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We show that the class of finite-dimensional Banach spaces and the class of finite-
dimensional Choquet simplices have the Ramsey property. As an application, we show 
that the group Aut(G) of surjective linear isometries of the Gurarij space G is extremely 
amenable, and that the canonical action Aut(P) �P is the universal minimal flow of the 
group Aut(P) of affine homeomorphisms of the Poulsen simplex P. This answers questions 
of Melleray–Tsankov and Conley–Törnquist.
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r é s u m é

Nous montrons que la classe des espaces de Banach de dimension finie et la classe 
des simplexes de Choquet de dimension finie ont la propriété de Ramsey. En guise 
d’application, nous montrons que le groupe Aut(G) des isométries linéaires surjectives de 
l’espace de Gurarij G est extrêmement moyennable, et que l’action canonique Aut(P) �P

est le flot minimal universel du groupe Aut(P) des homéomorphismes affines du simplexe 
de Poulsen P. Ceci répond aux questions de Melleray–Tsankov et Conley–Törnquist.
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1. Introduction

Ramsey theory studies, broadly speaking, which combinatorial configurations can always be found within one of the 
pieces of a given finite partition (or coloring) of a certain object. A foundational result in Ramsey theory is Ramsey’s 
theorem from 1930, which can be stated as follows. Suppose that r, k, m ∈ N, where k, m are considered as finite ordered 
sets with respect to the canonical orderings. Then there exists n ∈ N such that for every r-coloring (partition into r pieces) 
of the set Emb(k, n) of order-preserving injections from k to n, there exists an order-preserving injection γ from m to n such 
that the set γ ◦ Emb(k, m) = {

γ ◦ ρ : ρ ∈ Emb(k,m)
}

is monochromatic, i.e. contained in one of the pieces of the partition. 
Ramsey’s theorem was used by Pestov [16] to establish a remarkable property of the group Aut(Q, <) of bijections of the 
set of rationals that preserve the canonical ordering inherited from the reals, endowed with the topology of pointwise 
convergence. Pestov showed that Aut(Q, <) is extremely amenable, namely any continuous action of Aut(Q, <) on a compact 
Hausdorff space has a fixed point. This was one of the first naturally occurring example of an extremely amenable group, 
besides the example of the unitary group U (H) of the separable infinite-dimensional Hilbert space obtained by Gromov and 
Milman [6], and previous examples due to Herer and Christensen [8].

A far-reaching generalization of Pestov’s argument was considered by Kechris, Pestov, and Todorcevic in the influential 
paper [9]. There, the authors work in the framework of Fraïssé theory. Initially developed by Fraïssé in the 1950s, Fraïssé 
theory provides a correspondence between countable structures where any partial isomorphism between finitely-generated 
substructures can be extended to an automorphism (ultrahomogeneous structures), and directed classes of finitely-generated 
structures closed under substructures satisfying the amalgamation property (Fraïssé classes). Given a Fraïssé class C , one can 
consider its canonical Fraïssé limit, which is a countable ultrahomogeneous structure. Conversely, any Fraïssé class arises 
as the collection of finitely-generated substructures (or age) of a countable ultrahomogeneous structure. The main result 
of [9] establishes a surprising tight correspondence between dynamical properties of the automorphism group Aut(M) of 
a countable homogeneous structure M and combinatorial properties of the age C of M . Precisely, the KPT correspondence
asserts that Aut(M) is extremely amenable if and only if C satisfies the following Ramsey property: for every r ∈ N and 
A, B ∈ C there exists C ∈ C such that for every r-coloring of the space Emb(A, C) of embeddings of A into C there exists 
φ ∈ Emb(B, C) such that φ◦Emb(A, B) is monochromatic. When C is the class of finite linear orders, the KPT correspondence 
recovers Pestov’s earlier result.

