) If R is in addition Abelian, then the canonical map above is an isomorphism (of Abelian
groups).

Proof. - We define the map between the cohomology spaces as follows. Let A be the Q-
invariant measure on Xo, where we write (X, v) = ind^(Xo, A). Then (Xo, A) is a mixing action
of Q with finite invariant measure. We have a natural map (/):Hom(Q',R) —> ^(Q.Xo.A.J?)
given by TT —» o^, where a^(q,x) = 7r(q). As indicated above, we also have a bijective
correspondence H^(Q,XQ,\R) ̂  H\G,X^,R). To establish (1) it suffices to show that (f)
is a surjecdon. We begin by establishing the following:

LEMMA 5.8. - Let Q be an Icsc group, acting on a measure space (Y, 77), where 77 is Q-quasi-
invariant. Let a:Q xY —^ Rbe a measurable cocycle into an Abelian Icsc group R. Let L C Q
be a subgroup acting ergodically and suppose a: L x Y -^ R is a constant cocycle, namely
a(l,y) is (a.e.) independent ofy e Y for each I e L. If L centralizes a subgroup H cQ, then
a: S x Y —> R is also a constant cocycle for all s C S = HL == LH.

Furthermore, under the stronger condition that a(l, y) = efor all I G L (and a.e. y G Y), the
same conclusion holds for any Icsc target group R.

Proof. - Consider first the case of an Abelian target group R, and write the group operation in
R additively. Given h e H consider the function ^(y) = a(h,y). Then by the cocycle identity,
the fact that a(l, hy) = a(l, y) and hi = Ih for all I e L, h € H, we obtain:
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^(ly) = a(h, ly) = a(hl, y) - a(l, y) = a(lh, y) - a(l, y)
= a(l, hy) + a(h, y) - a(l, y) = ̂ (y).

Hence ^(y) is invariant under the action of L, and by ergodicity of L it is constant. Therefore
a(lh, y) = a(l, y) + a(h, y) is a sum of two constant functions of y , so the cocycle a is constant
on the subgroup S, as asserted.

For a general target group R, the previous argument gives

^(ly) = a(l, y)^(y)a(l, y)~1.

Hence if we assume that if fact a(Z, y) = e for all I e L and almost all y e Y, the same argument
applies. D

Returning to the proof of Theorem 5.7, we apply Lemma 5.8 to the action of Q on (Xo, A),
which is a P-mixing measure preserving action. Let a: Q x XQ -^ R be a cocycle. By the
hypothesis on entropy, Q D L where L is a non-compact simple Kazhdan group. By the P-
mixing hypothesis, L will be ergodic on (Xo, A). Therefore, since R is assumed amenable without
non-trivial compact subgroups, and L is a Kazhdan group preserving a finite measure and acting
ergodically, then H^(L,XQ,\R) = 0 [20, Theorem 9.1.1]. We therefore may and will assume
by passing to a cohomologous cocycle that a\L x XQ = e.

Now let Q = MAN be the Langlands decomposition of the parabolic Q. As noted already,
by the P-mixing assumption, L is ergodic on (Xo,A), and clearly Lemma 5.8 implies that
a|MA x XQ is a constant cocycle, namely independent of XQ C XQ.

Again by the P-mixing assumption, every non-trivial closed subgroup of A acts ergodically
on (Xo, A). Let M c N be a subgroup which has a non-trivial centralizer A\ in A n L. Since
a\A\ x XQ = e, we can apply Lemma 5.8 again, and conclude that the cocycle a: M x Xo -^ R
is constant. We claim that N is generated by finitely many 1-parameter subgroups Ni each of
which has a non-trivial centralizer Ai in A n L. Indeed L normalizes N and acts by the adjoint
representation on the Lie algebra of N. The representation space is the direct sum of eigenspaces
Y/3 of Ad(A n L), where f3 is a character of A n L. Since we assume R-rank L ̂  2, it follows that
each /? has a positive-dimension kernel. Hence each Y^ generates a subgroup N^ of N whose
centralizer in A n L is non-trivial. Since the subgroups Np generate N, the claim follows.

To complete the discussion of a\N x XQ, note that if a: Ni x XQ -^ R is constant for each
%, it is also constant on the group generated by the Ni. Applying the same argument to the
group Q = MAN, we finally conclude that a: Q x XQ —> R is a constant cocycle, and therefore
corresponds to a homomorphism Q —>• R. This completes the proof that (f) is surjective.

To prove (2) it suffices to show that when R is Abelian (j) is injective. Assume then that
71-1, 7T2: Q —> R are homomorphisms, and

f(qxo) + Ti-i (q) - f(xo) = ̂ (q) for /: XQ -^ R measurable.

Now choose a set B c X of positive measure on which / is bounded. If 71-1(9) — 7r^(q) is not
identically e, choose qo e Q such that (71-1 - ̂ (q^) -^ oo. Since Q leaves the finite measure
A invariant on Xo, for almost any XQ e B, we can find infinitely many positive n such that
qf} ' XQ G B. This clearly contradicts f\B is bounded, establishing injectivity of (/). D
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