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the sign of the associated Friedrichs tensor, taking positive, null or reasonably negative 
values.
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r é s u m é

Cette Note propose une extension de l’analyse de la bonne position des problèmes 
d’advection–réaction scalaire et vectorielle dans les espaces du graphe de Banach de 
puissance p ∈ (1, ∞). Cette analyse étend l’hypothèse sur le signe du tenseur de Friedrichs 
associé à ces problèmes, permettant ainsi de considérer le cas où ce tenseur prend des 
valeurs positives, nulles ou raisonnablement négatives.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let � be a domain of R3 with Lipschitz-continuous boundary ∂� and consider u : � → R and u : � → R3 solving the 
following first-order homogeneous boundary valued problems

β·∇u + μu = s a.e. in �, (1a)

u = 0 a.e. on ∂�−, (1b)

and
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∇(β·u) + (∇×u)×β + μu = s a.e. in �, (2a)

u = 0 a.e. on ∂�−. (2b)

In this paper, β denotes a Lipschitz-continuous R3-valued vector field on �, and μ and μ denote two bounded reaction 
coefficients taking R and R3×3 values, respectively. The inflow boundary ∂�− is defined as ∂�− = {x ∈ ∂� | β(x)·n(x) < 0}, 
with n the exterior unit normal of ∂�.

The first problem (1) has been studied several times in the literature. We mention in particular the pioneering work 
of Bardos [1] and Beirão da Veiga [2] for the well-posedness analysis in smooth domains with regular model parameters 
and also the work of DiPerna & Lions [6] when the problem is expressed in unbounded domains with irregular model 
parameters. More recently, Girault & Tartar [10] proved (using a viscous and a Yosida regularization) the well-posedness 
of these problem in Lp(�) for all p > 2 under the assumption β ∈ W 1,2(�), and also the W 1,p(�)-regularity of solution 
to (1) if s ∈ W 1,p(�) and if β ∈ W 1,∞(�) is sufficiently small. Regarding the problem (2), there is very little work in the 
literature. However, this problem models physical situations, such as the static advection of a magnetic field in a conductor 
of conductivity μ and of velocity β . In the context of the differential geometry, this problem is also very important, since it 
represents the Lie derivative of a so-called 1-form in a three-dimensional domain; see Bossavit [3].

In this paper, we analyze the well-posedness of problems (1) and (2) in Banach graph spaces of power p ∈ (1, ∞). 
Observing that these problems define two Friedrichs systems (see Ern & al. [8,9]), the well-posedness is a consequence of 
the positivity of the R-valued Friedrichs tensor

σβ,μ;p := μ − 1

p
∇·β, (3)

for the first problem (1) and of the positivity of the lowest eigenvalue of the R3×3-valued Friedrichs tensor

σβ,μ;p := μ + μ T

2
+ ∇β + ∇β T

2
− 1

p
(∇·β) Id, (4)

for the second problem (2). The first contribution of this work concerns the well-posedness in Banach graph spaces. 
Following the analysis of Friedrichs system in Hilbert space proposed in the aforementioned works, we establish the well-
posedness of these two problems for positive (in the sense above) Friedrichs tensors (3) and (4). The second part of this 
work is devoted to the analysis when these assumptions are not satisfied. Introducing a so-called potential (whose existence 
follows from the regularity and the trajectory of the vector field in �, see Devinatz & al. [5]), we prove that one may extend 
the Friedrichs positivity assumptions so as to consider null or reasonably negative tensors.

This paper is organized as follows. First, some notations are introduced and we recall the classical statement of the 
Banach–Nečas–Babuška (BNB) theorem. Section 2 is concerned with the scalar problem (1); we prove that this problem is 
well posed in the Banach graph space of power p ∈ (1, ∞) if the infimum of the Friedrichs tensor (3) takes positive values, 
and we extend this result to consider null or reasonably negative values. In Section 3, we extend these results to prove the 
well-posedness of the vector problem (2) under similar assumptions on the Friedrichs tensor (4).

1.1. Notations

In this paper, p denotes any real number in (1, ∞) with p′ its conjuguate number such that 1
p + 1

p′ = 1. The inner, the 
cross and the tensor products in R3 are denoted by ·, × and ⊗ respectively. To alleviate the notation, |·| denotes either the 
Lebesgue measure of a set, the absolute value of a real number, the Euclidean norm of a vector or the Frobenius norm of 
a tensor. As usual, the Banach space Lp(�) collects all measurable functions v : � → R, whose absolute value raised to the 
power p is Lebesgue integrable, i.e. | |v| |Lp(�) = (

∫
�

|v|p)
1
p < ∞. Similarly, the Banach space L p(�) collects all measurable 

functions v : � → R3 whose Euclidean norm raised to the power p is Lebesgue integrable, i.e. | |v| |Lp(�) = (
∫
�

|v|p)
1
p < ∞. 