This work provided new impetus on the study of extreme amenability and topological dynamics of “large” groups and 
sparked new interest in structural Ramsey theory. Since then many new examples of Fraïssé classes satisfying the Ramsey 
property have been found, leading to many natural examples of extremely amenable groups. Recently, a body of work 
initiated by Ben Yaacov [2] has shown that the machinery of Fraïssé theory admits a natural generalization to the context 
of metric structures. This more general framework is applicable to “continuous” structures arising from functional analysis 
such as, prominently, Banach spaces. As essentially shown by Kubis and Solecki in [10], the Fraïssé limit of the class of 
finite-dimensional Banach spaces is the Gurarij space G, initially constructed by Gurarij in 1966 [7].

This important example motivated Melleray and Tsankov to extend the KPT correspondence to the metric setting [15], 
and to ask whether it can be applied to show that the group Iso(G) of surjective linear isometries of G is extremely 
amenable [15,14]. Our main result is that this is indeed the case.

2. The Ramsey property for Banach spaces

The notion of Ramsey property for a class of finitely-generated discrete structures admits a natural generalization in the 
setting of metric structures, where one replaces discrete colorings with “continuous colorings”, which are just [0,1]-valued 
1-Lipschitz maps [15]. In the case of Banach spaces, an easy approximation argument shows that this is in turn equivalent 
to Theorem 2.1. For finite-dimensional Banach spaces X, Y , we let Emb(X, Y ) be the space of linear isometries from X to 
Y endowed with the distance d(φ, ψ) = sup {‖φ(x) − ψ(x)‖ : x ∈ X,‖x‖ ≤ 1}. The ε-fattening of a subset A of Emb(X, Y ) is 
the set of elements of Emb(X, Y ) of distance at most ε from A.

Theorem 2.1. For every r ∈ N, finite-dimensional Banach spaces X, Y , and ε > 0, there exists a finite-dimensional Banach space Z
such that for every r-coloring of Emb(X, Z) there exists φ ∈ Emb(Y , Z) such that φ ◦ Emb(X, Y ) is ε-monochromatic, i.e. contained 
in the ε-fattening of one of the colors.

Corollary 2.2. The group Aut(G) of surjective linear isometries of the Gurarij space is extremely amenable.

We will present the proof of Theorem 2.1 in the case of real scalars, the complex case being very similar. The general 
statement of Theorem 2.1 follows from the particular instance when X and Y are injective, i.e. X = �d∞ and Y = �m∞ for some 
d, m ∈N. Indeed, assuming that Theorem 2.1 holds for such spaces, one can deduce the general form of Theorem 2.1 in two 
steps as follows.

– First, one proves Theorem 2.1 in the case when X and Y are polyhedral, that is, their unit balls have finitely many 
extreme points or, equivalently, they embed isometrically into a finite-dimensional injective Banach space. This can be 
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done by using the injective envelope construction for a given finite-dimensional polyhedral space X . This is a finite-
dimensional injective Banach space �nX∞ together with an isometric embedding φ : X → �

nX∞ satisfying the following 
universal property: every isometric embedding from X into another finite-dimensional injective Banach space factors 
through φ. In this way, a coloring of Emb(X, Y ) naturally induces a coloring of Emb(�

nX∞ , �nY∞ ).
– The result for polyhedral spaces can be used to prove the general case using: 1) the fact that a finite dimensional 

space is approximated by polyhedral spaces in the Banach–Mazur distance, and 2) the following approximation result 
established in [10]: Suppose that ε, δ > 0, and X, Y are finite dimensional Banach spaces. Then there is a finite dimen-
sional Banach space Z and an isometric embedding J : Y → Z such that for every linear map ϕ : X → Y satisfying 
(1 + ε)−1‖x‖X ≤ ‖ϕ(x)‖Y ≤ ‖x‖X there exists an isometric embedding I : X → Z such that ‖ J ◦ ϕ − I‖ ≤ ε + δ.

