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RESUME

Nous démontrons que le groupe modulaire hyperelliptique d'une surface non orientable de
genre g > 4 a une représentation fidéle linéaire de dimension g2 — 1 sur R.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let Ng , be a smooth, nonorientable, compact surface of genus g with n punctures. If n is zero, then we omit it from the
notation. Recall that Ny is a connected sum of g projective planes and Ng , is obtained from N by specifying the set ¥ of
n distinguished points in the interior of Ng.

Let Diff(Ng ;) be the group of all difffomorphisms h:Ng, — Ng, such that h(X) = X. By M(Ng,) we denote the
quotient group of Diff(Ng ) by the subgroup consisting of maps isotopic to the identity, where we assume that maps and
isotopies fix the set X. M(Ng ) is called the mapping class group of Ng .

The mapping class group M(Sg ) of an orientable surface Sg , of genus g with n punctures is defined analogously, but
we consider only orientation-preserving maps. If we include orientation reversing maps, we obtain the so-called extended
mapping class group /\/li(Sg,n). Suppose that the closed orientable surface Sg_1, where g — 1 > 2, is embedded in R3 as
shown in Fig. 1, in such a way that it is invariant under reflections across xy, yz, xz planes. Let j:Sg_1 — Sg_1 be the
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Fig. 1. Surface Sy embedded in R3.

symmetry defined by j(x, y, z) = (—x, —y, —z). Denote by CMi(qu)(j) the centraliser of j in Mi(Sg_1). The orbit space
Sg—1/{Jj) is a nonorientable surface N of genus g and it is known (Theorem 1 of [3]) that the orbit space projection induces
an epimorphism

TC]': CMi(Sg_l)(j) — M(Ng)

with kernel kermj = (j). In particular

M(Ng) = Cppzs,_p)(D/ ()

As was observed in the proof of Theorem 2.1 of [10], projection &t has a section

ij: M(Ng) = Crm(s,_q)(J) € M(Sg-1).

In fact, for any h € M(Ng), we can define i;(h) to be an orientation preserving lift of h.

Let ¢ € Cap(s,_p)(J) be the hyperelliptic involution, i.e. the half turn about the y-axis. The hyperelliptic mapping class group
/\/lh(Sg_l) is defined to be the centraliser of ¢ in M(Sg_1). The hyperelliptic mapping class group turns out to be a very
interesting and important subgroup, in particular its finite subgroups correspond to automorphism groups of hyperelliptic
Riemann surfaces - see for example [9] and references therein.

Recently, we extended the notion of the hyperelliptic mapping class group to nonorientable surfaces [10], by defining
Mh(Ng) to be the centraliser of mj(¢) in the mapping class group M(Ng). This definition is motivated by the notion of
hyperelliptic Klein surfaces - see for example [4,5]. We say that wj(@) is the hyperelliptic involution of Ng and by abuse of
notation we write @ for w;(@).

Since @ € Cp=(s,_p) (), We have restrictions of nt; and i; to the maps

152 Cg s,y (> ) = MP(Ng)
i MM(Ng) — Crmesg ((J, o) C M'(Sg_1).

2. Linear representations of the hyperelliptic mapping class group

Mapping class groups of projective plane Ni and of Klein bottle N; are finite, hence the first nontrivial case is the group
M(N3). This is an interesting case, because it is well known [3,8] that

MP(N3) = M(N3) = GL(2, Z).

In particular, M"(N3) has a faithful linear representation of real dimension 2.
For g > 4, we can produce a faithful linear representation of the hyperelliptic mapping class group Mh(Ng) as a com-
position of the section

ij: M"(Ng) = Cancs_ (. 0) € MM (Sg_1)

and a faithful linear representation of /\/lh(Sg_1) obtained by Korkmaz [6] or by Bigelow and Budney [2]. Recall that both
of these representations of M"(S g—1) are obtained form the Lawrence-Krammer representation of the braid group [1,7].

The above argument is immediate, but the resulting representation of Mh(Ng) is far from being optimal. In fact, if
we use the Bigelow-Budney representation of Mh(Sg_l) (which has much smaller dimension than the one obtained by
Korkmaz), the dimension of the obtained representation of M"(N g) is equal to

29 —1
2g-( g2 )+2(g—1)=2(g—1>(2g2—g+1>.
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Theorem 1. If g > 4, then the hyperelliptic mapping class group M"(N ¢) has a faithful linear representation of real dimension g2—1.

Proof. Let Mi(SO’g+]) be the extended mapping class group of a sphere with g 4 1 punctures {pi,...,pg+1}, and let
Mi(So,gJ) be the stabiliser of pgi1 with respect to the action of Mi(Sg,gH) on the set of punctures. By Theorem 2.1 of
[10], the orbit space projection Mh(Ng) — Mh(Ng)/<Q) induces an epimorphism

To: MT(Ng) — M*(So.4.1)

with kerm, = (0). Moreover, by rescaling the Lawrence-Krammer representation of the braid group [1], Bigelow and Budney
constructed in the proof of Theorem 2.1 of [2] a faithful linear representation

£'s M(So.g.1) — a(@),&) .

To be more precise, they obtained a representation over C; however, their argument works without any changes over R.
Since M (So,g,1) is a subgroup of index 2 in Mi(Song), the latter group has an induced faithful linear representation
of dimension 2 - (‘g) = g2 — g. This gives us a linear representation

L1: M"(Ng) — GL (g2 —g ]R)
with kernel ker £1 = (p). It is straightforward to check that if
Ly: M"(Ng) — Hi(Ng; R) CGL(g — 1, R)

is a standard homology representation then £ & L, is a required faithful linear representation of M“(Ng) of dimension
2 2
gce—g+g—-1=g°—1. O

Remark 1. The above theorem gives an upper bound g2 — 1 on the minimal dimension of a faithful linear representation of
the hyperelliptic mapping class group M"(N g)- As we mentioned in the introduction, the hyperelliptic mapping class group

M"(N3) has a faithful linear representation of real dimension 2, hence it seems very unlikely that the obtained bound is
sharp.
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