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Choe and Soret [1] constructed infinitely many compact embedded minimal surfaces in S3

by desingularizing Clifford tori which meet each other along a great circle at the angle of 
the same size. We show their method works with some modifications to construct compact 
embedded minimal surfaces in the Berger sphere as well.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Choe et Soret [1] ont construit une infinité de surfaces minimales compactes plongées 
dans S3 en désingularisant deux tores de Clifford qui se rencontrent le long d’un grand 
cercle à un angle constant de la même taille. Nous montrons que leur méthode fonctionne 
également, avec quelques modifications, pour construire des surfaces minimales compactes 
plongées dans la sphère de Berger.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Lawson constructed in [2] infinitely many compact minimal surfaces in S3 of arbitrary genus. He first constructed a suit-
able geodesic polygon and then reflected the Plateau solution over this geodesic polygon along the edges to obtain compact 
minimal surfaces. He obtained the geodesic polygon by arranging geodesic spheres suitably. Recently this configuration was 
applied to the Berger sphere to give infinitely many compact minimal surfaces of arbitrary genus [5].

On the other hand, Choe and Soret constructed in [1] infinitely many compact embedded minimal surfaces in S3 by 
desingularizing Clifford tori that meet each other along a great circle C1 at the angle of the same size. It happens that the 
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Clifford tori used in the construction meet each other along the dual great circle C2 at the angle of the same size as well. 
Once the Clifford tori are desingularized along C1, there are two ways of desingularizing tori along C2. Hence, two kinds of 
construction were used to give “odd” surfaces and “even” surfaces.

Their method of desingularization for odd surfaces follows the procedure:

(i) using m Clifford tori that meet each other along a great circle at the angle of π/m which makes a tesselation of S3 by 
16m2l (m ≥ 2, l ≥ 1) pentahedra;

(ii) making the Jordan curve � of 6 geodesic segments, which is a subset of the 1-skeleton of the pentahedron;
(iii) finding a minimal disk D spanning � and extend D across � by the geodesic reflections.

The resulting surface is a compact embedded minimal surface of genus 1 + 4m (m − 1)l.
In this paper, we apply their method to construct compact embedded minimal surfaces in the Berger sphere. Among the 

main issues in applying the method to the Berger sphere are:

(i) is there a surface in the Berger sphere to substitute the Clifford torus in S3?
(ii) reflections along geodesics are not isometries in general in the Berger sphere.

We can apply the method successfully by using ruled minimal surfaces in the Berger sphere characterized in [4], which 
substitutes Clifford tori, and by using the reflections along the horizontal geodesics, which are isometries.

We introduce a kind of cylindrical parameterization on S3 in order to use the result of [4], which turns out to be more 
convenient to visualize the relations between the many minimal surfaces and geodesics used. This parameterization can also 
be effectively used in carrying out the construction in [1].

We only show the construction of odd surfaces in this paper. One can verify that the construction applies for even 
surfaces as well.

2. A parameterization of SSS3

We recall some facts on the Berger spheres.

2.1. S3 as a special unitary group

Let us identify the unit sphere S3 = {(z, w) ∈C
2 : |z|2 + |w|2 = 1} and the special unitary group SU(2) by the map

(z, w) �→
[

z w
−w̄ z̄

]
.

The Lie algebra su(2) is spanned by

X1 =
[

0 1
−1 0

]
, X2 =

[
0 i
i 0

]
, X3 =

[
i 0
0 −i

]

which generate the left-invariant vector fields:

X1(z, w) =
[ −w z

−z̄ −w̄

]
, X2(z, w) =

[
iw iz
iz̄ −i w̄

]
, X3(z, w) =

[
iz −iw

−i w̄ −i z̄

]
.

Viewed as tangent vector fields on S3,

X1(z, w) = (−w, z), X2(z, w) = (iw, iz), X3(z, w) = (iz,−iw).

2.2. A circle action

The orbits of the right circle’s action on S3

[
z w

−w̄ z̄

]
�→

[
z w

−w̄ z̄

][
eiθ 0

0 e−iθ

]
or (z, w) �→ (eiθ z,e−iθ w) (1)

are the fibers of the Hopf fibration H : S3 → S
2(1/2) given by

H(z, w) =
(

zw,
1

2
(|z|2 − |w|2)

)
.

