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In the perspective of estimating main effects of model inputs, two approaches are 
studied to iteratively construct replicated designs based on Sobol’ sequences. Space-filling 
properties of the resulting designs are studied based on two criteria.
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r é s u m é

Dans l’objectif d’estimer les effets principaux des paramètres d’un modèle, nous proposons 
d’étudier deux approches pour construire itérativement des plans répliqués à partir de 
séquences de Sobol’. Les propriétés de remplissement de l’espace des plans construits sont 
étudiées sur la base de deux critères.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Mathematical models often involve a substantial number of poorly known parameters. The effect of these parameters on 
the output of the model can be assessed through sensitivity analysis. Global sensitivity analysis methods are useful tools 
to identify the parameters having the most influence on the output. A well-known approach is the variance-based method 
introduced by Sobol’ in [11]. This method estimates sensitivity indices called Sobol’ indices that summarize the influence of 
each model input. Among all Sobol’ indices, one can distinguish the first-order indices that estimate the main effect of each 
input.
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The procedure to estimate first-order Sobol’ indices proposed by Sobol’ and its improvements (see Saltelli [9] for an 
exhaustive survey) all suffer from a prohibitive number of model evaluations that grows with respect to the input space 
dimension. An elegant solution to reduce this number relies on the construction of particular designs of experiments called 
replicated designs. The notion of replicated designs was first introduced by McKay through its definition of replicated Latin 
Hypercubes in [4]. Below we provide this definition in a more general framework:

Definition 1.1. Consider x ∈ [0, 1)s , and xu ∈ [0, 1)|u| the subset of elements of x given by u � {1, . . . , s}, where |u| is the 
cardinality of u. Let P = {xi}n−1

i=0 and P ′ = {x′
i}n−1

i=0 be two point sets in [0, 1)s , and denote by Pu = {xi,u}n−1
i=0 (resp. P ′ u) 

the subset of elements of points in P (resp. P ′) indexed by u. We say that P and P ′ are two replicated designs of order 
a = 1, . . . , s − 1, if for any u � {1, . . . , s} with |u| = a, Pu and P ′ u are the same point set in [0, 1)a , perhaps in a different 
order.

The replication procedure described in [2,12] allows the estimation of all first-order Sobol’ indices with only two repli-
cated designs of order 1. This procedure has the major advantage of reducing the number of model evaluations, evaluating 
only on designs P and P ′ regardless of the input space dimension. However, Sobol’ indices estimates may still not be 
accurate enough if designs P and P ′ do not explore the input space properly.

In this note, we propose two different constructions of replicated designs of order 1 based on Sobol’ sequences. Both 
constructions ensure that the input space is properly explored and can be used within the replication procedure to estimate 
all first-order Sobol’ indices. The definition of these constructions is recursive, therefore one can iteratively refine each 
replicated design by adding the corresponding new set of points. We first provide a brief introduction on digital sequences 
and then present two iterative approaches to construct the two replicated point sets. We end this note by analyzing the 
space-filling properties of the two designs constructed.

2. Digital sequences background

2.1. Preliminaries

Digital nets and sequences were first introduced by Niederreiter [6] in the numerical integration framework to de-
fine good uniformly distributed points in [0, 1)s . They can also appear in the literature as digital (t, m, s)-nets and digital 
(t, s)-sequences, or simply (t, m, s)-nets and (t, s)-sequences. Sobol’ and Niederreiter–Xing sequences are two examples of 
digital sequences detailed in [10] and [7].

Definition 2.1. Let A be the set of all elementary intervals A ⊂ [0, 1)s where A = ∏s
j=1[α jb−γ j , (α j + 1)b−γ j ), with integers 

s ≥ 1, b ≥ 2, γ j ≥ 0, and bγ j > α j ≥ 0. For m ≥ t ≥ 0, the point set P ∈ [0, 1)s with bm points is a (t, m, s)-net in base b if 
every A with volume bt−m contains bt points of P .

Thus, a (t, m, s)-net is defined such that all elementary intervals of volume bt−m will enclose the same proportion of 
points of P , namely bt−m|P| points. The most evenly spread nets are (0, m, s)-nets, since each elementary interval of the 
smallest volume possible, b−m , contains exactly one point. The quality of any (t, m, s)-net is therefore measured by the 
parameter t , called t-value.

