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r é s u m é

Nous construisons un exemple d’un ensemble combinatoirement grand, mais de mesure 
zéro.

Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

We will work in the space 2ω equipped with standard topology and measure. More specifically, the topology is generated 
by basic open sets of the form [s] = {x ∈ 2ω : s ⊂ x} for s ∈ 2a , a ∈ ω<ω . The measure is the standard product measure such 
that μ([s]) = 2−|dom(s)|; let N be the collection of all measure-zero sets.

Measure-zero sets in 2ω admit the following representation (see Lemma 4):
X ∈N iff and only if there exists a sequence {Fn : n ∈ ω} such that

(1) Fn ⊆ 2n for n ∈ ω,

(2)
∑

n∈ω

|Fn|
2n

< ∞,

(3) X ⊆ {x ∈ 2ω : ∃∞n x�n ∈ Fn}.

The main drawback of this representation is that sets Fn have overlapping domains. The following definitions from [1]
and [3] offer a refinement.
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Definition 1.

(1) A set X ⊆ 2ω is small (X ∈ S) if there exists a sequence {In, Jn : n ∈ ω} such that

(a) In ∈ [ω]<ℵ0 for n ∈ ω,
(b) In ∩ Im = ∅ for n 
= m,
(c) Jn ⊆ 2In for n ∈ ω,

(d)
∑

n∈ω

| Jn|
2|In| < ∞

(e) X ⊆ {x ∈ 2ω : ∃∞n x�In ∈ Jn}

Without loss of generality, we can assume that {In : n ∈ ω} is a partition of ω into finite sets.
(2) We say that X is small� (X ∈ S�) if, in addition, sets In are disjoint intervals, that is, if there exists a strictly increasing 

sequence of integers {kn : n ∈ ω} such that In = [kn, kn+1) for each n.

Let (In, Jn)n∈ω denote the set {x ∈ 2ω : ∃∞n x�n ∈ Jn}.

It is clear that S� ⊆ S ⊆N .
Small sets are useful because of their combinatorial simplicity. To test that x ∈ X ∈ S the real x must pass infinitely many 

independent tests as in Borel–Cantelli’s lemma. In section 3 we will show that various structurally simple measure-zero sets 
are small.

Definition 2. For families of sets A, B, let A ⊕B be

{X : ∃a ∈ A ∃b ∈ B (X ⊂ a ∪ b)}

Clearly, if J is an ideal then J ⊕J =J . Likewise, A ∪ (A ⊕A) ∪ (A ⊕A ⊕A) ∪ . . . is an ideal for any A.

Theorem 3. [1] S� ⊕ S� = S ⊕ S =N =N ⊕N .

The main result of this paper is to show that the above result is the best possible, that is, S� � S � N . It was known 
([1]) that S� � N .

2. Preliminaries

To make the paper complete and self contained we present a review of known results.

Lemma 4. Suppose that X ⊂ 2ω . X has measure zero iff and only if there exists a sequence {Fn : n ∈ ω} such that

(1) Fn ⊆ 2n for n ∈ ω,

(2)
∑

n∈ω

|Fn|
2n

< ∞,

(3) X ⊆ {x ∈ 2ω : ∃∞n x�n ∈ Fn}.

Proof. ←− Note that {x ∈ 2ω : ∃∞n x�n ∈ Fn} = ⋂
m∈ω

⋃
n≥m{x ∈ 2ω : x�n ∈ Fn}. Now,

μ

(⋃
n≥m

{x ∈ 2ω : x�n ∈ Fn}
)

≤
∑
n≥m

μ
({x ∈ 2ω : x�n ∈ Fn}

) ≤
∑
n≥m

|Fn|
2n

−→ 0.

−→ If X has measure zero, then there exists a sequence of open sets {Un : n ∈ ω} such that

(1) μ(Un) ≤ 2−n , for each n,
(2) X ⊆ ⋂

n∈ω Un .