We denote by C∞(�) (resp. C∞(�)) the space of infinitely differentiable R-valued functions (resp. R3-valued) on � and 
C∞

c (�) (resp. C∞
c (�)) the subspace of those that are compactly supported in �.

1.2. Banach–Nečas–Babuška (BNB) theorem

Consider the following abstract variational problem

Find u ∈ U s.t. a(u, v) = 〈 f , v〉V ′,V , ∀v ∈ V , (5)

where U and V are two Banach spaces equipped with | |·| |U and | |·| |V , respectively, V is reflexive, a ∈ L(U×V ; R), f ∈ V ′
and 〈·, ·〉V ′,V is the duality pairing between V ′ ≡ L(V ; R) and V . A necessary and sufficient condition for (5) to be well 
posed is given by the (BNB) theorem, see, e.g., Ern & Guermond [7].
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Theorem 1.1 (Banach–Nečas–Babuška). The abstract problem (5) is well posed if and only if:
(BNB1) there exists Cbnb > 0 such that

Cbnb||v||U ≤ sup
w∈V \{0}

a(v, w)

||w||V
, ∀v ∈ U ;

(BNB2) for all w ∈ V , (∀v ∈ U , a(v, w) = 0) =⇒ (w = 0).

2. Scalar advection–reaction problem

This section analyzes the well-posedness of the continuous problem (1) in Banach graph spaces and generalizes the sign 
condition on the Friedrichs tensor σβ,μ;p defined by (3).

2.1. The graph space

The Banach graph space of power p associated with (1) is defined by

Vβ;p(�) := {
v ∈ Lp(�) | β·∇v ∈ Lp(�)

}
, (6)

and is equipped with the norm | |v| |Vβ;p(�) := (| |v| |p
Lp(�) + | |β·∇v| |p

Lp(�))
1
p for all v ∈ Vβ;p(�). This space defines a reflexive 

Banach space owing to the first and the second Clarkson inequalities (see Brezis [4]) where for all v ∈ Vβ;p(�), β·∇v ∈
Lp(�) means that the linear form

C∞
c (�) � ϕ �→ −

∫
�

v ∇·(βϕ), (7)

is bounded in Lp′
(�), so that β·∇v is the Riesz representative of (7) in Lp(�). To specify the meaning of the trace of a 

function in Vβ;p(�), we introduce the space Lp (|β·n| ; ∂�) given by

Lp (|β·n| ; ∂�) := {
v : ∂� →R | v is Lebesgue measurable on ∂� and

∫
∂�

|β·n| |v|p < ∞}
, (8)

which is a Banach space when equipped with the norm | |v| |Lp(|β·n|;∂�) := (
∫
∂�

|β·n| |v|p)
1
p for all v ∈ Lp (|β·n| ; ∂�). As ob-

served by Ern & Guermond [8], the existence of traces in L2 (|β·n| ; ∂�) for a function in Vβ;2(�) is not always guaranteed. 
A necessary and sufficient condition is the well-separation of the boundary ∂� with respect to the vector field β , i.e.

dist(∂�−, ∂�+) > 0 with ∂�± = {x ∈ ∂� | ± β(x)·n(x) > 0} . (9)

In this following, we always assume that this condition is satisfied. Let us adapt the proof of [8, Lemma 3.1] to the general 
case p ∈ (1, ∞) to prove the existence of such traces.

Lemma 2.1 (Trace in Lp (|β·n| ; ∂�)). The map γ : C∞(�) → Lp (|β·n| ; ∂�) with γ (ϕ) = ϕ|∂� for all ϕ ∈ C∞(�), extends continu-
ously to Vβ;p(�), i.e. there exists Cγ > 0 such that

||γ (v)||L p(|β·n|;∂�) ≤ Cγ ||v||Vβ;p(�), ∀v ∈ Vβ;p(�).

Proof. Owing to the separation of the boundary from assumption (9), there exist ψ+, ψ− ∈ C∞(�) such that ψ+ + ψ− ≡ 1
on ∂�, ψ± ≥ 0, ψ+

|∂�− ≡ 0 and ψ−
|∂�+ ≡ 0. Proceeding as in [8], we infer that∫

∂�

|β·n| |ϕ|p =
∫
∂�

(β·n)|ϕ|p(ψ+ − ψ−) =
∫
�

∇·(β|ϕ|p(ψ+ − ψ−)), ∀ϕ ∈ C∞(�),

where we have used the partition of the unity on the boundary and the Stokes formula. Applying now the Leibniz product 
rule and recalling that ∇|ϕ|p = pϕ|ϕ|p−2∇ϕ , we obtain∫

∂�

|β·n| |ϕ|p = p

∫
�

(ψ+ − ψ−)(β·∇ϕ)ϕ|ϕ|p−2 +
∫
�

|ϕ|p∇·(β(ψ+ − ψ−)).