It remains therefore to prove the particular instance of Theorem 2.1 when X and Y are injective. This will be obtained 
as an application of the Dual Ramsey Theorem of Graham and Rothschild [5]. Such a result can be stated in terms of finite 
linear orders and rigid surjections. Given finite linear orders L = (L, <L) and R = (R, <R), a rigid surjection from L to R
is a surjective map f : L → R such that min<L f −1(r0) <L min<L f −1(r1) for every r0, r1 ∈ R such that r0 <R r1. We denote 
such a set by Epi(L, R). The Dual Ramsey Theorem (DRT) asserts that, for every finite orders L = (L, <L) and R = (R, <R), 
and for every r ∈ N, there exists n ∈ N such that for every r-coloring of Epi(n, R) there exists f ∈ Epi(n, L) such that 
Epi(L, R) ◦ f is monochromatic. Here the natural number n is a considered as a finite linear order with respect to its 
canonical ordering. Using the obvious fact that two finite linear orders of the same cardinality are order-isomorphic, this 
statement can be easily reformulated just in terms of rigid surjections between natural numbers, or equivalently in terms 
of ordered partitions of finite sets.

Observe now that embeddings φ : �d∞ → �m∞ correspond by duality to contractive quotient mappings π : �m
1 → �d

1. These 
are contractive linear functions that map the unit ball of �m

1 onto the unit ball of �d
1. One can regard π as a d × m scalar 

matrix A with respect to the canonical bases (ei)i<m and (ei)i<d of these spaces. The fact that π is a contractive quotient 
mapping implies that each column of A is in the unit ball of �d

1 and each row of A contains an entry of absolute value 1. 
Conversely, any such a matrix arises as the representative matrix of a contractive quotient mapping from �m

1 to �d
1. We 

regard the space Q (�m
1 , �d

1) of contractive quotient mappings from �m
1 to �d

1 as a metric space, endowed with a metric given 
by d(π0, π1) := ‖π0 − π1‖�m

1 →�d
1
= sup{‖(π0 − π1)(x)‖

�d
1
: x ∈ �m

1 , ‖x‖�m
1

≤ 1}. These observations show that, by passing to the 
duals, it suffices to prove the following statement.

Lemma 2.3. For every r, d, m ∈ N and ε > 0 there exists n ∈ N such that for every r-coloring of the space Q(�n
1, �

d
1) of contractive 

quotient mappings from �n
1 to �d

1 , there exists π ∈ Q(�n
1, �

m
1 ) such that Q(�m

1 , �d
1) ◦ π is ε-monochromatic.

Here is an extremely simplified summary of our approach to the proof of Lemma 2.3. Notice that, given a finite subset D
of the unit ball of �d

1 such that {ei}i<d ⊆ D ∪ (−D), there is a natural assignment f ∈ Epi(n, D) 
→ π f ∈ Q (�n
1, �

d
1), obtained 

by defining π f (e j) := f ( j) for every j < n. Similarly one can define an assignment f ∈ Epi(n, m) 
→ π f ∈ Q (�n
1, �

m
1 ) as 

above, where D is the canonical basis of �m
1 . So, an r-coloring c of Q (�n

1, �
d
1) induces an r-coloring ̂c of Epi(n, D), given by 

ĉ( f ) := c(π f ). Given such a coloring c, apply the DRT to D , endowed with an arbitrary linear ordering, and to m, identified 
with the basis (ei)i<m , to find n ∈ N such that there exists g ∈ Epi(n, m) such that Epi(m, D) ◦ g is monochromatic for ĉ. 
Then prove that, for a suitable choice of D , Q (�m

1 , �d
1) ◦πg is ε-monochromatic for c, by finding for each ψ ∈ Q (�m

1 , �d
1) some 

h ∈ Epi(m, D) such that ‖ψ ◦ πg − πh◦g‖�m
1 →�d

1
≤ ε. While this simplified approach does not work, a suitable modification of 

it will yield a proof of Lemma 2.3, as follows.
Fix r, d, m ∈N with d ≤ m, and ε > 0. Let P be a finite subset of the unit ball of �d

1 containing the zero vector, the canon-
ical basis of �d

1, and such that for any nonzero element v in the unit ball of �d
1 there exists v ′ ∈ P such that 

