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This paper presents two new approaches for finding the homogenized coefficients of 
multiscale elliptic PDEs. Standard approaches for computing the homogenized coefficients 
suffer from the so-called resonance error, originating from a mismatch between the true 
and the computational boundary conditions. Our new methods, based on solutions of 
parabolic and elliptic cell problems, result in an exponential decay of the resonance error.
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r é s u m é

Cette note présente deux nouvelles approches pour trouver les coefficients homogénéisés 
des EDP elliptiques multi-échelles. Les approches standard pour calculer les coefficients 
homogénéisés souffrent de ce que l’on appelle l’erreur de résonance, qui découle d’une 
inadéquation entre les vraies conditions aux limites et celles computationelles. Nos 
nouvelles méthodes, basées sur des solutions aux problèmes de cellules paraboliques et 
elliptiques, entraînent une décroissance exponentielle de l’erreur de résonance.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the numerical homogenization of multiscale elliptic partial differential equations (PDEs) of the form{−∇ · (aε(x)∇uε
)= f in � ⊂Rd

uε = 0 on ∂�,
(1)
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where aε ∈ [L∞(�)]d×d is symmetric, uniformly elliptic, and bounded, and ε � |�|1/d = O (1) is the wavelength of the small 
scale variations in the medium. A direct numerical approximation of uε by standard finite element/difference methods is 
prohibitively expensive, as the ε-scale variations need to be resolved on the whole computational domain �. Homoge-
nization theory aims at finding an effective coefficient a0 (or solution u0) such that −∇ · (a0(x)∇u0

) = f describes the 
coarse-scale behaviour of (1). The coefficient a0 (and hence the solution) is no more oscillatory, and a standard solver may 
be directly applied to the homogenized system once a0 is determined. Explicit representations for a0 are available only in 
few cases, such as periodic microstructures or stationary ergodic random materials. For example, when the medium is such 
that aε(x) = a(x/ε), and a is a K := [−1/2,1/2]d-periodic function, then a0 is given by

a0
i j = 1

|K |
∫
K

(
ei + ∇χ i(y)

)
· a(y)

(
e j + ∇χ j(y)

)
dy, (2)

where χ i is a K -periodic solution to the so-called corrector problem, see [6,9,13]:

−∇ ·
(

a(y)
(
∇χ i + ei

))
= 0 in K . (3)

In several situations of interest, e.g., when the period of a is not known or when a is quasi-periodic or stochastic, equations 
(2) and (3) have to be posed over the whole Rd . In this case, we write a0 = limR→+∞ a0,R , where

a0,R
i j = 1

|K R |
∫

K R

(
ei + ∇ψ i

R(y)
) · a(y)

(
e j + ∇ψ

j
R(y)

)
dy, (4)

the domain K R := [− R
2 , R

2

]d
, and ψ i

R solves the Dirichlet problem⎧⎨
⎩−∇ ·

(
a(y)

(
∇ψ i

R + ei

))
= 0 in K R

ψ i
R = 0 on ∂ K R .

(5)

In practice, the value of a0,R can be computed only for finite values of R , and an error occurs due to the mismatch on the 
boundary ∂ K R between the values of ψ i

R and χ i . This error will then propagate into the domain K R and deteriorate the 
accuracy of the approximation a0,R . It is well known that if a is K -periodic and R is not integer, then 

∥∥a0,R − a0
∥∥

F ≤ C R−1, 
where ‖·‖F denotes the Frobenius norm of a tensor, see [4,10]. A similar result exists also for stationary ergodic random 
coefficients, in both the continuous [8] and the discrete [12] settings. This first-order resonance error dominates all other 
discretization errors in modern multiscale methods and, therefore, better approximation techniques with reduced resonance 
errors are needed.

In order to reduce the resonance error, previous approaches improved the prefactor (but not the convergence rate) [15], 
or gave second-order rates in 1/R [7], or fourth-order in the asymptotic limit for large values of R [11]. Another strategy 
results in arbitrary orders in 1/R , but at the cost of solving a computationally expensive wave equation [5].