Find a sequence of {sn
m : n, m ∈ ω} such that

(1) sn
m ∈ 2<ω ,

(2) [sn
m] ∩ [sn

k ] = ∅ when k 
= m,
(3) Un = ⋃

m∈ω[sn
m].
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For k ∈ ω let Fk = {sn
m : n, m ∈ ω, |sn

m| = k}. Note that X ⊆ {x ∈ 2ω : ∃∞k x�k ∈ Fk} and that 
∑

k∈ω

|Fk|
2k

≤ ∑
n∈ω μ(Un)

≤ 1. �
Theorem 5. [1] S� ⊕ S� = S ⊕ S =N .

Proof. Since N is an ideal, N ⊕N = N . Consequently, it suffices to show that S� ⊕ S� = N . The following theorem gives 
the required decomposition.

Theorem 6 ([1]). Suppose that X ⊆ 2ω is a measure-zero set. Then there exist sequences 〈nk, mk : k ∈ ω〉 and 〈 Jk, J ′
k : k ∈ ω〉 such 

that

(1) nk < mk < nk+1 for all k ∈ ω,
(2) Jk ⊆ 2[nk,nk+1) , J ′

k ⊆ 2[mk,mk+1) for k ∈ ω,
(3) the sets 

([nk,nk+1), Jk
)

k∈ω
and 

([mk,mk+1), J ′
k

)
k∈ω

are small� , and

(4) X ⊆ ([nk,nk+1), Jk
)

k∈ω
∪ ([mk,mk+1), J ′

k

)
k∈ω

.

In particular, every null set is a union of two small� sets.

Proof. Let X ⊆ 2ω be a null set.
We can assume that X ⊆ {

x ∈ 2ω : ∃∞n x�n ∈ Fn
}

for some sequence 〈Fn : n ∈ ω〉 satisfying conditions of Lemma 4.
Fix a sequence of positive reals 〈εk : k ∈ ω〉 such that 

∑∞
k=0 εk < ∞.

Define two sequences 〈nk, mk : k ∈ ω〉 as follows: n0 = 0,

mk = min

⎧⎨
⎩ j > nk : 2nk ·

∞∑
i= j

|Fi |
2i

< εk

⎫⎬
⎭ ,

and

nk+1 = min

⎧⎨
⎩ j > mk : 2mk ·

∞∑
i= j

|Fi |
2i

< εk

⎫⎬
⎭ for k ∈ ω.

Let Ik = [nk, nk+1) and I ′k = [mk, mk+1) for k ∈ ω. Define

s ∈ Jk ⇐⇒ s ∈ 2Ik & ∃i ∈ [mk,nk+1) ∃t ∈ Fi s�dom(t) ∩ dom(s) = t�dom(t) ∩ dom(s).

Similarly

s ∈ J ′
k ⇐⇒ s ∈ 2I ′k & ∃i ∈ [nk+1,mk+1) ∃t ∈ Fi s�dom(t) ∩ dom(s) = t�dom(t) ∩ dom(s).

It remains to show that (Ik, Jk)k∈ω and (I ′k, J
′
k)k∈ω are small sets and that their union covers X .

Consider the set (Ik, Jk)k∈ω . Notice that for k ∈ ω

| Jk|
2Ik

≤ 2nk ·
nk+1∑
i=mk

|Fi |
2i

≤ εk.

Since 
∑∞

n=1 εn < ∞ this shows that the set (In, Jn)n∈ω is null. An analogous argument shows that (I ′k, J
′
k)k∈ω is null. Finally, 

we show that

X ⊆ (In, Jn)n∈ω ∪ (I ′n, J ′
n)n∈ω.

Suppose that x ∈ X and let Z = {n ∈ ω : x�n ∈ Fn}. By the choice of Fn ’s, the set Z is infinite. Therefore, one of the sets,

Z ∩
⋃
k∈ω

[mk,nk+1) or Z ∩
⋃
k∈ω

[nk+1,mk+1),

is infinite. Without loss of generality, we can assume that it is the first one. It follows that x ∈ (In, Jn)n∈ω because, if x�n ∈ Fn

and n ∈ [mk, nk+1), then by the definition there is t ∈ Jk such that x�[nk, nk+1) = t . �
Now lets turn attention to the family of small sets S . Observe that the representation used in the definition of small sets 

is not unique. In particular, Lemma 7 follows easily.
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Lemma 7. Suppose that (In, Jn)n∈ω is a small set and {ak : k ∈ ω} is a partition of ω into finite sets. For n ∈ ω, define I ′n = ⋃
l∈an

Il

and J ′
n = {s ∈ 2I ′n : ∃l ∈ an ∃t ∈ Jl s�Il = t�Il}. Then (In, Jn)n∈ω = (I ′n, J ′

n)n∈ω .

