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We present the fractional perimeter as a set-function interpolation between the Lebesgue 
measure and the perimeter in the sense of De Giorgi. Our motivation comes from a new 
fractional Boxing inequality that relates the fractional perimeter and the Hausdorff content 
and implies several known inequalities involving the Gagliardo seminorm of the Sobolev 
spaces W α,1 of order 0 < α < 1.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous présentons le périmètre fractionnaire en tant que fonction d’ensemble qui interpole la 
mesure de Lebesgue et le périmètre au sens de De Giorgi. Notre motivation provient d’une 
inégalité fractionnaire que nous avons récemment démontrée dans l’esprit de la Boxing 
inequality de W. Gustin reliant le périmètre fractionnaire et le contenu de Hausdorff. Cette 
nouvelle inégalité permet de retrouver des propriétés de la semi-norme de Gagliardo dans 
le cadre des espaces de Sobolev W α,1 d’ordre 0 < α < 1.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Main results

In the forthcoming work [11], the authors established a family of estimates that in some sense interpolate the classical 
Boxing inequality of W. Gustin [6] and a trivial endpoint for the Lebesgue measure:

Theorem 1.1. There exists a constant C > 0 depending only on the dimension d ≥ 1 such that

Hd−α∞ (U ) ≤ Cα(1 − α)Pα(U ),
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for every bounded open subset U ⊂R
d, uniformly with respect to α ∈ (0, 1). Here, for a measurable set A ⊂R

d,

Hd−α∞ (A) := inf

{ ∞∑
i=0

ωd−αrd−α
i : A ⊂

∞⋃
i=0

B(xi, ri)

}
(1)

is the Hausdorff content of dimension (d − α) and

Pα(A) := 2
ˆ

A

ˆ

Rd\A

dy dz

|y − z|α+d
(2)

is the fractional perimeter of A.

When combined with a straightforward counterpart of the coarea formula for the fractional Sobolev space W α,1(Rd), 
one obtains the following trace inequality for every continuous function u ∈ W α,1(Rd):ˆ

Rd

|u|dμ ≤ Cα(1 − α)

ˆ

Rd

ˆ

Rd

|u(x) − u(y)|
|x − y|α+d

dy dx, (3)

where μ is any nonnegative Borel measure in Rd such that μ(B(x, r)) ≤ ωd−αrd−α for all balls B(x, r). This estimate is a 
strong form of Sobolev’s inequality which implies the classical embedding of W α,1 into L

d
d−α , its Lorentz-space improve-

ment, and also Hardy’s inequality.
The proof in [11] does not utilize interpolation, and in fact the authors do not know of any framework that allows one 

to interpolate the Hausdorff content. The fractional perimeter, however, is often thought of as an object that is interme-
diate between the perimeter (in the sense of De Giorgi) and the Lebesgue measure. For example, one has the fractional 
Gagliardo–Nirenberg inequality inherited from that for B V functions (see, e.g., Proposition 4.2 in [3] or Proposition 15.6 in 
[10]):

α(1 − α)Pα(U ) ≤ C |U |1−α Per (U )α, (4)

for all α ∈ (0, 1), as well as the asymptotics

lim
α→0

αPα(U ) = C ′|U | and lim
α→1

(1 − α)Pα(U ) = C ′′ Per (U ), (5)

that allows recovery of the endpoints; see [2,5,8].
The purpose of this note is to give a sense in which the fractional perimeter is intermediate between the perimeter and 

the Lebesgue measure. To this end, let us recall some results that follow from a routine application of the real interpolation 
theory. First, one has

Pα(A) = [χA]W α,1(Rd) :=
ˆ

Rd

ˆ

Rd

|χA(y) − χA(z)|
|y − z|α+d

dy dz,

that is, the fractional perimeter of a measurable set A ⊂ R
d is the Gagliardo semi-norm on W α,1(Rd) applied to the func-

tion χA . The fractional Sobolev space W α,1(Rd) is itself a Besov space that arises in the real interpolation of L1(Rd) and 
Ẇ 1,1(Rd) with parameter α (see, e.g., Corollary 4.13 and Eq. (4.42) in [1]):

Ẇ α,1(Rd) = (L1, Ẇ 1,1)α,

though in the real interpolation method one encounters a variety of equivalent semi-norms. Indeed, a convenient method 
for computing the semi-norm of a function f ∈ (L1, Ẇ 1,1)α is to introduce the K -functional

K (t, f , L1, Ẇ 1,1) := inf
f = f1+ f2

‖ f1‖L1(Rd) + t‖∇ f2‖L1(Rd),

where t > 0 and the infimum is taken over all decompositions f = f1 + f2 such that f1 ∈ L1(Rd) and f2 ∈ Ẇ 1,1(Rd). One 
then obtains a semi-norm on the interpolation space (L1, Ẇ 1,1)α via the formula

[ f ]W̃ α,1(Rd) := α(1 − α)