By increasing m, we increase the number of points of the (t, m, s)-net. In the limiting case where m → ∞, we can define 
the (t, s)-sequence as:

Definition 2.2. For integers s ≥ 1, b ≥ 2, and t ≥ 0, the sequence {xi}i∈N0 is a (t, s)-sequence in base b, if for every set 
P�,m = {xi}(�+1)bm−1

i=�bm with � ≥ 0 and m ≥ t , P�,m is a (t, m, s)-net in base b.

The replicated design properties can also apply to digital sequences. Hence, we introduce the following definition,

Definition 2.3. Two digital sequences {xi}i∈N0 and {x′
i}i∈N0 are digitally replicated of order a if for all m ≥ 0, {xi}bm−1

i=0 and 
{x′

i}bm−1
i=0 are two replicated designs of order a.

2.2. Sobol’ sequences

Sobol’ sequences in dimension s are digital sequences in base b = 2 that can be computed using the generating matrices, 
a set of s full-rank infinite dimensional upper triangular matrices over the Galois field F2 := {0, 1}. These generating matrices 
are recursively constructed given some primitive polynomials and initial directional numbers. In [1], Kuo and Joe detail this 
construction and also suggest a particular choice for these matrices that optimize the 2-dimensional projection t-values.
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Consider the generating matrices C1, . . . , Cs , and Cm
1 , . . . , Cm

s their upper left corner blocks of size m × m. Although 
C1, . . . , Cs are of infinite size, one only requires the knowledge of Cm

1 , . . . , Cm
s to construct the first 2m Sobol’ points: for 

each i = 0, . . . , 2m − 1, the point xi = (xi,1, . . . , xi,s)
ᵀ of the sequence is obtained dimension-wise by:

(xi, j,1, . . . , xi, j,m)ᵀ = Cm
j i, j = 1, . . . , s , (1)

where xi, j = ∑m
k≥1 xi, j,k2−k is the binary expansion of xi, j and i = (i0, . . . , im−1)

ᵀ is the vector obtained from the binary 
expansion of i = ∑m−1

k≥0 ik2k . All matrix operations are performed in F2. Below we provide an example of how to compute 
x11,1 = 0.8125 and x9,2 = 0.4375,⎛

⎜⎜⎝
x11,1,1
x11,1,2
x11,1,3
x11,1,4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

︸ ︷︷ ︸
C4

1

⎛
⎜⎜⎝

1
1
0
1

⎞
⎟⎟⎠

︸ ︷︷ ︸
11

=

⎛
⎜⎜⎝

1
1
0
1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

x9,2,1
x9,2,2
x9,2,3
x9,2,4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠

︸ ︷︷ ︸
C4

2

⎛
⎜⎜⎝

1
0
0
1

⎞
⎟⎟⎠

︸ ︷︷ ︸
9

=

⎛
⎜⎜⎝

0
1
1
1

⎞
⎟⎟⎠ .

To compute the next 2m points of the sequence, one can infer from (1) that

(xi+2m, j,1, . . . , xi+2m, j,m+1)
ᵀ = (xi, j,1, . . . , xi, j,m,0)ᵀ ⊕ (cm+1

j )
ᵀ
, i = 0, . . . ,2m − 1, (2)

where cm+1
j is the last column of Cm+1

j and ⊕ is the addition in F2.
In addition, Sobol’ sequences have good group structure properties. For any m ≥ 1, the first 2m points of the sequence 

form an Abelian group under ⊕:

x =
(

m∑
k=1

x1,k2−k, . . . ,

m∑
k=1

xs,k2−k

)ᵀ
, z =

(
m∑

k=1

z1,k2−k, . . . ,

m∑
k=1

zs,k2−k

)ᵀ
,

x ⊕ z :=
(

m∑
k=1

(x1,k + z1,k mod 2)2−k, . . . ,

m∑
k=1

(xs,k + zs,k mod 2)2−k

)ᵀ
.

(3)

From equation (1) above, one may see that the first 2m points of the sequence are elements of 
(
Fm

2

)s
.

Lemma 2.4. All Sobol’ sequences are digitally replicated of order 1.