This paper, inspired by [14], presents two strategies based on parabolic and elliptic corrector problems that have expo-
nentially decaying boundary errors at a cost comparable to the one of solving the classical elliptic model.

2. New algorithms for computing the homogenized tensor

It can be seen that the computation of homogenized coefficients is linked to the average of oscillatory functions, as 
formula (4) shows. A naive averaging of a K -periodic function f over K R converges to the mean value 1

|K |
∫

K f (y)dy with a 
first-order accuracy in 1/R . To improve this accuracy to arbitrarily high rates, a set of smooth averaging filters can be used, 
see [11].

Definition 1. We say that a function μ : [−1/2, 1/2] 
→R+ belongs to the space Fq , q ≥ 1, if:

i) μ ∈ Cq([−1/2, 1/2]) ∩ W q+1,∞((−1/2, 1/2));
ii) μ(k)(−1/2) = μ(k)(1/2) = 0, ∀k ∈ {0, . . . ,q − 1};

iii)

1
2∫

− 1
2

μ (y) dy = 1.

For q = 0, we define μ ∈ F0 as μ(y) = 1[−1/2,1/2] , where 1I is the characteristic function on the interval I .
We say that a function μL : K L := [−L/2, L/2]d ⊂Rd →R+ , with L > 0, belongs to the space Fq(K L) if μL(y) =

1
Ld

∏d
i=1 μ 

( yi
L

)
, where μ ∈ Fq and yi is the coordinate along the i-th direction.
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2.1. A parabolic approach

In this section, we introduce a numerical homogenization scheme based on the solution of parabolic differential equa-
tions, as proposed in the discrete setting [14], since the parabolic Green’s function decays exponentially in space. This yields 
to a reduced influence of mismatching boundary values on the corrector functions. The new cell problems are defined by⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂ui
R

∂t
− ∇ · (a(y)∇ui

R) = 0 in K R × (0,+∞)

ui
R = 0 on ∂ K R × (0,+∞)

ui
R(y,0) = ∇ · (a(y)ei) in K R .

(6)

Then, the homogenized coefficient is approximated by

a0,R,L,T
i j :=

∫
K L

ei · a(y)e jμL(y)dy − 2

T∫
0

∫
K L

ui
R(y, t)u j

R(y, t)μL(y)dy dt. (7)

As it will be shown in Section 3, the T parameter is crucial to obtain an exponential convergence of the resonance error.

2.2. A modified elliptic approach

The second approach that we propose can be viewed as adding a correction term to the elliptic cell problem (5) to 
reduce the boundary effect in the interior region K L . The new elliptic cell problems are given by⎧⎨

⎩
−∇ ·

(
a(y)

(
∇χ i

R,T ,N + ei

))
+ [e−AN T gi](y) = 0 in K R

χ i
R,T ,N = 0 on ∂ K R ,

(8)

where

[e−AN T gi](y) :=
N∑

k=1

e−λk T g j
kϕk(y),

and {λk, ϕk}N
k=1 are the first N dominant eigenvalues and eigenfunctions of the operator A := −∇ · (a(·)∇), equipped with 

Dirichlet boundary conditions. Moreover, gi(y) := ∇ · a(y)ei , and gi
k := 〈gi, ϕk〉L2(K R ) . The homogenized coefficient can then 

be approximated by

b0,R,L,T ,N
ij =

∫
K L

(
aij(y) +

d∑
k=1

aik(y)∂kχ
j

R,T ,N(y)

)
μL(y)dy. (9)

It is worth mentioning that the correction term [e−AN T gi](y) is an approximation to [e−AT gi](y), which corresponds to the 
solution to the parabolic PDE (6) at time T . However, due to the exponential decay of the semigroup e−AT with respect to 
the eigenvalues of the operator A, one can approximate this correction term with exponential accuracy by computing few 
dominant eigenmodes of A, instead of solving the full parabolic PDE (6).

