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RESUME

Une variété riemannienne est dite CVC(¢) si sa courbure sectionnelle satisfait ponctuel-
lement sec < & ou sec > ¢ et si chaque vecteur tangent appartient a un plan tangent de
courbure ¢. Nous construisons une famille de dimension infinie de variétés compactes
de dimension 3, qui sont CVC(1).

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A Riemannian manifold has constant vector curvature ¢ if every tangent vector lies in a 2-plane of curvature & and has
pointwise extremal curvature ¢ if the sectional curvatures satisfy sec > ¢ or sec < & pointwise. A manifold has CVC(¢) when
it has both constant vector curvature ¢ and pointwise extremal curvature €.

The study of CVC(¢) manifolds began with [12], motivated by rank-rigidity theorems as in [1-6,8,11,15-17]. Classification
results in [12] demonstrate the rigid nature of finite volume CVC(¢) three-manifolds with ¢ <0. When ¢ = —1, they are all
locally homogeneous. When ¢ = 0, components of non-isotropic points admit Riemannian product decompositions. These
rigidity results fail without the finite volume assumption by [9,13,14].

Here, we illustrate the relative flexibility of this curvature condition when ¢ > 0. We construct an infinite-dimensional
family of compact CVC(1) three-manifolds. These manifolds also satisfy the following spherical rank condition: Each geodesic
y (t) admits a Jacobi field J(t) with sec(y, J)(t) = 1. Contrastingly, in dimension three, only the spherical space forms satisfy
the (a posteriori more stringent) spherical rank condition obtained by replacing Jacobi fields with parallel fields [8].

Our construction “deforms” compact locally homogeneous three-manifolds admitting a Riemannian submersion to a

constant curvature surface. For ¢ € R, let G denote SU(2), the Heisenberg group, or SL,(R) when c <1, c=1, or ¢ > 1,
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respectively. Let T’ be a cocompact lattice in G. The parameter ¢ and lattice I' determine the deformed Riemannian submer-
sion:
The group G admits a left-invariant framing {eq, ez, e3} with

le1,e2] =—2e3, [e1,e3]=(1—0)ez, [e2,e3]=—(1—C)ey.

This framing is orthonormal for a metric satisfying

(1) every tangent plane containing the vector es has curvature 1,

(2) the tangent plane spanned by e; and e; has curvature A = —(2c + 1),
(3) all sectional curvatures lie between 1 and A, and

(4) the vector field e3 is Killing.

By (1) and (3), the metric Lie group G has CVC(1). By (4), the es-orbit space ¥ admits a metric making the orbit map
G — X a Riemannian submersion; this metric has constant Gaussian curvature K =A 43 =2(1—c) by [10].

The lattice I" acts by isometric left-translations on G with compact locally homogeneous quotient (M, go). The invariant
framing {e1, ez, e3} induces an orthonormal framing {eq, e,, e3} of (M, go) satisfying (1)-(4) above. Up to a finite cover
of M., e3 generates a free circle action, inducing a Riemannian submersion 7 : (M¢, g0) — (S¢, So) with target a compact
surface of constant curvature 2(1 — c).

We regard (M, go) as a “model” CVC(1) three-manifold. The CVC Transform presented below deforms gy into a family
of locally inhomogeneous CVC(1) metrics on M. parameterized by a function space on S.. While this construction shows
that locally inhomogeneous CVC(1) metrics abound, preliminary analysis suggests that the following uniformization conjec-
ture holds:

Conjecture. If (M, g) is a closed CVC(1) three-manifold, then the underlying smooth manifold M is a locally homogeneous space and
admits a locally homogeneous CVC(1) metric as described above.

2. Frame certification of CVC(1)

Let {wi}?:l be an orthonormal framing of (X3, g) satisfying:
[wi, wol =awq + Bwz —2ws,  [wi, w3]=kwy, [wa, w3]=—kwy, (2.1)

with ¢, 8 smooth functions on X and k € R. By Koszul’s formula,

Vw, W3 =wy Vi, W3 = —wq
Vws;wi =1 =k)wy Vwswa =—(1—-k)w;q
Vw, W1 =—Bwy + ws Vw, W2 = Bwq (2.2)
Vw, W2 =owq — w3 Vw, W1 =—awy
Vwy,w3 =0.