Next, Hölder’s and Young’s inequalities along with the identity | |ϕ|ϕ|p−2| |p′
Lp′

(�)
= | |ϕ| |p

Lp(�) yield∫ ∣∣∣(β·∇ϕ)ϕ|ϕ|p−2
∣∣∣ ≤ ||β·∇ϕ||L p(�)||ϕ||p/p′

L p(�)
≤ 1

p
||β·∇ϕ||p

L p(�)
+ 1

p′ ||ϕ||p
L p(�)

.

�
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It follows that | |ϕ| |Lp(|β·n|;∂�) ≤ C ′(| |β·∇ϕ| |p
Lp(�) + p| |ϕ| |p

Lp(�))
1
p with the constant C ′ = 2

1
p (| |ψ+ − ψ−| |L∞(�) + | |∇·(β(ψ+ −

ψ−))| |L∞(�))
1
p . Then, observing that p

1
p ≤ e

p−1
p ≤ e, we obtain

||ϕ||L p(|β·n|;∂�) ≤ Cγ ||ϕ||Vβ;p(�), ∀ϕ ∈ C∞(�),

with Cγ = eC ′ . Finally, recalling that C∞(�) is dense in Vβ;p(�) for all p ∈ (1, ∞) (see Jensen [12, Theorem 2]), this 
inequality holds as well for any function in Vβ;p(�).

Owing to the existence of traces in Lp (|β·n| ; ∂�), the following integration by parts formulae hold.

Lemma 2.2 (Integration by parts). For all v ∈ Vβ;p(�) and for all w ∈ Vβ;p′ (�),∫
�

(β·∇v) w +
∫
�

(β·∇w) v +
∫
�

(∇·β) v w =
∫
∂�

(β·n) v w. (10a)

In addition, for all v ∈ Vβ;p(�) and for all z ∈ W 1,∞(�),∫
�

(β·∇v) v|v|p−2z + 1

p

∫
�

(∇·β) |v|p z + 1

p

∫
�

(β·∇z) |v|p = 1

p

∫
∂�

(β·n)|v|p z. (10b)

Proof. These formulae follow from the density of C∞(�) in Vβ;p(�) for all p ∈ (1, ∞). The first one results from the Leibniz 
product rule, while the second one is a consequence of the identity

β·∇(ϕ|ϕ|p−2z) = ϕ|ϕ|p−2β·∇z + (p − 1)|ϕ|p−2z β·∇ϕ, (11)

for all ϕ ∈ C∞(�) and for all z ∈ W 1,∞(�).

2.2. Weak formulation

To examine the well-posedness of (1), we introduce the bilinear form aβ,μ;p ∈L(V 0
β;p(�)×Lp′

(�); R), where V 0
β;p(�) :=

{w ∈ Vβ;p(�) | w |∂�− = 0}, and such that for all v ∈ V 0
β;p(�) and all w ∈ Lp′

(�),

aβ,μ;p(v, w) :=
∫
�

(β·∇v) w +
∫
�

μ v w. (12)

Observe that, for all p ∈ (1, ∞), V 0
β;p(�) is a closed subspace of Vβ;p(�) owing to Lemma 2.1. Assuming that s ∈ Lp(�), 

the weak formulation of (1) in the graph space V 0
β;p(�) is:

Find u ∈ V 0
β;p(�) s.t. aβ,μ;p(u, v) =

∫
�

s v, ∀v ∈ Lp′
(�). (13)

It is readily seen that if u ∈ V 0
β;p(�) solves (13), the equation (1a) holds in Lp(�) and the boundary condition (1b) holds in 

Lp(|β·n| ; ∂�). Note that the boundary conditions are strongly enforced in (13).

2.3. Well-posedness for positive Friedrichs tensor

To examine the uniqueness of the weak solution u to (13) in the graph space Vβ;p(�), we recall the R-valued Friedrichs 
tensor

σβ,μ;p := μ − 1

p
∇·β. (14)

Hereafter, we assume that this tensor satisfies the so-called Friedrichs positivity assumption (Hp ):

(Hp) ess inf � σβ,μ;p > 0. We define the reference time τ = (
ess inf � σβ,μ;p

)−1
.