Proof. Consider any two s-dimensional Sobol’ sequences generated by C1, . . . , Cs and C ′
1, . . . , C

′
s , respectively. Since any 

two matrices Cm
j and C ′m

j are square and full rank, the operations i 	→ Cm
j i and i 	→ C ′m

j i are one-to one and onto for all 
i = 0, . . . , 2m − 1. Therefore, they generate the same point sets.

3. Iterative constructions of replicated point sets

In this section, we propose two different approaches to iteratively construct two replicated point sets, P� and P ′
� , based 

on Sobol’ sequences. These two constructions are carried out according to the following recursive scheme:{ P0 = B0

P� = P�−1 ∪ B�

{ P ′
0 = B ′

0

P ′
� = P ′

�−1 ∪ B ′
�

, � ≥ 1,

where B� and B ′
� are new sets of points added at step � to refine P�−1 and P ′

�−1. For all � ≥ 0, P� and P ′
� are two 

replicated designs of order 1.
The first approach is called multiplicative because |P�| = 2� , while the second one is called additive and |P�| = �|B0|. 

In the multiplicative case, we will directly use 2 s-dimensional sequences as a result from Lemma 2.4. However, for the 
additive case, we will consider an initial set of Sobol’ points and apply different scramblings and digital shifts to extend the 
point sets. Additionally, in both cases one can randomize the points using Owen’s scrambling [8] as long as same coordinates 
of P� and P ′

� share the same scrambling.

3.1. Multiplicative approach

Two replicated point sets of order 1, P� and P ′
� , can be constructed using two s-dimensional Sobol’ sequences. We note 

C1, . . . , Cs the generating matrices used to generate P� , and C ′
1, . . . , C ′

s those used to generate P ′
� . To ensure that P� and P ′

�

are as uniform as possible, these generating matrices need to be different from each other. We choose C1, . . . , Cs, C ′
1, . . . , C ′

s
to be the first 2s generating matrices suggested by Joe and Kuo in [1], not necessarily in this order. In [1], Joe and Kuo 
minimized the t-value for all 2-dimensional projections.
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In order to iteratively extend designs P� and P ′
� , one just needs to compute B� = {x2�−1 , . . . , x2�−1} and B ′

� =
{x′

2�−1 , . . . , x′
2�−1

}, starting with B0 = B ′
0 = {0}, with 0 the null vector. Each set B� and B ′

� can be constructed using (2)
applied to P�−1 and P ′

�−1.
As a direct consequence of Lemma 2.4, at each step � designs P� and P ′

� are two replicated designs of order 1. Further-
more, they both inherit the space-filling properties of (t, �, s)-nets.

3.2. Additive approach

With the multiplicative approach, the size of designs P� and P ′
� is multiplied by 2 each time � is increased by one. 

This growth rate may be inadequate for some applications. The additive approach presented in this section is attractive due 
to a slower size growth. Given an initial choice of r ≥ 1 that specifies the size of B0 and B ′

0, only |B0| = 2r points are 
added to both designs at each step. The main drawback of this approach is that P� and P ′

� do not inherit the structure of 
a Sobol’ sequence when � ≥ 1. Nevertheless, both designs display good space-filling properties, as it will be shown in the 
next section.

Analogously to the multiplicative case, the two replicated point sets P� and P ′
� constructed with the additive approach 

are iteratively refined with B� and B ′
� . First {xi}2r−1

i=0 and {x′
i}2r−1

i=0 are set to be the first 2r points of two s-dimensional 
Sobol’ sequences. The generating matrices of these two sequences are selected as in the multiplicative approach. Then, B�

(resp. B ′
�), for � ≥ 0, is obtained from {xi}2r−1

i=0 (resp. {x′
i}2r−1

i=0 ) by carrying out digital shifts and scrambling operations. 
Therefore, both B� and B ′

� inherit the (t, r, s)-net structure of these initial sets.
At step � = 0, B0 = {x(0)

i }2r−1
i=0 and B ′

0 = {x′(0)
i }2r−1

i=0 are generated as follows: for each i = 0, . . . , 2r − 1, points x(0)
i =

(x(0)
i,1 , . . . , x(0)

i,s )ᵀ and x′(0)
i = (x′(0)

i,1 , . . . , x′(0)
i,s )ᵀ are obtained by linearly transforming xi ,

(x(0)
i, j,1, . . . , x(0)

i, j,r)
ᵀ = L(xi, j,1, . . . , xi, j,r)

