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We consider a negative Laplacian in multi-dimensional Euclidean space (or a multi-
dimensional layer) with a weak disorder random perturbation. The perturbation consists 
of a sum of lattice translates of a delta interaction supported on a compact manifold of co-
dimension one and modulated by coupling constants, which are independent identically 
distributed random variables times a small disorder parameter. We establish that the 
spectrum of the considered operator is almost surely a fixed set, characterize its minimum, 
give an initial length scale estimate and the Wegner estimate, and conclude that there is 
a small zone of a pure point spectrum containing the almost sure spectral bottom. The 
length of this zone is proportional to the small disorder parameter.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous considérons le laplacien dans un espace euclidien multi-dimensionel (ou dans 
une couche multi-dimensionelle), avec une perturbation aléatoire à faible désordre. La 
perturbation consiste en une somme de translations par des points d’un réseau d’une 
interaction delta, supportée sur une variété de codimension un, qui sont modulées par 
des variables aléatoires indépendantes et identiquement distribuées, multipliées par un 
paramètre petit global. Nous démontrons que le spectre de cet opérateur est presque 
sûrement un ensemble déterministe, nous identifions son minimum spectral, nous donnons 
une estimation de la longueur de pas initial et une estimée de Wegner, et nous en 
déduisons qu’il y a une petite zone, contenant le minimum du spectre, dans laquelle ce 
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dernier est purement ponctuel. Le diamètre de cette zone est proportionnel au paramètre 
contrôlant le désordre faible.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

One of the most prominent aspects in the theory of random Hamiltonians is Anderson’s localization. From the physical 
point of view, localization in a disordered medium describes the situation when waves within a certain energy or frequency 
zone do not propagate through the medium. Mathematically, this means, in particular, that the spectrum of the consid-
ered random operator contains a region where almost surely a continuous spectrum is absent and consequently the entire 
spectrum consists of the closure of the set of eigenvalues.

In this paper, we give the key results and ingredients for Anderson’s localization in a new model, namely, random 
delta-interactions supported on surfaces or, more precisely, on manifolds of co-dimension one. Previously, Hamiltonians 
with random delta-interactions have been studied only in the case where the support of the singular interactions is discrete, 
leading to Hamiltonians with point interactions (in low dimensions). To the best of our knowledge, the only two results valid 
in dimensions larger than one are [8], where Hislop, Kirsch, and Krishna establish localization for random point interactions 
in dimension up to 3, and [9] where Klopp and Pankrashkin study quantum graphs with random vertex couplings.

The study of localization for Hamiltonians with random singular interactions poses several challenges, which are not 
present for simple models like the Anderson or alloy-type one. As the very name says, the perturbation is no longer a 
potential but in fact, a singular measure. Furthermore, at least in the generality which we are treating, it is not required 
that the perturbation be monotone with respect to the coupling constants. It is well known that non-monotonicity in the 
random variables requires adapted methods in the context of localization. One possibility to ‘tame’ the singular interaction 
is to transform the operator into another one which is spectrally equivalent, but easier to analyze. This is, in fact, the first 
step of our proof; however, one has to pay a price for this. The transformed operator does no longer depend in a linear 
fashion on the coupling constants, but in a non-linear one.

The model that we present here is just one instance of a general class of models which we are able to treat and which 
we will discuss in detail in a subsequent paper [6]. The first steps to implement the multiscale analysis proof of localization 
for a general random operator was initiated in the works [4], [2]. In these papers, the initial length scale estimate at 
the bottom of the spectrum was proved for the Schrödinger operator in a multi-dimensional layer with a small random 
perturbation distributed in the cells of some periodic lattice. The perturbation was described by an abstract operator of the 
form L(t) = tL1 + t2L2 + t3L3(t) depending on a real parameter t with the coefficients Li satisfying certain rather weak 
conditions. This operator was considered at each periodicity cell, and the parameter t was replaced then by εωk , where ε is 
a global small parameter and ωk is a random variable associated with the cell. By choosing various particular cases of the 
operators Li , the proposed model covered many interesting particular examples, both known and new.

