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We give a lower bound for class numbers of unimodular ternary Hermitian lattices over 
imaginary quadratic fields. This shows that class numbers of unimodular Hermitian lattices 
grow infinitely as the field discriminants grow.
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r é s u m é

Nous donnons une borne inférieure pour le nombre de classes de réseaux ternaires 
hermitiens unimodulaires sur corps quadratique imaginaire. Cela montre que le nombre 
de classes de réseaux unimodulaires hermitienne tend vers l’infini avec le discriminant du 
corps.

© 2016 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

As a variant of quadratic forms, we can define Hermitian lattices over rings of integers in imaginary quadratic fields. Also, 
thanks to many mathematicians, we can think about the local structure of Hermitian lattices [4,12,1]. Hasse–Minkowski’s 
theorem for quadratic forms guarantees that local representations over Zp for all prime spots p imply the global representa-
tion over Q. But, in general, it does not imply the representation over Z. Landherr’s theorem is a similar result for Hermitian 
lattices [8]. But, it does not imply the representation over the ring O of integers, either. The measure of non-representability 
over O is presented by the number of non-isometric Hermitian lattices that are locally isometric to the given Hermitian 
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lattice. This number is called the class number of that lattice. We give a lower bound for ternary unimodular Hermitian 
lattices involving discriminants of fields.

The exact formula for class numbers of binary or ternary unimodular Hermitian lattices was given by Hashimoto and 
Koseki [2, Main Theorems 5.1, 5.2]. Their formula was expressed by using the field class numbers, the numbers of prime 
divisors, Dirichlet characters, Bernoulli numbers, as well as field discriminants. So, it is hard to see the bounds for the class 
numbers by using Hashimoto–Koseki’s formula.

Our formula for the lower bound involves only field discriminants, so that it is easy to calculate the formula, although the 
lower bound is not accurate. Besides, the inequality for the lower bound shows that the class number grows asymptotically 
according to the discriminant.

2. Preliminaries

Let E = Q(
√−m) for a square-free positive integer m and O =OE = Z[ω] be its ring of integers, where ω = ωm = √−m

or 1+√−m
2 if m ≡ 1, 2 or 3 (mod 4), respectively.

The localization is defined according to the behaviors of primes. For a prime p we define E p := E ⊗Q Qp . Then the ring 
Op of integers of E p is defined as O ⊗Z Zp . If p is inert or ramifies in E , then E p = Qp(

√−m) and α ⊗ β = αβ with α ∈ E
and β ∈Qp . If p splits in E , then E p =Qp ×Qp and α ⊗ β = (αβ, αβ), where · is the canonical involution. Thus E p allows 
the unique involution α ⊗ β = α ⊗ β [12,1].

Definition 2.1. Let F = E or E p . A Hermitian space is a finite-dimensional vector space V over F equipped with a sesqui-
linear map H : V × V → F satisfying the following conditions:

1. H(x, y) = H(y,x),
2. H(ax, y) = aH(x, y),
3. H(x1 + x2, y) = H(x1, y) + H(x2, y).

We simply denote H(v, v) by H(v) and call it the (Hermitian) norm of v.

Definition 2.2. Let R = O or Op . A Hermitian R-lattice, or briefly a lattice, is an R-module L in a Hermitian space (V , H)

with H(L, L) ⊆ R . If H(v) > 0 for any nonzero vector v ∈ L, then we call L positive definite.

If L is free with a basis {v1, . . . , vn}, then we define

ML := [
H(vi,v j)

]
n×n ,

and call it the Gram matrix of L. We often identify ML with the lattice L. If ML is diagonal, we simply write L = 〈a1, . . . ,an〉, 
where ai = H(vi) for i = 1, 2, . . . , n. The determinant of ML is called the discriminant of L, denoted by dL. If dL is a unit, we 
call L unimodular. We define the rank of L by rank L := dimF F ⊗ L. For unexplained terminology and for more information, 
see [9].

3. Lower bounds for class numbers of unimodular Hermitian lattices

If a positive definite Hermitian lattice represents every positive definite binary Hermitian lattice, we call it 2-universal. 
In [6], we classified all ternary and quaternary Hermitian lattices that are 2-universal.

Q(
√−1): 〈1,1,1〉 , 〈1,1〉 ⊥

[
2 1
1 2

]

Q(
√−2): 〈1,1〉 ⊥

[
2 −1 + ω2

−1 + ω2 2

]
Q(

√−3): 〈1,1,1〉 , 〈1,1,2〉
Q(

√−7): 〈1,1,1〉
Q(

√−11): 〈1,1〉 ⊥
[

2 ω11
ω11 2

]
.

We obtain a lower bound for class numbers of unimodular Hermitian lattices by investigating the ranks of 2-universal 
lattices. Denote the minimal rank of 2-universal Hermitian lattices over Q(

√−m) by u2(−m). We know that u2(−1) = 3, 
u2(−2) = 4, u2(−3) = 3, u2(−7) = 3, and u2(−11) = 4 from the above list.

Lemma 3.1. Let L be a ternary unimodular lattice over an imaginary quadratic field E. Then L is locally 2-universal.
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Proof. Note that no ternary lattice is even unimodular. Let � be an arbitrary positive definite binary Hermitian lattice over 
E and p ∈ Q be a prime.

