
C. R. Acad. Sci. Paris, Ser. I 354 (2016) 195–200
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Geometry

The ε-positive center set and its applications ✩

L’ensemble des centres ε-positifs et ses applications

Shengliang Pan a, Yunlong Yang a, Pingliang Huang b

a Mathematics Department, Tongji University, Shanghai, 200092, PR China
b Mathematics Department, Shanghai University, Shanghai, 200444, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 July 2015
Accepted after revision 4 November 2015
Available online 6 January 2016

Presented by Étienne Ghys

Keywords:
Constant width curve
ε-Positive center set
Inner parallel body
Kaiser’s conjecture
Positive center set

In this paper we will first give a positive answer to Kaiser’s conjecture on ε-positive centers 
for convex curves and then present its two applications.
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r é s u m é

Dans cette Note, nous apportons une réponse positive à la conjecture de Kaiser sur les 
centres ε-positifs des courbes convexes, puis nous en présentons deux applications.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For a convex plane curve γ with length L and area A, Bonnesen [1] had proved the famous inequality that is now known 
as the Bonnesen inequality:

Lr − A − πr2 ≥ 0, rin ≤ r ≤ rout, (1.1)

where rin and rout are the inradius and circumradius of γ . The equality in (1.1) holds when r = rin if and only if γ is either 
a circle or a sausage curve and when r = rout if and only if γ is a circle. The proof of (1.1) can be found in [1–3,13,14], etc.

To understand the curve shortening problem (cf. [4,5,7]), Gage [6] introduced, for the first time, the positive center for a 
convex curve γ with length L and area A as a point for which its support function h(θ) satisfies

Lh(θ) − A − πh(θ)2 ≥ 0, (1.2)

for all θ ∈ [0, 2π ]. Gage [6] has shown that the center of the minimal annulus must be a positive center and that many 
other natural “centers” of γ are not positive centers in general, such as the center of mass, the centroid and the Steiner 
point. Following Gage’s idea, the authors of the present paper have proven in [10] that the positive center set of a convex 
curve is convex and shown that circles and sausage curves are the only examples of positive center sets of zero area. In 
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1996, Kaiser [12] had defined the ε-positive center for a curve as Gage and put forward the following conjecture by some 
computer graphics:

Conjecture (Kaiser). Let γ be a simple closed curve.

(i) If γ has more than one positive center, then it has an ε-positive center for some ε > 0.
(ii) The ε-positive center set of γ is convex for any ε ≥ 0.

Let K be the domain enclosed by γ and D the unit disk. For a point c ∈ K , let

rin(c) = max{r ≥ 0 | c + rD ⊆ K }, rout(c) = min{r > 0 | c + rD ⊇ K }.
Through the Bonnesen function

B(r) = Lr − A − πr2, (1.3)

one can get the equivalent definitions of positive centers and ε-positive centers. A point c ∈ int K is a positive center of γ if 
it satisfies

B(rin(c)) ≥ 0 and B(rout(c)) ≥ 0. (1.4)

A point c ∈ int K is an ε-positive center of γ if there exists an ε ≥ 0 such that

B(rin(c)) ≥ ε and B(rout(c)) ≥ ε. (1.5)

It is obvious that 0 ≤ ε ≤ min{Lrin − A − πr2
in, Lrout − A − πr2

out} and an ε-positive center must be a positive center.
The purpose of this paper is to describe the ε-positive center set and give a positive answer to Kaiser’s conjecture for 

convex curves. As applications of ε-positive centers, we investigate the ε-positive center sets of constant width curves and 
give a shorter proof of a geometric inequality that is appeared in [8].

2. Preliminaries

Let E and F be two compact sets in R2, D the unit disk. The Minkowski sum of E and F is defined by

E + F = {x + y | x ∈ E, y ∈ F }.
The Minkowski sum of a disk and a line segment is called a sausage body (cf. [9]), its boundary is called a sausage curve. Let 
K be a convex domain with perimeter L and area A. The area of the outer parallel body of K at distance t , K + t D (t ≥ 0), 
can be given by

AK (t) � A(K + t D) = A + Lt + πt2, (2.1)

which is called the Steiner polynomial of K . If the boundary of K , ∂ K , is a strictly convex and C2 curve, then the area of 
K + t D can be expressed in terms of the support function h(θ) of ∂ K as

AK (t) = 1

2

2π∫
0

(
(h(θ) + t)2 − h′(θ)2

)
dθ. (2.2)

The Minkowski difference of E and F is defined by

E ∼ F = {x ∈R
2 | x + F ⊆ E}.