∥∥v − v ′∥∥
�d

1
< ε

and 
∥∥v ′∥∥

�d
1
< ‖v‖

�d
1
. Such a set can be explicitly constructed as follows. Let D be a finite ε/2-subset of the unit sphere of 

�d
1, and let s ∈N be such that (1 − ε/2)s < ε/2. Then the set P := ⋃s

i=0(1 − ε/2)i · D has the required properties.
Let also Q be the (finite) set of m × d matrices with entries from {0,1,−1} and such that every column contains exactly 

one nonzero entry, and every row contains at most one nonzero entry. Observe that any element of Q is the representative 
matrix of an isometric embedding from �d

1 to �m
1 . In the following, we will identify an element of Q with the corresponding 

isometric embedding.
Fix an arbitrary linear order on Q, and then a linear order on P with the property that w < w ′ whenever w, w ′ ∈P are 

such that ‖w‖
�d

1
<

∥∥w ′∥∥
�d

1
. Let Q × P be endowed with the corresponding antilexicographic order. The key property of Q

is that for every σ ∈ Q (�m
1 , �d

1) there exists Mσ ∈Q such that the composition σ ◦ Mσ is the identity of �d
1.

Consider now n ∈N obtained from the linear orders P and Q ×P by applying the DRT. We claim that such an n satisfies 
the conclusions of Lemma 2.3. To simplify the presentation, we introduce some notation:

(1) given f ∈ Epi(n, P), let π f ∈ Q (�n
1, �

d
1) be defined as above, that is, π f (e j) := f ( j) for every j < n;

(2) given g ∈ Epi(n, Q × P), let ψg ∈ Q (�n
1, �

m
1 ) be defined by ψg(ei) := g0(i)(g1(i)) for i < n, where g0 : n → Q and 

g1 : n →P are such that g(i) = (g0(i), g1(i)) for every i < n. (Here we applied our convention of identifying the element 
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g0(i) of Q with a linear map from �d
1 to �m

1 . Thus g0(i)(g1(i)) denotes the element of �m
1 obtained by applying g0(i) to 

the element g1(i) of �d
1.)

Let c be an r-coloring of Q (�n
1, �

d
1), and let ĉ be the r-coloring of Epi(n, P) defined by ĉ( f ) := c(π f ). By the choice of n

(which we obtained by applying the DRT to P and Q × P), we can find g ∈ Epi(n, Q × P) such that Epi(Q × P, P) ◦ g is 
monochromatic for ̂c. We claim that then Q (�m

1 , �d
1) ◦ ψg is ε-monochromatic for c, which is an immediate consequence of 

the following claim.

Claim 1. Let g ∈ Epi(n, Q × P) be as above. For every σ ∈ Q (�m
1 , �d

1) there exists h ∈ Epi(Q × P, P) such that ‖πh◦g − σ ◦
ψg‖�n

1→�d
1
≤ ε.

In order to prove the claim, fix σ ∈ Q (�m
1 , �d

1). Let Mσ ∈ Q be such that σ ◦ Mσ is the identity on �d
1. We define 

h ∈ Epi(Q ×P, P) as follows. For (M, v) ∈ Q ×P :

(1) if σ(M v) = 0, then we declare h(M, v) := 0,
(2) if σ(M v) �= 0 and M = Mσ , then we declare h(M, v) := v , and
(3) otherwise, we define h(M, v) to be an arbitrary w ∈ P such that ‖w − σ(M v)‖1 < ε and ‖w‖1 < ‖σ(M v)‖1. Such an 

element w of P exists by definition of P .