Proposition 2.3 (Uniqueness under (Hp)). Assume that (Hp) holds. Then

aβ,μ;p(v, v|v|p−2) ≥ τ−1||v||p
L p(�), ∀v ∈ V 0

β;p(�). (15)
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Proof. Let v ∈ V 0
β;p(�). Observing that v|v|p−2 ∈ Lp′

(�), the quantity aβ,μ;p(v, v|v|p−2) is well defined. Owing to the 
integration by parts formula (10b) with z ≡ 1 on � (so that β·∇z ≡ 0), we infer that

aβ,μ;p(v, v|v|p−2) =
∫
�

(
μ − 1

p
∇·β

)
|v|p + 1

p

∫
∂�

(β·n)|v|p,

whence, using the definition (14) of the Friedrichs tensor σβ,μ;p and the fact that v |∂�− = 0, we obtain

aβ,μ;p(v, v|v|p−2) =
∫
�

σβ,μ;p|v|p + 1

p

∫
∂�+

(β·n)|v|p.

The desired bound then follows from (Hp ) and the definition of ∂�+ .

To prove the well-posedness of (13) under the assumption (Hp ), we need to introduce the two Lipschitz spaces

Lip0(�) := {
v : � →R | v ∈ Lip(�) and v |∂�− ≡ 0

}
, (16)

and

Lipc(∂�+) := {
v : ∂� →R | v ∈ Lip(∂�) and v is compactly supported on ∂�+}

, (17)

which satisfy the following Proposition.

Proposition 2.4 (Surjectivity of traces). For all v ∈ Lipc(∂�+), there is w ∈ Lip0(�) such that w |∂� = v.

Proof. In order to stay general, we denote d = 3 the dimension of �. Let v ∈ Lipc(∂�+) and denote K its compact support 
on ∂�+ . Owing to the Borel–Lebesgue property, we define {Bi}1≤i≤N the finite family of open sets in Rd covering K , i.e.

K ⊂
⋃

1≤i≤N

(Bi ∩ ∂�+) � ∂�+, (18)

and we denote {θi}1≤i≤N the partition of the unity subordinate to this covering, i.e. for all 1 ≤ i ≤ N , 0 ≤ θi ≤ 1, θi ∈ C∞
c (Bi)

and 
∑

1≤i≤N θi |K ≡ 1.
Recalling that the boundary ∂� is assumed to be Lipschitz-continuous, we introduce, for all 1 ≤ i ≤ N , the local bi-

Lipschitz charts ψi : Q → Bi where Q := {(x′, xd) ∈ Rd−1×R | ∣∣x′∣∣ < 1 and |xd| < 1}, such that ψi(Q +) = Bi ∩ � with 
Q + = {(x′, xd) ∈ Rd−1×R | ∣∣x′∣∣ < 1 and 0 < xd < 1} and ψi(Q 0) = Bi ∩ ∂�+ with Q 0 = {(x′, 0) ∈ Rd−1×R | ∣∣x′∣∣ < 1}. De-
noting vi = v |Bi∩∂�+ , we introduce the function ṽ i : Q + → R defined as the extrusion of vi ◦ ψi in Q + , i.e. for all 
(x′, xd) ∈ Q + , ṽ i(x′, xd) = vi ◦ ψi(x′, 0). Next, mapping back to �, we consider wi : � → R such that wi(x) = ṽ i ◦ ψ−1

i (x) for 
all x ∈ Bi ∩ � and wi(x) = 0 for all x ∈ �\Bi ∩ �. Finally, collecting these functions {wi}1≤i≤N , we observe that the function 
w = ∑

1≤i≤N θi wi satisfies the desired conditions.

Theorem 2.5 (Well-posedness under (Hp)). Assume that (Hp) holds. Then the problem (13) is well-posed.

Proof. We apply Theorem 1.1. Adapting the proof of Ern & Guermond [7, Theorem 5.7], we first consider v ∈ V 0
β;p(�) and 

we denote

Sp := sup
w∈L p′

(�)\{0}

aβ,μ;p(v, w)

||w||L p′
(�)

.

Owing to Proposition 2.3, we infer that | |v| |p
Lp(�) ≤ τ Sp| |v| |

p
p′
Lp(�) , recalling that | |v |v|p−2| |p′

Lp′
(�)

= | |v| |p
Lp(�) . Hence, we obtain 

| |v| |Lp(�) ≤ τ Sp . To bound the second part of the graph norm, i.e. the advective derivative, we observe that

||β·∇v||L p(�) := sup
w∈L p′

(�)\{0}

aβ,0;p(v, w)

||w||L p′
(�)

= sup
w∈L p′

(�)\{0}

aβ,μ;p(v, w) − ∫
�

μv w

||w||L p′
(�)

.