If p is split in E , �p → Lp by [1, 1.8]. If p is inert or a ramified nondyadic prime in E , �p → Lp by [5, Theorem 4.4]. If 
p = 2 ramifies in E , �p → Lp by [5, theorem 5.5]. Thus, L is locally 2-universal. �

From Lemma 3.1, we assert that if a positive definite binary Hermitian lattice is given over Q(
√−m), then there exists 

a ternary unimodular lattice that represents it globally. This follows from the corresponding result for quadratic lattices [3]. 
Thus, there exist 2-universal Hermitian lattices for all Q(

√−m), because a unimodular lattice L is locally 2-universal and 
thus we can make a 2-universal Hermitian lattice by summing up orthogonally all non-isometric lattices in the genus. We 
obtain an upper bound for minimal ranks as follows:

u2(−m) ≤ 3h(L).

For example, from [11] we have that over Q(
√−19)

gen I3 = cls

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ ∪ cls

⎡
⎣1 0 0

0 2 ω19
0 ω19 3

⎤
⎦ ∪ cls

⎡
⎣2 1 1

1 3 1 + ω19
1 1 + ω19 3

⎤
⎦ .

Thus the following lattice of rank 8 is trivially 2-universal over Q(
√−19).

〈1,1,1〉 ⊥
[

2 ω19
ω19 3

]
⊥

⎡
⎣2 1 1

1 3 1 + ω19
1 1 + ω19 3

⎤
⎦ .

Now consider binary sublattices �(k) :=
[

k ω
ω ck

]
with 2 ≤ k ≤ ck and k(ck − 1) ≤ ωω < kck . Then the largest index of k’s 

is given as n :=
⌊√

4ωω+1+1
2

⌋
from n ≤ cn ≤ ωω

n + 1.

Let {vk, wk} be the basis of �(k) with vk ·vk = k, wk ·wk = ck , and vk ·wk = ω. Also let v1 ·v1 = 1. We show that v1, · · · , vn
are linearly independent.

Suppose that those vectors are not linearly independent. Then

a1v1 + · · · + anvn + ω(b1v1 + · · · + bnvn) = 0 (1)

with ai, bi ∈ Z. Note that

|vi · v j|2 ≤ (vi · vi)(v j · v j) = i j < ωω

unless i = j = n. Thus vi · v j ∈ Z for 1 ≤ i, j ≤ n. Multiplying (1) by v j and comparing both sides, we conclude that (b1v1 +
· · · + bnvn) · v j = 0. Since the norm of b1v1 + · · · + bnvn vanishes and the concerned 2-universal Hermitian lattice is positive 
definite, b1v1 + · · · + bnvn = 0. Thus we can write

ak1 vk1 + · · · + akN vkN = 0

with nonzero aki ∈ Z and k1 < k2 < · · · < kN ≤ n. But we obtain a contradiction by multiplying both sides by wkN , since 
vki · wkN ∈ Z for i < N and vkN · wkN = ω.

The 2-universal lattice contains 〈1,1〉 and v1, · · · , vn are linearly independent, so that the rank of 2-universal lattice is 
bigger than n. That is,

u2(−m) ≥ the number of cn’s + 2 =
⌊√

4ωω + 1 + 1

2

⌋
+ 1.

We have that the equality holds for u2(−2) = u2(−7) = 3.
Now let us think about finiteness theorems for 2-universal lattices of higher ranks. For any infinite set S of positive 

definite integral quadratic forms of bounded rank, there exists a finite subset S0 of S such that any positive definite integral 
quadratic form that represents all elements of S0 represents all elements of S [7]. This theorem holds for Hermitian lattices. 

Denote the finite set ensuring 2-universality over E = Q(
√−m) by S−m . We have constructed binary lattices 

[
k ω
ω ck

]
that 

should be represented. Besides, 〈1,1〉 should be also represented independently. Thus the cardinality of S−m has a lower 
bound:

#S−m ≥ the number of cn’s + 1 =
⌊√

4ωω + 1 + 1

2

⌋
.

If we denote the discriminant of E = Q(
√−m) by dE , dE = −4m = −4ωω if m �≡ 3 (mod 4) and dE = −m = 1 − 4ωω if 

m ≡ 3 (mod 4). Then the above results can be rephrased as following:
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Theorem 3.2. u2(dE ) and #SdE are �(
√|dE |).

In the above theorem, f (n) = �(g(n)) means lim infn→∞ | f (n)/g(n) |> 0. Roughly speaking, the two quantities increase 
as |dE | increases.

Corollary 3.3. Let E be an imaginary quadratic field and dE its discriminant. If L is a ternary unimodular Hermitian lattice over E, 
then h(L) = �(

√|dE |).

Proof. It is clear from h(L) ≥ u2(dE )/3. �
Remark 1. By Hashimoto–Koseki’s result [2], we see that

h(L) = 1

6
· 1

2t
h(E)2|dE | + O

(
1

2t
h(E)2

)

where t is the number of distinct prime divisors of dE and h(E) is the class number of E . It is known that t ≤ 1.3841 log dE
log log dE

[10], so that one can verify that h(L) increases asymptotically as |dE | increases, although it is not easy to write the lower 
bound explicitly.
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