A complementary ingredient to complete the multiscale analysis and conclude localization is a Wegner estimate. Since 
we are working in the weak-disorder regime, both the initial length scale and the Wegner estimate we aim for are restricted 
to certain zones is the energy × disorder diagram. For this reason, it is necessary to resolve a preliminary question: is there 
any spectrum in the zone where our Wegner estimate applies? Of course, it is trivial to prove a Wegner estimate for energies 
in the resolvent set, but this cannot lead to a localization result in the proper sense of the word.

So the question is whether the spectrum expands under the influence of the random perturbation or not. And if yes: 
at which rate? This problem was successfully solved in [5] for the above-described general model. This enables us to turn 
to the final missing step, namely, the Wegner estimate. By employing and modifying the technique proposed in [7], we 
succeeded in reproving the Wegner estimate. Depending on the rate of the expansion of the spectrum in the weak-disorder 
regime, the Wegner estimate takes on different forms. The results for the general model will be presented and proved in [6].

As an excerpt and illustration of the aforementioned general results, we treat in the paper a new interesting example, 
namely, a weak random delta interaction in multi-dimensional Euclidean space (or a layer) where the delta-interaction is 
supported on a manifold of codimension one. We present an initial length scale and a Wegner estimate for this model and, 
as a corollary, Anderson’s localization at the bottom of the spectrum.

2. Problem and results

Our study applies both to operators defined on the whole Euclidean space as well as to ones on strips, layers, or higher-
dimensional analogs. In fact, the results for operators on the whole Euclidean space Rn can be recovered as a corollary from 
the ones for operators on layer domains in Rn+1, using the reduction described in [4, §3.7]. For this reason, we discuss in 
the present note strip domains only. Let x′ = (x1, . . . , xn), x = (x′, xn+1), n � 1, be Cartesian coordinates in Rn and Rn+1, 
respectively, � be the multidimensional layer � := {x : 0 < xn+1 < d} of width d > 0. In Rn we introduce a periodic lattice 
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� with a basis e1, . . . , en and the unit cell of this lattice is denoted by �′ , i.e., �′ := {x′ : x′ =
n∑

i=1
tiei, ti ∈ (0, 1)}. We also 

define � := �′ × (0, d).
Let ω := {ωk}k∈� be a sequence of independent identically distributed random variables with distribution measure μ

with an absolutely continuous probability density h. We assume that the support of μ satisfies

−1 � a = min suppμ < max suppμ = 1 (1)

and we introduce the product probability measure P = ⊗
k∈� μ on the configuration space � := ×k∈�[−1, 1]; the elements 

of this space are sequences ω := {ωk}k∈� . By E(·), we denote the expectation value of a random variable w.r.t. P. Let us 
comment on our assumption that the probability density function h is absolutely continuous. All proofs of Wegner estimates 
for non-monotone random models in multidimensional continuum space known to us require some form of differentiability 
of the density h. This is, for instance, the case for alloy-type potentials with sign-changing single site potentials, see e.g. [7]
and [11], and for the random displacement model, see, e.g., [10]. Our proof of the Wegner estimate uses the ideas of [7], 
and thus inherits its regularity requirement.

Let M0 be a closed bounded C3 manifold in � of codimension one. The outward normal vector to M0 is denoted by ν . 
The manifold M0 is assumed to be separated from the boundary ∂� by a positive distance. By Mk , k ∈ �, we denote the 
translation of M0 along �:

Mk := {x ∈ � : x − k ∈ M0}
and by M := ⋃

k∈�

Mk their union.

By y = (y1, . . . , yn−1), we denote some local coordinates on M0, while 	 is the distance from a point in � to M0
measured along ν . We will need this parametrization only locally. Since Mk are translations of M0, the coordinates (y, 	)

are well-defined in a neighborhood of each Mk , k ∈ �, and hence, in a neighborhood of the entire set M . Let f = f (y, t)
be a real function on M0 × [−t0, t0] for some t0 > 0. We assume that f ∈ C4(M0 × [−t0, t0]). We extend the function f
periodically to the entire set M .