Then, we obtain

||β·∇v||L p(�) ≤ Sp + ||μ||L∞(�)||v||L p(�) ≤ Sp(1 + ||μ||L∞(�)τ ),

yielding the first condition (BNB1) with the constant Cbnb = (τ p + (1 + | |μ| |L∞(�)τ )p)
1
p .
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Let us prove now the second condition (BNB2). Consider w ∈ Lp′
(�) such that aβ,μ;p(v, w) = 0 for all v ∈ V 0

β;p(�). 
Owing to the inclusion C∞

c (�) ⊂ V 0
β;p(�), it follows that μw − ∇·(βw) = 0 a.e. in �, so that the dense inclusion 

C∞
c (�) ⊂ Lp′

(�) implies that β·∇w = (μ − ∇·β)w ∈ Lp′
(�), whence w ∈ Vβ;p′ (�). Applying now the integration by parts 

formula (10a), we observe that∫
∂�

(β·n) v w = aβ,μ;p(v, w) −
∫
�

(μ − ∇·β) v w +
∫
�

(β·∇w) v = 0,

for all v ∈ V 0
β;p(�). In particular, observing that Lip0(�) ⊂ V 0

β;p(�) for all p ∈ (1, ∞), and owing to Proposition 2.4, we 
have ∫

∂�+
(β·n) v w = 0, ∀v ∈ Lipc(∂�+).

Owing to the vanishing integral property, this identity yields w |∂�+ = 0. Now, testing the identity μw − ∇·(βw) = 0 by an 
arbitrary y ∈ Lp(�) and using the chain rule ∇·(βw) = β·∇w + (∇·β)w , we infer that

0 =
∫
�

(μw − ∇·(βw)) y =
∫
�

(μ − ∇·β)wy −
∫
�

β·∇w y.

Hence, the particular choice y = w |w|p′−2 along with the identity (10b) with p replaced by p′ and with z ≡ 1 yields

0 =
∫
�

(μ − ∇·β) |w|p′ + 1

p′

∫
�

(∇·β) |w|p′ − 1

p′

∫
∂�

(β·n) |w|p′

=
∫
�

σβ,μ;p |w|p′ − 1

p′

∫
∂�

(β·n) |w|p′ ≥ τ−1||w||p′
L p′

(�)
,

where we have used that w |∂�+ = 0 and the assumption (Hp ). As a result, w = 0 a.e. in �, so that the condition (BNB2) is 
satisfied. Owing to Theorem 1.1, there exists a unique solution solving the problem (13).

2.4. Well-posedness for non-positive Friedrichs tensor

Summarizing the results obtained so far, we have proved under assumption (Hp ) the well-posed of (1) in the graph 
space V 0

β;p(�). This section aims to extend this result under the new assumption (H′
p ) so as to include the situation where 

the infimum of the Friedrichs tensor σβ,μ;p takes null or slightly negative values.

(H′
p) ess inf � σβ,μ;p ≤ 0 and there exists a non-dimensional function ζ ∈ Lip(�) such that

ess inf � eζ

(
σβ,μ;p − 1

p
β·∇ζ

)
> 0. (19)

We define the reference time τ =
(

ess inf � eζ
(
σβ,μ;p − 1

p β·∇ζ
))−1

.

Proposition 2.6 (Uniqueness under (H′
p)). Assume that (H′

p) holds. Then

aβ,μ;p(v, eζ v|v|p−2) ≥ τ−1||v||p
L p(�), ∀v ∈ V 0

β;p(�). (20)

Proof. Let v ∈ V 0
β;p(�). Observing that

aβ,μ;p(v, eζ v|v|p−2) = aβ̃,μ̃;p(v, v|v|p−2),

where we have denoted β̃ = eζ β and μ̃ = eζμ, the inequality (20) follows from Proposition 2.3 if ess inf � σβ̃,μ̃;p > 0, i.e. if 
(H′

p) holds, since we have

σβ̃,μ̃;p = eζ

(
σβ,μ;p − 1

p
β·∇ζ

)
.

Remark 1 (Using integration by parts). Instead of using Proposition 2.3 in the proof of Proposition 2.6, it is also possible to 
obtain this result by applying the general integration by parts formula (10b) with z = eζ v|v|p−2.
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Example 1. Assumption (H′
p) indeed generalizes the assumption (Hp ) since it is now possible to consider situations that 

cannot be handled under (Hp ). For example, considering the rotating field β = (y, −x, z + 1) expressed in the Cartesian 
coordinates of R3 and a reaction coefficient μ ∈R, we have σβ,μ;p = μ − 1

p . If μ ≤ 1
p , this Friedrichs tensor does not satisfy 

(Hp), whereas (H′
p) does, for example with the potential ζ(x) = α(1 + z)2 for all α ∈R such that 8α < μp − 1.