Lemma 8. Suppose that (In, Jn)n∈ω and (I ′n, J ′
n)n∈ω are two small sets. If {In : n ∈ ω} is a finer partition than {I ′n : n ∈ ω}, then 

(In, Jn)n∈ω ∪ (I ′n, J ′
n)n∈ω is a small set.

Proof. Define I ′′n = I ′n for n ∈ ω and let

J ′′
n = J ′

n ∪
{

s ∈ 2I ′n : ∃k ∃s ∈ Jk(Ik ⊆ I ′n & s�Ik ∈ Jk)
}

.

It is easy to see that (In, Jn)n∈ω ∪ (In, Jn)n∈ω = (I ′′n , J ′′
n )n∈ω . �

Since members of S do not seem to form an ideal, we are interested in characterizing instances when a union of two 
sets in S is in S .

Theorem 9. Suppose that (In, Jn)n∈ω and (I ′n, J ′
n)n∈ω are two small sets and (In, Jn)n∈ω ⊆ (I ′n, J ′

n)n∈ω . Then there exists a set 
(I ′′n , J ′′

n )n∈ω such that (In, Jn)n∈ω ⊆ (I ′′n , J ′′
n )n∈ω ⊆ (I ′n, J ′

n)n∈ω and such that the partition {I ′′n : n ∈ ω} is finer than both {In : n ∈ ω}
and {I ′n : n ∈ ω}.

Proof. Let start with the following:

Lemma 10. Suppose that (In, Jn)n∈ω and (I ′n, J ′
n)n∈ω are two small sets. The following conditions are equivalent:

(1) (In, Jn)n∈ω ⊆ (I ′n, J ′
n)n∈ω ,

(2) for all but finitely many n ∈ ω and for every s ∈ Jn, there exist m ∈ ω and t ∈ J ′
m such that

(a) In ∩ I ′m 
= ∅,
(b) s�(In ∩ I ′m) = t�(In ∩ I ′m),
(c) ∀u ∈ 2I ′m\In t�(In ∩ I ′m)�u ∈ J ′

m.

Proof. (2) → (1) Suppose that x ∈ (In, Jn)n∈ω . Then, for infinitely many n, x�In ∈ Jn . For all but finitely many of those 
n′s, conditions (b) and (c) of clause (2) guarantee that, for some m such that In ∩ I ′m 
= ∅, x�(In ∩ I ′m)�x�(I ′m \ In) ∈ J ′

m . 
Consequently, x ∈ (I ′n, J ′

n)n∈ω .
¬(2) → ¬(1) Suppose that condition (2) fails. Then there exists an infinite set Z ⊆ ω such that, for each n ∈ Z , there is 

sn ∈ Jn such that, for every m such that In ∩ I ′m 
= ∅, exactly one of the following conditions holds:

(1) sn�(In ∩ I ′m) 
= t�(In ∩ I ′m) for every t ∈ J ′
m ,

(2) there is t ∈ J ′
m such that sn�(In ∩ I ′m) = t�(In ∩ I ′m) but for some u = un,m ∈ 2I ′m\In , t�(In ∩ I ′m)�un,m /∈ J ′

m .

By thinning out the set Z , we can assume that no set I ′m intersects two distinct sets In for n ∈ Z . Also, for each m ∈ ω, fix 
tm ∈ 2I ′m such that tm /∈ J ′

m .
Let x ∈ 2ω be defined as follows:

x(l) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sn(l) n ∈ Z and l ∈ In and un,m is not defined

0 if n ∈ Z and l ∈ I ′m \ In and In ∩ Im 
= ∅ and un,m is not defined

sn(l) if n ∈ Z and l ∈ In ∩ I ′m and un,m is defined

un,m(l) if n ∈ Z and l ∈ I ′m \ In and In ∩ Im 
= ∅ and un,m is defined

tm(l) if l ∈ Im and Im ∩ In = ∅ for all n ∈ Z

.