3. Main results

3.1. Equivalence between the standard elliptic and the parabolic formulations

In this section, we give a proof of the equivalence between elliptic and parabolic equations, thus legitimating the use of 
(7) and (9), in place of (4), as upscaling model. In the statement of the results, we will refer to the set M(α, β, �), which 
consists of symmetric matrices a ∈ [L∞(�)]d×d such that α|ζ |2 ≤ ζ · a(y)ζ ≤ β|ζ |2, ∀ζ ∈Rd , a.e. y ∈ � ⊂Rd . We will also 
use the notation

X0(R+,�) :=
{

v ∈ L2 (R+; H1
0(�)

)
, ∂t v ∈ L2 (R+; H−1(�)

)}
.

Theorem 1. Let a ∈ M(α, β, K R) and let ∇ · (aek) ∈ L2(K R), for k = 1, . . . , d. Let uk
R ∈ X0(R+, K R) be the unique weak solution to 

(6) and ψk ∈ H1(K R) be the unique weak solution to (5). Then, for 1 ≤ j, k ≤ d the following identities hold
R 0
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ψk
R(y) =

+∞∫
0

uk
R(y, t)dt, (10)

1

2

∫
K R

∇ψk
R(y) · a(y)∇ψ

j
R(y)dy =

+∞∫
0

∫
K R

uk
R(y, t)u j

R(y, t)dy dt. (11)

Proof. We reformulate problem (6) as the abstract Cauchy problem in L2(K R)⎧⎪⎨
⎪⎩

duk
R

dt
+ Auk

R = 0

uk
R(0) = gk, gk(y) = ∇ · (a(y)ek) in L2(K R).

Here, the operator A : H1
0(K R) → H−1(K R) is defined as Au := −∇ · (a∇u). Then, uk

R(t) = e−t A gk . We know that σ(A), 
the spectrum of A, is contained in an open sectorial domain α + Sω , where α ∈R, α > 0 and

Sω =
{

z ∈ C : |arg z| < ω, 0 < ω <
π
2

}
.

Then, the Dunford integral representation

e−t A = 1

2πi

∫
�

e−tz(zI − A)−1 dz

holds, where � is an infinite curve lying in ρ(A) :=C \ σ(A) and surrounding σ(A) counterclockwise. Then, integrating in 
time, we obtain:

+∞∫
0

uk
R(t)dt =

+∞∫
0

1

2πi

∫
�

e−tz (zI − A)−1 gk dz dt

= 1

2πi

∫
�

+∞∫
0

e−tz dt (zI − A)−1 gk dz

= 1

2πi

∫
�

1

z
(zI − A)−1 gk dz = A−1 gk.

The first equality is given by the Dunford integral formula. The second equality is obtained by Fubini’s theorem. The third 
equality is true because the double integral is bounded, limt→+∞ e−tz = 0 since Re(z) > 0 on �. The last equality follows 
from the fact that the function f (z) = 1/z is holomorphic in the interior of α + Sω . Since A is an isomorphism and ψk

R is 
the weak solution to Aψk

R = gk , we have that A−1 gk = ψk
R and (10) is proved.

To prove (11), we write the weak formulation of (5) and choose ψ j
R = ∫ +∞

0 u j
R dt as test function:∫

K R

∇ψ
j
R · a(y)∇ψk

R dy =
(
∇ · (aek) ,ψ

j
R

)
L2(K R )

=
+∞∫
0

(
∇ · (aek) , u j

R

)
L2(K R )

dt.

Using the semigroup property of e−t A and the self-adjointness of A, we obtain

∫
K R

∇ψk
R(y) · a(y)∇ψ

j
R(y)dy =

+∞∫
0

(
uk

R(·, t/2), u j
R(·, t/2)

)
L2(K R )

dt,

and conclude the proof by the change of variable t/2 
→ t . �
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By the symmetry of a and the weak form of (5), we can rewrite (4) as:

a0,R
i j = 1

|K R |
∫

K R

ei · a(y)e j dy − 1

|K R |
∫

K R

∇ψ i
R(y) · a(y)∇ψ

j
R(y)dy.

Theorem 1 provides an equivalent expression, based on the solutions ui
R to the parabolic cell problems (6) over infinite time 

domain, for the second integral in the above expression. This result is summarized as a corollary below.

