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A Riemannian manifold has CVC(ε) if its sectional curvatures satisfy sec ≤ ε or sec ≥ ε
pointwise, and if every tangent vector lies in a tangent plane of curvature ε. We present a 
construction of an infinite-dimensional family of compact CVC(1) three-manifolds.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Une variété riemannienne est dite CVC(ε) si sa courbure sectionnelle satisfait ponctuel-
lement sec ≤ ε ou sec ≥ ε et si chaque vecteur tangent appartient à un plan tangent de 
courbure ε. Nous construisons une famille de dimension infinie de variétés compactes 
de dimension 3, qui sont CVC(1).

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A Riemannian manifold has constant vector curvature ε if every tangent vector lies in a 2-plane of curvature ε and has 
pointwise extremal curvature ε if the sectional curvatures satisfy sec ≥ ε or sec ≤ ε pointwise. A manifold has CVC(ε) when 
it has both constant vector curvature ε and pointwise extremal curvature ε.

The study of CVC(ε) manifolds began with [12], motivated by rank-rigidity theorems as in [1–6,8,11,15–17]. Classification 
results in [12] demonstrate the rigid nature of finite volume CVC(ε) three-manifolds with ε ≤ 0. When ε = −1, they are all 
locally homogeneous. When ε = 0, components of non-isotropic points admit Riemannian product decompositions. These 
rigidity results fail without the finite volume assumption by [9,13,14].

Here, we illustrate the relative flexibility of this curvature condition when ε > 0. We construct an infinite-dimensional 
family of compact CVC(1) three-manifolds. These manifolds also satisfy the following spherical rank condition: Each geodesic 
γ (t) admits a Jacobi field J (t) with sec(γ̇ , J )(t) ≡ 1. Contrastingly, in dimension three, only the spherical space forms satisfy 
the (a posteriori more stringent) spherical rank condition obtained by replacing Jacobi fields with parallel fields [8].

Our construction “deforms” compact locally homogeneous three-manifolds admitting a Riemannian submersion to a 
constant curvature surface. For c ∈ R, let G denote SU(2), the Heisenberg group, or S̃L2(R) when c < 1, c = 1, or c > 1, 
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respectively. Let � be a cocompact lattice in G . The parameter c and lattice � determine the deformed Riemannian submer-
sion:

The group G admits a left-invariant framing {e1, e2, e3} with

[e1, e2] = −2e3, [e1, e3] = (1 − c)e2, [e2, e3] = −(1 − c)e1.

This framing is orthonormal for a metric satisfying

(1) every tangent plane containing the vector e3 has curvature 1,
(2) the tangent plane spanned by e1 and e2 has curvature λ = −(2c + 1),
(3) all sectional curvatures lie between 1 and λ, and
(4) the vector field e3 is Killing.

By (1) and (3), the metric Lie group G has CVC(1). By (4), the e3-orbit space � admits a metric making the orbit map 
G → � a Riemannian submersion; this metric has constant Gaussian curvature K = λ + 3 = 2(1 − c) by [10].

The lattice � acts by isometric left-translations on G with compact locally homogeneous quotient (Mc, g0). The invariant 
framing {e1, e2, e3} induces an orthonormal framing {ē1, ̄e2, ̄e3} of (Mc, g0) satisfying (1)–(4) above. Up to a finite cover 
of Mc , ē3 generates a free circle action, inducing a Riemannian submersion π : (Mc, g0) → (Sc, s0) with target a compact 
surface of constant curvature 2(1 − c).

We regard (Mc, g0) as a “model” CVC(1) three-manifold. The CVC Transform presented below deforms g0 into a family 
of locally inhomogeneous CVC(1) metrics on Mc parameterized by a function space on Sc . While this construction shows 
that locally inhomogeneous CVC(1) metrics abound, preliminary analysis suggests that the following uniformization conjec-
ture holds:

Conjecture. If (M, g) is a closed CVC(1) three-manifold, then the underlying smooth manifold M is a locally homogeneous space and 
admits a locally homogeneous CVC(1) metric as described above.

2. Frame certification of CVC(1)

Let {wi}3
i=1 be an orthonormal framing of (X3, g) satisfying:

[w1, w2] = αw1 + βw2 − 2w3, [w1, w3] = kw2, [w2, w3] = −kw1, (2.1)

with α, β smooth functions on X and k ∈ R. By Koszul’s formula,

∇w1 w3 = w2 ∇w2 w3 = −w1

∇w3 w1 = (1 − k)w2 ∇w3 w2 = −(1 − k)w1

∇w2 w1 = −βw2 + w3 ∇w2 w2 = βw1 (2.2)

∇w1 w2 = αw1 − w3 ∇w1 w1 = −αw2

∇w3 w3 = 0.

By (2.2), the Laplacian 
 = �i wi wi −∇wi wi and curvature components Rijkl = g(∇wi ∇w j wk −∇w j ∇wi wk −∇[wi ,w j ]wk, wl)

simplify as


 = w1 w1 + w2 w2 + w3 w3 − βw1 + αw2, (2.3)

R1221 = (2k − 3) − (w2(α) − w1(β) + α2 + β2), (2.4)

R1331 = R2332 = 1, (2.5)

R1213 = R1223 = R1323 = 0. (2.6)

The symmetries Rijkl = Rkli j = −R jikl determine the remaining components.