Observe that the first two clauses define x�I ′m when I ′m ∩ In 
= ∅ for some n ∈ Z and un,m is undefined, the next two 
clauses define x�I ′m when I ′m ∩ In 
= ∅ for some n ∈ Z and un,m is defined, and finally the last clause defines x�I ′m when 
I ′m ∩ In = ∅ for all n ∈ Z . It is easy to see that these cases are mutually exclusive and that x ∈ (In, Jn)n∈ω since x�In = sn ∈ Jn

for n ∈ Z . Finally, note that x /∈ (I ′n, J ′
n)n∈ω , since by the choice of un,m (or property of sn) x�I ′m /∈ J ′

m for all m. �
Suppose that (In, Jn)n∈ω and (I ′n, J ′

n)n∈ω are two small sets and (In, Jn)n∈ω ⊆ (I ′n, J ′
n)n∈ω . Consider the partition consist-

ing of sets {In ∩ I ′m : n, m ∈ ω}. For each non-empty set In ∩ I ′m , we define J ′′
n,m ⊆ 2In∩I ′m as follows:

s ∈ J ′′
n,m if there is t ∈ J ′

m such that s�(In ∩ I ′m) = t�(In ∩ I ′m) and for all u ∈ 2I ′m\In t�(In ∩ I ′m)�u ∈ J ′
m .

Observe that the definition of J ′′
n,m does not depend on Jn .
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Note that∑
m,n∈ω,In∩I ′m 
=∅

| J ′′
m,n|

2|In∩I ′m| =
∑
m∈ω

∑
n∈ω,In∩I ′m 
=∅

| J ′′
m,n|

2|In∩I ′m| =

∑
m∈ω

∑
n∈ω,In∩I ′m 
=∅

| J ′′
n,m| · 2|I ′m\In|

2|I ′′k | · 2|I ′m\In| ≤
∑
m∈ω

| J ′
m|

2|I ′m| < ∞.

To finish the proof, observe that, for x ∈ 2ω , whenever x�(In ∩ I ′m) ∈ J ′′
n,m , then x�I ′m ∈ J ′

m . Similarly, if x�In ∈ Jn , then by 
Lemma 10 there is m such that x�(In ∩ I ′m) ∈ J ′′

m,n It follows that (In, Jn)n∈ω ⊆ (In,m, J ′′
n,m)n,m∈ω ⊆ (I ′m, J ′

m)m∈ω . �
3. When null sets are small?

Small sets are combinatorially simple and this is the main motivation to study them and investigating when measure-
zero sets are small.

Theorem 11. Suppose that X ⊆ 2ω is a measure-zero set. Then X is small if

(1) |X) < 2ℵ0 ,
(2) X can be covered by a countable family of compact measure zero sets,
(3) X is a Menger set, that is, no continuous image of X into ωω is a dominating family.

Proof. Suppose that X has measure zero and use Theorem 6 to find small sets (Ik, Jk)k∈ω and (I ′k, J
′
k)k∈ω such that

(1) X ⊆ (Ik, Jk)k∈ω ∪ (I ′k, J
′
k)k∈ω ,

(2) Ik ⊆ I ′k−1 ∪ I ′k and I ′k ⊆ Ik ∪ Ik+1 for each k > 0.

For each x ∈ X let Zx = {k : x�Ik ∈ Jk}. Note that x � Zx is a continuous mapping from X into [ω]ω (which is homeomor-
phic to ωω .)

Definition 12. A family A ⊆ [ω]ω has property Q if

∀Z ∈ [ω]ω ∃A ∈ A A ⊆ Z .

Lemma 13. If {Zx : x ∈ X} does not have property Q then X is small.

Proof. Suppose that Z witnesses that {Zx : x ∈ X} does not have property Q, that is that Zx \ Z ∈ [ω]ω for every x ∈ X . 
Let z0 < z1 < z2 < . . . be an increasing enumeration of Z . Note that, for every x ∈ X , if x ∈ (Ik, Jk)k∈ω , then x ∈ (Ik, Jk)k/∈Z . 
Consequently, X ⊆ (Ik, Jk)k/∈Z ∪ (I ′k, J

′
k)k∈ω . We will show that this set is small.