Clearly, h maps Q ×P onto P . Recall that Q ×P is endowed with the antilexicographic ordering. Furthermore, the linear 
order on P has the property that w < w ′ whenever w, w ′ ∈ P are such that ‖w‖

�d
1

<
∥∥w ′∥∥

�d
1
. We now show that h

is a rigid surjection from Q × P to P . Fix w ∈ P . We compute min<Q×P h−1(w). If w = 0, then min<Q×P h−1(w) =
(M0, 0), where M0 is the first element of Q. Suppose now that w �= 0. If h(M, v) = w , then either v = w , and M = Mσ , 
or else w is such that ‖w‖

�d
1

< ‖σ(M v)‖
�d

1
. Since σ is a contraction and M is an isometric embedding, it follows that 

‖w‖
�d

1
< ‖σ(M v)‖

�d
1

≤ ‖M v‖�m
1

= ‖v‖
�d

1
. This implies that min<Q×P h−1(w) = (Mσ , w). These observations, together with 

the definition of the ordering on Q × P show that h is a rigid surjection. To conclude the proof, it remains to see that 
‖πh◦g − σ ◦ ψg‖�n

1→�d
1
< ε. Since in both the domain and the range we are using the �1-norm, it suffices to show that for 

each j < n one has that ‖πh◦g(e j) − (σ ◦ ψg)(e j)‖�d
1
< ε. Suppose first that σ(g0( j)(g1( j))) = 0. In this case, by clause (1) 

in the definition of h, πh◦g(e j) = h(g0( j), g1( j)) = 0. Suppose now that σ(g0( j)(g1( j))) �= 0 and that g0( j) = Mσ . In this 
case, πh◦g(e j) = h(g( j)) = h(Mσ , g1( j)) = g1( j), while σ(ψg(e j)) = (σ ◦ g0( j))(g1( j)) = (σ ◦ Mσ )(g1( j)) = g1( j). Finally, if 
σ(g0( j)(g1( j))) �= 0 and g0( j) �= Mσ , then, by (3), πh◦g(e j) = h(g( j)) is such that ‖h(g( j)) − σ(g0( j)(g1( j)))‖

�d
1

< ε. This 
concludes the proof that h satisfies the desired conclusions.

We refer the reader to [1] for a more extended and complete explanation.

3. The Ramsey property for Choquet simplices

The combinatorial argument presented above can be naturally adapted to apply to the class of function systems (also 
known as order unit spaces). Again, for simplicity, we will consider the case of real scalars. A function system is an ordered 
Banach space X endowed with a distinguished Archimedean order unit 1. This is a positive element of X such that for 
every x ∈ X one has: if nx ≤ 1 for every n ∈ N, then x ≤ 0; there exists n ∈ N such that −n1 ≤ x ≤ n1; if x is positive, 
then ‖x‖ = inf {t ∈R : x ≤ t · 1}. A linear map between function systems is positive if it maps positive elements to positive 
elements, and unital if it maps the order unit to the order unit. A unital linear map is positive if and only if it is contractive. 
A state on a function system is a positive unital linear functional. There is a natural (contravariant) equivalence of categories 
between function systems with unital positive linear maps and compact convex sets with continuous affine maps. This 
correspondence assigns to a function system X its state space S(X) ⊂ X∗ endowed with the w*-topology, and conversely 
it assigns to a compact convex set K the function system A(K ) ⊂ C(K ) of continuous affine maps from K to R. Under 
this correspondence, the space of embeddings from X to Y endowed with the topology of pointwise convergence can 
be identified with the space of surjective affine continuous maps from S(Y ) onto S(X) endowed with the compact open 
topology. For instance, one can consider �n+1∞ as a function system with respect to the entrywise order and the order 
unit (1, 1, . . . , 1). The corresponding compact convex set is the standard n-dimensional Choquet simplex �n , consisting of 
t ∈ Rn+1 such that ti ≥ 0 for i = 0, 1, . . . , n and t0 + t1 + · · · + tn = 1.

Adapting the proof of Theorem 2.1 one can show that the class of function systems with a distinguished state satisfies the 
Ramsey property. An embedding between two function systems (X, sX ) and (Y , sY ) with a distinguished state is a unital 
linear isometry φ : X → Y such that sY ◦ φ = sX . Again, since every function system approximately embeds into (�n+1∞ , e0)

for some n ∈N, where e0 = (1, 0, 0, . . . , 0) ∈ �n , it suffices to establish the Ramsey property for the class 
{
(�n+1∞ , e0) : n ∈N

}
. 

