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Given a smooth simply connected planar domain, the area is bounded away from zero in 
terms of the maximal curvature alone. We show that in higher dimensions this is not true, 
and for a given maximal mean curvature we provide smooth embeddings of the ball with 
arbitrary small volume.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Étant donné un domaine planaire simplement connexe lisse, l’aire est bornée loin de zéro 
en termes de la seule courbure maximale. Nous montrons que pour des dimensions plus 
élevées ce n’est pas vrai, et nous fournissons, pour un maximum donné de la courbure 
moyenne, des plongements lisses de la boule avec un petit volume arbitraire.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

According to a classical result [3,14], for any smooth simple planar curve γ , if the curvature κ is bounded from above 
by some positive constant M , then the curve γ encloses a bounded simply connected domain � that contains a disk of 
radius M−1. In particular, see [12], if �∗ is a disk having same measure as �, the following inequality holds true

‖κ‖L∞(∂�) ≥ ‖κ‖L∞(∂�∗) (1)

or equivalently

‖κ‖2
L∞(∂�) Area(�) ≥ π,

equality holding in both cases if and only if � is a disk.
Very recently, such inequalities have been generalized to other L p norm of the curvature. More precisely, for p = 2 (see 

[2,4,8]), and for p ≥ 1 (see [5]) it holds

‖κ‖L p(∂�) ≥ ‖κ‖L p(∂�∗)
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or equivalently

‖κ‖2
Lp(∂�) Area(�)

p−1
p ≥ 22/pπ(p+1)/p,

equality holding again in both cases if and only if � is a disk.
In this short note, we consider the 3-dimensional case. We replace the simply connected planar domain by sets diffeo-

morphic to balls in R3, and the planar curvature κ by the mean curvature H of the boundary. If by S(·) and V (·) we denote 
the surface area and the volume, respectively, our main result then reads as follows.

Theorem 1.1. For any ε > 0 there exists �ε ⊂ R
3 , diffeomorphic to the unit ball, with smooth C1,1 boundary, such that

‖H‖L∞(∂�ε) ≤ 1, |S(�ε) − 8π| ≤ ε, and V (�ε) ≤ ε.

If �∗ denotes the ball having the same volume as �, a first consequence is as follows.

Corollary 1.2. In the class of C1,1 subsets of R3 diffeomorphic to balls for all 2 < p ≤ ∞, we have

inf
{‖H‖L p(∂�) : V (�) = 1

} = 0. (2)

In particular, for all 2 < p ≤ ∞, there exists a C1,1 set � ⊂R
3 , diffeomorphic to the ball �∗, such that

‖H‖L p(∂�) < ‖H‖L p(∂�∗).

Notice that ‖H‖L2 is a very special case since it corresponds to the Willmore energy (invariant under dilation), which 
is indeed minimal on balls [16]. The case p = 2 is also a threshold case since ‖H‖Lp , for p < 2, scales under dilation as a 
positive power of the volume. Under volume constraint, ‖H‖Lp is in fact bounded away from zero for all 1 ≤ p < 2, even if 
the optimal lower bounds are still unknown, see [9,15].

Our interest in this kind of inequalities is also due to a question arisen in [11,13] in relation to estimates for Laplacian 
eigenvalue with Robin boundary conditions.

For any given α > 0, consider the eigenvalue problem{ −�u = λu in �
∂u

∂ν
= αu on ∂�.

(3)

By λ(�, α) we denote the greatest (negative) λ such that (3) admits a nontrivial solution, namely:

λ(�,α) = max

⎧⎨⎩α

∫
∂�

v2 −
∫
�

|∇v|2 : v ∈ H1(�),

∫
�

v2 = 1

⎫⎬⎭ .

It has been conjectured for long time [1] that balls achieve the greatest eigenvalue among sets of given measure. Indeed 
they are local maximizers in any dimension (see [6]) and global maximizers in 2 dimensions for α small enough (see [7]). 
However, in [7] the authors also show that large values of α provides the annulus as a counterexample to the conjecture.

In [11,13], this was clarified showing that whenever � ⊂ R
n is C1,1 then

λ(�,α) = −α2 − α(n − 1) sup
∂�

H + o(α) as α → ∞.

In fact, since any annulus A having same measure as a ball B also has a smaller maximal curvature, we have 
λ(A, α) > λ(B, α) as soon as α is large enough. Thereafter, in [13] the authors were interested in minimizing the max-
imal curvature in classes of domains of given volume subject to some kind of additional topological constraints. In view 
of (1), in two-dimension balls achieve the minimal maximal mean curvature whenever we restrict to simply connected sets. 
In dimensions greater than 2, they were able as well to prove that starshapedness is enough to get the same result. Whence 
they left open the following problem.

Question. Let � ∈ R
n be a bounded smooth domain with a connected boundary and let �∗ be a ball with same volume. Do we have 

sup
∂�

H ≥ sup
∂�∗

H?