Let I ′′k = ⋃
j∈[zk,zk+1) I ′j , and use Lemma 7 to find { J ′′

k : k ∈ ω} such that (I ′k, J
′
k)k∈ω = (I ′′k , J ′′

k )k∈ω . Now Lemma 8 completes 
the proof, as the partition {Ik : k /∈ Z} is finer than partition {I ′′k : k ∈ ω}. �

To finish the proof, note that no family of size < 2ℵ0 has property Q because there is an almost disjoint family of size 
continuum. The remaining two cases follow from the fact that every family of subsets of ω with property Q is dominat-
ing. �

The following result shows that measure-zero sets endowed with sum structure are small as well.

Theorem 14 ([2], [4]). Let F be a filter on ω. Then if F is a measurable, then F can be covered by a small set.

Proof. Let F be a measurable filter on ω identified with a subset of 2ω via characteristic functions of its elements. By 
virtue of 0-1 law, this means that F is of measure zero (measure one case is clearly impossible). Fix a sequence {εn : n ∈ ω}
of positive reals such that 

∑∞
k=1 2kεk < ∞.

Since F has measure zero, we can find sequences 〈nk, mk : k ∈ ω〉 and 〈 Jk, J ′
k : k ∈ ω〉 as in Theorem 6 such that F ⊆([nk,nk+1), Jk

)
k∈ω

∪ ([mk,mk+1), J ′
k

)
k∈ω

.
If F ⊂ ([nk, nk+1), Jk)k∈ω or if F ⊂ ([mk, mk+1), J ′

k)k∈ω , then we are done, since both sets are small.
Therefore, assume that neither set covers F .
Define for k ∈ ω

Sk = {s ∈ 2[nk,mk) : s has at least 2nk+1−mk−k extensions inside Jk} .
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It is easy to check that

|Sn|
2mk−nk

≤ 2kεk

holds for k ∈ ω.
Similarly, if we define

S ′
k = {s ∈ 2[nk,mm) : s has at least 2nk−mk−1−k extensions inside J ′

k}
then, by the same argument, we have that

|S ′
k|

2mk−nk
≤ 2kεk

for all k ∈ ω.
Consider the set ([nk, mk), Sk ∪ S ′

k)k∈ω . This set is small since 
∑∞

k=1 |Sk ∪ S ′
k|2nk−mk ≤ ∑∞

k=0 2kεk < ∞.
Now we have three small sets

(1) H1 = ([nk, nk+1), Jk)k∈ω ,
(2) H2 = ([mk, mk+1), J ′

k)k∈ω ,
(3) H3 = ([nk, mk), Sk ∪ S ′

k)k∈ω .

If F ⊂ H2 ∪ H3, we are done since, by Lemma 8, H2 ∪ H3 is a small set. Therefore, assume that there exists X ∈F such that 
X /∈ H2 ∪ H3. Since F ⊂ H1 ∪ H2, we get that X ∈ H1. Let {ku : u ∈ ω} be an increasing sequence enumerating set

{k ∈ ω : X�[nk,nk+1) ∈ Jk}.
Define for u ∈ ω

Īu = [mku+1,nku+1) and

J̄ u = {s ∈ 2Iu : X�[nku ,mku+1)
�s ∈ Jku or s� X�[nku+1,mku+1) ∈ J ′

ku+1} .

By the choice of X , X�[nku , nku+1) ∈ J̄ku but X�[nku , nku+1) /∈ Sku ∪ S ′
ku

for sufficiently large u ∈ ω. Thus | J̄ u |2−| Īu | ≤ 2−u for 
all but finitely many u ∈ ω. Hence the set H4 = ( Īu, J̄ u)u∈ω is small.

Lemma 15. F ⊆ H4 .

Proof. Suppose that F is not contained in H4 and let Y ∈F \ H4.
Define Z ∈ 2ω as follows

Z(n) =
{

Y (n) if n ∈ ⋃
u∈ω Īu

X(n) otherwise
for n ∈ ω .