Corollary 1. Let a satisfy the assumptions of Theorem 1, a0,R be defined by (4) and a0,R,R,+∞ be defined by (7) with μR ∈ F0(K R)

(note that L = R). Then,

a0,R,R,+∞ = a0,R .

Hence, using the classical result stated in Section 1, there exist a constant C > 0 independent of R such that

‖a0,R,R,+∞ − a0‖F ≤ C

R
.

From this analysis, we can immediately see that, when T = +∞, the parabolic approach does not result in any gain in 
comparison to the standard cell problem (5), as the two strategies are equivalent and have first-order convergence rates in 
1/R .

3.2. Exponential convergence of the parabolic approach (7)

The following Theorem 2 shows that an exponential convergence rate for the boundary error can be attained when 
the parameter T is sufficiently small and an appropriate filter is used, as fully proved in [2]. If the coefficients aij(y) are 
K -periodic and (6) is solved with periodic boundary conditions and integer R , then Theorem 1 still holds true by substituting 
the functions ψ i

R in (10) and (11) with χ j defined in (3). Thus, it is possible to find an equivalent formula for the exact 
homogenized coefficients, which is based on a parabolic model with periodic boundary conditions. The proof of Theorem 2 is 
based on such an equivalence result and on a decomposition of the resonance error in several terms, respectively accounting 
for the averaging error of periodic functions, the boundary mismatch between the two problems and the truncation in time.

Theorem 2. Let a ∈ M(α, β, K R) be K -periodic, ∇ · (aei) ∈ L2(K R) for any i = 1, . . . , d, μL ∈ Fq(K L), for 0 < L < �R�, R > 1 and 
T > 0. Then,

‖a0,R,L,T − a0‖F ≤ C

⎛
⎝L−(q+1) + e−απ2 T +

(
R√
T

+ 1

)d−1 e−c |R−L|2
T

|R − L| + T d+1

|R − L|2d
e−2c |R−L|2

T

⎞
⎠ ,

where C > 0 is a constant independent of R, L, T and c = 1/4β . Moreover, the choices L = (1 − ko)R and T = kT R, with 0 < ko < 1
and kT = ko

π
√

4βα
result in the following convergence rate in terms of R:

‖a0,R,L,T − a0‖F ≤ C
[

R−(q+1) + γ (R)e−ζ R
]
, (12)

with

ζ = πko

2
√

β/α
and γ (R) = 1 +

(√
R + 1

)d−1

R
+ e

− πko
2
√

β/α
R

Rd−1
.

The term L−(q+1) is the averaging error induced by using a filter function μL ∈ Fq(K L), and it can be made arbitrarily 
small by taking higher values for q. The term e−απ2 T originates from using a finite T for the parabolic cell problem (6). The 
remaining terms are the errors due to the boundary conditions, which decay exponentially provided T < |R − L|2. Moreover, 
the quasi-optimal scaling of L and T in terms of R are found by equating the exponents of the truncation and boundary 
errors. Note that the bound (12) is similar to the one obtained in [11], except for the term T −2, which accounts for the 
effect of using a biased model equation.
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3.3. Exponential convergence of the modified elliptic approach (9)

The boundary error associated with formula (9) relies on how the parameter T is tuned, similarly to the parabolic case. If 
T = +∞, then the term e−AN T g j vanishes, and the standard Dirichlet cell problem (5) is recovered. Hence, no improvement 
over the first-order convergence rate will be observed. In the following theorem, we specify the precise exponential upper 
bound for the modified elliptic approach. The proof is based on the equality lim

N→∞χ i
R,T ,N = ∫ T

0 ui
R dt and it is developed in 

[3].