∞̂

0

t−α K (t, f , L1, Ẇ 1,1)
dt

t
,

for which one can show

[ f ]W̃ α,1(Rd) ∼ α(1 − α)[ f ]W α,1(Rd);
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see [9]. Here, the symbol ∼ indicates that both quantities are comparable, uniformly with respect to α ∈ (0, 1). While this 
is a standard approach to Ẇ α,1(Rd), it has the defect of not being applicable to the characteristic functions of sets, even 
sets of finite perimeter, to deduce estimate (4) and some type of analogue to the limits (5). This is not a serious setback, as 
it is not difficult to show the equivalence

K (t, f , L1, Ẇ 1,1) = K (t, f , L1, ˙B V ),

which is connected to the assertion that the Gagliardo closure of Ẇ 1,1 is ˙B V . This can be deduced from the literature, for 
example, through an application of Lemma 2 of the paper of Cwikel [4], and as a result one obtains

Ẇ α,1(Rd) = (L1, ˙B V )α. (6)

This yields Eq. (4) directly from the classical theory, while an analogue to Eq. (5),

lim
α→0

[χA]W̃ α,1(Rd) = |A| and lim
α→1

[χA]W̃ α,1(Rd) = Per (A),

follows (cf. [9]) from the fact that the pair (L1(Rd), ˙B V (Rd)) is normal, i.e.

lim
t→∞ K (t, f , L1, ˙B V ) = ‖ f ‖L1(Rd) and lim

t→0

K (t, f , L1, ˙B V )

t
= |D f |(Rd).

These results motivate us to define a fractional perimeter intrinsic to interpolation, which is

P̃α(A) := [χA]W̃ α,1(Rd) = α(1 − α)

∞̂

0

t−α K (t,χA, L1, ˙B V )
dt

t
,

for which standard interpolation arguments yield the following refinements to Eq. (4) and (5) (whose proofs we supply for 
the convenience of the reader).

Theorem 1.2. If A ⊂R
d is a set of finite perimeter, then one has

P̃α(A) ≤ |A|1−α Per (A)α,

and

lim
α→0

P̃α(A) = |A| and lim
α→1

P̃α(A) = Per (A).

Yet this approach still views sets of fractional finite perimeter as intermediate between L1 and ˙B V , while one might wish 
to use directly the spaces of sets of finite Lebesgue measure and those of finite perimeter. We here pursue this approach, 
though as these are not linear spaces we prefer to do so via the penalty functional

K (t, A) = inf
U⊂Rd

|A�U | + t Per (U ),

where the infimum is taken over all open sets U ⊂ R
d of finite perimeter and A�U := (A \ U ) ∪ (U \ A) is the symmetric 

difference between the sets A and U . Notice that

K (t,χA, L1, ˙B V ) ≤ K (t, A),

and so we might hope to use K (t, A) directly in the computation of the fractional perimeter. Indeed, we have the following 
theorem.

Theorem 1.3. For any Lebesgue measurable set A ⊂R
d and t > 0, one has

K (t,χA, L1, ˙B V ) = K (t, A)

and so in particular

P̃α(A) = α(1 − α)

∞̂

0

t−α K (t, A)
dt

t
.

Moreover, the argument in interpolation that demonstrates the equivalence between the semi-norms [ f ]W α,1 and [ f ]W̃ α,1

gives the following geometric interpretation of the penalization functional K (see Theorem 4.12 and Eq. (4.42) in Chapter 5 
of [1]):
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Theorem 1.4. For any Lebesgue measurable set A ⊂R
d and t > 0, one has

K (t, A) ∼ sup
h∈B(0,t)

|(A + h)�A|.

When one recalls the elementary comparison (see for example Eq. (10) in [7])

sup
h∈B(0,t)

|(A + h)�A| ∼
 

B(0,t)

|(A + h)�A|dh,

we find

P̃α(A) ∼ α(1 − α)

∞̂

0

t−α

(  

B(0,t)

|(A + h)�A|dh

)
dt

t

and then Fubini’s theorem yields P̃α(A) ∼ α(1 − α)Pα(A). This completes our work on describing the space of sets of 
fractional finite perimeter as being between the space of sets of finite Lebesgue measure and the space of sets of finite 
perimeter.

2. Proofs of the main results

Proof of Theorem 1.2. Given a set with finite perimeter A ⊂R
d , for every t > 0, we have

K (t, A) ≤ t Per (A) and K (t, A) ≤ |A|.
Thus, for r > 0 to be explicitly chosen later on,

∞̂

0

t−α K (t, A)
dt

t
=

rˆ

0

t−α K (t, A)
dt

t
+

∞̂

r

t−α K (t, A)
dt

t

≤ Per (A)

rˆ

0

t−α dt + |A|
∞̂

r

t−1−α dt = Per (A)
r1−α

1 − α
+ |A| r−α

α
.

Minimizing the right-hand side with respect to r, we get

∞̂

0

t−α K (t, A)
dt

t
≤ 1

α(1 − α)
|A|1−α Per (A)α.