By (2.2), the Laplacian A = X; w;w; — Vi, w; and curvature components Rjj = E(Vw; Vw ;Wi — Vi, Vi, We — Vi, w ] Wk, W)
simplify as

A=wiwi+wrwy + wiws — Swy +awy, (2
Riza1 = (2k = 3) — (wa(a) — wi(B) + & + B2, 2.
R1331 =Ra332=1, (2
R1213 = R1223 = R1323 = 0. (2

The symmetries Rjji = Ruij = —Rjiw determine the remaining components.
Lemma 2.1. A 2-plane with unit-normal vector n = £2_ ciw; has sectional curvature sec = ¢ + 3 + ¢3 R1221.
Proof. By (2.6), {w;} diagonalizes Ricci. Now substitute (2.5) into [12, Lemma 2.2]. O

Proposition 2.2. If (X3, g) admits an orthonormal framing as in (2.1), then

(1) (X, g)is CVC(1).
(2) wsisKilling.
(3) Each geodesic y (t) in X admits a Jacobi field J(t) with sec(y, J)(t) =1.
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Proof. By Lemma 2.1, the sectional curvatures lie between 1 and Ry221 pointwise, and every tangent 2-plane containing the
vector w3 has curvature one. Proposition-(1) follows. By (2.2), v — V, w3 is skew-symmetric, implying Proposition-(2). As
Killing fields restrict to Jacobi fields, Proposition-(3) is immediate for geodesics that are not tangent to ws.

For a geodesic y(t) tangent to ws, first use the fact that if {x, y, w3} is an orthonormal frame at a point, then the
function

R(cos(t)x + sin(t)y, ws, ws, cos(t)x + sin(t) y)
is identically one from which it follows that R(x, w3)w3 = x. Now if V(t) is a unit-orthogonal and parallel field along y (¢),
then J(t) = (cos(t) + sin(t))V (t) is a Jacobi field with the desired property. O
3. The CVC transform

Let t: (M¢, g0) — (S¢, So) and {éi}?:1 be as in the introduction. Then
[e1,e2]=—2e3, [er,e3]l=(1—0ez, [e2,e31=—(1—-0)er. (3.1)
This framing satisfies (2.1) with & =8 =0 and k= (1 — ¢). For h € C®(S,), let s, = e 2"sy. The Gaussian curvature of s, is
Kn = e*"(Ash +2(1 - 0)),
where Ag, is the Laplacian for (Sc, so). By (2.3), the Laplacian of (Mc, go) is given by

Ag, =e1e1 + €83 + e3es. (3.2)
For each ¢ € C*®(S,),
Agy T (@) =T (Asy ). (3.3)

Let dsg denote the Riemannian area form for sg and define

F={heC®(S)| /(1 —e2Mydsy = 0.
Sc
For h € F there exists f € C*°(S¢) such that
Asof=2(1—e72). (34)
The derivation e3 annihilates H = n*(h), F =n*(f), and G=H + (1 —¢)F.

Definition 3.1. The CVC-transform of gy determined by h € F is the orthonormalizing metric for the framing
er=e"(@ —ex(F)e3), ex=ef(@+e1(F)es), e3=és. (3.5)
Given h € F, let g, denote the CVC-transform of gy determined by h.

Proposition 3.1. Let w: (M, g0) — (S¢, So) be a locally homogeneous Riemannian submersion as described above. For each h € F,
the CVC-transform gy, of go satisfies

(1) The map w is a Riemannian submersion between (M¢, gx) and (S, Sp).
(2) The three-manifold (M, g) has CVC(1) with scalar curvature function S, = 2y + 4 where A, = *(Kp) — 3.
(3) Each complete geodesic y (t) in (M, gn) admits a Jacobi field ] (t) with sec(y, J)(t) = 1.

Proof. Let {ei}f‘:1 be the orthonormal framing for g, defined in (3.5). Part (1) of the Proposition is immediate from the fact
that e3 =e3 and (3.5).
As a preliminary step in proving part (2) of the Proposition, use (3.2)-(3.4) to deduce

e1(€1(F)) +&2(@2(F)) =2(1 —e~?M). (36)
Routine, but tedious, calculations using (3.1), (3.5), and (3.6) imply
[e1,e2] = —e2(G)er +e1(Gex — 2e3, [er,e3]=(1—c)ez, [e2,e3]=—(1—ey.

These bracket relations and Proposition 2.2-(1) show that (M, gy) has CVC(1). To evaluate its scalar curvature, first set
An = sec(eq, e2). By (2.4)-(2.5), it suffices to prove that A, = 7*(Ky) — 3, where K, = e2'(Ash + 2(1 — ¢)) is the Gaussian
curvature of (S¢, sp). By [10], @*(Kp) = Ap + %H[e], e21"||2 = A, + 3, concluding the proof of part (2) of the Proposition.

Part (3) of the Proposition is immediate from Proposition 2.2-(3), concluding the proof. O
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Remark 3.1. The function space F corresponds with the quotient of C°>°(S.) by the constant functions. For f € C*°(S,), let
A = Area(Sc, s¢). The map C*°(S.) — F defined by g+ g — w is the natural bijection.

Remark 3.2. If hg, h1 € F and s € [0, 1], then hs = —% In((1+s)e2h0 4 se=2M1)y ¢ F. It follows that the space of transformed
metrics {gy | h € F} is path-connected.

Remark 3.3. The authors of [7] prescribe K} in the conformal class of sg, up to a diffeomorphism of S. and the Gauss-
Bonnet obstruction. As such, there is considerable freedom in prescribing the scalar curvatures of compact CVC(1) three-
manifolds.
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