Remark 2 (Existence of ζ ). Following Devinatz & al. [5] and considering a continuously differentiable field β ∈ C1(Rd), the 
existence of the potential ζ relies on the assumption that every solution to the Cauchy problem dt x(t) = β(x(t)), x(0) =
x0 ∈ � remains in the domain � for a finite time only. Observing that the proof in this reference is based on the flow box 
theorem, the extension to a less regular field (e.g. β ∈ Lip(�)) is a priori not obvious.

We are now in a position to state the well-posedness of (13) under assumption (H′
p ).

Theorem 2.7 (Well-posedness under (H′
p)). Assume that (H′

p) holds. Then the problem (13) is well posed.

Proof. We follow the same ideas as in the proof of Theorem 2.5. The condition (BNB1) is inferred from Proposition 2.6 with 
Cbnb = (| |eζ | |p

L∞(�)τ
p + (1 + | |μ| |L∞(�)τ | |eζ | |L∞(�))

p)
1
p . Turning to the second condition (BNB2), we consider w ∈ Lp′

(�) such 
that aβ,μ;p(v, w) = 0 for all v ∈ V 0

β;p(�). Proceeding as in the proof of Theorem 2.5, this implies that w belongs to the 
graph space Vβ;p′ (�) and that it satisfies μw − ∇·(βw) = 0 a.e. in � and w |∂�+ ≡ 0. Let us prove that w ≡ 0 a.e. in �. 
First, we observe that replacing p by p′ and choosing z = eζ(1−p′) in (10b) yields∫

�

(β·∇w) w |w|p′−2 eζ(1−p′) = 1

p′

∫
∂�

(β·n) |w|p′
eζ(1−p′)

− 1

p′

∫
�

(∇·β) |w|p′
eζ(1−p′) − 1 − p′

p′

∫
�

(β·∇ζ ) |w|p′
eζ(1−p′).

Hence, testing the identity μw − ∇·(βw) = 0 with the function w |w|p′−2 eζ(1−p′) , we infer that

0 =
∫
�

(μ − ∇·β) |w|p′
eζ(1−p′) −

∫
�

(β·∇w) w |w|p′−2 eζ(1−p′)

=
∫
�

(μ − ∇·β) |w|p′
eζ(1−p′) + 1

p′

∫
�

(∇·β) |w|p′
eζ(1−p′) − 1

p

∫
�

(β·∇ζ ) |w|p′
eζ(1−p′) − 1

p′

∫
∂�

(β·n) |w|p′
eζ(1−p′).

Then, collecting these terms and using the fact that w |∂�+ = 0, we obtain

0 =
∫
�

eζ(1−p′)
(
σβ,μ;p − 1

p
β·∇ζ

)
|w|p′ − 1

p′

∫
∂�

(β·n) |w|p′
eζ(1−p′)

≥
∫
�

eζ(1−p′)
(
σβ,μ;p − 1

p
β·∇ζ

)
|w|p′

.

As a result, owing to (Hp′) and the fact that w |∂�+ ≡ 0, it follows that w ≡ 0 a.e. in �. Owing to Theorem 1.1, we conclude 
that (13) is well posed under assumption (Hp′ ).

3. Vector advection–reaction problem

In this section, we apply similar ideas to analyze the well-posedness of the vector-valued problem (2) in Banach graph 
spaces where we generalize the assumption of the sign of the Friedrichs tensor σβ,μ;p defined by (4). For the sake of 
brevity, the proofs are omitted if they are straightforwardly adapted from those of the scalar case in Section 2.

3.1. The graph space

Let us introduce the graph space

Vβ;p(�) := {
v ∈ L p(�) | (β·∇)v ∈ Lp(�)

}
, (21)
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where the i-th component in the Cartesian basis of (β·∇)v is given by β j∂ j v i (where repeated indices are summed) and 
where (β·∇)v ∈ L p(�) means that the linear form

C∞
c (�) � ϕ �→ −

∫
�

∇·(β⊗ϕ)·v, (22)

is bounded in L p′
(�), so that (β·∇)v is the Riesz representative of (22) in L p(�). Equipped with the norm | |v| |Vβ;p(�) :=

(| |v| |p
Lp(�)

+| |(β·∇)v| |p
Lp(�)

)
1
p for all v ∈ Vβ;p(�), this space defines a reflexive Banach space. The following proposition states 

that the problem (2) is well defined in the graph space Vβ;p(�).