The fiber over the general point (z, w) is the circle {(eiθ z, e−iθ w)} to which the vector field X3(z, w) = (iz, −iw) is tangent.
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2.3. A parameterization

Let P = {(s, t, θ) : 0 ≤ s ≤ 2π, 0 ≤ t ≤ π/2, 0 < θ ≤ 2π} and consider the map � : P → S
3

�(s, t, θ) = (eis cos t,ei(s+θ) sin t),

which is one-to-one on P ′ , the interior of P , and yields coordinates on �(P ′). Since

�(s,0, θ) = (eis,0), �(s,π/2, θ) = (0,ei(s+θ)),

we have the following proposition.

Proposition 1. For any θ , the image of the curve s �→ �(s, 0, θ) is the Hopf fiber over (1, 0) and the image of the curve s �→
�(s, π/2, θ) is the Hopf fiber over (0, 1).

Note also that, when t = π/2, since �(s, π/2, θ) = �(s′, π/2, θ ′) if and only if s + θ = s′ + θ ′ mod 2π, those points 
s + θ = s′ + θ ′ mod 2π correspond to a single point on the fiber {(0, eis)} over (0, 1).

Let

T1 = {(s, t, θ) : 0 ≤ s ≤ 2π,0 ≤ t ≤ π/4,0 < θ ≤ 2π},
T2 = {(s, t, θ) : 0 ≤ s ≤ 2π,π/4 ≤ t ≤ π/2,0 < θ ≤ 2π}.

Then one has trivially T1 ∪ T2 = P , T1 ∩ T2 = {t = π/4}. Now, since �(0, t, θ) = �(2π, 0, θ), one can see that the set �(T1)

is a solid torus along the circle �(s, 0, θ) over (z, w) = (1, 0) and the set �(T2) is a solid torus along the circle �(s, π/2, θ)

over (z, w) = (0, 1) and that the set �(T1 ∩ T2) is a torus. Moreover, since the boundaries are the same,

∂�(T1) = ∂�(T2) = �(T1 ∩ T2).

Thus the map � yields the usual topological picture of S3 as the union of two solid tori with their boundaries identified.

3. The Berger sphere

Now consider the left-invariant Riemannian metrics gδ on S3 = SU(2) given in terms of the left-invariant vector fields 
X1, X2, X3 by

Xi · X j = 0, i 
= j,

X1 · X1 = X2 · X2 = δ2, X3 · X3 = 1.

The Berger sphere is the Riemannian manifold (S3, gδ). When δ = 1, the Berger sphere is the standard round sphere S3.
Since it is a left-invariant metric, one can see that the left multiplication of SU(2)[

z w
−w̄ z̄

]
�→

[
a b

−b̄ ā

][
z w

−w̄ z̄

]
, aā + bb̄ = 1,

that is,

(z, w) �→ (az − bw̄,bz̄ + aw)

is an isometry. Note that the circle action (1) is also an isometry. Then the maps

(z, w) �→ (eiθ z, w), (z, w) �→ (z,eiθ w) (2)

are isometries as well.

3.1. Geodesics

A geodesic in the Berger sphere is called horizontal if it is orthogonal to the Hopf fibers everywhere and is called vertical
if it is tangent to the Hopf fibers everywhere. One can see that the curve

t �→ (eit z,e−it w)

is a vertical geodesic passing through the point (z, w) (whose whole image is the Hopf fiber through (z, w)) and that the 
curve

t �→ (z cos t − e−iθ w sin t,eiθ z sin t + w cos t)

which is the integral curve of the vector field cos θ X1 + sin θ X2 passing through the point (z, w) is a horizontal geodesic.
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3.2. Ruled minimal surfaces

It was shown in [4] that every ruled minimal surface in the Berger sphere is congruent to an open subset of the image 
of

X(s, t) = (eiαs cos t,eis sin t), α ∈R.

Since one can show by computation that these surfaces are in fact minimal (cf. [5]), we have the following proposition.

Proposition 2. A surface in the Berger sphere is a ruled minimal surface if and only it is congruent to the parametric surface

X(s, t) = (eiαs cos t,eis sin t), α ∈R.

4. The Berger metric in terms of the parameterization �

Now let

∂s := ∂�

∂s
(s, t, θ), ∂t := ∂�

∂t
(s, t, θ), ∂θ := ∂�

∂θ
(s, t, θ).

One has

∂s = 2 cos t sin t(− sin θ X1 + cos θ X2) + (cos2 t − sin2 t)X3

= (i eis cos t, i ei(s+θ) sin t),

∂t = cos θ X1 + sin θ X2

= (−eis sin t,ei(s+θ) cos t),

∂θ = cos t sin t(− sin θ X1 + cos θ X2) − sin2 t X3

= (0, i ei(s+θ) sin t).

Note also that X3 is written as

X3 = ∂s − 2∂θ

at every point.

Proposition 3. The following curves are horizontal geodesics.