Our random operator is introduced as the Laplacian with random delta interaction with a small coupling parameter. This 
is the operator in L2(�) with the differential expression

Hε(ω) := −
 in L2(�). (2)

The domain of the operator Hε(ω) consists of the functions u ∈ W 2,2(� \ M) satisfying the boundary conditions

[u]Mk = 0,

[
∂u

∂	

]
Mk

= −εωk f (·, εωk)u
∣∣

Mk
, [u]Mk := u

∣∣∣ 	=+0
y∈Mk

− u
∣∣ 	=−0

y∈Mk

, (3)

where ε is a (sufficiently small) positive parameter. The most important case is when f does not depend on the second 
argument. Then, the second condition in (3) reduces to[

∂u

∂	

]
Mk

= −εωk f (·)u
∣∣

Mk

and the single-site perturbation depends linearly on the coupling εωk . On ∂�, we impose either the Dirichlet or Neumann 
condition. We write the latter condition as

Bu = 0 (4)

on ∂�, and Bu = u or Bu = ∂u
∂xn+1

. We stress that, on the upper and lower boundaries of ∂�, we can have different 
boundary conditions.

The function f (y, t) can change its sign, and there is no assumption on the type of dependence on t apart from the 
required regularity. In particular, the considered random operator can be non-monotone and non-linear with respect to the 
random variables.

To formulate our main results, we need to introduce an additional notation. First of all, for η ∈ [−t0, t0], we define the 
auxiliary operator

Hη
� := −
 (5)

in L2(�) on the domain consisting of functions u in the Sobolev space W 2,2(� \M0), which satisfy condition (4) on ∂� ∩∂�, 
condition (3) with εω0 = η on M0, and periodic boundary conditions on γ := ∂� \ ∂�. The operator Hη

� is self-adjoint.
By 
η , we denote the lowest eigenvalue of the operator Hη

� and by �η the associated positive eigenfunction. The symbol 

0 stands for the smallest eigenvalue of the operator
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− d2

dx2
n+1

on (0,d)

subject to boundary condition (4). The associated eigenfunction is denoted by �0 = �0(xn+1) and it is normalized as follows:

‖�0‖L2(0,d) = 1√|�′| ,
where |�′| stands for the volume of �′ . Denote


1 =
∫

M0

f (y,0)�2
0(x(y,0))dy.

Our main assumption is


1 �= 0. (6)

This means that, while the random perturbations are non-monotone, there is a dominating sign with respect to the un-
perturbed ground state. Our first main result describes the location of the spectrum of Hε(ω), which will be denoted by 
σ(Hε(ω)).

Theorem 2.1. For all sufficiently small ε, there exists a closed set �ε ⊂ R such that

σ(Hε(ω)) = �ε P− a.s. (7)

The set �ε is equal to the closure of the union of spectra for all periodic realizations of Hε(·):

�ε =
⋃

N∈N

⋃
ξ is 2N�-periodic

σ
(
Hε(ξ)

)
, (8)

where the second union is taken over all sequences ξ : � → suppμ, which are periodic with respect to the sublattice 2N� := {2Nq :
q ∈ �}.

The minimum of �ε is given by the identity

min�ε = 
ε∗ , (9)

where

ε∗ = ε if 
1 < 0 and ε∗ = εa if 
1 > 0.

Recall that a = inf suppμ, cf. Ineq. (1).
Our second main result is the initial length scale estimate at the bottom of the spectrum. First, we need some additional 

notation. Given α ∈ �, N ∈N, we denote

�α,N :=
{

x : x′ = α +
n∑

j=1

a je j, a j ∈ (0, N), 0 < xn+1 < d

}
,

�α,N :=
{

x′ ∈ � : x′ = α +
n∑

j=1

a je j, a j = 0,1, . . . , N − 1

}
.

In L2(�α,N ), we introduce the operator

Hε
N(ω) := −


subject to conditions (3) on M ∩ �α,N , to condition (4), and to the boundary condition

∂u

∂ν
= ρε∗ u on γN := ∂�N \ ∂�.

Here ν denotes the outward normal to γN and

ρε∗ := 1

�ε∗
∂�ε∗

∂ν
.