ᵀ, j = 1, . . . , s ,

(x′(0)
i, j,1, . . . , x′(0)

i, j,r)
ᵀ = L′(xi, j,1, . . . , xi, j,r)

ᵀ, j = 1, . . . , s ,
(4)

where x(0)
i, j = ∑r

k=1 x(0)

i, j,k2−k , x′(0)
i, j = ∑r

k=1 x′(0)

i, j,k2−k and L, L′ are two distinct full-rank lower triangular matrices of size r × r

over F2. Left multiplications by L and L′ in (4) are called linear scramblings [3].
At step � ≥ 1, using addition as defined in (3), we construct:

B� = {x(0)
i ⊕ e�}2r−1

i=0 , B ′
� = {x′(0)

i ⊕ e′
�}2r−1

i=0 , (5)

where e� ∈ (
Fr

2

)s \ P�−1 and e′
� ∈ (

Fr
2

)s \ P ′
�−1. Indeed, B0 is a subgroup of 

(
Fr

2

)s . Therefore, we construct B� = B0 ⊕ e�

as a coset of B0 under the right choice of e� . The same reasoning applies to B ′
0. Additions by vectors e j and e′

j in (5) are 
referred to as digital shifts.

There are exactly 2rs different choices of e� and e′
� in 

(
Fr

2

)s
, and 2r(r−1)/2 choices of L and L′ . The maximum number 

of iterations � that can be performed equals the number of cosets, 2r(s−1) . If this maximum is reached, designs P� and P ′
�

both correspond to a full grid design of 2rs points with 2r distinct values per input.

Lemma 3.1. Under the additive construction P� and P ′
� are two replicated designs of order 1, � ≥ 0.

Proof. For each � ≥ 1, digital shift and scrambling operations carried out in (4) and (5) are bijections from Fr
2 and 

(
Fr

2

)s
. 

Hence, the same coordinates of B� and B ′
� will contain the same set of 2r values.

4. Space-filling properties

To analyze the space-filling properties of both approaches, we will use two criteria. The first one is the L2 star discrep-
ancy that measures the uniformity of a point set. This criterion can be easily computed through an analytical expression 
provided by [5]. The lower the criterion, the more uniform the point set is. Sobol’ sequences were originally constructed 
to be low discrepancy sequences and therefore, behave well under this criterion. The second criterion is called maximin 
distance and measures the regularity of a point set. It returns the minimum of all Euclidean distances between pairs of 
points in the set. The higher the criterion, the more spread the point set is.

We name by design M (resp. A) one of the two replicated designs constructed with the multiplicative (resp. additive) 
approach, and set the input space dimension s to 6. For design M , we study the properties of P8, . . . , P12, and for design A, 
we set the initial value to r = 8 and study the properties of P0, . . . , P15. For both M and A, we generate 100 designs whose 
average criteria are presented in Fig. 1. While each one of the 100 designs M is independently randomized applying Owen’s 
scrambling [8], designs A are constructed by randomly selecting matrix L (uniformly among all 2r(r−1)/2 choices) and vectors 
e� used in equation (5). In addition, we also show in Fig. 1 the results obtained with an optimized Latin Hypercube design 
(LH design) according to each criterion for an equal number of points as in design A. The x-axis corresponds to the number 
of design points N and the y-axis to the value of the criterion. Although LH designs are the standard designs used in the 
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Fig. 1. Log–log graph of averaged L2 star discrepancy (left) and maximin (right) for designs M and A over 100 repetitions.

replication procedure to estimate first-order indices, the replicated design of an optimized LH design is not guaranteed to 
be optimal.

As expected, design M performs the best and the estimated slope of the discrepancy curve (−0.72) falls within the 
expected range for Sobol’ sequences [5]. Although design A does not perform as well as design M , it outperforms an 
optimized LH design for the discrepancy criterion. However, for the maximin criterion, design A shows slightly worse 
results. Concerning the number of steps, design A allows 15 refinement steps from 28 to 212 points, instead of only 4 steps 
for design M .
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