(i) the t-curve H(s0,θ0)(t) := �(s0, t, θ0), 0 < s0 < 2π, 0 < θ0 < 2π,
(ii) the s-curve V θ0(s) := �(s, π/4, θ0), 0 ≤ θ0 < 2π.

The t-curves are called H-geodesics and the s-curves V-geodesics.

It was shown in [5] that the geodesic reflection across a horizontal or a vertical geodesic is an isometry of the Berger 
sphere. In particular, we have the following:

Proposition 4. For 0 < s < 2π, 0 < t < π/2, the following two maps

R H : �(s, t, θ) �→ �(2s0 − s, t,2θ0 − θ),

R V : �(s, t, θ) �→ �(s + θ − θ0,π/2 − t,2θ0 − θ)

which represent reflections along segments of geodesics H(s0,θ0)(t) and V θ0 (s), respectively, are isometries.

One can also see that the rotation

Rotθ0 : �(s, t, θ) �→ �(s, t, θ + θ0)

with respect to the Hopf fiber over the point (1, 0) is an isometry.
Let m and k be positive integers and p, q nonnegative integers. For notational convenience, let H p,q := H(πp/k,πq/m), Vq :=

V πq/m and let R p,q denote the reflection across the horizontal geodesic H p,q and let Rq denote the reflection across the 
horizontal geodesic Vq . Then computations give
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R p−1,q ◦ R p,q : �(s, t, θ) �→ �(s − 2π/k, t, θ),

R p,q−1 ◦ R p,q : �(s, t, θ) �→ �(s, t, θ − 2π/m),

Ri ◦ R0 : �(s, t, θ) �→ �(s − 2lπi/k, t, θ + 2πi/m)

and

R p−1,q ◦ R p−1,q+1 ◦ R p,q+1 = R p,q. (3)

Proposition 2 and (1), (2) give the following:

Proposition 5. The following surfaces are ruled minimal surfaces.

(t, θ) �→ �(s0, t, θ) = (eis0 cos t,ei(s0+θ) sin t),

(s, t) �→ �(s, t, θ0) = (eis cos t,ei(s+θ0) sin t).

Since �(s, π/2, θ) = �(s′, π/2, θ ′) if and only if s + θ = s′ + θ ′ mod 2π, one can see that the second surfaces are tori, 
which will play the role of Clifford tori in the construction of Choe and Soret [1].

Proposition 6. The surface

T := �
(

s,
π
4
, θ

)
= 1√

2
(eis,ei(s+θ))

is a doubly ruled minimal torus.

Proof. Computations show that T is minimal. Since

∂s|�(s,π/4,θ) = 1√
2
(i eis, i ei(s+θ)) = (− sin θ X1 + cos θ X2)|�(s,π/4,θ) ,

one can see that the s-parameter curves are horizontal geodesics. On the other hand, since ∂θ�(s, π/4, θ) = 1√
2
(0, i ei(s+θ)), 

one has

(∂s − 2∂θ )|�(s,π/4,θ) = 1√
2
(eis,−i ei(s+θ)) = X3(�(s,π/4, θ)),

which shows that the surface is ruled by vertical geodesics as well. Furthermore, since T = �(T1 ∩ T2), it is a torus. �
5. Construction of odd surfaces

Note that the surface T divides the Berger sphere into two regions {�(s, t, θ) : t < π/4)} and {�(s, t, θ) : t > π/4} and 
that the two regions are congruent; in fact, any reflection along a V -geodesic gives the congruence. We first construct 
a minimal surface D− embedded in {�(s, t, θ) : t ≤ π/4}, whose boundary components consist of V -geodesics, and then 
reflect the surface D− with respect to a V -geodesic to get the minimal surface D+ embedded in {�(s, t, θ) : t ≥ π/4}. Then 
we show that the embedded minimal surface D :=D− ∪D+ is smooth without boundary.

Let us consider 2m ruled minimal surfaces

Vq := �
(

s, t,
πq

m

)
= eis(cos t,ei πq

m sin t), q = 0,1, · · · ,2m − 1

all of which meet along the Hopf fiber over the point (1, 0), and 2k ruled minimal surfaces

Hp := �
(πp

k
, t, θ

)
= ei πp

k (cos t,eiθ sin t), p = 0,1, · · · ,2k − 1

where k = 2ml for some integer l ≥ 1. Now, for p = 0, 1, . . . , 2k − 1 and q = 0, 1, . . . , 2m − 1, we consider the pentahedral 
regions

P p,q := �(s, t, θ),
πp

k
< s <

π(p + 1)

k
, 0 < t <

π
4
,

πq

m
< θ <

π(q + 1)

m

bounded by five ruled minimal surfaces Hp, Hp+1, Vq, Vq+1 and T , which are mean-convex by [3], (see Fig. 1).
Let P̄ p,q be the closure of P p,q . Since Rotπ/m(P p,q) = P p,q+1 and since R p,q(P p,q) = P p−1,q−1, one can see that all the 

pentahedral regions P p,q are congruent to each other. Moreover, one can see
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Fig. 1. P p,q .