Notice that Z ∈F since X ∩ Y ⊆ Z . We will show that Z /∈ H1 ∪ H2, which gives a contradiction.
Consider an interval Im = [nm, nm+1). It suffices to show that Z�Im /∈ Jm when m is large enough.
If m 
= ku for every u ∈ ω, then Im ∩ ⋃

u∈ω Īu = ∅ and Z�Im = X�Im /∈ Jm .
On the other hand, if m = ku for some u ∈ ω then X�Im ∈ J̇m , but by the choice of X , Z�[nku , mku ) = X�[nku , mku ) has 

only few extensions inside Jnku
(since X /∈ H3). More specifically, if Z�Im ∈ Jm then Z�Iu has to be an element of J̄ u . But 

this is impossible since Z�Iu = Y �Iu /∈ J̄ u for sufficiently large u ∈ ω. The proof that Z /∈ H2 is the same and uses the 
second clause in the definition of set H4. �
4. Small sets versus measure-zero sets

In this section, we will prove the main result.

Theorem 16. There exists a null set which is not small, that is S � N .

Proof. We will use the following.

Lemma 17. For every ε > 0 and sufficiently large n ∈ ω, there exists a set A ⊂ 2n such that 
|A|
2n

< ε and, for every u ⊂ n such that 
n ≤ |u| ≤ 3n

, and B0 ⊂ 2u and B1 ⊂ 2n\u such that 
|B0| ≥ 1

and 
|B1| ≥ 1

, we have (B0 × B1) ∩ A 
= ∅.

4 4 2|u| 2 2|n\u| 2
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Proof. The key case is when ε is very small and sets B0, B1 have relative measure approximately 
1

2
. In such a case, 

B0 × B2 has relative measure 
1

4
, yet it intersects A. Fix large n ∈ ω and choose A ⊂ 2n randomly. That is, for each s ∈ 2n , 

the probability Prob(s ∈ A) = ε and for s, s′ ∈ 2n , events s ∈ A and s′ ∈ A are independent. It is well known that, for large 
enough n, the set constructed this way will have measure ε (with negligible error).

Fix n/4 ≤ |u| ≤ 3n/4 and let

Bu =
{
(B0, B1) : B0 ⊂ 2u, B1 ⊂ 2n\u and

|B0|
2|u| ,

|B1|
2|n\u| ≥ 1

2

}
.

Note that |Bu | ≤ 22|u|+2|n\u| ≤ 22
3n
4 +1

.
For (B0, B1) ∈ Bu , Prob((B0 × B1) ∩ A = ∅) = (1 − ε)|B0×B1| ≤ (1 − ε)2n−2

. Consequently,

Prob(∃(B0, B1) ∈ Bu (B0 × B1) ∩ A = ∅) ≤ |Bu|(1 − ε)2n−2 ≤ 22
3n
4 +1

(1 − ε)2n−2
.

Finally, since we have at most 2n possible sets u,

Prob(∃u ∃(B0, B1) ∈ Bu (B0 × B1) ∩ A = ∅) ≤
2n|Bu|(1 − ε)2n−2 ≤ 22

3n
4 +n+1(1 − ε)2n−2 ≤ 22

7n
8

(1 − ε)2n−2 ≤

22
7n
8

(1 − ε)
1
ε ε2n−2 ≤ 22

7n
8

2ε2n−2 −→ 0 as n → ∞.

Therefore, there is a non-zero probability that a randomly chosen set A has the required properties. In particular, such a set 
must exist. �

Let {k0
n, k1

n : n ∈ ω} be two sequences defined as k0
n = n(n + 1) and k1

n = n2 for n > 0.
Let I0

n = [k0
n, k0

n+1) and I1
n = [k1

n, k1
n+1) for n ∈ ω. Observe that the sequences are selected such that

(1) |I0
n | = 2n + 2 and |I1

n | = 2n + 1 for n ∈ ω,

(2) I0
n ⊂ I1

n ∪ I1
n+1 for n > 0,

(3) I1
n ⊂ I0

n−1 ∪ I0
n for n > 1,

(4) |I0
n ∩ I1

n | = |I1
n ∩ I0

n−1| = n for n > 1,

(5) |I0
n ∩ I1

n+1| = |I1
n ∩ I0

n | = n + 1 for n > 1.

Finally, for n > 0 let J 0
n ⊂ 2I0

n and J 1
n ⊂ 2I1

n be selected as in Lemma 17 for εn = 1
n2 . Easy calculation shows that for 

n ≥ 140, the sets J 0
n and J 1

n are defined and have the required properties.
Suppose that (I0

n, J 0
n)n∈ω ∪ (I1

n, J 1
n)n∈ω ⊂ (I2

n, J 2
n)n∈ω .