We can prove that the latter function is well defined, �-periodic, and belongs to L∞(γN ). Denote by χS the characteristic 
function of a set S . We then have the following initial length scale estimate. It estimates the probability of the rare event 
that the lowest eigenvalues of a segment Hamiltonian lies very close to min �ε . Actually, we formulate a stronger statement, 
which is implied by standard Combes–Thomas estimates.
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Theorem 2.2. Let τ ∈ N, τ � 5. There are c0, c1, c2, N1 > 0 such that for all N � N1 , the set

J N :=
[

8√|
1|E(|ω0|)
1

N
1
2

,
c0

N
2
τ

]

is non-empty, and for all ε ∈ J N , α ∈ �, N > N1 as well as all for all β1, β2 ∈ �α,N , and m1, m2 > 0 such that Bk := �βk,mk ⊂ �α,N

for k ∈ {1, 2}, we have:

P

(
∀λ � 
ε∗ + 1

2

(
ε

c0

) τ
4 : ‖χB1(Hε

α,N(ω) − λ)−1χB2‖ � 2

(
ε

c0

)− τ
4

e
−c2 dist(B1,B2)

(
ε

c0

) τ
4
)

� 1 −
(

ε

c0

)− n(τ−1)
2

e
−c1

(
ε

c0

)− n
2

.

Our next result is the Wegner estimate. It estimates the probability to find spectrum in a very small energy interval.

Theorem 2.3. There are C1 > 0, C2 > 0, and ε0 > 0 such that for all 0 < ε � ε0 , all E0 � 
0 − C2ε
2 , all E ∈ (−∞, E0], all κ �

1
4 |
0 − E0|, all α ∈ �, and all N ∈ N, we have

P(dist(σ (Hε
α,N (ω)), E) � κ) �

C1‖h‖W 1,1(R)

|
0 − E0| κd N2n. (10)

Note that our Wegner estimate applies only to energy intervals [E −κ, E +κ] with a security distance to the minimum of 
the unperturbed spectrum 
0 of the order ε2. Due to the assumption (6), the spectrum expands proportionally to ε when 
we switch on the random perturbation. Thus, our Wegner estimate indeed applies to a region with non-empty intersection 
with �ε .

The initial length scale estimate in Theorem 2.2 and the Wegner estimate in Theorem 2.3 imply via multiscale analysis 
spectral localization on the bottom of �ε . This is formulated in the next corollary.

Corollary 2.4. Assume (6). There exists an ε0 > 0 and a constant C > 0 such that, for all ε ∈ (0, ε0), the set �ε ∩ [
ε∗ , 
ε∗ + Cε] is 
non empty and contains no continuous spectrum.

This theorem means that, at the bottom of the spectrum �ε , there is a segment of length O (ε) containing only pure 
point spectrum. By using the approach of [4, Section 3.17], the above results can be extended from operators on the layer 
� =Rn × (0, d) to operators on the entire space Rn .

The proofs of Theorems 2.1 to 2.3 take some twenty pages, so we can just briefly discuss them here. Following [1, 
Sect. 8.5], one sees that the operator Hε(ξ) is unitarily equivalent to an operator H̃ε(ξ), which on every elementary cell 
� + k, k ∈ � acts as

−
 + εξkL1 + ε2ξ2
k L2 + ε3ξ3

k L3(εξk),

where L1, L2 are operators that are relatively bounded with respect to −
, and L3(t) is uniformly relatively bounded with 
respect to −
. Since the spectra of Hε(ξ) and H̃ε(ξ) coincide, it suffices to study H̃ε(ξ).

The most part of Theorem 2.1 was proved in [5], whereas identity (9) is a new result. It is proved by introducing a 
special Mezincescu condition on the lateral boundaries of the periodicity cells in � as in [3], [2], analyzing the behavior 
of 
η for small η, and applying the minimax principle. To prove Theorem 2.2, we adapt the approach used in [4,2]. The 
Wegner estimate in Theorem 2.3 is a new non-trivial ingredient. Here we employed and extended the technique proposed 
in [7] combining it with results of [5].
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