Fig. 2. �.

2k−1⋃
p=0

2m−1⋃
q=0

P̄ p,q = {�(s, t, θ) : t ≤ π/4}.

That is, P̄ p,q, p = 0, 1, . . . , 2k − 1, q = 0, 1, . . . , 2m − 1, yields a tesselation of the half of the Berger sphere {�(s, t, θ) : t ≤
π/4}.

Now let us begin the construction. We first construct a minimal surface embedded in {�(s, t, θ) : t ≤ π/4}, whose bound-
ary lies on V -geodesics. In this construction, we use only the reflections along H-geodesics. By abuse of notation, we will 
denote the segment {H p,q(t) : 0 < t < π/4} by H p,q .

Let � ⊂ ∂ P0,0 be the piecewise geodesic polygon of six segments of horizontal geodesics H0,0, H1,0, H1,1, H0,1 and 
V 0, V 1, (see Fig. 2), which is a subset of the 1-skeleton of P0,0.

Then � spans an embedded minimal disk D0,0 that lies inside of P0,0 since P0,0 is mean-convex. Now D0,0 can be 
analytically extended across the boundary segments H0,0, H1,0, H1,1 and H0,1 by reflections to get four minimal discs 
D2k−1,2m−1, D2k−1,1, D1,1 and D1,2m−1 in P2k−1,2m−1, P2k−1,1, P1,1 and P1,2m−1 respectively. Continuing such reflections 
about the boundary segments of H-geodesics, we get minimal discs D p,q in each region P p,q with p + q = even. Now, we 
set

D− =
⋃

p+q=even

D p,q.

The well-definedness and the smoothness of D− can be checked as follows.
By reflecting D p,q along the H-geodesics H p,q+1, we get the surface D p−1,q+1; by reflecting D p−1,q+1 along H p−1,q , we 

get the surface D p−2,q and by reflecting D p−2,q along H p−1,q we get the surface D p−1,q−1. Let us consider the surface 
D p,q ∪ D p−1,q−1 ∪ D p−2,q ∪ D p−1,q+1 (see Fig. 3, where the vertical lines represent V-geodesics and the dotted parallel lines 
represent intersections of the minimal surfaces Hp and T ).

It is smooth along H p,q+1, H p−1,q+1 and H p−1,q because the surfaces obtained after reflection are conformal immersions 
of a disk that extend continuously up to the boundary and a piece of the boundary is sent to a piece of the line of the 
reflection. The surfaces D p,q and D p−1,q−1 have common boundary H p,q . Since R p−1,q ◦ R p−1,q+1 ◦ R p,q+1 = R p,q by (3), 
we have D p−1,q−1 = R p,q(D p,q), which implies that D p−1,q−1 is the analytic continuation of D p,q about the boundary H p,q

by reflection. This implies that the surface D p,q ∪ D p−1,q−1 ∪ D p−2,q ∪ D p−1,q+1 is smooth along H p,q as well. Hence one 
can see that D− is well defined and smooth. By construction, one can check that the surface D− is invariant under the 
following two transformations:
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Fig. 3. The surface D p,q ∪ D p−1,q−1 ∪ D p−2,q ∪ D p−1,q+1.

�(s, t, θ) �→ �(s − 2π/k, t, θ),

�(s, t, θ) �→ �(s, t, θ − 2π/m).

Hence the surface D− is invariant under the transformation Ri ◦ R0. Note that ∂D− , the boundary of D− is

∂D− =
2m−1⋃
q=0

Vq.

Now let D+ = R0(D−), then D+ is a smooth minimal surface embedded in {�(s, t, θ) : t ≥ π/4}. Since R0(Vq) = V 2m−q , 
the boundary of D+ also consists of V -geodesics V 0, V 1, . . . , V 2m−1. Along the common boundary V i of D− and D+ , we 
have

Ri(D+) = Ri(R0(D−)) = D−
since the surface D− is invariant under the transformation Ri ◦ R0. This implies that D+ is the reflection of D− along each 
common boundary V i and hence we have a smooth surface

D := D− ∪D+
without boundary, which is a compact minimal surface embedded in the Berger sphere. This completes the construction.
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