Proposition 3.1 (Equivalent definition of Vβ;p(�)). The following holds:

Vβ;p(�) = {
v ∈ Lp(�) | ∇(β·v) + (∇×v)×β ∈ Lp(�)

}
,

where ∇(β·v) + (∇×v)×β ∈ L p(�) means that the linear form

C∞
c (�) � ϕ �→ −

∫
�

(β ∇·ϕ + ∇×(ϕ×β)) ·v, (23)

is bounded in Lp′
(�).

Proof. Let v ∈ Vβ;p(�). By definition, we have∫
�

(β·∇)v·ϕ = −
∫
�

∇·(β⊗ϕ)·v, ∀ϕ ∈ C∞
c (�).

Now, recalling the identity ∇·(β⊗ϕ) = β ∇·ϕ + ∇×(ϕ×β) + (ϕ·∇)β for all β ∈ Lip(�) and for all ϕ ∈ C∞
c (�), it follows 

that ∫
�

(β·∇)v·ϕ = −
∫
�

(β ∇·ϕ + ∇×(ϕ×β)) ·v −
∫
�

((ϕ·∇)β) ·v.

Hence, observing that ((ϕ·∇)β)·v = ((∇β)ϕ)·v , we obtain∫
�

(
(β·∇)v + (∇β) T v

)
·ϕ = −

∫
�

(β ∇·ϕ + ∇×(ϕ×β)) ·v, ∀ϕ ∈ C∞
c (�).

Hence, the linear form (23) is bounded, yielding ∇(β·v) + (∇×v)×β ∈ L p(�), so that the inclusion holds. Note that we 
have the identity (β·∇)v + (∇β) T v = ∇(β·v) + (∇×v)×β a.e. in �. Since the proof of the converse inclusion is similar, the 
proof is completed.

Recalling now that the boundary ∂� is well separated in the sense of (9), functions in the graph space Vβ;p(�) have a 
trace in the space

Lp(|β·n| ; ∂�) := {
v : ∂� →R3 | v is Lebesgue measurable on ∂� and

∫
∂�

|β·n| |v|p < ∞}
. (24)

Equipped with the norm | |v| |Lp(|β·n|;∂�) := (
∫
∂�

|β·n| |v|p)
1
p for all v ∈ L p(|β·n| ; ∂�), this space defines a Banach space.

Lemma 3.2 (Trace in L p(|β·n| ; ∂�)). The map γ : C∞(�) → Lp(|β·n| ; ∂�) with γ (ϕ) = ϕ|∂� for all ϕ ∈ C∞(�) extends contin-
uously to Vβ;p(�), i.e. there exists Cγ > 0 such that

||γ (v)||Lp(|β·n|;∂�) ≤ Cγ ||v||Vβ;p(�), ∀v ∈ Vβ;p(�).

Owing to the existence of a trace in L p(|β·n| ; ∂�), we now extend Lemma 2.2 to a vector-valued function.
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Lemma 3.3 (Integration by parts). For all v ∈ Vβ;p(�) and for all w ∈ Vβ;p′ (�),∫
�

w·(β·∇)v +
∫
�

v·(β·∇)w +
∫
�

(∇·β)v·w =
∫
∂�

(β·n) v·w. (25a)

In addition, for all v ∈ Vβ;p(�) and for all z ∈ W 1,∞(�),∫
�

|v|p−2z v·(β·∇)v + 1

p

∫
�

(∇·β)|v|p z + 1

p

∫
�

β·∇z |v|p = 1

p

∫
∂�

(β·n)|v|p . (25b)

3.2. Weak formulation

Following the route of Section 2, we introduce the bilinear form aβ,μ;p ∈ L(V 0
β;p(�)×Lp′

(�); R) with V 0
β;p(�) = {w ∈

Vβ;p(�) | w |∂�− = 0} such that for all v ∈ Vβ;p(�) and for all w ∈ L p′
(�),

aβ,μ;p(v, w) :=
∫
�

(∇(β·v) + (∇×v)×β) ·w +
∫
�

μv·w, (26)

with μ : � → R3×3 the reaction tensor. Following the proof of Proposition 3.1, we observe that the bilinear form (26) can 
be reformulated as

aβ,μ;p(v, w) =
∫
�

w·(β·∇)v +
∫
�

w·(∇β T + μ)v, (27)

and the writing μ′ = ∇β T + μ yields μ′ ∈ L∞(�) and

aβ,μ;p(v, w) =
∫
�

(β·∇)v·w +
∫
�

μ′v·w. (28)

Assuming now that s ∈ L p(�), the weak formulation of (2) in the graph space V 0
β;p(�) is:

Find u ∈ V 0
β;p(�) s.t. aβ,μ;p(u, v) =

∫
�

s·v, ∀v ∈ Lp′
(�). (29)

We readily see that if u ∈ V 0
β;p(�) solves (29), the problem (2a) holds in L p(�), and the boundary condition (2b) holds in 

Lp(|β·n| ; ∂�).