Theorem 3. Let a ∈ M(α, β, K R) be K -periodic, ∇ · (aei) ∈ L2(K R) for any i = 1, . . . , d, μL ∈ Fq(K L), for 0 < L < �R�, R > 1 and 
T > 0. Then,

‖b0,R,L,T ,N − a0‖F ≤ C

(√
T L−(q+1) + e− απ2

2 T + Rd−1T
5−d

2

|R − L|3 e−c |R−L|2
T + R2

Ld/2
e− Cd N2/d T

R2

)
,

where C > 0 is a constant independent of R, L and T but may depend on a and μ, c = 1/4β and cd > 0 is a constant (independent of 

R, T , L) that may depend on the dimension d, α, and β . Moreover, the choices L = (1 − ko)R, T = kT R and N =
⌊(

απ2

2cd

)d/2
Rd

⌋
, with 

0 < ko < 1 and kT = ko
π
√

2βα
, result in the following convergence rate in terms of R:

‖b0,R,L,T ,N − a0‖F ≤ C
[

R−q− 1
2 + γ (R)e−ζ R

]
,

with

ζ = πko√
8β/α

and γ (R) = R2−d/2 + R
d−3

2 + 1.

The upper bounds in Theorem 3 have a character similar to those in Theorem 2, except the error e− cd N2/d T

R2 , which comes 
from the spectral truncation. In particular, Theorem 3 shows that an exponential convergence (for the spectral error) will 
be achieved if the number of modes scales as N = O (Rd) and T = O (R). In practice, small values of R , e.g., R = 10, are 
preferred for simulations. This makes the elliptic approach very favourable both from the point of view of calculation and 
accuracy.

4. Numerical validation

Here, we show the results of numerical tests performed using a two-dimensional periodic tensor for validating the 
convergence rates of Theorems 2 and 3 (note that both theorems assume the periodicity of the coefficient). In particular, we 
consider the following 2 × 2 tensor

a(y) =
⎛
⎜⎝
(

3 + 2
√

17
8 sin(2πy1)+9

)−1
0

0
(

1
20 + 2

√
17

8 cos(2πy2)+9

)−1

⎞
⎟⎠ . (13)

We compute numerical approximations of a0,R,L,T and b0,R,L,T ,N for many values of R and with the optimal values for L
and T (as expressed in Theorems 2 and 3). The error between the numerical approximations and the exact value a0 is then 
plotted against R , see Fig. 1. The reference value for a0 is computed by solving the standard elliptic corrector problems (3)
with R = 1, periodic boundary conditions, and by using formula (2). Numerical approximations for the parabolic formulation 
(6) are computed by a P1-Finite Elements discretization with mesh size h = 1/100 in space, while a Rosenbrock formula of 
order 2 with tolerance tol = 10−5 and adaptive stepping scheme is used in time. For the modified elliptic approach, we used 
a mesh size h = 1/160 and N = 60 eigenmodes for approximating the right-hand side e−AN T g j , in disregard of the size R .

The decay of the overall upscaling error is pictured in Fig. 1. In particular, for relatively low to moderate values of R , e.g., 
1 < R ≤ 10, the exponentially decaying boundary error is negligible in comparison to the averaging error when q = 1 and 
q = 3.

Besides the improved convergence rate, it is desirable that the computational cost of the proposed methods is comparable 
to the one of the classical model, which equals the cost of solving d linear systems. The latter can be solved by different 
numerical schemes, from LU decomposition, more suitable for smaller and two dimensional problems, to iterative methods 
like GMRES or CG, which are more indicated for large systems coming from three-dimensional models. The first of the two 
proposed approaches, the parabolic model, can be efficiently solved by an stabilized explicit ODE solver (such as RKC2 [16]
or ROCK4 [1]), whose algorithms perform cheap matrix–vector multiplications iteratively. The number of iterations depends 
on the number of time steps and stages, but not on the dimension of the system. Lastly, the modified elliptic method 
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Fig. 1. Modelling error for the homogenization of the multiscale coefficients (13). Modelling parameters are k0 = 1/2 and kT = ko
π
√

4βα
.

has the same cost as the classical model, with the additional expense of accurately reconstructing the modified right-hand 
side by eigenfunction decomposition of the operator A. The computation of the eigenmodes can be done, for instance, by 
Krylov–Schur decomposition. A full analysis of the computational cost for the two methods will be addressed in future 
studies.
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