If E and F are both convex domains, then so is E ∼ F . For convex domains E and F we say that F is a summand of E if 
there is a convex domain M such that E = F + M . It is clear that (E + F ) ∼ F = E holds for any convex domains E and F , 
while (E ∼ F ) + F = E holds if and only if F is a summand of E . Denote by rin the inradius of a convex domain E . The set

E−λ � E ∼ λD, 0 ≤ λ ≤ rin,

is called an inner parallel body of E at distance λ.
If there exists an ε-positive center, then it is clear that the equation B(r) = ε has two non-negative real roots. We denote 

them by r1(ε) and r2(ε) with r1(ε) ≤ r2(ε).
In the following, “convex curve” means “closed convex plane curve”, the set of all positive centers of a convex curve γ

is denoted by P(γ ) and that of all ε-positive centers is denoted by Pε(γ ), and C(x, r) represents the circle with radius r
and centered at x.
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Fig. 1. Symmetry.

3. The ε-positive center and Kaiser’s conjecture

In this section, we will show that the ε-positive center set of a convex curve is a non-empty convex set. Firstly, we 
introduce a lemma about the positive center set for centrally symmetric convex curves.

Lemma 3.1. (See [10].) If γ is a convex curve centrally symmetric with respect to point o, then o is the center of the minimal annulus 
of γ and P(γ ) is a centrally symmetric domain with the same symmetry center o.

Proposition 3.2. If a convex curve γ is neither a circle nor a sausage curve, then o ∈ intP(γ ), where o is the center of the minimal 
annulus of γ .

To prove the above proposition, we need the following lemma, which is a direct consequence of Proposition 1.6 and 
Theorem 1.8 of Gage [6].

Lemma 3.3. (See [6].) Let γ be a convex plane curve, o the center of its minimal annulus. If s, t ∈ γ ∩ C(o, rin(o)) and S, T ∈ γ ∩
C(o, rout(o)) and the line segments st and ST satisfy st ∩ ST 
= ∅, then there is a line l with the following properties:

(i) l ∩ K is a line segment with o as its midpoint, where K is the domain enclosed by γ ;
(ii) the points s and t lie on different sides of l, and so do S and T .

Proof of Proposition 3.2. From [10, Theorems 2.6 and 2.7], we have known that intP(γ ) 
= ∅ when γ is neither a circle 
nor a sausage curve. Since the center o of the minimal annulus of γ must be a point of P(γ ), o ∈ intP(γ ) or o ∈ ∂P(γ ). 
If o ∈ ∂P(γ ), then γ is not symmetric with respect to o by Lemma 3.1. The domain K enclosed by γ can be cut into two 
parts by a chord through o as shown in Fig. 1a by Lemma 3.3. Denote by Li and Ai (i = 1, 2) the length and the area of the 
two parts, respectively. Through a symmetrization of the two parts with respect to o, we obtain two centrally symmetric 
domains K1 and K2 as shown in Figs. 1b and 1c. It is obvious that the rin(o)s in these three figures are equal and so are 
rout(o)s.

Since K1 is convex, from Lemma 3.1, we have

2L1rin(o) − 2A1 − πr2
in(o) ≥ 0, 2L1rout(o) − 2A1 − πr2

out(o) ≥ 0.

As for K2, as it is unnecessarily convex, we consider its convex hull K̃2, denote its perimeter and area by L̃2 and Ã2, 
respectively. Again by Lemma 3.1 and the fact that ̃L2 ≤ 2L2 and Ã2 ≥ 2A2, we get

2L2rin(o) − 2A2 − πr2
in(o) ≥ L̃2rin(o) − Ã2 − πr2

in(o) ≥ 0,

2L2rout(o) − 2A2 − πr2
out(o) ≥ L̃2rout(o) − Ã2 − πr2

out(o) ≥ 0.

Hence

B(rin(o)) = Lrin(o) − A − πr2
in(o) ≥ 0,

B(rout(o)) = Lrout(o) − A − πr2
out(o) ≥ 0.