Case 1 There exists i ∈ {0, 1} and infinitely many n, m ∈ ω such that

|I i
m|
4

≤ |I i
m ∩ I2

n | ≤ 3|I i
m|

4
.

Without loss of generality, i = 0. Let {ak : k ∈ ω} be a partition of ω into finite sets. For n ∈ ω define I ′n = ⋃
l∈an

I2
l and 

J ′
n = {s ∈ 2I ′n : ∃l ∈ an ∃t ∈ J 2

l s�I2
l = t�I2

l }. By Lemma 7, we know that (I ′n, J ′
n)n∈ω = (I2

n, J 2
n)n∈ω no matter what is the choice 

of the partition {ak : k ∈ ω}.
Consequently, let us choose {ak : k ∈ ω} and an infinite set Z ⊆ ω such that

(1) for every m ∈ Z there is n ∈ ω such that 
|I0

m|
4

≤ |I0
m ∩ I ′n| ≤ 3|I0

m|
4

,

(2) for every m ∈ Z there exists n ∈ ω such that I0
m ⊂ I ′n ∪ I ′n+1,

(3) for every n ∈ ω there is at most one m ∈ Z such that I0
m ∩ I ′n 
= ∅.

To construct the required partition {ak : k ∈ ω}, we inductively glue together the sets I2
l as follows: suppose that m is 

such that there is n such that 
|I0

m|
4

≤ |I0
m ∩ I2

n | ≤ 3|I0
m|

4
. Then we define an = {n} and an+1 = {u : I0

m ∩ I2
u 
= ∅ and u 
= n}. Let 

Z be the subset of the collection of m’s selected as above, that is, thin enough to satisfy condition (3).
Recall that (I0

n, J 0
n)n∈ω ⊆ (I2

n, J 2
n)n∈ω = (I ′n, J ′

n)n∈ω .
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Working towards contradiction, fix m ∈ Z , and let I0
m ⊆ I ′n ∪ I ′n+1 (in this case I ′n = I2

n ). By Lemma 10, it follows that, if m
is large enough, then for every s ∈ J 0

m either

(1) for every u ∈ 2I ′n\I0
m we have s�(I0

m ∩ I ′n) �u ∈ J ′
n , or

(2) for every u ∈ 2I ′n+1\I0
m we have s�(I0

m ∩ I ′n+1) 
�u ∈ J ′

n+1.

Let J ′′
n = {s ∈ 2I0

m∩I ′n : ∀u ∈ 2I ′n\I0
m s�u ∈ J ′

n} and J ′′
n+1 = {s ∈ 2I0

m∩I ′n+1 : ∀u ∈ 2I ′n+1\I0
m s�u ∈ J ′

n+1}.

Clearly, 
| J ′′

n |
2|I ′n∩I0

m| ≤ | J ′
n|

2|I ′n| ≤ 1

2
and 

| J ′′
n+1|

2|I ′n+1∩I0
m| ≤ | J ′

n+1|
2|I ′n+1| ≤ 1

2
.

Let Bn = 2I0
m∩I ′n \ J ′

n and Bn+1 = 2I0
m∩I ′n+1 \ J ′

n+1.

It follows that 
|Bn|

2|I0
m∩I ′n| , 

|Bn+1|
2|I0

m∩I ′n+1| ≥ 1

2
. By Lemma 17 and the definition of set (I0

m, J 0
m)m∈ω , there is sm ∈ (Bn × Bn+1) ∩ J 0

m . 

Consequently, there is tm ∈ 2I ′n∪I ′n+1 such that tm�I0
m = sm ∈ Jm

0 , but tm�I ′n /∈ J ′
n and tm�I ′n+1 /∈ J ′

n+1. For each n ∈ ω choose 
rn ∈ 2I ′n \ J ′

n . Define x ∈ 2ω as

x�I ′n =
{

tm�I ′n if I0
m ∩ I ′n 
= ∅

rn if I0
m ∩ I ′n = ∅ for all m ∈ Z

.