Lemma 2.1. A 2-plane with unit-normal vector n = �3
i=1ci wi has sectional curvature sec = c2

1 + c2
2 + c2

3 R1221 .

Proof. By (2.6), {wi} diagonalizes Ricci. Now substitute (2.5) into [12, Lemma 2.2]. �
Proposition 2.2. If (X3, g) admits an orthonormal framing as in (2.1), then

(1) (X, g) is CVC(1).
(2) w3 is Killing.
(3) Each geodesic γ (t) in X admits a Jacobi field J (t) with sec(γ̇ , J )(t) ≡ 1.
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Proof. By Lemma 2.1, the sectional curvatures lie between 1 and R1221 pointwise, and every tangent 2-plane containing the 
vector w3 has curvature one. Proposition-(1) follows. By (2.2), v �→ ∇v w3 is skew-symmetric, implying Proposition-(2). As 
Killing fields restrict to Jacobi fields, Proposition-(3) is immediate for geodesics that are not tangent to w3.

For a geodesic γ (t) tangent to w3, first use the fact that if {x, y, w3} is an orthonormal frame at a point, then the 
function

R(cos(t)x + sin(t)y, w3, w3, cos(t)x + sin(t)y)

is identically one from which it follows that R(x, w3)w3 = x. Now if V (t) is a unit-orthogonal and parallel field along γ (t), 
then J (t) = (cos(t) + sin(t))V (t) is a Jacobi field with the desired property. �
3. The CVC transform

Let π : (Mc, g0) → (Sc, s0) and {ēi}3
i=1 be as in the introduction. Then

[ē1, ē2] = −2ē3, [ē1, ē3] = (1 − c)ē2, [ē2, ē3] = −(1 − c)ē1. (3.1)

This framing satisfies (2.1) with α = β = 0 and k = (1 − c). For h ∈ C∞(Sc), let sh = e−2hs0. The Gaussian curvature of sh is

Kh = e2h(
s0 h + 2(1 − c)),

where 
s0 is the Laplacian for (Sc, s0). By (2.3), the Laplacian of (Mc, g0) is given by


g0 = ē1ē1 + ē2ē2 + ē3ē3. (3.2)

For each φ ∈ C∞(Sc),


g0 π∗(φ) = π∗(
s0φ). (3.3)

Let ds0 denote the Riemannian area form for s0 and define

F = {h ∈ C∞(Sc) |
∫

Sc

(1 − e−2h)ds0 = 0}.

For h ∈F there exists f ∈ C∞(Sc) such that


s0 f = 2(1 − e−2h). (3.4)

The derivation e3 annihilates H = π∗(h), F = π∗( f ), and G = H + (1 − c)F .

Definition 3.1. The CVC-transform of g0 determined by h ∈F is the orthonormalizing metric for the framing

e1 = eH (ē1 − ē2(F )ē3), e2 = eH (ē2 + ē1(F )ē3), e3 = ē3. (3.5)

Given h ∈F , let gh denote the CVC-transform of g0 determined by h.

Proposition 3.1. Let π : (Mc, g0) → (Sc, s0) be a locally homogeneous Riemannian submersion as described above. For each h ∈ F , 
the CVC-transform gh of g0 satisfies

(1) The map π is a Riemannian submersion between (Mc, gh) and (Sc, sh).
(2) The three-manifold (Mc, gh) has CVC(1) with scalar curvature function Sh = 2λh + 4 where λh = π∗(Kh) − 3.
(3) Each complete geodesic γ (t) in (Mc, gh) admits a Jacobi field J (t) with sec(γ̇ , J )(t) ≡ 1.

Proof. Let {ei}3
i=1 be the orthonormal framing for gh defined in (3.5). Part (1) of the Proposition is immediate from the fact 

that e3 = ē3 and (3.5).
As a preliminary step in proving part (2) of the Proposition, use (3.2)–(3.4) to deduce

ē1(ē1(F )) + ē2(ē2(F )) = 2(1 − e−2H ). (3.6)

Routine, but tedious, calculations using (3.1), (3.5), and (3.6) imply

[e1, e2] = −e2(G)e1 + e1(G)e2 − 2e3, [e1, e3] = (1 − c)e2, [e2, e3] = −(1 − c)e1.

These bracket relations and Proposition 2.2-(1) show that (Mc, gh) has CVC(1). To evaluate its scalar curvature, first set 
λh = sec(e1, e2). By (2.4)–(2.5), it suffices to prove that λh = π∗(Kh) − 3, where Kh = e2h(
s̄h + 2(1 − c)) is the Gaussian 
curvature of (Sc, sh). By [10], π∗(Kh) = λh + 3

4 ‖[e1, e2]v‖2 = λh + 3, concluding the proof of part (2) of the Proposition.
Part (3) of the Proposition is immediate from Proposition 2.2-(3), concluding the proof. �
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Remark 3.1. The function space F corresponds with the quotient of C∞(Sc) by the constant functions. For f ∈ C∞(Sc), let 
A f = Area(Sc, s f ). The map C∞(Sc) →F defined by g �→ g − ln(A0)−ln(A f )

2 is the natural bijection.

Remark 3.2. If h0, h1 ∈F and s ∈ [0, 1], then hs = − 1
2 ln((1 + s)e−2h0 + se−2h1 ) ∈F . It follows that the space of transformed 

metrics {gh | h ∈F} is path-connected.

Remark 3.3. The authors of [7] prescribe Kh in the conformal class of s0, up to a diffeomorphism of Sc and the Gauss–
Bonnet obstruction. As such, there is considerable freedom in prescribing the scalar curvatures of compact CVC(1) three-
manifolds.
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