To this purpose, one can notice that embeddings from (�d+1∞ , e0) to (�n+1∞ , e0) correspond by duality to contractive quotient 
mappings π : �n+1

1 → �d+1
1 such that π(e0) = e0, π maps positive elements to positive elements, and τd+1 ◦ π = τn+1, where 

τn(x0, . . . , xn) = x0 + · · · + xn . In other words, if A = [
aij

]
is the representative matrix for π, one has that a00 = 1, aij ≥ 0, 
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each column of A is in �d , and each row of A contains an entry which is equal to 1. One can thus proceed as in the proof 
of Theorem 2.1 by considering P to be a finite subset of the positive part Ball(�d

1)+ of the unit ball of �d
1 with the property 

that the zero vector and the canonical basis of �d
1 belong to P , and such that for any nonzero element v in Ball(�d

1)+ there 
exists v ′ ∈ P such that 

∥∥v − v ′∥∥
�d

1
< ε and 

∥∥v ′∥∥
�d

1
< ‖v‖

�d
1
. Similarly one lets Q be the (finite) set of m × d matrices with 

entries from {0,1} and such that every row contains at most one nonzero entry, every column contains exactly one nonzero 
entry, and the first row is (1, 0, 0, . . . , 0). One can identify P with a subset of �d+1 by mapping v = (v1, . . . , vd) ∈ P to 
the element (1 − (v1 + · · · + vd), v1, . . . , vd) ∈ �d . Via this identification, one can proceed as in the proof of Theorem 2.1. 
By duality, one can give the following geometric formulation of the Ramsey property for the class 

{
(�n+1∞ , e0) : n ∈N

}
. For 

d, n ∈N, we let Epi0(�n, �d) be the space of surjective affine continuous maps φ : �n → �d such that φ(e0) = e0, endowed 
with the metric induced by the identification with a subspace of Emb(�d∞, �n∞).

Theorem 3.1. For every r, d, m ∈ N and ε > 0 there exists n ∈ N such that for every r-coloring of Epi0(�n, �d) there exists φ ∈
Epi0(�n, �m) such that Epi0(�m, �d) ◦ φ is ε-monochromatic.

Theorem 3.1 has implications concerning the dynamical properties of the group Aut(P) of affine homeomorphisms of 
the Poulsen simplex P. Initially constructed by Poulsen in 1961 [17], P is the unique nontrivial metrizable Choquet sim-
plex with dense extreme boundary as shown by Lindenstrauss–Olsen–Sternfeld in 1976 [11]. It turns out that the class of 
finite-dimensional function system is Fraïssé, and its limit is equal to the function system A(P) associated with the Poulsen 
simplex [3]. Furthermore, the class of finite-dimensional function systems with a distinguished state is also Fraïssé, and 
its limit is (A(P), p) where p is an extreme point of P [12]. Thus Theorem 3.1 implies that the stabilizer Autp(P) of p in 
Aut(P) is extremely amenable. The completion of the quotient Aut(P) by Autp(P), endowed with the quotient uniformity 
induced by the left uniformity on Aut(P) and with the Aut(P)-action induced by the left translation action on Aut(P), can 
be equivariantly identified with P endowed with the canonical action of Aut(P). Since such an action is furthermore minimal
as shown by Glasner [4], one can conclude that the canonical action Aut(P) �P is the universal minimal flow of Aut(P).

Theorem 3.2. The universal minimal flow of Aut(P) is the canonical action Aut(P) �P. In order words, such an action is minimal, 
and it factors onto any minimal action of Aut(P).

This result answers a question of Conley and Törnquist from [3]. With similar methods one can establish the natural 
noncommutative analogs of the results above, stated in terms of the noncommutative Gurarij space NG [13] and the noncom-
mutative Poulsen simples NP [12]. These are defined similarly as G and P by replacing Banach spaces with exact operator 
spaces, and function systems with exact operator systems.
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