To conclude, it suffices to observe that

lim
t→∞ K (t, A) = |A| and lim

t→0

K (t, A)

t
= Per (A),

which immediately imply the limits for P̃α(A). �
Proof of Theorem 1.3. Observe that ‖χA − χU ‖L1(Rd) = |A�U | and |DχU |(Rd) = Per (U ). The decomposition χA = (χA −
χU ) + χU thus yields the inequality

K (t,χA, L1, ˙B V ) ≤ K (t, A),

and so we must prove the reverse inequality.
For every f ∈ ˙B V (Rd) and t > 0, we begin by showing that

K (t, f , L1, ˙B V ) = inf
f = f1+ f2

f2∈C∞
c (Rd)

‖ f1‖L1(Rd) + t‖D f2‖L1(Rd). (7)

The inequality ≤ is immediate since the infimum in the left-hand side is taken over a larger class of decompositions of f . 
For the reverse inequality, we let η > 0 and f = f1 + f2 be such that f2 ∈ ˙B V (Rd) and

‖ f1‖L1(Rd) + t|D f2|(Rd) ≤ K (t, f , L1, ˙B V ) + η.

Take g2 ∈ C∞
c (Rd) such that
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‖ f2 − g2‖L1(Rd) ≤ η and |Dg2|(Rd) ≤ |D f2|(Rd) + η

t
.

The decomposition f = ( f1 + f2 − g2) + g2 satisfies

‖ f1 + f2 − g2‖L1(Rd) + t|Dg2|(Rd) ≤ ‖ f1‖L1(Rd) + ‖ f2 − g2‖L1(Rd) + t|Dg2|(Rd) ≤ K (t, f , L1, ˙B V ) + 3η.

Since η > 0 is arbitrary, this concludes the proof of the identity (7).
By Eq. (7), we may thus restrict our attention to decompositions χA = (χA − g) + g with g ∈ C∞

c (Rd). We first observe 
that the open set U := {|g| > s} with s ∈ (0, 1) satisfies

A�U ⊂ ({|χA − g| ≥ s} \ A
) ∪ ({|χA − g| ≥ 1 − s} ∩ A

)
. (8)

We now explain how to make a suitable choice of s. To this end, by Cavalieri’s principle and the classical coarea formula, 
we have

∞̂

0

|{|χA − g| ≥ s}|ds + t

∞̂

0

Per({|g| > s})ds = ‖χA − g‖L1(Rd) + t‖Dg‖L1(Rd).

By comparison of integrals and an affine change of variables we have

∞̂

0

|{|χA − g| ≥ s}|ds ≥
1ˆ

0

|{|χA − g| ≥ s}|ds =
1ˆ

0

(
|{|χA − g| ≥ s} \ A| + |{|χA − g| ≥ 1 − s} ∩ A|

)
ds.

Thus,

1ˆ

0

(
|{|χA − g| ≥ s} \ A| + |{|χA − g| ≥ 1 − s} ∩ A| + t Per ({|g| > s})

)
ds ≤ ‖χA − g‖L1(Rd) + t‖Dg‖L1(Rd).

Take s ∈ (0, 1), depending on t , such that the open set {|g| > s} is smooth and

|{|χA − g| ≥ s} \ A| + |{|χA − g| ≥ 1 − s} ∩ A| + t Per ({|g| > s}) ≤ ‖χA − g‖L1(Rd) + t‖Dg‖L1(Rd).

In view of the inclusion (8), we get

K (t, A) ≤ |A�U | + t Per (U ) ≤ ‖χA − g‖L1(Rd) + t‖Dg‖L1(Rd).

Taking the infimum of the right-hand side with respect to g , we deduce the reverse inequality. �
Proof of Theorem 1.4. Let h ∈ B(0, t). For every subset U ⊂ R

d of finite perimeter, by the triangle inequality in L1 and the 
translation invariance of the Lebesgue measure, we have

|(A + h)�A| = ‖χA+h − χA‖L1(Rd)

≤ ‖χA+h − χU+h‖L1(Rd) + ‖χA − χU ‖L1(Rd) + ‖χU+h − χU ‖L1(Rd) = 2|A�U | + |(U + h)�U |.
Since U has finite perimeter, |(U + h)�U | ≤ C1 |h| Per (U ), and since |h| ≤ t , this implies

|(A + h)�A| ≤ 2|A�U | + C1|h|Per (U ) ≤ C2 K (t, A).

To get the reverse comparison, take a smooth mollifier ρ supported in the ball B(0, t) and write

χA = (ρ ∗ χA − χA) + ρ ∗ χA .

Observe that

‖ρ ∗ χA − χA‖L1(Rd) ≤ sup
h∈B(0,t)

|(A + h)�A|,

while 
´
Rd Dρ = 0 and the fact that we can choose ρ such that ‖Dρ‖L1(Rd) ≤ C3/t implies

‖D(ρ ∗ χA)‖L1(Rd) ≤
ˆ

Rd

ˆ

Rd

|Dρ(h)|[χA+h(x) − χA(x)]dh dx ≤ C3

t
sup

h∈B(0,t)
|(A + h)�A|.

It thus remains to argue as in the proof of Theorem 1.3 and take U = {ρ ∗ χA > s} for some suitable s ∈ (0, 1). �
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