It follows that x ∈ (I0
n, J 0

n)n∈ω , but x /∈ (I ′n, J ′
n)n∈ω = (I2

n, J 2
n)n∈ω , which is a contradiction.

Case 2 For every i ∈ {0, 1}, almost every n ∈ ω and every m ∈ ω,

|I2
n ∩ I i

m| ≤ |I i
m|
4

.

This is quite similar to the previous case.
We inductively choose {ak : k ∈ ω} and define I ′n ’s and J ′

n ’s as before. Next construct an infinite set Z ⊆ ω such that

(1) for every m ∈ Z there exists n ∈ ω such that I0
m ⊂ I ′n ∪ I ′n+1 and 

|I0
m|
4

≤ |I0
m ∩ I ′n|, |I0

m ∩ I ′n+1| ≤
3|I0

m|
4

;

(2) for every n ∈ ω there is at most one m ∈ Z such that I0
m ∩ I ′n 
= ∅.

Since |I2
k ∩ I i

m| ≤ |I i
m|
4

for each k, m we can get (1) by careful splitting {k : I0
m ∩ I2

k 
= ∅} into two sets.

The rest of the proof is exactly as before.
To conclude the proof, it suffices to show that these two cases exhaust all possibilities. To this end, we check that if, for 

some i ∈ {0, 1}, m, n ∈ ω, |I2
n ∩ I i

m| > 3|I1
m|

4
, then for some j ∈ {0, 1} and k ∈ ω,

3|I j
k|

4
≤ |I2

n ∩ I j
k| ≤

3|I j
k|

4
.

This will show that the potential remaining cases are already included in Case 1.
Fix i = 0 and n ∈ ω (the case i = 1 is analogous.)

By the choice of intervals I0
m and I1

m , it follows that, if |I2
n ∩ I0

m| > 3|I0
m|

4
, then |I2

n ∩ I1
m| > |I1

m|
4

. If |I2
n ∩ I1

m| ≤ 3|I1
m|

4
, 

then we are in Case 1. Otherwise, |I2
n ∩ I1

m| > 3|I1
m|

4
and so |I2

n ∩ I0
m+1| >

|I1
m+1|
4

. Continue inductively until the construction 
terminates after finitely many steps settling on j and k. �
Theorem 18. Not every small set is small�, that is S� � S .

Proof. The proof is a modification of the previous argument.
Let I0

n , I1
n , J 0

n and J 1
n for n ∈ ω be like in the proof of 16. Let Ī0

n = {2k : k ∈ I0
n} and Ī1

n = {2k + 1 : k ∈ I1
n} for n ∈ ω and let 

J̄ 0
n ⊂ 2 Ī0

n , J̄ 1
n ⊂ 2 Ī1

n for n ∈ ω be the induced sets. Note that ({ Ī0
n, ̄I1

n}, { J̄ 0
n, J̄ 1

n})n∈ω is a small set. We will show that this set is 
not small� . Suppose that ({ Ī0

n, ̄I1
n}, { J̄ 0

n, J̄ 1
n})n∈ω ⊆ (In, Jn)n∈ω , where In = [kn, kn+1) for an increasing sequence {kn : n ∈ ω}.

Without loss of generality we can assume that for every n ∈ ω there exists i ∈ {0, 1} and m ∈ ω such that

(1) I i
m ⊆ In ∪ In+1,

(2)
|I i

m| ≤ |In ∩ I i
m| ≤ 3|I i

m|
,

4 4
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(3)
|I i

m|
4

≤ |In+1 ∩ I i
m| ≤ 3|I i

m|
4

.

To get (1), we combine consecutive intervals In to make sure that each I i
m belongs to at most two of them. Points (2) 

and (3) are a consequence of the properties of the original sequences {I0
n , I1

n : n ∈ ω}, namely that each integer belongs to 
exactly two of these intervals and that intersecting intervals cut each other approximately in half. The following example 
illustrates the procedure for finding i and m: if kn is even, then kn/2 belongs to I0

j ∩ I1
k with k − j equal to 0 or 1. The 

values of i and m depend on whether kn/2 belongs to the lower or upper half of the said interval. The case when kn is odd 
is similar.

The rest of the proof is exactly like in Case 1 of Theorem 16. �
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