Corollary 1.2 provides a negative answer.
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Fig. 1. The curve �h,β with h = 1 and β = 4.

2. Proofs

Proof of Theorem 1.1. The proof relies on the following explicit construction. For all h, β > 0 we design a C1,1 arc of curve 
�h,β by joining together five pieces of arcs γ1...γ5 as follows (see Fig. 1). The arc γ1 is the arc of curve whose parametric 
representation for t ∈ [0, π] is:

γ1 :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x(t) = 1

2h

(√
β + sin2 t − sin t

)

y(t) = 1

2h

⎛⎜⎝cos t − 1 +
t∫

0

sin2 s√
β + sin2 s

ds

⎞⎟⎠ .

(4)

In Fig. 1 the arc γ1 is represented in magenta.
With γ2 and γ3, we denote two concentric semicircles with parametric representations for t ∈ [−π/2, π/2] given by:

γ2 :

⎧⎪⎨⎪⎩
x(t) = 1

h
cos t +

√
β

2h

y(t) = 1

h
sin t + R(h, β)

(5)

γ3 :
⎧⎨⎩ x(t) = R(h, β) cos t +

√
β

2h
y(t) = R(h, β) sin t + R(h, β).

(6)

Here R(h, β) = 1

2h

π∫
0

sin2 s√
β + sin2 s

ds <
1

h
. In Fig. 1, the arcs γ2 and γ3 are represented in cyan.

The remaining arcs, γ4 and γ5, are segments parallel to the x-axis, namely for t ∈ [0, 1]

γ4 :

⎧⎪⎨⎪⎩
x(t) = t

√
β

2h

y(t) = R(h, β) + 1

h

(7)

γ5 :
⎧⎨⎩ x(t) = t

√
β

2h
y(t) = 2R(h, β).

(8)

In Fig. 1, the arcs γ4 and γ5 are represented in blue.
We can consider now the surface of revolution 
h,β obtained by rotating by an angle 2π the curve �h,β around the 

y-axis. Since �h,β is simple and lies in the half plane x ≥ 0, the surface 
h,β is C1,1, without self intersection, compact, 
and it is the boundary of a bounded connected set �h,β . From now on, we choose as normal to 
h,β the unit outer normal 
of �h,β . One half of 
h,β is represented in Fig. 2.

Let us compute the mean curvature of 
h,β . Since � is C1,1 then also 
 is C1,1 with bounded mean curvature H defined 
H2 almost everywhere. More specifically, taking into account the orientation chosen above:

– the arc γ1 is called nodary and it generates a well-known surface called nodoid and has the characteristic that the 
mean curvature H is constant and equal to h (see [10]),
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Fig. 2. The surface of revolution obtained by rotating �h,β in Fig. 1 around the y axis of an angle π. Here h = 1 and β = 4.

– the arcs γ4 and γ5 generate two flat disks and therefore have vanishing mean curvature H ≡ 0,

– the arc γ2 is half circle of radius 1/h and generates a portion of torus with mean curvature 0 < H ≤ h 
(

1 −
√

β

4+2
√

β

)
,

– the arc γ3 is a half circle of radius R(h, β) and generates a portion of torus with mean curvature 0 > H ≥
− 1

R

(
1 −

√
β

4hR+2
√

β

)
.

For fixed h > 0, we vary β between 0 and 1. The surface 
h,β is uniformly bounded with respect to 0 < β < 1. Let us 
consider the limit as β → 0 and observe that

(i) limβ↓0 R(h, β) = 1
h ,

(ii) the radii of the two circular arcs γ2 and γ3 asymptotically coincide,
(iii) γ1 asymptotically shrinks to the origin,
(iv) γ4 and γ5 shrink to the point (0, 2h ).

Hence we have

lim
β↓0

V
(
�h,β

) = 0,

and

lim
β↓0

S
(
�h,β

) = 8π
h2

.

Moreover, we have

− 1

R(h, β)
≤ H ≤ h, for all β > 0

and H is uniformly bounded from above and below as long as 0 < β < 1.
Once we observe that

lim
β↓0

‖H‖L∞(∂�h,β ) = h,

we can choose 
√

8π
ε+8π < h < 1 and β small enough to complete the proof. �

Proof of Corollary 1.2. For all ε > 0 let �ε be the set given in the statement of Theorem 1.1. We consider then �̃ε = �ε

V (�ε)1/3

rescaled so that the volume is equal to 1. Then we have

‖H‖p
L p(∂�̃ε )

≤ ‖H‖p
L∞(∂�̃ε )

S(�̃ε) ≤ (8π + ε)ε
p−2

3 ,

which implies (2).
Moreover, for every 2 < p ≤ ∞, we deduce

‖H‖p
L p(∂�̃∗

ε )
= 4π

(
4π
3

) p−2
3 ≥ 4π,

which for ε small enough gives

‖H‖p
L p(∂�̃ε )

< ‖H‖p
L p(∂�̃∗

ε )
. �
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