3.3. Well-posedness for positive and non-positive Friedrichs tensors

The uniqueness of the solution to problem (29) relies on the sign of the lowest eigenvalue of the R3×3-valued Friedrichs 
tensor

σβ,μ;p := μ + μ T

2
+ ∇β + ∇β T

2
− 1

p
(∇·β) Id. (30)

For all x ∈ �, this lowest eigenvalue is denoted by ℵp(x) and is defined as

ℵp(x) = min
{(

σβ,μ;p(x)y, y
) | y ∈R3 s.t. |y| = 1

}
,

where (·, ·) denotes the classical Euclidean inner product in R3. Hereafter, we assume that this eigenvalue satisfies the 
following assumption.

(Hp) ess inf � ℵp > 0. We define τ = (
ess inf � ℵp

)−1.

Proposition 3.4 (Uniqueness under (Hp )). Assume that (Hp) holds. Then,

aβ,μ;p(v, v |v|p−2) ≥ τ−1||v||p
Lp(�)

, ∀v ∈ V 0
β;p(�).
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Proof. Let v ∈ V 0
β;p(�) and consider aβ,μ;p(v, v |v|p−2) (since v |v|p−2 ∈ Lp′

(�)). Owing to the identity (27), we infer that

aβ,μ;p(v, v |v|p−2) =
∫
�

|v|p−2 v·(β·∇)v +
∫
�

|v|p−2 v·
(
∇β T + μ

)
v.

Using now the integration by parts formula (25b) with z ≡ 1, we obtain

aβ,μ;p(v, v |v|p−2) =
∫
�

|v|p−2 v·σβ,μ;p ·v + 1

p

∫
∂�

(β·n) |v|p , (31)

whence the result follows using (Hp ) and recalling that v |∂�− = 0.

To take into account the situation where the smallest eigenvalue ℵp takes null or slightly negative values in �, we consider 
the new assumption (H′

p).

(H′
p) ess inf � ℵp ≤ 0 and there exists a non-dimensional function ζ ∈ Lip(�) such that

ess inf � eζ

(
ℵp − 1

p
β·∇ζ

)
> 0.

We define τ−1 = ess inf � eζ
(
ℵp − 1

p β·∇ζ
)

.

Proposition 3.5 (Uniqueness under (H′
p)). Assume that (H′

p) holds. Then,

aβ,μ;p(v, eζ v |v|p−2) ≥ τ−1||v||p
Lp(�)

, ∀v ∈ V 0
β;p(�).

Proof. Let v ∈ V 0
β;p(�). Denoting β̃ = eζ β , μ̃ = eζ μ and observing that

∇(β̃·v) = eζ (∇(β·v) + (∇ζ⊗β)v) a.e. in �,

we infer that aβ,μ;p(v, eζ v |v|p−2) = aβ̃,μ̃;p(v, v |v|p−2) − a0,∇ζ⊗β;p(v, eζ v |v|p−2). Owing to (31), this identity yields

aβ,μ;p(v, eζ v |v|p−2) ≥
∫
�

|v|p−2 v·σ β̃,μ̃;p ·v −
∫
�

eζ |v|p−2 v·
(∇ζ⊗β + β⊗∇ζ

2

)
·v.

In addition, observing that

σ β̃,μ̃;p = eζ

(
σβ,μ;p − 1

p
(β·∇ζ )Id

)
+ eζ

(∇ζ⊗β + β⊗∇ζ

2

)
,

the expected result follows from assumption (H′
p).

Finally, the well-posedness of (2) holds under assumption (Hp) or (H′
p). The proof follows the same ideas used to prove 

Theorems 2.5 and 2.7, this time using Propositions 3.4 and 3.5, respectively.

Theorem 3.6 (Well-posedness). Assume that (Hp) or (H′
p) holds. Then the problem (29) is well posed.

4. Conclusion

In this paper, we have extended the well-posedness of problems (1) and (2), not only in the Banach graph space of 
exponent p ∈ (1, ∞), but also under new assumptions regarding the classical Friedrichs tensor, so as to consider the situ-
ation when it takes positive, null, or slightly negative values. Observing that equations (1a) and (2a) are the proxy of the 
Lie derivative in R3 of a 0- and a 1-form respectively, the present analysis could be extended in a future work within the 
more general framework proposed by Heumann [11] to treat the advection of a differential k-form within a manifold of Rd . 
However, the question of the existence of the potential ζ in such a more general context is still open. Another extension of 
this work concerns the case of the non-homogeneous Dirichlet boundary condition, requiring to establish the surjectivity of 
the trace maps in these Banach graph spaces.
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