From [10, Theorem 2.1] and the fact that o ∈ ∂P(γ ), it follows that B(rin(o)) = 0 or B(rout(o)) = 0.
If B(rin(o)) = 0, then

2L1rin(o) − 2A1 − πr2
in(o) = 0,

2L2rin(o) − 2A2 − πr2
in(o) = L̃2rin(o) − Ã2 − πr2

in(o) = 0.

Therefore, K̃2 = K2. Since K1 and K2 are centrally symmetric with respect to o, rin = rin(o) and rout = rout(o), which implies 
that ∂ K1 is a circle or a sausage curve, so is ∂ K2. If either ∂ K1 is a circle and ∂ K2 is a sausage curve or ∂ K1 is a sausage 
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Fig. 2. rin(c3) and rout(c3).

curve and ∂ K2 is a circle, then it contradicts the fact that K1 and K2 have the same rin(o) and rout(o). If both ∂ K1 and ∂ K2
are circles or sausage curves, then γ must be a circle or a sausage curve, which is a contradiction of the fact that γ is not 
centrally symmetric.

If B(rout(o)) = 0, a similar argument implies that γ is a circle, which is impossible. Therefore, o ∈ intP(γ ). �
Theorem 3.4. If a convex curve γ is neither a circle nor a sausage curve, then there exists a positive number ε > 0 such that Pε(γ ) 
= ∅.

Proof. By Proposition 3.2, one can see that

B(rin(o)) > 0 and B(rout(o)) > 0,

where o is the center of the minimal annulus of γ . It follows from the continuities of rin(·), rout(·), B(rin(·)) and B(rout(·))
that there exists an ε > 0 such that

B(rin(o)) ≥ ε and B(rout(o)) ≥ ε.

Hence, o ∈Pε(γ ), that is to say, Pε(γ ) 
= ∅. �
Remark 3.5. This theorem gives a positive answer to Conjecture (i) of Kaiser.

Corollary 3.6. If γ is a strictly convex non-circular curve, then there exists an ε > 0 such that Pε(γ ) 
= ∅.

To prove the convexity of the ε-positive center set of a convex curve, we need the following lemma.

Lemma 3.7. Let γ be a convex curve. If c1 and c2 are two ε-positive centers of γ , then for any point c3 on line segment c1c2 , one can 
get

B(rin(c3)) ≥ ε and B(rout(c3)) ≥ ε.

Proof. Let C(c3, ̃rin(c3)) be the largest inscribed circle of the convex hull of circles C(c1, rin(c1)) and C(c2, rin(c2)), 
C(c3, ̃rout(c3)) the circle that contains the two intersection points of the circles C(c1, rout(c1)) and C(c2, rout(c2)) (see Fig. 2). 
Since γ is convex, for the case rin(·), γ contains circles C(c1, rin(c1)), C(c2, rin(c2)) and C(c3, ̃rin(c3)); for the case rout(·), 
circles C(c1, rout(c1)), C(c2, rout(c2)) and C(c3, ̃rout(c3)) contain γ . From Fig. 2, it is clear that

min{rin(c1), rin(c2)} ≤ r̃in(c3) ≤ rin(c3), (3.1)

rout(c3) ≤ r̃out(c3) < max{rout(c1), rout(c2)}. (3.2)

From (3.1) and (3.2) it follows that

r1(ε) ≤ min{rin(c1), rin(c2)} ≤ rin(c3) ≤ rout(c3) ≤ max{rout(c1), rout(c2)} ≤ r2(ε).

Thus

B(rin(c3)) ≥ ε and B(rout(c3)) ≥ ε. �
Theorem 3.8. If γ is a convex curve, then Pε(γ ) is a closed convex set for any ε ≥ 0. Moreover, if Pε(γ ) 
= ∅, then for any boundary 
point c of Pε(γ ), at least one of B(rin(c)) = ε and B(rout(c)) = ε holds.

Proof. From the definition of ε-positive centers and the continuity of B(r), it follows that there exists a maximum of ε, 
denoted by εmax, such that Pε(γ ) is not an empty set. If ε > εmax, then Pε(γ ) = ∅. If 0 ≤ ε ≤ εmax, then it is clear that 
Pε(γ ) is closed. Next, we deal with its convexity. If Pε(γ ) has only one point, its convexity is obvious. If Pε(γ ) has more 
than one point, then Lemma 3.7 can yield that Pε(γ ) is a convex set. And therefore, for any boundary point c of Pε(γ ), at 
least one of B(rin(c)) = ε and B(rout(c)) = ε holds when 0 ≤ ε ≤ εmax. �
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4. Applications

As an application of ε-positive centers, we describe the ε-positive center sets of constant width curves. We need the 
following lemma about constant width curves; its proof can be found in [10].

Lemma 4.1. (See [10].) If γ is a curve of constant width w and K is the domain enclosed by γ , then

rin(c) + rout(c) = w, c ∈ K .

Proposition 4.2. If γ is a curve of constant width w with area A, then for any ε ∈ [0, π wrin − A − πr2
in], we have

(i) Pε(γ ) is its inner parallel body K−r1(ε) , where r1(ε) is the smaller root of π wr− A −πr2 = ε. Moreover, if ε = π wrin − A −πr2
in , 

then Pε(γ ) has only one point, which is just the center o of the minimal annulus of γ ;
(ii) B(rin(c)) = B(rout(c)) = ε holds for each boundary point c of Pε(γ ).

Proof. (i) Let K be the domain bounded by γ . Since γ is a curve of constant width w , by Lemma 4.1, we have

rin(c) + rout(c) = w, c ∈ K . (4.1)

For any ε ∈ [0, π wrin − A − πr2
in], the quadratic equation B(r) = ε has two real roots r1(ε), r2(ε) and

r1(ε) + r2(ε) = w. (4.2)

Eqs. (4.1) and (4.2) imply that rin(c) and rout(c) are symmetric with respect to w
2 and so are r1(ε) and r2(ε). Thus, if 

rin(c) ≥ r1(ε), then rout(c) ≤ r2(ε). It follows from the definitions of Pε(γ ) and inner parallel body that Pε(γ ) is the inner 
parallel body K−r1(ε) of K .

If ε = π wrin − A − πr2
in, then it is clear that the center o of the minimal annulus of γ is the only point of Pε(γ ).

(ii) Since rin(c) and rout(c) are symmetric with respect to w
2 , B(rin(c)) = B(rout(c)), which together with Theorem 3.8

yields that B(rin(c)) = B(rout(c)) = ε holds for any boundary point c of Pε(γ ). �
Motivated by Jetter’s idea in [11], we give a different proof of Theorem 1.10 of [8] through ε-positive center and 

Blaschke’s rolling theorem (cf. [15, Corollary 3.2.10]).

Proposition 4.3. If γ is a strictly convex non-circular C2 curve with length L and area A, then

−ρmax < t2 < −rout < − L

2π
< −rin < t1 < −ρmin < 0,

where ρmax and ρmin are the maximum and minimum curvature radii of γ , rin and rout are the inradius and circumradius of γ , t1 and 
t2 are the roots of the Steiner polynomial of domain K enclosed by γ .

Proof. Since rin D ⊆ K ⊆ rout D , rin ≤ L
2π ≤ rout and the equalities hold if and only if K is a disk, that is, γ is a circle.

From Corollary 3.6, there exists an ε > 0 such that Pε(γ ) 
= ∅. For any point c of Pε(γ ), we have

B(rin(c)) > 0 and B(rout(c)) > 0.

Thus, −rin ≤ −rin(c) < t1 and t2 < −rout(c) ≤ −rout.
Denote by h(θ) the support function of γ . Let 0 ≤ m ≤ ρmin. It follows from the Blaschke rolling theorem (cf. [15, 

Corollary 3.2.10]) that (K ∼ mD) + mD = K , hence hK∼mD = hK − m. By (2.2), we obtain

AK∼mD(t) = 1

2

2π∫
0

(
(h(θ) − m + t)2 − h′(θ)2

)
dθ = AK (t − m).

From the fact that t1, t2 are the two roots of AK (t) = 0, it follows that t1 + m and t2 + m are roots of AK∼mD(t) = 0. 
Since for any convex domain K , AK (t) = 0 has two non-positive real roots, we have t1 + m ≤ 0 and the inequality is sharp 
when the area of K is positive. Hence, t1 ≤ −m, ∀m ≤ ρmin. Set m = ρmin, we get t1 ≤ −ρmin. From the above discussions, 
rin > ρmin, which implies that the area of K ∼ ρmin D is positive, and thus t1 < −ρmin. Similarly, let m ≥ ρmax, we can get 
−ρmax < t2. �
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